
Control of industrial robots
through high-level task

programming

Jean-Paul Meynard

ISBN 91-7219-701-3 ISSN 0280-7971

PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPING UNIVERSITY

COPYRIGHT © 2000 JEAN PAUL MEYNARD

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Control of industrial robots through
high-level task programming

by

Jean Paul Meynard

May 2000
ISBN 91-7219-701-3

Linköping Studies in Science and Technology
Thesis No. 820

ISSN 0280-7971
LiU-Tek-Lic-2000:16

ABSTRACT

In this thesis we present an experimental research platform in robotics, XPROB. This
platform has been designed to be a tool that facilitates the development of robotic
applications. XPROB achieves a flexible prototyping system that features a task-level
programming environment, a dynamic representation of the work-cell’s equipment, and
sensor data integration at runtime allowing on-line program monitoring and adaptation.

This thesis describes how the object-orientation paradigm combined with a traditional
layered-control structure lead to an open and dynamic architecture. It also presents an
advanced object representation to handle high-level reasoning, even about partially
recognized objects.

The platform was first evaluated using simple robotic applications, such as assembly and
sensor-guided actions. Afterwards, an industrial application, consisting of a disassembly
line for worn-out electric motors, was successfully set up and controlled by our platform.

This work has been supported by the Swedish National Board for Industrial and Technical
Development (NUTEK).

To Maria

Abstract

In this thesis we present an experimental research platform in robotics,
XPROB. This platform has been designed to be a tool that facilitates the
development of robotic applications. XPROB achieves a flexible prototyp-
ing system that features a task-level programming environment, a dynamic
representation of the work-cell’s equipment, and sensor data integration at
runtime allowing on-line program monitoring and adaptation.

This thesis describes how the object-orientation paradigm combined
with a traditional layered-control structure lead to an open and dynamic
architecture. It also presents an advanced object representation to handle
high-level reasoning, even about partially recognized objects.

The platform was first evaluated using simple robotic applications, such
as assembly and sensor-guided actions. Afterwards, an industrial applica-
tion, consisting of a disassembly line for worn-out electric motors, was
successfully set up and controlled by our platform.

Preface

The work presented in this thesis was conducted at the Department of
Computer and Information Science at Linköping University. It is part of
the project ‘Sensors and Control of Autonomous Assembly’, funded by
NUTEK1 within the research program ‘Mobile Autonomous Systems’. The
motivation for the project was to provide a flexible software platform for
the control and development of robotic applications. The research objec-
tives encompass:

 • dynamic object-oriented modeling of the work cell to reflect the cur-
rent hardware status

 • a high-level programming environment to ease the prototyping of
manufacturing processes

 • reactive control system to handle uncertainties, real world changes,
and enable program correction at runtime.

Among the issues raised by the project, we focus on the design of an
architecture for a robotic prototyping environment. In particular, we inves-
tigate the representation, reasoning, and symbolic programming of 3-D
objects. This appears essential to allow the end-user to specify robotic

1. Swedish National Board for Industrial and Technical Development.

tasks using abstract representations of the equipment. Another important
aspect tackled in this thesis is sensor integration. Sensor feedback has
proven to be extremely valuable to increase the flexibility of robotic appli-
cations. However, modeling and interpretation of sensor data can still be
enhanced.

The results of this thesis are illustrated by a fully operating platform set
up at the Assembly Technology Division, Department of Mechanical Eng-
ineering, Linköping University.

Acknowledgements

First, I would like to thank Dr. Anders Törne for offering me the possi-
bility of working on this exciting project and giving me great freedom to
conduct my research. A special thanks should go to Peter Loborg for his
assistance and for our long, vivid, and fruitful discussions. I would also
like to thank former and present members at RTSLAB for providing a
stimulating research environment.

This work could not have been possible without the collaboration of
Björn Karlsson, Gert Johansson and Jan Erik Andersson, who provided
me an extremely valuable knowledge in vision and robotics as well as the
necessary equipment I needed to achieve this project. Finally, I would like
to express my gratitude to Nutek, The Swedish National Board for
Research, for financially supporting this project.

Jean Paul Meynard

Contents

Preface

Acknowledgements

13 Introduction

19 Related work

31 Description of XPROB

59 Application to basic robotic tasks

75 Application to a robotized disassembly
line

87 Conclusion

89 Appendix

95 References

13

Chapter 1
Introduction

The development of industrial robotic systems still remains a difficult,
costly, and highly time-consuming operation. Commercial robot program-
ming environments are typically closed systems. They notably support
very limited connectivity with other vendor products and are often cus-
tomized for particular applications [Dac92].

If we consider material handling applications and assembly systems,
additional issues emerge. They are indeed tailored for manipulation of
identical parts, hence they require substantial modification for different
products. Increasing the flexibility raises a great deal of issues in terms of
programming, sensor interaction, and object representations.

The design of the architecture presented in this thesis is centered around
those issues. Our goal is to have at our disposal a flexible platform for the
control and development of complex robotic applications. Our investiga-
tions for this project are thus concentrated on high-level programming
environments for rapid prototyping and flexible manufacturing. The con-
cepts elaborated in our approach have been implemented and tested
through the development of XPROB −an eXperimental Platform in ROBot-
ics.

CHAPTER 1

14

In the next section, we give a brief account of the contribution of our
work. Then we present an introductory overview of the XPROB architec-
ture. Thereafter we describe the structure of the thesis.

1.1 Motivation and contribution

The re-programming of industrial robotic systems is still a difficult, costly,
and time consuming operation. In order to increase flexibility, a common
approach is to consider the work-cell programming at a high level of
abstraction, which enables a description of the sequence of actions at a
task-level. A task-level programming environment provides mechanisms
to automatically convert high-level task specification into low level code.
Active research has focused on task-level programming, but as reported in
[Dac92], limitations still exist, notably due to the following:

 • No satisfactory translation mechanisms to translate the task specifica-
tion into low level code exist for the general case.

 • The sensor integration remains a problematic, for example, detecting
errors during operation, or handling variation in parts.

 • The complexity of the real-world scenarios, including, for example,
task specification, synchronization, or time constraints, are not always
easily representable.

The XPROB platform constitutes an attempt to alleviate these three limita-
tions through a flexible programming environment. It provides a machine-
independent programming language. It supports task re-planning based on
sensor feedback. Finally, it significantly reduces the burden of the pro-
grammer since it supports: 1) an object-oriented 3-D modeling of the
work-cell, providing symbolic reasoning; 2) pre-defined and user-defined
high-level command libraries; 3) temporal constraints at different levels of
granularity.

INTRODUCTION

15

1.2 Overview of XPROB, an experimental platform in
robotics

To get a better understanding of this thesis, we outline in this section the
XPROB architecture and its main characteristics.

To increase flexibility in robotic application programming, an eXperimen-
tal Platform in Robotics (XPROB) has been developed. XPROB is an open
architecture, see Figure 1.1, consisting of four key components: a task
level programming environment, a robot program synthesis, a real-time
command execution module, and a world model.

The task level programming environment provides the end-user with a
robot-independent high-level programming language. Specific functions
can be added at any time, as the XPROB kernel supports dynamically load-
able libraries. A task is specified in a script that is interpreted when the
task is run.

Each work-cell component, for example, robot, tool, sensor, or manipu-
lated part, has a 3-dimensional description modeled in an object-oriented
database - the world model. The database can handle partially identified
objects, and it provides a mechanism to express confidence in data. The
values of the objects’ attributes are updated throughout the execution of
the task-level program.

In the program synthesis module, a task planner translates the high-
level commands into low-level robot commands. A motion planner com-
putes the approaching and final gripper position and orientation. Finally,
the low-level commands are translated into robot-dependent instructions.

The real-time command execution module forwards these instructions
to the corresponding hardware and/or graphically displays them. During
the execution of the program, sensor data can be requested. Upon recep-
tion, a filter adds a symbolic value to the sensor data. Further reasoning
about these symbolic values allows task re-planning at runtime.

CHAPTER 1

16

1.3 Structure of the thesis

The rest of the thesis is organized as follows:

Chapter 2 presents related work in the robot programming domain. We
briefly present a classification of the existing robot programming environ-
ments. We then describe the basis of the environment which is our focus,
namely task-level programming, and comment on some recent
approaches.

Robot program synthesis

Task-level
Programming

Command execution

Robot Simulator Tools Robot Sensors

Dynamic
World
Model

Information flow

Figure 1.1: XPROB architecture

Work-cell

INTRODUCTION

17

Chapter 3 introduces the general architecture of our robotic research plat-
form. We detail the platform’s key components and the functionality of the
prototyping environment.

Chapter 4 first provides an example of assembly of polyhedral objects.
An evaluation of the results is discussed. The two following parts illustrate
the benefit of sensor integration in robotic applications. Identification of
parts by a vision system and service by a force sensor are successively
implemented and analysed.

Chapter 5 describes the successful set-up, control and programming of an
industrial disassembly line using XPROB.

Chapter 6 presents conclusions and some perspectives for future work.

19

Chapter 2
Related work

In this part, we briefly present a classification of the robot programming
environments. Then we describe the bases of the task-level programming
environment. Afterwards, we present some recent contributions to this
area. The different approaches are then discussed while focusing on five
aspects: programmability, reactivity, maintainability, robustness, and
observability.

2.1 A classification of robot programming
environments.

As reported in [Pet96], and [Gra89], several classifications have been pro-
posed to categorize the different levels at which robots may be pro-
grammed. As task-level programming is our focus, our classification
emphasizes the degree of abstraction of robot movement specification.

Robot programming language (RPL) encompasses the joint level and
manipulator level. In joint-level programming, the position of the end-
effector is specified in terms of joint angles and joint displacement. In
manipulator-level programming, the robot motions are specified using
pre-defined commands addressing robot-specific area. Today, the manipu-

CHAPTER 2

20

lator level is still the most widely used programming method employed in
industry for manufacturing tasks. The forerunner languages, such as AML
[Tay82] or AL [Muj82], have now been superseded by elaborated robot
languages like ABB Rapid [Abb94]. Despite their common use, they have
two important drawbacks. First, they require specialized knowledge of the
language. Secondly, the robot programs have limited portability. As a
result, significant investment must be made when changing or acquiring a
new robot type or simply when upgrading a new controller from the same
vendor. As the number of different robot languages now exceeds a hun-
dred [Nan93], some recent attempts to come up with a ‘universal’ lan-
guage have been carried out [Fah98], [Lap99], though not yet having yet a
noticeable impact on off-the-shelf products.

Off-line programming environments offer graphical simulation plat-
forms, Figure 2.1, in which the programming and execution process are
shown using models of the real objects [Rem83]. Consequently, the robot
programmer has to learn only the simulation language and not any of the
robot programming languages. Examples of off-line environments are
Igrip1, CimStation2, or RobCad3, (see [Wit95] for a survey of recent off-
line programming tools). Other benefits of off-line programming environ-
ments include libraries of pre-defined high-level commands for certain
types of applications, such as painting or welding, and the possibility to
assess the kinematic feasibility of a move, thus enabling the user to plan
collision-free paths. The simulation may also be used to determine the
cycle time for a sequence of movements. These environments usually pro-
vide a set of primitives commonly used by various robot vendors, and pro-
duce a sequence of robot manipulator language primitives such as “move”
or “open gripper” that are then downloaded in the respective robot control-
lers. However, the current state-of-the-art off-line systems suffer from two
main drawbacks. Firstly, they do not address the issue of sensor-guided
robot actions. Secondly, they are limited to a robot motion simulator,

1. Igrip is a trademark of Deneb, Inc.
2. CimStation is a trademark of Adept Technology, Inc.
3. RobCad is a trademark of Technomatic Technologies Limited

RELATED WORK

21

which provides no advanced reasoning functionality, nor flexibility in the
tasks.

Task-level programming environments enable the user to specify the
desired goals of the tasks without defining every movement of the robot in
detail. It relies instead on a task planner that generates a reliable plan that
is expressed in terms of manipulator motions and actions that are neces-
sary to accomplish each task. Task-level programming tools require a
great deal of information about the workcell, the robots, the objects, the
initial state of the environment and the final goal to reach. As the collec-
tion of information can become extremely tedious and time-consuming,
some approaches [Nna93] foster the use of CAD/CAM data, which char-
acterizes the objects themselves and the way they can be manipulated.

