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ABSTRACT

The idea of using logic in computer programs to perform systematic diagnosis was
introduced early in computation history. There are several systems using punch-cards and
rulers described as early as the mid 1950’s. Within the area of applied artificial intelligence
the problem of diagnosis made its definite appearance in the form of expert systems during
the 1970’s. This research eventually introduced model based diagnosis in the field of
artificial intelligence during the mid 1980’s. Two main approaches to model based
diagnosis evolved: consistency based diagnosis and abductive diagnosis. Later kernel
diagnosis complemented these two approaches. Unique kernel diagnosis is my contribution
to model based diagnosis within artificial intelligence.

Unique kernel diagnosis addresses the problem of ambiguous diagnoses, situations where
several possible diagnoses exist with no possibility to determine which one describes the
actual state of the device that is diagnosed. A unique kernel diagnosis can per definition
never be ambiguous. A unique kernel diagnosis can be computed using the binary decision
diagram (BDD) data structure by methods presented in this thesis. This computational
method seems promising in many practical situations even if the BDD data structure is
known to be exponential in size with respect to the number of state variabels in the worst
case. Model based diagnosis in the form of consistency based-, abductive and kernel-
diagnosis is known to be an NP-complete problem. A formal analysis of the computational
complexity of the problem of finding a unique kernel diagnosis reveals that it is in PNP.
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Chapter 1

Introduction

This thesis sums up my work on diagnosis. During my work I
have been fortunate enough to be able to follow my own thread