2.2 A closer look at Task-Level Programming
Environment

We describe in this section the overall architecture of a task-level pro-
gramming system. This architecture relies on three interrelated compo-
nents: task specification, world model, and robot program synthesis.

Figure 2.1: Modeling of an ABB IRB2000 using Robcad
Courtesy of R. Maaloof and Tecnomatrix Inc.

CHAPTER 2

22

Task specification contains information about the objects being manip-
ulated and the robotic environment. During the execution of a task, the
task is specified to the task planner as a sequence of actions on the objects
in the world model. Therein, several methods have been developed to
specify the different model states: In [Nna93], Nnaji presents the spatial
relationships method to describe the relative position of the objects. The
most interesting aspect of this approach is that it allows a high level of rea-
soning about the models, leading to advanced automated planning. A sim-
pler method of task specification is through the description of a sequence
of actions. The user can thereby describe the requested tasks directly
instead of building a model of an object at a desired position. Another
method, proposed in [Lob95,] relies on finite state machines and rules to
capture the task specification.

World model contains a representation of all the objects in the work-
cell (for example, robots, tools, etc.) and their features (for example, the
geometric description, the physical description (mass, inertia), or the kin-
ematic description of manipulator characteristics). It must also maintain
the position of all objects at any time. Furthermore, the uncertainty for
each position and the possible actions on the objects should also be mod-
eled. The data acquisition is clearly a time-consuming operation at the
beginning of the application programming, unless this information is
made available as part of the design process. In any case, the portability
and reusability of each model remain of importance.

Robot program synthesis consists of three major steps: sequence plan-
ning, motion planning, and plan checking. Sequence planning typically
transforms each task operation into low-level commands. Motion planning
is the following stage, which deals with the find-path problem. This prob-
lem consists of the determination of kinematically feasible, collision free
paths. Despite recent advances [Li95], no solution yet exists for the gen-
eral case. Finally, plan checking ensures that the intended operations are
allowed in the current state of the system, and do not violate any rules.

RELATED WORK

23

2.3 Approaches in task-level programming

Several task-level programming-based systems have been developed over
the years. This section presents an overview of some recent architectures
presenting different perspectives.

2.3.1 RALPH

The RALPH project has been carried out at the Automation and Robot-
ics laboratory, University of Pittsburgh. RALPH stands for ‘a Robotic
Assembly Language Planning Hierarchy’ and is thoroughly described in
[Nna93] and [Pri93]. The contributions of RALPH are numerous. In par-
ticular, it implements the concept of a CAD-based automatic assembly
planner and a hierarchic, robot-independent architecture for generating
robot commands from a task specification.

The assembly planner concept enables an automatic plan generation
using CAD data extensively. Despite this, it is mainly limited to assembly
problems; it is able to plan reliable, collision-free paths for grasp, with fine
and gross motions, using geometric reasoning of the symbolic spatial rela-
tionships among the objects’ features.

The concept of a hierarchic robot-independant architecture introduces a
layered command architecture. It breaks down the problem of adapting a
high level command to a particular hardware into a set of refinement steps
based on the hardware class or type.

Figure 2.2 depicts a simplified representation of the RALPH architec-
ture. We detail in the following paragraph the execution of a task.

The task statement first goes into the parser for grammatical checking.
If the task is grammatically correct, it is interpreted and the objects’ infor-
mation is passed to the planners.

The task-level planner first analyses the form of the objects to manipu-
late searching for their optimal grasping and assembly. Upon completion,
it issues a new command with the new data, which is then passed to the

CHAPTER 2

24

mid-level planner. This interprets the new command and breaks it down
into low-level commands (general robot commands) to perform the task.
The general robot level planner is robot-type dependent (Scara, Cartesian,
etc.) and translates the general robot level commands into generic robot
level commands taking into account the particularities of each type of
robot. Finally the generic robot level planner translates the robot-level
commands into robot-dependent instructions, that is, the language of the
controller of a specific robot. Sensor data may be requested and inter-
preted during the execution of a task.

The main difficulty using RALPH is that it requires extremely accurate
models to perform the automatic plan generation. In addition, two aspects
are disadvantageous: it gives very little support for error recovery and for
the specification of temporal constraints.

Task statement

Form &
function
reasoning

Parser & interpreter

Planners

Dynamic
world
database

CAD
WM

sensor data

Figure 2.2: Simplified RALPH structure

Spatial
relationship
module

servo commands

RELATED WORK

25

2.3.2 STANFORD SMART ROBOTIC WORKCELL

The Stanford Smart Robotic Workcell is a two-arm robotic system devel-
oped at the Aerospace Robotics Laboratory, Stanford University. The
research around the Stanford Smart Robotic Workcell focuses primarily
on motion planning, dual-arm cooperative work, and system design issues.
One of the contributions of this project has been to investigate how the var-
ious modules of the system, for example, planners, simulators, robots, can
be interconnected. In [Par95], the principles of an interface-based design
technique are proposed. This approach relies on modular design where a
large system is broken into small, well-defined modules with specified
functionality. The approach suggested here is that substantial flexibility
and faster development time can be achieved if, instead of a traditional
subsystem design, where each module is designed and then interfaced to
the global system, the interface specification is first defined and the differ-
ent systems’ components (user interface, planner, simulator) are tailored
to the software bus and communicate with a bus-access protocol. An over-
view of the architecture is illustrated in Figure 2.3. A database, not repre-
sented in this diagram, contains basic information about the objects and
the available robot commands. Advanced on-line motion planner strate-
gies for the two-arm workcell are discussed in [Li95].

Network Data Delivery Service

simulatorrobottask
planner

user
interface

robot

Figure 2.3: Smart Robotic Workcell Architecture

CHAPTER 2

26

2.3.3 ARAMIS

Aramis is a prototype of a layered design, control, and monitor environ-
ment for the overall programming and control of equipment on a shop
floor. It has been developed at the department of Computer and Informa-
tion Science, Linköping University, in collaboration with industrial part-
ners [Lob94].

The Aramis architecture, Figure 2.4, consists of three layers, represent-
ing different levels of abstraction:

 • Task programming level: at the task programming level, the operator
specifies what operations should be performed in an abstract model of
the physical environment (the world model) and under what condi-
tions, using a graphical hybrid rule-based language. The task specifi-
cation is then transformed into a Modified Timed Petri Net [Lob95].
The task executes by setting reference values for the objects in the
world model.

 • Control level: it is made up of computing devices and peripheral hard-
ware connected to the workcell’s equipment. Its main task is to keep
the real world in a state represented in the World Model, that is, a ser-
vomechanism, as the World Model is changed by task program execu-
tion.

 • Physical level: this is the workcell’s equipment.

As an interface between the task-level programming and the control
level, the World Model contains an abstract model of the devices on the
shop floor. This model is maintained during execution by an active data-
base.

Timing information about real-time algorithms, task frequency, or tran-
sition timing can also be added. With this information, it becomes possible
to perform a task level cycle-time analysis before runtime, and to schedule
activities in order to meet deadlines that otherwise would be missed.

RELATED WORK

27

2.3.4 DISCUSSION

The characteristics of the three previously described systems and
XPROB are discussed in this section upon six criteria introduced by Fleury
in [Fle94].

Programmability
The user-friendliness of the task specification and world modeling is of

major importance as it constitutes the interface between the end-user and
the programming environment. RALPH’s automatic planning drastically
reduces the complexity of the task specification and task calls can be made
in textual mode. Special modules are, however, required to acquire and
convert the CAD information. Aramis has opted for a graphical interface
to enter the rule specification and define the object behaviour. Building an
elaborated interface was out of the scope of the present work. However, as
we fostered the XPROB interconnectivity to higher control systems, for
example, factory control system, we have defined a text-based interface
supporting graphical environments, XPROB-View, and script files.

Figure 2.4: Aramis architecture

Control

ARAMIS Program

Sensing

Real World

WM

Task Programming
Level

Control Level

Physical Level

CHAPTER 2

28

All of the systems presented have been built with object-oriented prin-
ciples in mind. The object-oriented paradigm satisfies the goals of reusa-
bility, portability and extensibility. The review of other environments, such
as [Mil91], [Sch91], and [Hwa96] indicates, however, that important vari-
ations of the scope of the modeling exist. By and large, they emphasize the
object attributes, especially the physical description, leaving aside the
object’s operations. In XPROB, any entity present in the workcell, and the
workcell itself, is represented in a class which embodies static and
dynamic attributes as well as parameterized actions that could be per-
formed on the object.

Regarding the independence of the commands from the hardware,
RALPH provides a very portable way to translate generic commands into
robot / sensor-dependent instructions. In XPROB, we have also adopted this
approach and generalize it to any equipment (sensor, robot, tools, devices)
present in the work cell.

Reactivity
To cope with the uncertainties and changes in the real-world, external

events should be taken into account within given time bounds. Both Ara-
mis and RALPH have stressed the sensor integration in their architecture.
As mentioned previously, non-sensor-specific commands are issued in
RALPH’s task level, thus offering a high level of abstraction to the pro-
grammer. Real-time sensor feedback is made possible in Aramis through
the specification of time limits on the sensing operations. These function-
nalities have been added during the design of XPROB. It also features a
symbolic representation of sensor data present in both systems.

Maintainability
One important aspect of the maintainability of a system is its capacity to

integrate new functions. Therein, the ‘plug-and-play’ bus approach pre-
sented in the Stanford Smart Workcell is appealing. It is indeed highly rel-
evant to have the possibility to exchange high-level components such as
planners to test different strategies and algorithms. Nonetheless, this
approach seems more suitable to a distributed environment, whereas the
user-interface, planners, and simulator are likely to be on the same compu-

RELATED WORK

29

ter. In addition, it is not clear how commercial hardware, usually with lim-
ited connectability, can be connected on the bus. In XPROB, we have
chosen to adopt a more centralized system, based on dynamically loadable
function libraries.

We also introduce the concept of an external supervisory controller. An
external controller can be defined as any high-level reasoning or program-
ming system, able to initiate valid commands to the XPROB platform. The
underlying idea is to provide a mechanism to enable other systems, offer-
ing a higher level of cognition, for example, multi-agent architecture
[Nis98], to take over the control of XPROB.

Robustness
The verification of the task specification should indicate not only that

the task is feasible, but also that it will be executed within a given time
frame. One interesting aspect in Aramis is the possibility to insert real-
time constraints in the task specification. After the translation of the task
into a MTPN, a scheduling of the execution can be performed. The results
then show what execution can be performed in parallel, as well as the min-
imum and maximal cycle times. Such an advanced functionality is not
available in XPROB. However, maximum execution time can be specified
for each low-level command and cycle-time computations can be placed at
any location in the task specification. Although no formal analysis is per-
formed, simulations give rough approximations. In addition, guards can
establish temporal constraints between a sequence of operations or time
critical operation. At runtime they will automatically detect missed dead-
line and take appropriate actions.

Observability
Although the three systems offer simulator connection, they keep a

clear separation between the simulation and the real program execution
modes. XPROB also offers both modes, but proposes as well a hybrid mode
more suitable for prototyping, in which some objects are simulated and
others are not. This implementation, discussed in the Prototyping section
of Chapter 3, makes the program tuning safer, while keeping the real-time
monitoring possible.

31

Chapter 3
Description of XPROB

This chapter introduces the general architecture of our robotic research
platform, whereas the next two chapters present successively basic and
advanced applications. XPROB is an acronym for ‘an eXperimental Plat-
form in Robotics’. We first introduce the key concepts of the XPROB archi-
tecture. We then describe the four main components of its architecture:
world modeling, task specification, program synthesis, and command exe-
cution. At the end of the chapter, we describe the key functionality of the
prototyping environment.

3.1 Outline of the approach

Building an open environment that integrates commercial products and
research tools is a challenge in itself. While the former offer very little
support for external connectivity, the latter need constant modification and
usually suffer from a lack of robustness. This last drawback can become a
severe issue when the control of potentially hazardous and costly devices
is concerned.

CHAPTER 3

32

The design of an architecture that accommodates heterogeneous software
and hardware leads often to a rather static system. Instead, it should also
be possible to dynamically integrate new subsystems (software, hardware)
into or remove existing subsystems from the system without stopping and
re-initializing the working environment.

The architecture of XPROB is an attempt to address the issues previously
discussed. XPROB relies on a reliable core system and a fully upgradable
development layer, which allows the end-user to tailor the platform for the
application of its concern. To cope with the heterogeneous software and
hardware, XPROB implements two key concepts. Firstly, the platform is
both application-independent and hardware-independent. Secondly, the
object-orientation paradigm is extensively used to model any particular
piece of hardware or software as an object. Each object contains detailed
interfacing information. Such an approach allows XPROB, for example, to
accept, modify, and integrate any hardware definition at runtime. As no
device-specific references or instructions are allowed in XPROB, we need
to introduce a new programming language. XPROB task-level program-
ming language provides rich and high-level commands to ease the burden
of programming multi-vendors’ equipment. It offers a syntax close to tra-
ditional robot programming languages, but its interpreted execution mode
eliminates time consuming compilations. The task interpreter structure is
based on the general architecture, and an analysis of previous task-level
systems presented in Chapter 2. Though XPROB complies to a large extent
with the general task-level framework (world modeling, task specification,
and program synthesis), our design introduces two adaptations. Firstly, it
fosters a tighter integration of the world model into the program synthesis.
Secondly, a real-time control execution module is added to take into
account sensor feedback and ensure that the program is executed with
respect to the time constraints. Figure 3.1 depicts the overall platform
architecture.

DESCRIPTION OF XPROB

33

3.2 World model representation

The object-oriented paradigm applied in robotics has received increasing
interest [Mil91], [Mak99], [Fah98]. One of its most interesting assets is
that it permits not only tthe storage and maintenance of data, but also the
management of procedural knowledge. The advantage of this property is
twofold. Firstly, the world model can be updated very efficiently through-
out a task program execution. Secondly, we can associate particular pro-
gram code to objects. In this section, we successively present our object
classification, the modeled object information, and how the integrity of the
information stored in the database is tackled.

Robot program synthesis

Generic
Task-level

Programming

Command execution

Robot Simulator Tools Robot Sensors

World
Model

Information flow

Figure 3.1: XPROB architecture

High-level controllers

CHAPTER 3

34

3.2.1 OBJECT CLASSIFICATION

A flexible manufacturing system involves a great deal of equipment that
needs to be clearly identified before starting the modeling process. An
object classification that efficiently models the physical world, is proposed
and discussed in this section. A more thorough study is available in
[Bar95] and [Gru94].

Workcell: the workcell embodies all of the equipment: robots, tools,
devices, sensors, as well as the manipulated parts. Some equipment may
be entered into the world model without having any use for the current
application. To prevent any hazardous actions, the authorized hardware
should be explicitly specified. Having such information, the task inter-
preter could then ensure that no reference to incorrect hardware is made.

Parts: a part is any object on which modification or manipulation is per-
formed. Ideally, the workcell should be able to handle different types of
parts. To make that possible, each part must possess unique characteristics
to allow the system to identify it and apply proper processing on it.
Although such an identification may fail due to unexpected conditions, the
system should have enough information to decide either to proceed with
the current task or request further data about the part.

Robots: several types of robot exist, for example, Scara, which is
designed to assemble parts vertically, or Antropomorphic, which has all
rotating joints. The kinematic properties of the robot can be represented in
a Denavit-Hartenberg matrix.

Tools: a tool is connected to the robot’s end-effector. Examples of tools
are gluing pistols, grippers or screwdrivers.

Devices: a device is any machine, usually fixed to the ground. They can
perform a given action on parts, for example, a press, or assist the robot,
for example, a tool exchange system.

DESCRIPTION OF XPROB

35

Fixtures: a fixture positions and maintains the part so that it remains in
the correct position.

Feeders: a feeder supplies parts, carries them from outside the workcell
or transports them out of the workcell.

Sensors: a sensor measures input information to operations, or tests the
correctness of operations. They can implement various functions ranging
from presence detection, identification of objects to quantity measure-
ments.

Controller: a controller is any kind of high level control system able to
supervise, monitor or plan the workcell activity.

3.2.2 OBJECT MODELING

We present in this section the modeling of the objects, that is, what
attributes and methods are relevant and how they are modeled.

Figure 3.2: Workcell Modeling

CHAPTER 3

36

The objects in the workcell fall into two categories: passive and active.
The parts are considered as passive when they can only be manipulated by
an active object and they cannot act on other objects. On the other hand,
the robot, devices, and similar machines are classified as active.In each
class, the attributes and methods are defined with a tuple.

<name, value, state>
Here, name is a unique attribute identifier for this class, value is the latest
value assigned to this identifier, state is a mechanism to express confi-
dence in data. In the current implementation of XPROB, we define five pos-
sible states, sorted here in a decreasing degree of confidence: set, checked,
computed, assumed, unknown. The default state is unknown.

The detailed BNF definitions of the World Model are shown in the
appendix.

Table 3.1:

Type of information Importance Applicable to

location required all objects

geometric description required all objects

feature description optional all objects

CAD modeling optional all objects

methods required all objects

particular characteristics optional all object

current status required active objects

translation required active objects

communication required active objects

gripping positions required passive objects

attachment optional passive objects

sensor-related characteristics optional passive objects

filtering methods required sensors

kinematic constraints required robots

DESCRIPTION OF XPROB

37

Location: the location is made up of a location identifier and a frame.
The location identifier, also called the station, represents the situation of
the object in the workcell. The frame is a geometric spatial representation
of the object’s position. It is made of a coordinate system identifier, the
axes of rotation, the rotation values for each axis, and a vector position
[Hea86]. This representation is then internally converted into a 4 x 4
homogeneous matrix. This matrix contains a 3 x 3 orientation matrix and a
position vector. This popular representation has been preferred to alterna-
tive approaches based on quaternions [Fun90] or Euler angles [Cra90].
This representation mode is of great help to express the situation of a point
relative to any coordinate system, and to compute spatial transformations
by matrix multiplication.

Geometric description: the graphical representation of the object is
often subject to discussion and many different approaches can be consid-
ered. In the present case, we do not emphasize the spatial relationships
among the objects, therefore a detailed geometric object description does
not appear necessary, unlike in [Nna93]. We approximate instead the
object’s shape by a virtual box encapsulating the object. Consequently,
three parameters, that is, the length, width and height of the box, are suffi-
cient. The object’s center can arbitrarily be set, but the center of the box is,
however, usually preferred.

Feature specification: a feature is any physical characteristic of interest
on the object. Typically, it consists of a hole, a shaft, or a contact point
between two parts. We have adopted the same modeling approach for the
feature’s shape as for the object’s. A frame, having the object’s center as
coordinate system, defines the position and orientation of the feature.

CAD modeling: each model can be rapidly represented in the graphical
simulator by selecting the corresponding model in a library of CAD com-
ponents. Appropriate parameters must also be added to tailor the CAD
drawing. Each 3-dimensional object is represented by a set of lines con-
necting the object’s vertices. The coordinate information is then stored in a
vertex table and an edge table. The vertex table contains the coordinate

CHAPTER 3

38

values for each vertex.The edge table lists the endpoint vertices defining
each edge. This scheme is illustrated in Figure 3.3. So far the CAD infor-
mation is used solely to display the objects present in the workcell. The
relationship between an object and its graphical representation is in the
object specification and formulated as follows:

Here, cad is the attribute name, CAD_camera and the successive values
specify respectively the CAD object name and the size parameters, set
indicates the confidence in the attribute

cad {CAD_camera 1.5 1.5 2.5 0.0} set

object 12
points:
1: 1.5 -1.5 0
2: 1.5 -1.5 2.5
3: 1.5 1.5 2.5
4: 1.5 1.5 0
5: -1.5 -1.5 0
6: -1.5 -1.5 2.5
7: -1.5 1.5 2.5
8: -1.5 1.5 0
9: 3 -3 -4.5
10: -3 -3 -4.5
11: -3 3 -4.5
12: 3 3 -4.5
Z axis:
0.0

Figure 3.3: Definition and use of CAD models for a video
camera

DESCRIPTION OF XPROB

39

Methods: actions that imply a particular use of the object can be speci-
fied as ‘methods’. Motion, sensing, or processing instructions are common
methods for robots, sensors, and devices, respectively. An action can be
anything, ranging from a task-level command to a low-level command
through a user-defined function.

Particular characteristics: some attributes are common to only one or
several classes of objects and are therefore difficult to classify. These
attributes need, however, to be identified within the object.

Current status: any active object can be in any of three states: stop,
run, or error. If we consider, for example, this attribute for the “Workcell”
object, it indicates whether the workcell is running, stopped, or temporar-
ily disabled. In the last two cases, no command is transmitted to the work-
cell’s equipment until this attribute is set back to a run state. Such a
property finds a very interesting use in the strategies set up by the error
management module. This allows the execution of the tasks to be tempo-
rarily suspended until the recovery mechanism brings the system back to a
state in which it can safely be started again.

Translation: any workcell’s equipment requires to be programmed in
its own programming language. This attribute contains the interface data
needed to translate the XPROB’s low-level instructions into hardware-spe-
cific commands. The stored data details the correct syntax of the com-
mand, as well as the optional computation or translation to be performed
before generating the final machine code.

Communication: the physical connection of the workcell’s equipment
to the platform are irrelevant for the task-level programming. This
attribute provides a means to define the communication protocol, that is,
TCP/IP or serial communication, and a connection identifier, that is, a port
number.

Gripping positions: As we have opted for a simplified geometric object
representation, the gripping positions of a part cannot be deduced. A grip-

CHAPTER 3

40

ping position is defined in the object’s reference frame by its orientation
and location.

Attachment: when two parts are assembled and when a part is disas-
sembled into two pieces, we need to keep track of what has led to the new
object configuration. This attachment attribute embodies the necessary
data to trace the life cycle of a given part.

Sensor-related characteristics: the use of sensors can drastically
improve the flexibility of robotic applications. Common sensor-guided
operations are, for example, object identification and location, path plan-
ning, or presence detection. In the case of identification, information
(color, dimension, weight, or number of features) must be provided in
order to either get more accurate sensor data or act as identifying values.

Filtering methods: the data received from the sensor are rarely directly
exploitable. The goal of the filtering methods is twofold. The real-world
value can first be verified against a range or set of valid values. Assuming
that the sensed value is correct, a symbolic value can be associated to it in
order to give a higher level of abstraction to the programmer.

Kinematic constraints: the kinematic constraints of a robot are sum-
marized in a table using the Denavit-Hartenberg notation. This provides a
compact way to express a robot’s joint limits and configuration.

An example of object specification is given in Figure 3.4.

DESCRIPTION OF XPROB

41

Figure 3.4: Object specification - a light beam sensor

CHAPTER 3

42

3.2.3 WORLD MODEL INTEGRITY

We describe in this section how consistency and integrity constraints are
guaranteed in XPROB.

Consistency Constraints: As the task planner relies heavily on the
world model data, it is important that the world model remains in a con-
sistent state. However, programming errors, incorrect object references or
incorrect error handling may set some of the workcell components into an
unspecified or unexpected state. Consistency rules can be specified at any
location in the task-level program. A rule is defined as a triplet <obj, attr,
val>, where obj, attr, and val respectively define the object to monitor, the
object’s attribute to evaluate and the expected value. An example, illus-
trated in Figure 3.5, shows how a consistency rule can be placed in a task
specification.

proc Foo {robot gripper object fixture} {
Consistency check (pre-condition)
Verify that the object is currently on ‘fixture’,the robot has
completed any previous move, ‘gripper’ is attached to ‘robot’
If it is not the case, the error handler ‘err_handler’ is executed

Assertion “ {$object,station,$fixture}
{$robot,status,idle}

{$robot,tool,$gripper}” err_handler
...
Consistency check (post-condition)
Verify that ‘robot’ has completed the pickup operation,
‘gripper’ holds ‘object’

Assertion “{$robot,status,idle}

Figure 3.5: Consistency rules

DESCRIPTION OF XPROB

43

Integrity Constraints: Defining constraints between the objects of the
world model is not yet possible in XPROB. It is left to the end-user to make
sure that no illegal action is performed. The simulation environment, syn-
chronization mechanisms and the consistency rules, however, can detect
and prevent simple integrity constraint violations, such as releasing a part
while the robot is still moving or requesting the vision system to identify
an object not yet placed at the right position.

3.2.4 PARTIALLY IDENTIFIED OBJECT

One of the interesting aspects of XPROB is that it allows the definition of an
object whose class is temporarily not precisely known. For example, dur-
ing an identification process, more than one object in the database could
match the sensed object. This could happen, for example, if the objects
have the same size, if light conditions have changed, or if an object is
brought in for the first time. The planner can then have three options: it can
stop the task execution, ask for more information, or consider that suffi-
cient information is available at the present time to perform the initial task.
While the first solution is not acceptable and should be chosen as the last
alternative, an implementation of the two other solutions must be pro-
vided. Considering the request of additional sensor data, simple solutions
can be obtained through task-level programming. Knowing what are the
identifying attributes of an object, the attributes’ degree of confidence, and
how they can be sensed, an advanced reasoning algorithm can easily be
developed. An example that makes use of a vision system is given in
Chapter 4.

When detailed information is not required, the previous solution intro-
duces an unnecessary amount of reasoning and actions. Instead we can
create a temporary generic object that contains a list of the possible
classes. The matching attribute values of the possible classes are assigned
to the new object and the attribute status is set to assumed, whereas the
non-matching attributes are set to unknown. Figure 3.6 illustrates the dif-
ferent steps from the creation of a generic object to the refinement process
leading to a one-class object.

CHAPTER 3

44

3.3 Task specification

Though the task specification is an important phase in task-level program-
ming, designing an advanced task specification interface was out of the
scope of our work. The task description is provided in text mode and its
syntax complies with the simplified grammar given in Figure 3.7.

Create a new generic object of class PART
> OcreateNewObjGen Part coordSystem position orientation location
Part_U_0

Get the current class of object ‘Part_U_0’
> TgetDB Part_U_0 class
Part_A, Part_B, Part_C

Try to get decrease the number of possible classes with new data
> OrefineObj Part_U_0 dimension “170,170,200”
Part_A_0

Only the objects of class Part_A have matching dimension.
A new instance Part_A_0 has been created and
the object Part_U_0 has been deleted
> TgetDB Part_A_0 class
Part_A

Figure 3.6: Partially identified object modeling

DESCRIPTION OF XPROB

45

XPROB has built-in task-level commands to handle most common
robotic operations. The most representative set of commands is the one
made available for a robot manipulator. The commands in this package fall
into two types of actions: simple and composed actions.

The simple commands are absolute move and object-dependent move.
The effect of these motion instructions is to rotate and translate the robot’s
end-effector into the desired pose. Subsequently, they will result in two
low-level commands: MoveLinear and MoveJoint, as shown in Figure 3.8

The composed commands are insert, remove, pick-up, and release.
They comprise the same instruction pattern presented in Figure 3.9. Their
execution produces a sequence of low level commands of motion and
actions such as open/close gripper. The complete description of the built-
in task-level and low-level commands is provided in the appendix.

task_specification ::= Task taskName { arguments } { code }

code ::= {conditional_statement | task-level_commands}*

task-level_commands ::= TmoveJ_command | TsensorActivate |

TmoveJ_command ::= TmoveJ robotName location

Figure 3.7: Excerpt of the task specification grammar

Move

Figure 3.8: Simple robot command

Joint move to desired location

Linear move to desired location

CHAPTER 3

46

3.4 Robot Program Synthesis

The robot program synthesis is in charge of breaking down the task speci-
fication into a set of low-level commands. It takes a task-level description,
which has been entered by the user, and expands it into low-level com-
mands. The final translation into specific robot-dependant instructions is
done at a lower level, the command execution module.

This program synthesis module is made up of a task analyser, a task
planner, and a motion planner. The module’s architecture is illustrated in
Figure 3.10.

3.4.1 TASK ANALYSER

The task analyser is responsible for syntactically checking the task-level
commands (Task Interpreter). It also translates the user-defined task-level
commands into generic task-level commands (Task Refinement). The con-
sistency constraints, as described in subsection 3.2.3, are verified at this
level.

Pick-up Joint Move to approach location

Action at approach location

Linear Move to final location

Action at final location

Linear Move to approach location

Action at approach location

Figure 3.9: Composed robot commands

DESCRIPTION OF XPROB

47

3.4.2 TASK PLANNER

The task planner provides the translation mechanism. It fetches the object
methods present in the task-level commands and breaks them down into
low-level commands. Prior to this, it performs a series of tests on certain
operations, such as assembly or disassembly, to detect any unauthorized
action.

3.4.3 MOTION PLANNER

In the literature, the motion planner is often comprised of two parts: grasp
motion planning and gross motion planning.

Grasp motion planning deals with the determination of a safe, kine-
matically feasible, and reachable object grasping. Several approaches have
been proposed to implement automatic grasp planning. In the planning

set of specialized task-level commands

task specification

Task Interpreter

Command Execution Module

World
Model

object data

 low-level commands

Task Refinement

Motion Planner

set of generic task-level commands

Task Planner
object methods

motion constraints

Figure 3.10: Robot Program Synthesis Module

CHAPTER 3

48

system Handey, noted in [Jon90] and [Loz89], geometric reasoning is
applied to polyhedra object. Laugier [Lau90] and Smith [Smi96] have
investigated the use of vision sensors to reduce the uncertainty in the grasp
when limited information on the part is available. These methods, however
do not apply to arbitrary object shapes, which drastically increases the
complexity of the planning process.

Gross motion planning computes the intermediate paths. It is also
known as the find-path problem illustrated in Figure 3.11. For a robot
manipulator, it can be defined as the problem of determining of how to
move the end-effector of the robot (R) from its current location to fetch or
release an object at another location (P), without causing collision with 01,
02, 03. In [Hwa92], Hwang summarizes the general issues and discusses
the different research directions in gross motion planning. In the context of
industrial robotics, two implementations in the task-level programming
environment are discussed in [Li95] and [Nna93]. In both systems, a gen-
eral configuration space (C-space) is first created. It is then restricted with
the joint motion possibilities using the robot kinematic constraints. A
numerical potential field method is then applied to find a suitable path.
However, no algorithm for the general case exists since all of the state-of-
the-art research requires a trade-off between computation time and the
generation of short, fast, or smooth paths.

R

P

O1

O2

O2

Figure 3.11: The find-path problem

DESCRIPTION OF XPROB

49

In the XPROB platform, motion planning has been simplified, and improve-
ments are left for later research. In the present state of our system, no auto-
matic grasp planning is available, even if the data necessary to compute
the grasping sequence is present in the database. The choice of the grasp
and its reachability are the programmer’s responsibility. Furthermore, no
collision-avoidance algorithm has been implemented. Although these
drawbacks constrain the applications’ programming, they do not appear
critical since the workcell is usually well-defined and the obstacles are
well-known. The XPROB’s motion planner determines the position and ori-
entation of the end-effector for the equipment approach, grasping
approach, and part grasping. These three phases are depicted in Figure
3.12. For each piece of equipment in the workcell, we define a safe
approach position expressed in the equipment’s reference frame. This
point is intended to be used by the planner to move from one machine to
the other. For a part to grasp, the planner computes the vector normal to
the grasping surface. A point is then automatically chosen on this vector at
a distance δ from the grasping point, for which the value of δ is specific to
the equipment. The computation of the approach vector by the planner can
potentially be modified to take into account the equipment’s reachability
constraints if they are specified.

CHAPTER 3

50

3.5 Real-Time Control Execution Module

The control execution module finalizes the task translation by convert-
ing the low-level commands generated by the program synthesis module
into native machine commands. The translation is not as trivial as it may
first appear. This process cannot be limited to a syntax translation. Metric
units and angle representation are among the most common differences
between robot manipulators. The final command is generated after extract-
ing the command format and its associated code from the database. This
code will trigger particular conversions to adapt the initial command
parameters to a data format recognized by the hardware.

The CAD data of the objects involved in the command is simultane-
ously sent to the simulator to reflect the new state of the workcell.

Figure 3.12: Motion planning. (A) equipment’s approach location,
(B) part’s approach location, (C) part’s grasp location

A
B

C

DESCRIPTION OF XPROB

51

Finally, the execution module encapsulates those commands according
to the communication protocol accepted by the hardware. The overall
module’s architecture is presented in Figure 3.13.

The execution module is built on a real-time operating system. The
maximum execution time associated to each low-level command is used
by the execution module to monitor and detect any delayed command
acknowledgement. This piece of data is also utilized for various computa-
tions by the cycle time manager.

3.6 Sensor Interaction

A simple architecture for sensor integration is proposed in this section
and illustrated in Figure 3.14. The key idea behind our approach is two-
fold. Firstly, the programmer should not be burdened by the specific com-
mands addressing the sensors. Secondly, the sensor feedback should also
offer a high-level of abstraction in the data representation. If the former
issue is solved using task-level programming, see Figure 3.15, we need to

World
Model

generic hardware command

Communication

Command Translater

hardware-dedicated command

real-world hardware

encapsulated hardware command

translation format

communication mode

CAD data

Figure 3.13: Command Execution Module

CHAPTER 3

52

make use of the world model to associate a data mapping method to each
sensor.

As we consider that several measurements can be performed by one
given sensor, we define the attribute ‘filtering method’ by the tuple:
<methodName, sensingCode, associations of abstract and real values>

A filtering method is consequently of the format:

The task-level command TactivateSensor simply takes as argument the
name of the sensor, the sensing method and the name of the attribute
receiving the sensor data. This high-level command is then decomposed
into a sequence of low-level commands with appropriate parameters, as

Task-level Specification

Task Planning

Command Execution Filtering

World
Model

task-level command

generic sensor command

sensor-dedicated command

real-world sensor

real world sensor data

abstract data
real world data

abstract data

filtering method

Figure 3.14: Sensor architecture in XPROB

filtering_method ::= methodName sensingCode { mapping_value* }
mapping_value ::= { abstract-value real-value } |

{ abstract-value min-value max-value }

DESCRIPTION OF XPROB

53

indicated in Figure 3.15. A consistency check is also automatically per-
formed at the end of the command execution. Still, the sensor could indeed
return incorrect data due to unexpected events.

3.7 Prototyping environment

We present in this section important aspects of the XPROB platform when
used for prototyping.

3.7.1 OFF-LINE AND ON-LINE PROGRAMMING SYSTEM

Several systems make a clear separation between off-line and on-line pro-
gramming. It is mainly due to the fact that in traditional robot program-
ming, the code is first either generated by CAD software or entered in a
text editor. This code is then downloaded on the robot controller prior to
execution of it. On-line programming is then used to refine or modify the
robot motions. The main advantage of this approach is, of course, that it
does not require the use of the workcell’s equipment at the development
stage. There are also two major drawbacks. Firstly, it implies that the pro-
gram must be re-generated and re-downloaded for each slight modifica-
tion of the code. Secondly, the possibilities of task re-planning are
considerably limited at runtime. A clear-cut separation between on-line/
off-line no longer exists. In XPROB, we have opted for a hybrid program-
ming environment that combines the benefits of traditional off-line and
on-line programming systems. On the first hand, it offers a graphical sim-

TactivateSensor

Figure 3.15: Sensing command

Request sensing

Wait for sensor feedback

Map sensor feedback

CHAPTER 3

54

ulation of the robot motion in the work-cell. On the other hand, the pro-
gram instructions are sent at runtime, and the program can be adapted at
any time depending on sensor feedback. Furthermore, the objects can be
enabled, disabled, or simulated at any location in the program. This means
that during the execution of a task, some machines may be simulated,
whereas others will be physically activated. This functionality becomes
greatly useful when some equipment is not available or must be manipu-
lated with extreme care.

3.7.2 HARDWARE MANAGEMENT

To provide a truly flexible control system, the workcell components
should be replaceable and reconfigurable at any time. The programming
environment offered by XPROB makes an abstraction of the hardware con-
nection and programming languages of the tool, and then manipulates
only references to them. It also provides a simple definition of the hard-
ware topology, letting the XPROB kernel handle the low-level translation
and communication functionality. Connecting the workcell’s hardware
raises several issues. Ideally the communication between XPROB and the
equipment could be performed using a high-level communication proto-
col, such as TCP/IP. This would ensure a fast communication, as well as
easy flexibility. However, PLC or detecting devices are unlikely to offer a
network interface. In many cases, the simplest and most inexpensive solu-
tion is to connect them to robot controllers. Another approach is to connect
them to possibly one or several computers via data acquisition cards sup-
porting communication protocols. XPROB provides a simple mechanism to
define the physical connection of the components in their ‘access’ attribute
of their world model representation. The example below first depicts a
possible workcell layout featuring heterogeneous hardware communica-
tion protocol (fig. 3.16). Then, an excerpt of the world model definition of
the workcell shows how the physical connection can be modeled (fig.
3.17).

DESCRIPTION OF XPROB

55

3.7.3 SIMULATION

To graphically represent the robot motions and the workcell’s activity, a
simulator, Simderella, has been plugged into XPROB. Simderella is a gen-
eral purpose public domain robot simulator. It has been developed by
Patrick van der Smagt [Sma94]. It consists of three independent programs:

 • Connel, which reads the input commands

 • Simmel, which is the core of the application implementing the inverse

XPROB

robot _1 press

vision
system

light beam

robot_2
TCP/IP serial

communication

camera_1 camera_2

IO_2IO_1

Figure 3.16: XPROB hardware integration

SENSOR vision_system
...

 // Access mode and portId
access TCP_IP 3700 set

TOOL press
...

 // Access mode and portId
access COM COM1 set

Figure 3.17: Modeling of the harware connection

CHAPTER 3

56

and forward kinematic algorithms

 • Bemmel, which is an X-window based program for robot visualiza-
tion. It provides a very flexible front-end to display the robot motion

Drastic modifications have been done to the original code to handle
dynamic object representation and manipulation, as well as the concept of
graspable objects. A library has been written to provide the user the same
functionality that the user could have with the initial version. However,
XPROB introduces the possibility to write the simulator commands into
scripts or insert them at any place in the task description.This graphical
simulator, Figure 3.18, is based on the wire-frame method, thus high
speed can be achieved in the motion sequence. However, it produces an
image sometimes difficult to visualize, as no hidden line is removed.

The simulator is of precious help during development. It can also run con-
currently with the robot to compare the behavior of the workcell model
with the behavior of the actual system.

Figure 3.18: Simderella - A graphical 6-dof robot simulator

DESCRIPTION OF XPROB

57

3.7.4 ERROR HANDLING

Several failures can occur either due to programming errors, communi-
cation or hardware failures. To undertake appropriate corrective actions,
the platform must be aware of the current state of each workcell compo-
nent. We have adopted a hierarchic centralized error management system.
Three levels of error exists: warning, recovery, fatal.

 • The warning level simply alerts the user that unexpected or suspect
values have been specified. For example, floating value instead of inte-
ger value as argument in a procedure call.

 • The recovery level handles serious failures that can however be cor-
rected. For example, when a failure is detected on a given hardware,
preventing it from sending back an acknowledgment, the error handler
can disconnect the faulty hardware, issue an acknowledgment to avoid
blocking the program execution, and then assign an error flag to the
hardware’s status attribute in the database.

 • The fatal level handles non-recoverable errors. It safely turns off the
connected hardware, terminates the real-time tasks, and logs the error
before closing the application. Such errors could most likely occur at
the initialization stage, that is, when a sequence of tests are performed
to ensure the correct set-up of the XPROB real-time kernel.

59

Chapter 4

Application to basic robotic tasks

To illustrate the concepts elaborated in our work, we present in this chap-
ter three basic robotic applications. In the first application, we introduce
the assembly and disassembly of parts and detail the common peg-in-hole
operation. In the second and third applications, we present two sensor-
based operations. Active vision-based object identification and guarded
move are implemented using, respectively, a vision system and a force
sensor. In each application, the focus is on the key-ideas it features, there-
fore the most relevant modeling and implementation aspects are solely
discussed.

4.1 Assembly/Disassembly

As reported by Pettinaro, in [Pet96], the assembly of parts is the most
common task encountered in manufacturing industry. Two categories of
assembly tasks can be singled out: parts mating, in which parts are
brought in contact with each other, and part joining, in which parts are first
mated and then joined permanently. In our approach, we mainly focus on
the first category. The latter encompasses four sub-types of operation: peg-

CHAPTER 4

60

in-hole, hole-in-peg, multiple peg-in-hole, and stacking. However, they
are extremely similar. The first two types typically represent different var-
iations of the same insertion operation. Multiple peg-in-hole simply adds
two new constraints: the simultaneous insertion of all pegs and the line-up
of the pegs with their matching holes. Those constraints are, however, not
relevant if we consider orientation-dependent peg-in-hole. Finally, at some
extent, stacking parts and inserting one part into another are similar
actions. A peg-in-hole operation can indeed be seen as putting into contact
the bottom surface of the shaft with that of the hole. Similarly, if we
assume that a shaft may be flat and a hole has no depth, a stacking opera-
tion can come down to a peg-in-hole action. While keeping in mind the
assumptions we made, we can design a generic assembly operation that
handles the different mating parts. This reasoning also applies to disas-
sembly operations.

4.1.1 ASSEMBLY & DISASSEMBLY MODELING

One important issue in this application is the specification of the assem-
bly. We consider in our approach that this operation consists of putting
together one feature of each part. Another assumption is that an object can
be assembled using different combinations of objects and features. The
result of an assembly is always a third part, automatically added in the
world model. Creation-related information is given by two pairs contain-
ing the part and the feature identifiers. Assuming that the feature feat1of
part A is a shaft and the feature feat1 of part B is a hole, the assembly oper-
ation assembleA&B has the following format:

assembleA&B partA feat1 partB feat1 partC

This operation specification contains all of the necessary information to
describe a peg-in-hole assembly where feat1 of partA is inserted into feat1
of partB to create partC. As shown in Figure 4.1, the attribute madeup of
the newly created part PartC-0 contains references to the mated parts.

APPLICATION TO BASIC ROBOTIC TASKS

61

A disassembly operation presents the same characteristics, as it takes
one part and splits it into two new parts. The disassembleC operation is
therefore of the format:

disassembleC partC partA feat1 partB feat1

4.1.2 HARDWARE DESCRIPTION

The test-bed, depicted in Figure 4.2, is made up of a PC, on which XPROB

is running over an RT Linux operating system, and an industrial robot,
IRB 2400, manufactured by ABB Robotics. An ABB S4 robot controller
is connected to XPROB via a serial cable and hosts a Rapid-written pro-
gram, RAPIDIX, receiving and executing on-the-fly incoming instruc-
tions. This basic architecture forms the kernel of XPROB’s hardware
implementation. This configuration will be reused in the next examples
and the disassembly line described in the next chapter.

Figure 4.1: World model representation of a part after assembly

CHAPTER 4

62

4.1.3 DESCRIPTION OF THE TASKS

In the following examples, we assume that the parts are well specified and
the operations on them are allowed. Furthermore, to simplify the modeling
of the parts, the objects manipulated in this evaluation have a solid shape.

The first task, Tasm, described in Figure 4.3 performs the assembly of
two parts. The first two instructions aim to create two parts for the purpose
of this example. One of the parts is then grasped at a given gripping posi-
tion, that is, gripp1. Prior to physically inserting the part into the other
part, a logical verification and assembly is performed. We must indeed
verify that such an operation is allowed for both parts and leads to the
same class of part. As the system accepts partially identified objects, it
must also be ensured that sufficient information is available. Upon valida-
tion, a new part is created in the world model. The next stage is to perform
the assembly in the real world using the TinsertObj instruction. This
instruction takes into account the position and orientation of the target fea-
ture to determine the rotation and translation of the gripped part. It can be
decomposed in the following sequence of actions. First, the motion plan-
ner determines the approach vector, which is a vector normal to the tar-
get’s feature surface. A point at a given distance from the target’s feature is

XPROB

S4 controller ABB IRB2400

Figure 4.2: Hardware test-bed

serial line

APPLICATION TO BASIC ROBOTIC TASKS

63

then computed with respect to the approach vector. The rotation to apply
on the gripped object is also determined so that both features are lined up.
When lined up, the gripped object is moved to the approach position. The
next step consists of placing the manipulated part into the second one fol-
lowing a linear path. This guarantees that an optimal assembly is achieved.
Once the final position is reached, the manipulator releases the part and
returns to the approach position. The example ends with the gripping of
the newly created part.

4.1.4 TASK EXECUTION

The series of figures, presented in Figure 4.4, stems from snapshots
from the XPROB robot simulator and illustrates the different phases.

Task Tasm {} {

Create two parts in the work-cell

set new_partA [OcreateNewObj PartA world "500 100 500" "0 0 0"
asm_pt]

set new_partB [OcreateNewObj PartB world "600 150 600" "0 0 0"
asm_pt]

Grab one of them

TpickObj abb_robot $new_partB gripp1

Logically assemble them

if {[Tassemble assemble_feat2 $new_partB $new_partA new_part] ==
"OK"}

{

Insert it into the base in matching their feature #2

TinsertObj abb_robot $new_partB feat2 $new_partA feat2

Pick up the newly created part

TpickObj abb_robot $new_part gripp1

return OK

}

return error

} Figure 4.3: Description of the assembly task

CHAPTER 4

64

The code presented in Figure 4.5 is the translation of the task-level
instructions into robot-specific instructions, in this case ABB Rapid Lang-
uage.

(a) (b) (c)

(d)

Figure 4.4: Assembly sequence. (a) Overall view, (b) Closer view,
(c) Approaching phase, (d) Assembly, (e) Manipulation of the new

object

(e)

APPLICATION TO BASIC ROBOTIC TASKS

65

MoveJ [[500.0,150.0,600.0],[0.499,-0.501,0.499,-0.5],
[0,1,2,0],[0,0,0,0,0,0]],v200,z50;

Set DO10_1;
WaitTime 1;
MoveL [[600.0,150.0,600.0],[0.499,-0.501,0.499,-0.5],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;
Reset DO10_1;
WaitTime 1;
MoveL [[500.0,150.0,600.0],[0.499,-0.501,0.499,-0.5],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;
MoveJ [[500.0,210.0,515.0],[0.0,0.696,-0.697,-0.001],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;
MoveL [[500.0,110.0,515.0],[0.0,0.696,-0.697,-0.001],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;
Set DO10_1;
WaitTime 1;
MoveL [[500.0,210.0,515.0],[0.0,0.696,-0.697,-0.001],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;
MoveJ [[500.0,100.0,590.0],[0.0,0.696,-0.697,-0.001],

[0,-1,2,0],[0,0,0,0,0,0]],v200,z50;
Set DO10_1;
WaitTime 1;
MoveL [[500.0,100.0,490.0],[0.0,0.696,-0.697,-0.001],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;
Reset DO10_1;
WaitTime 1;
MoveL [[500.0,100.0,590.0],[0.0,0.696,-0.697,-0.001],

[0,-1,2,0],[0,0,0,0,0,0]],v200,fine;

Figure 4.5: Generated robot-specific instructions

CHAPTER 4

66

4.1.5 EXTENSION TO DISASSEMBLY

A disassembly operation, Tdisasm, presented in Figure 4.6, realizes the
opposite action. The part is first logically disassembled into two new sub-
parts with respect to the chosen disassembly method. The position and ori-
entation of the new parts are then deduced from the initial part. Once the
part models are updated, the manipulator has enough information to grasp
one of the newly created parts (TremoveObj function). The approach posi-
tion is also a function of the feature pose configuration and is similarly
computed. At the end of this task, the part that has been removed is simply
released.

A few snapshots from the robot simulator, Figure 4.7, depict the succes-
sive disassembly phases.

Task Tdisasm {} {

Create a new part in the work-cell

set new_partC [OcreateNewObj PartC world "500 300 500" "0 0 0"
asm_pt]

Logically disassemble the part

if {[Tdisassemble disassembly_feat1 $new_partC new_partB new_partA]

=="OK"} {

Grab one of the part out of the initial part

TremoveObj abb_robot $new_partB gripp1 feat1 $new_partA feat1

and then release it

TreleaseObj abb_robot $new_partB asm_pt

return OK

}

return error
}

Figure 4.6: Specification of the disassembly task

APPLICATION TO BASIC ROBOTIC TASKS

67

4.1.6 DISCUSSION

The assembly and disassembly operations constitute the most frequent
robotic tasks. The two examples presented in this section bring out the
modeling, specification, and execution of those basic operations until the
final generation of robot instructions. It also shows the limits of the current
implementation of the task-level languages. No automatic grasping plan-
ning is available.

(a) (b)

(c) (d)

Figure 4.7: Disassembly sequence. (a) Overall view, (b) Approach-
ing phase, (c) Disassembly in progress, (d) One of the parts is

removed.

CHAPTER 4

68

4.2 Vision-aided robot programming

Today, the use of vision systems in automatic assembly is still very lim-
ited. The main applications remain part detection, quality control, pose
estimation, and to some extent part recognition. A great deal of academic
research has been done in active vision, 3-D vision techniques [FAU93],
[SAN97], [RAH96], vision-guided grasping [Smi96], and corrective algo-
rithms [POP94]. However, the off-the-shelf robotic vision systems, for
example, Optimaster1, are still based on 2-D CCD camera, offer limited
programmability and are strongly hardware-dependent. As reported in
[Kie93], many problems limit the potential gain of using vision systems.
The contrast between objects and background, the illumination and reflec-
tion problem, can drastically decrease the performance. In addition, all of
the systems are color sensitive. This implies that a filter successfully used
on one type of object may give very imperfect results when applied on
another type. When considering a feature identification process, the vision
system should have knowledge of a great deal of object properties, such as
the estimated feature position, dimension, or color, to give optimal per-
formance. This supports the idea that a system offering a closer interaction
between the vision system and the robot program must be proposed.

In the current implementation of XPROB, the vision-based applications can
only use open-loop control. This, of course, limits the range of the appli-
cation domains, but it facilitates the utilization of commercial program-
ming tools to build complex vision systems.

4.2.1 DESCRIPTION OF THE TASKS

In this example, our focus is on object identification. In the context of
flexible manufacturing, parts of a different nature are conveyed in the
work-cell. They are then identified and handled. A problem arises when
the identification does not produce a single type of part, but a list of poten-
tially matching parts. Instead of requiring an operator to find out the
proper object classification, we propose an automatic object identification,

1. Optimaster is a trademark of Sensor Control AB

APPLICATION TO BASIC ROBOTIC TASKS

69

which combines a vision system, a robot manipulator, and our robotic
platform.

The key-idea is to place a part’s feature to be identified, for example, a
shaft or a hole, right under the camera so that the vision system then anal-
yses a snapshot of the feature. If the feature does not exist, a refinement of
the type of the potential part produces a new list of parts having such a fea-
ture. The process iterates until only one single type is possible or when all
of the features have been tested. The implementation of the task is not triv-
ial and encompasses a great deal of reasoning about the manipulated
object.

The task, Tidentify, presented in Figure 4.8, implements the object
identification. We first declare a new unknown part and refine it with no
criteria. The result of these operations is a part having all of the possible
part types of the world model. Our application requires that the part can be
grasped by the robot manipulator. For this reason, the next step is to check
if such a position is defined. If this is the case the object is gripped and the
identification process starts.

Figure 4.8: Description of the identification task

Task Tidentify {} {

set new_part [OcreateNewObjGen Part
conveyor "-200 600 50" "0 0 0" asm_pt]

OrefineObj $new_part ""

if {[TassertionS "{$new_part grippzone.gripp1 unknown}"]} {

puts "Grasping position unknown"

} else {

TpickObj abb_robot $new_part gripp1

TtestFeat $new_part abb_robot

}

}

proc TplaceObj {robot obj obj_feat base base_feat} {

OinsertPart $robot $obj $obj_feat $base $base_feat

"" # no action1

"TactivateSensor vision_lab rqst_feat_present feat_present"

"" # no action3

-100 # approach distance

}

CHAPTER 4

70

The instruction TtestFeat is another specialized task-level command
that recursively requires the vision sensor to assess the presence of each
object’s feature and refines the object type based on the sensor output. To
obtain an optimal snapshot, the feature should always be placed at the
same distance from the camera and offer a surface orthogonal to the cam-
era’s lens axis, no matter what the orientation of the camera is, see Figure
4.9. The instruction TplaceObj provides such a functionality. We simply
determine the snapshot position in the camera coordinate system and
model it as a camera’s feature. Again, we come back to an insertion oper-
ation in which a part feature is ‘inserted’ into or ‘placed on’ the camera’s
feature. Consequently, we can parameterize the generic task-level instruc-
tion OinsertPart. Only one action needs to be specified: TactivateSensor.
When the part has reached the snapshot position, a picture must be taken
and analyzed. The command TactivateSensor takes as argument the sensor
name, the method to trigger, and possibly an attribute name for error
detection purposes. It fetches the method definition, executes it, and
updates the world model upon reception of the sensor output.

Various optimizations can be added to the identification process. For
example, features already checked and assembly points can be easily
skipped.

Figure 4.9: Object identification by a vision system

APPLICATION TO BASIC ROBOTIC TASKS

71

4.2.2 DISCUSSION

This example clearly shows the benefit of the two-layer task-level pro-
gramming: generic and specialized. While the former synthesizes
advanced and fully parameterized capabilities, the latter offers customized
functionality for a particular application.

4.3 Force/Torque sensing

A force/torque sensor, mounted on the robot’s wrist, can sense forces
generated by the object being manipulated. Their main utilization is either
to weight objects or to detect any contact with objects or surfaces [Gru94].
In the example given in this section, we describe the implementation of a
guarded move. It typically consists of moving towards a supposed position
until a force is felt. Such a function nowadays exists in robot languages,
for example, Rapid’s search function [Abb94}. However, they offer very
limited tuning, and simply poll a given IO port for a binary value, thus
making more elaborated data analysis not possible.

Another possible application, however not tested, is to correlate read-
ings from a force sensor to detect part slippage during grasping.

4.3.1 OBJECT MODELING

The force/torque sensor used in this example does not send sensing output
directly to the XPROB platform. It is instead connected to a force monitor-
ing application running on a remote computer. As the physical implemen-
tation is not relevant for the application of our concern, we make
abstractions of these considerations.

The modeling of the force/torque sensor is similar to the light beam
specification presented in Figure 3.4. Figure 4.10 depicts the status of the
force sensor in the world model after a sensing operation. As indicated by
the attribute contact_RV, the received value is 0 and this one is mapped
into the logical value as false, as specified by the attribute filter.

CHAPTER 4

72

4.3.2 HARDWARE DESCRIPTION

The force sensing system is connected to XPROB through an ethernet link,
and communicates through the TCP/IP protocol, see Figure 4.11. The
force/torque sensor itself is mounted on the robot wrist and connected to a
computer running a LabView1 application.

1. LabView is a trademark of National Instruments Inc.

Figure 4.10: Force sensor description

Force system

XPROB

Controller ABB IRB2400

Figure 4.11: Force system application

Force sensor

TCP/IP

APPLICATION TO BASIC ROBOTIC TASKS

73

4.3.3 DESCRIPTION OF THE TASKS

The task Tsearch, detailed in Figure 4.12, simply refers to a guarded
move operation. The values given as parameters indicate that the feature
feat1 of the object drill must be put into contact with the feature feat1 of
object partToDrill, the search starts at 30 mm from the actual position of
the object partToDrill, and finally the contact is detected by the sensor
force. The guarded move operation first initializes the sensor. It then
approaches the assumed final position following a move-stop-sense
sequence. Once the part’s feature has been detected, the part’s position is
deduced to reflect the real location of the part in the current work-cell.

4.3.4 DISCUSSION

The example shows how sensing devices can be efficiently integrated
into a robotic application. Our example suffers one major drawback, how-
ever, when executed in a real environment. It requires the robot manipula-
tor to stop before each sensing. The values obtained from the sensor gain
in accuracy, but this drastically increases the overall execution time of the
task. Further improvements will therefore be needed to make it more val-
uable.

Task Tsearch {} {

TguardedMove abb_robot drill feat1 partToDrill feat1 30 force

}

proc TguardedMove {robot tool feat_tool obj feat_obj initstep sensor } {

#Initialize the sensor
TactivateSensor $sensor rqst_reset

set step $initstep
start the approach
OmoveRelative $robot joint_move $tool $feat_tool $obj $feat_obj $step

while {[TactivateSensor $sensor rqst_contact contact] == "false"} {

incr step -3

OmoveRelative $robot linear_move $tool $feat_tool $obj $feat_obj
$step

}

PdeducePos $robot $obj feature $feat_obj "" $step

}

Figure 4.12: Description of the search task

75

Chapter 5
Application to a robotized

disassembly line

In this chapter, we describe an application of XPROB in a robotized work
station for the disassembly of industrial asynchronous motors. Recycling
electric motors is usually done using mechanical separation by shredding
followed by magnetic separation. However, this method does not produce
a high level of purity in the separated materials. Manual disassembly has
proven to be unprofitable and hard labour. Robot-aided disassembly has
therefore been investigated to offer an alternative solution to shredding.

Electric motors, such as washing-machine motors, have a rather simple
construction principle and similar components, but there is a vast range of
variation in design, depending on brand name and field of application.
Because of these variations, the disassembly process requires an extensive
use of sensors to get additional data about the parts to be manipulated.
This implies a high flexibility from the disassembly program to take into
account the sensor data and adapt the disassembly steps to the parts. For
all these reasons, this project appears perfectly suitable for considering
XPROB to control and program the robotized system at a high-level of spec-
ification .

CHAPTER 5

76

5.1 Disassembly issues

While the area of automatic robotic assembly has been the focus of a great
deal of research, little has been done regarding disassembly. As shown by
an increasing number of recent projects [Sch99], [Dav99], [Hes99], this
situation is about to change as environmental measures are constraining
industry to recycle their end-of-life products. Automatic disassembly pro-
vides a cost effective means to dismantle products in clean material frac-
tions that can then be recycled. Ideally disassembly could be treated as the
inverse of assembly. However the problem is the variety of products and
product states. The parts originate from various manufacturers and years
of production. In addition, the items may not have been designed to be
recycled. Finally, their shape or any feature is likely to be damaged.

5.2 Project description

Electric motors contain an important amount of copper that must be sepa-
rated from the other materials in the motor to be efficiently recycled. Cur-
rently, less than 8% of the motors’ copper can be recycled after shredding
and magnetic separation. To understand the problematic of a motor’s dis-
assembly process, we first need to look at the motor structure as depicted
in Figure 5.1. As previously mentioned, the motors have a rather simple
structure. Two shields protect the stator, which rotates around an axis, the
rotor. The stator, which is split in two pieces in Figure 5.1, contains the
copper windings to be extracted. Within the scope of the REM-PRODUSE

project, Karlsson [Kar97] describes a general approach for the disassem-
bly of end-of-life electric motors. Firstly, the motor must be identified and
its pose estimated through the use of a vision system. Then, the upper
shield’s screws must be unscrewed so that the shield and then the stator
can be extracted from the rest of the motor. The next step is to cut the stator
in half. Afterwards, a hydraulic tractive system pulls out the stator wind-
ings from the stator. Finally, the stator windings must be checked to guar-
antee that all copper has been removed. On the whole, four steps are

APPLICATION TO A ROBOTIZED DISASSEMBLY LINE

77

required to extract the copper from the motor. The next sections describe
more thoroughly the different tasks and the implementation of the disas-
sembly station.

5.3 World Model description

In this section, the manipulated parts and the workcell’s hardware are
successively presented and their modeling described.

The motor and its constituent elements are modeled as Part, see “Object
Classification” , section 3.2.1. Figure 5.2 illustrates the existing modeling
in the World Model of the various elements depicted in Figure 5.1. In this
snapshot we can first identify the main elements, such as the rotor, stator,
etc.. Their inherited classes have a suffix in the format of _X, and they
specify a particular type. No direct relationship among parts can be
deduced from this name convention. For example, a motor ‘Motor_A’ can
be made up of a ‘Upper_shield_C’ and a ‘Lower_shield_B’. Such a rela-
tionship is described in the section “Assembly & disassembly modeling” ,
section 4.1.1. A ‘disassembly’ method is added to each element that is to

Figure 5.1: View of the structure of an electric motor

Lower shield

Copper windings

Half Stator

Rotor

Upper shield

CHAPTER 5

78

be disassembled. The parameters of the method explicitly define the two
resulting parts and their features in contact, depicted as follows:

disassemble Motor_A Upper_shield_C feat1 Lower_shield_B feat1

In the current implementation of XPROB, a part can be disassembled into
only two pieces. A series of disassemblies leads, therefore, to a binary tree
structure, depicted in Figure 5.6.

A great deal of hardware was required to implement our disassembly
line. The snapshot, Figure 5.3, depicts the classes and instances that rep-
resent the equipment set-up in our workcell.

Controller: the Aramis software [Lob95] provides comprehensive tools
to manage the disassembly station at a high level of abstraction. Prelimi-
nary integration tests were made, but a full integration was not possible in

Figure 5.2: Motor parts specification

APPLICATION TO A ROBOTIZED DISASSEMBLY LINE

79

our time frame. Consequently, the Aramis controller was not used in the
project’s evaluation phase.

Robot: an industrial robot, namely ABB IRB2400, was connected to an
ABB S4 controller. The test-bed configuration presented in “Hardware
description” , section 4.1.2 was reused. This configuration allows the robot
to execute the commands on-the-fly

Tools: a specific gripper was designed to handle certain types of motor.
Ideally several grippers should be available and an attribute for the grip-
per’s shape should be associated to each motor so that the program can use
the right tool and perform a safe and optimal grasping. A pneumatic drill
can also be mounted on the end-effector and be activated by a digital sig-
nal.

Feeders (in/out): three conveyors were modeled either to bring the
motors into the work cell, transport the shields for recycling, or convey the
extracted copper to the proper bin. Four bins were also used to receive the
end-products (stator_clean, stator_manual), the copper (bin_copper), and
the shields (bin_shield).

Devices: an electric saw was located in a remote workshop for practical
and safety reasons. This device was therefore only simulated at run-time.
It was also the case for the hydraulic tractive system, which was out of
order during the project’s evaluation phase. However, it was possible to
control this device using a small set of digital signals.

Fixtures: an in-house clamping device was used to keep the motor in a
fixed position. A digital signal and a temporizer were needed to safely
control it. A tool magazine was built to allow tool switching during the
disassembly process.

Sensors: a vision system, based on a frame grabber [Nat97], a Lab-
View1 application and three DCC cameras, was set up and ultimately con-
nected to XPROB. A force system, based on LabView and using a force
sensor mounted on the robot wrist, could also communicate with XPROB.
Two simple switches (light_beam, cut_done) were directly connected to
the robot controller and were modeled to simulate presence detection sen-
sors.

1. LabView is a trademark of National Instruments Inc.

CHAPTER 5

80

Figure 5.3: Partial World Model representation

APPLICATION TO A ROBOTIZED DISASSEMBLY LINE

81

5.4 Hardware description

Figure 5.4, below illustrates the physical implementation of the disassem-
bly line.

5.5 Task-level programming of the application

A variable number of steps in the disassembly process can be pointed out,
depending on the level of abstraction and complexity. In this section, we
break down the process into 6 sequential steps that highlight the work
done in each work station.

5.5.1 TASK SPECIFICATIONS

Sensor feedback is used at different stages during the disassembly,
either to get more accurate information about the object or to update the
object position/orientation. The actions performed at the different stations

Figure 5.4: Hardware integration

presence detectors
devices,tools

VISION

SYSTEM

FORCE

SYSTEM

IRB2400
S4 controller

CHAPTER 5

82

are successively detailed in this section. The overall process is illustrated
in Figure 5.5.

Part I, Motor identification
Location: In-feeder.
Purpose: the goal is to try to identify the incoming motor and remove it
from the conveyor belt.
Description: A motor arrives on the conveyor belt on a pre-defined side to
simplify and optimize the recognition process. A light beam sensor at the
end of the conveyor belt detects the motor. A picture is snapped by the
camera and the frame grabber computes different parameters such as the
object’s size and a possible gripping position. Based on this position, we
deduce the motor’s center point. This information is then used to get the
first list of potentially matching motor types. If this operation succeeds,
the motor can be grasped and removed from the conveyor belt.

Figure 5.5: Overview of the disassembly line

APPLICATION TO A ROBOTIZED DISASSEMBLY LINE

83

Part II, Dismantling

Location: Dismantling station.
Purpose: This is a transition process that puts the motor in a fixed position.
Description: The program computes the optimal object placement in the
clamping device. It triggers the clamping device’s opening, executes the
motor’s release, and executes another set of instructions to firmly clamp
the motor.

Part III, Screw removal

Locations: Dismantling station, tool magazine.
Purpose: In this part, we identify the position of the screws that binds the
upper- and lower-shields together, and drill the heads away.
Description: We obtain the screws’ position using the vision sensor to
locate them (x,y coordinates). If the vision system fails to return correct
values, or if no motor in the database matches the number of screws
detected, the motor is removed from the clamping device by the robot and
placed back on the conveyor belt for manual classification. Otherwise, the
robot places the gripper in the tool magazine and attaches the drill to the
end-effector. The pneumatic drill is then placed above the first screw. The
clamping device often lifts the motor up, thus making the screw head’s
position along the Z-axis in the World Model unreliable. Hence, a guarded
move using the force sensor detects the correct position of the screw’s
head. The drill is then activated to shred it off. A similar sequence of
actions is executed for the other screws. Upon completion, the robot
returns the drill to the tool magazine and puts the gripper back on the end-
effector.

Part IV, DismantleMotor
Location: Dismantling station.
Purpose: A sequence of mechanical operations extract the different motor
parts.

CHAPTER 5

84

Description: The robot successively extracts the upper-shield, the stator,
and the lower-shield from the motor. The stator is placed at an electric saw,
whereas the shields are dropped into a dedicated bin for recycling.

Part V, SawMotor

Location: Cutting station.
Purpose: The stator is sliced in two halves.
Description: Experimentation shows that the copper windings can be effi-
ciently separated from the stator when it is cut in two halves, see Figure
5.1. The two halves are then placed on an out-feeder. Once the presence
sensor detects the newly sliced stators, it triggers the next procedure: the
copper extraction.

Part VI, RemoveCopper

Location: Hydraulic tractive system.
Purpose: This part consists of extracting as much copper as possible from
the stator.
Description: When ready, a half-stator is gripped from the cutting station,
placed and clamped in the hydraulic tractive system. Thereafter four
hydraulic arms grip the windings and remove them from the stator. The
system is pre-programmed, and only a few digital signals are necessary to
control the different hydraulic commands.

Part VII, TestStator

Location: Testing station.
Purpose: An eddy current probe and a vision system check that all copper
material has been removed.
Description: The stator is first placed on a table with an illuminating sur-
face. Two pictures are successively snapped to detect copper colour and
the number of empty stator slots. If any copper is found or if the number of
slots does not match the expected value, the stator is assigned for manual
removal of the copper. If this is not the case, the stator is rotated around an

APPLICATION TO A ROBOTIZED DISASSEMBLY LINE

85

eddy current probe to ensure that no copper remains. At the end of the test-
ing process, the robot grips the stator and puts it in the appropriate bin.

Table 5.1 presents the execution time for each task and the total execu-
tion time. The data is provided by the XPROB’s execution time manager.
The estimated time is obtained by adding the worst-case execution time of
all of the robot commands when successively triggered. The effective time
corresponds to the recorded execution time of those commands.

5.5.2 OBJECT REFINEMENT

So far we have assumed that the manipulated objects are clearly identi-
fied. This makes the overall process easier to explain, but does not match
reality. Due to sensor approximation of, for example, the motor size, there
is not enough information for the system to single out a unique motor.
Therefore, XPROB creates a generic part, which is then refined along the
disassembly process. In fact, the part is refined each time the force and
vision sensors are used to sense the outside world. When a part has been
clearly identified, its identity is propagated upwards to the parent parts to
maintain database consistency.

Table 5.1: Tasks execution time

Task Estimated
time (s)

Effective
time (s)

FetchMotor 36.50 16.17

ClampMotor 40.00 22.90

ScrewsShredding 272.00 149.90

DismantleMotor 188.00 76.20

SawMotor 2.00 1.90

RemoveCopper 99.00 45.08

TestStator 151.00 79.28

BackConveyor 20.00 19.84

TotalCycle 808.50 411.28

CHAPTER 5

86

5.6 Project evaluation

The programming and control of the disassembly line has allowed us to
evaluate a research concept in a real environment. Its main contribution
has been to highlight the assets and deficiencies of XPROB. The main
objectives of XPROB (dynamic object-oriented modeling, high-level pro-
gramming environment, and sensor integration) have been successfully
achieved. On the other hand, the platform usability could be enhanced to
ease object modeling and provide a more friendly program execution envi-
ronment. It has also brought up new issues that were hidden in the simula-
tion environment. Communication latency of the serial communication
and the slow processing time of the robot controller led to jerky robot
motion. In addition, inaccurate robot calibration, and mechanical deficien-
cies of the hardware in the workcell were among the most time-consuming
and difficult problems to deal with.

Motor

Upper_shield Lower_shield

Rotor Stator

Half_Stator

Stator_coreCopper winding

Half_Stator

Motor identification

Screws location

Stator shape checking

Testing for remaining
copper

Figure 5.6: Sensor-based object refinement

87

Chapter 6
Conclusion

6.1 Summary and conclusions

Automated robotic applications require a flexible and open environ-
ment to perform advanced processes. In this thesis we have presented
XPROB, an experimental platform for the development and control of
robotic applications. Our software platform has been designed around an
open architecture allowing customizing and enhanced connectivity. It also
hides the complexity of robot programming from the user through the use
of object-orientation and symbolic reasoning about the objects. The bene-
fits of the XPROB platform are:

 • High-level language for the task specification

 • Object-oriented world model

 • Sensor integration at runtime

 • Support for modeling of 3-D objects

 • Support for partially identified objects and dynamic refinement

Though the platform is by no means a complete system, the preliminary
results of my research has lead to two major conclusions. Firstly, an

CHAPTER 6

88

object-oriented approach bound to a task-level programming environment,
presented in Section 3.2 and Section 3.3 respectively, efficiently provides
a high flexibility and reusability during the modeling and programming
phases. Secondly, an architecture that carries away the traditional off-line/
on-line programming distinction can considerably speed up the prototyp-
ing process. As explained in Section 3.7, we can take advantage of off-line
simulation combined with on-line sensor feedback and program adapta-
tion.

XPROB presents an approach to integrate heterogeneous commercial and
research tools in a distributed environment. The evaluation of XPROB

through the set-up of a disassembly line for electric motors demonstrates
that a robotic system can efficiently make use of external sensor systems
and devices. However, due to communication latency and time overhead,
the ideas and techniques developed in this thesis cannot be applied to
closed-loop control systems.

6.2 Future work

The intention during XPROB’s design was to keep the focus on the plat-
form architecture, the task-level language, and the object modeling. In
addition, it was meant to provide foundations for further research in other
domains. These axes of research encompass:

 • Automatic grasp planning. This would be an interesting extension.
Some research results [Jon90] could be integrated to generate an even
higher level of automation.

 • Gross motion planning. Further work has to be done to enhance the
gross motion planner with a collision avoidance algorithm, as dis-
cussed in Section 3.4.2.

 • Task specification. XPROB does not provide a higher level of abstrac-
tion for the task specification. Interfaces to more advanced programs,
such as Aramis [Lob94], have been designed for this purpose. Never-
theless, this approach has been insufficiently tested, and more thor-
ough investigation is needed.

89

Appendix

BNF DEFINITION OF THE WORLD-MODEL

Workcell::=
WORKCELL workcell-id

class Workcellset
robots Robots-list set
sensors Sensors-list set
tools Tools-list set
devices Devices-list set
feeders Feeders-list set
fixtures Fixtures-list set

Tools-list ::= {tool-id}*

Robots-list ::= {robot-id}*

Sensors-list ::= {sensor-id}*

Fixtures-list ::= {fixture-id}*
Feeders-list ::= {feeder-id}*
Devices-list ::= {device-id}*

Robot ::=
ROBOT robot-id

class Robot set
end_effector end_effector-id set

APPENDIX

90

kinematics Kinematics-params set
motion Motion-params set
status status-value conf-value
access Access-type set
cad Cad-data set

Tool ::=
TOOL tool-id

class Tool set
frame Frame-expression conf-value
status status-value conf-value
access access-type set
tool_status tool_status-type set
method Method-list set
cad Cad-data set

End_effector ::=
END-EFFECTOR end_effector-id

class End_effector set
spec Tool set
frame Frame-expression conf-value
tool_attached actuator-id set
status status-value conf-value
tool_status tool_status-typeconf-value
access Access-type set
method Method-list set
cad Cad-data set

Sensor ::=
SENSOR tool-id

class Sensor set
frame Frame-expression conf-value
status status-value conf-value
[Sensor-attribute-list]

APPENDIX

91

method Method-list set
access Access-type set
cad Cad-data set

Sensor-attribute-list ::=
Sensor-attribute {Sensor-attribute}*

Sensor-attribute ::=
attribute-name-rv sensor-real-value conf-value
attribute-name-sv sensor-symb-value conf-value

Position ::=
POSITION position-id

class Position set
frame Frame-expression set
approach Approach-expression set
[actuator_rotation rotation-value set]

Camera ::=
CAMERA camera-id

class Camera set
frame Frame-expression set
cad Cad-data set

Gripper ::=
GRIPPER gripper-id

class Gripper set
type gripper-type conf-value
dimension Dimension-expression set
station station-id conf-value
frame Frame-expression conf-value
gripzone Gripzone-list set
grip_active gripzone-id conf-value
[feature Feature-list set]

APPENDIX

92

object_gripped object-id conf-value
gripper_status Gripper-status-value conf-value
access Access-type set
method Method-list set
cad Cad-data set

Drill ::=
DRILL drill-id

class Drill set
type drill-type conf-value
dimension Dimension-expression set
station station-id conf-value
frame Frame-expression conf-value
gripzone Gripzone-list set
grip_active Gripzone-id conf-value
[feature Feature-list set]
object_gripped object-id conf-value
drill_status drill-status-value conf-value
access Access-type set
method Method-list set
cad Cad-data set

Part ::=
PART part-id

class Part set
dimension Dimension-expression set
station station-id conf-value
frame Frame-expression conf-value
gripzone Gripzone-list set
grip_active gripzone-id conf-value
[feature Feature-list set]
method Method-part-list set
madeup Madeup-expression conf-value
[Part-attribute-list]
cad Cad-data set

APPENDIX

93

Part-attribute-list ::=
{attribute-name attribute-value conf-value}*

Part-type-list ::=
Part-type-id {Part-type-id}*

Part-type-id ::=
Part-class-id _ Code

Part-id ::=
Part-type-id _ Part-counter

Frame-expression ::=
coordinate-system-id Orientation-expression
Position-expression

Orientation-expression ::=
yxz alpha-value beta-value gamma-value

Position-expression ::=
x-value y-value z-value

Gripzone-list ::=
gripzone-expression { gripzone-expression}*

Gripzone-expression ::=
coordinate-system-id Orientation-expression
Position-expression zone-name gripper-rotation

Feature-list ::=
Feature-expression { Feature-expression}*

APPENDIX

94

Feature-expression ::=
coordinate-system-id Orientation-expression
Position-expression feature-id feature-type-id
Dimension-expression

Dimension-expression ::=
length-value width-value height-value

Method-list ::=
Method-expression {Method-expression}*

Method-expression ::=
method-name function-name parameters-list

Access-type ::=
TCP/IP port-number | COM port-number

Status-value ::=
run | stop | error

Cad-data ::=
Cad-name { Cad-parameter }*

Conf-value ::=
assumed | unknown | set | checked | computed

95

References

[Abb94] ABB Flexible Automation AB, Rapid Reference Manual 3.0

[And97] Andeen, G.N., Toward a science of assembly, Robotics and
Autonomous Ssytems, vol. 21, 1997, pp. 240-248.

[Bar95] Baartman, J.P., Automation of assembly operations on parts,
Delft University, PhD Thesis, 1995.

[Dac92] DaCosta, F., Hwang, V., Khosla, P., Lumia, R., An integrated
prototyping environment for programmable automation,
SPIE/OE 92 International Symposium on Intelligent Robot in
Space.

[Dav99] David, B.T., Boutros, N., Saikali, K., Chevron, D., Gerner,
S., Skaf, A., Binder, Z., Dubois, M., Automation of disas-
sembly processes and its information systems, Proceedings
of First International Symposium On Environmentally Con-
scious Design and Inverse Manufacturing, 1999, pp. 564-
569.

[Fah98] Fahim, A., Choi, K., The Uniset approach for the program-
ming of flexible manufacturing cell, Robotics and Computer-
Integrated Manufacturing, Elsevier, 1998, #14. pages 69-78.

REFERENCE

96

[Fle94] Fleury, S., Herrb, M., Chatila, R., Design of a modular archi-
tecture for autonomous robot, Proceedings of IEEE Interna-
tional Conference on Robotics and Automation 1994, pp.
3508-3513.

[Fun90] Funda, J., Taylor, R.H., Paul, R., On Homogeneous Trans-
forms, Quaternions, and Computational Efficiency, IEEE
International Conference on Robotics and Automation 1990,
Vol6, no 3, pp. 382-388.

[Gra89] Gray, J.J, Introduction to robotics, Second Edition, Addison-
Wesley Publishing Company, ISBN 0-201-09528-9.

[Gru94] Gruver, W.A., Intelligent Robotics in Manufacturing, Serv-
ice, and Rehabilitation: an overview, IEEE Transactions on
Industrial Electronics, vol. 41, no 1, pp. 4-11.

[Hea86] Hearn, D., Baker, M., Computer Graphics. Prentice-Hall
Publisher, 1986. Chap. 10, Three-dimensional object repre-
sentations.

[Hes99] Hesselbach, J., Westernhagen, K. v., Disassembly simulation
for an effective recycling of electrical scrap, Proceedings of
First International Symposium On Environmentally Con-
scious Design and Inverse Manufacturing, 1999, pp. 582-
585.

[Hua97] Huaguo, L., Cuiyun, J., Jianan, H., A knowledge-based
approach for object classification for robotic assembly, IEEE
International Conference on Intelligent Processing Systems,
1997, pp. 1260-1262.

[Hwa92] Hwang, Y.K., Ahuja, N., Gross motion planning: a survey.
ACM Computing Surveys, Vol 24. No 3. September 1992.

[Hwa96] Hwang, C.P., Ho, C.S., A knowledge-based task-level pro-
gramming and execution environment for robots, Robotics
and Computer-Integrated manufacturing, vol. 12 1996, no 4;
pp. 329-351.

REFERENCE

97

[Kar97] Karlsson, B., Karlsson, N., Lauber, A., Sensor system for dis-
assembly of electrical motor, Proceedings of Robotikda-
garna, 1997, pp. 31-40.

[Jon90] Jones, J.L., Lozano-Perez, T., Planning two-fingered grasps
for pick-and-place operations on polyhedra, Proceedings of
IEEE International Conference on Robotics and Automation,
1990, pp. 683-688.

[Lap99] Lapham, J., RobotScript: the introduction of a universal robot
programming language, Industrial Robot: An International
Journal, vol. 26, 1999, pp. 17-25.

[Lau90] Laugier, C., Ijel, A., Troccaz. J., Combining vision based
information and partial geometric models in automatic grasp-
ing. IEEE International Conference on Robotics and Auto-
mation 1990

[Li95] Li, T.S., Latombe, J.C., On-line Manipulation Planning for
two Robot Arms in a Dynamic Environment, IEEE Interna-
tional Conference on Robotics and Automation 1995.

[Lob94] Loborg, P., Holmbom, P., Sköld, M., Törne,. A., A model for
the execution of task level specifications for intelligent and
flexible manufacturing systems.

[Lob95] Loborg P., Törne, A., A layered Architecture for Real-Time
Applications. Euromicro Conference on Real-Time Systems,
Odense, Denmark, 1995.

[Loz89] Lozano-Perez, T., Jones, J.L., Mazer, E., O’Donnell, P.A.,
Task-level planning of pick-and-place robot motions, Com-
puter, #22 3, March 1989 , pp. 21 -29.

[Mak99] Mak, K.L., Lau, H.Y.K, Wong, S.T.W., Object-oriented spec-
ification of automated manufacturing systems. Robotics and
Computer-Integrated Manufacturing, Elsevier, 1999, #15.
pages 297-312.

REFERENCE

98

[Mil91] Miller, D.J., Lennox, R.C., An object-oriented environment
for robot system architecture, IEEE Control Systems. Pages
14- 23

[Muj82] Mujtaba, M.S., Goldman, R., Binford, T., Stanford’s AL
Robot Programming Language, Computers in Mechanical
Engineering, August 1982.

[Nna93] Nnaji, B.O., Theory of automatic robot assembly and pro-
gramming. Chapman & Hall. ISBN 0-412-39310-7, 1993.

[Nat97] National Instruments Corporation, Imaq Vision for G Refer-
ence Manual, June 1997

[Nis98] Nishiyama, H., Ohwada, H., Mizoguchi, F., A multiagent
robot language for communication and concurrency control,
Proceedings of International Conference on Multi Agent Sys-
tems, 1998, pp. 206-213.

[Par95] Pardo-Castellote, G., Schneider, S.A., Cannon Jr, R.F.,. Sys-
tem Design and Interfaces for intelligent manufacturing
workcell, Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, Nagoya, 1995.

[Pet96] Pettinaro, G.C., Basic Set of beaviors for programming
assembly robots, Ph.D. thesis, University of Edinburgh.

[Pri93] Prinz, M., Liu, H.C., Nnaiji, B.O., From CAD-based kine-
matic modeling to automated robot programming. Technical
report, 1993.

[Ren97] Renfors, J., Real-time teleoperation of ABB S4 robots, Pro-
ceedings of Robotikdagarna, 1997, section G, pp. 73-80.

[Rem93] Rembold et al, Computer Integrated Manufacturing and Eng-
ineering, Addison Wesley, 1993.

[Sch91] Schrott, G., An experimental environment for task-level pro-
gramming of robots, In 2nd Int. Symposium on Experimental
Robotics, Toulouse, 1991, pp.196-206.

REFERENCE

99

[Sch99] Scholz-Reiter, B., Scharke, H., Hucht, A., Flexible robot-
based diassembly cell for obsolete TV-sets and monitors,
Robotics and Computer-Integrated manufacturing, vol. 15
1999, pp. 247-255.

[Smi96] Smith, C.E., Papanikolopoulos, N.P., Vision-guided robotic
grasping: Issues and Experiments, Proceedings of the 1996
IEEE International Conference on Robotics and Automation,
pp. 3203-3208.

[Tay82] Taylor, R.H., Summers, P.D., Meyer, J.M., AML: a manufac-
turing language, The International Journal of Robotics
Research, vol. 1, No 3, 1982.

[Tun94] C. P. Tung, A. C. Kak. Integrating Sensing, task planning,
and execution, Proceedings of the 1996 IEEE International
Conference on Robotics and Automation, pp. 2030-2037.

[Wit95] Wittenberg, G., Developments in offline programming: an
overview, Industrial Robot, An International Journal, vol. 22,
1995, pp. 21-23.

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:

FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.
No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algo-

rithm for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denota-

tional Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska före-

tag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svens-

ka organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

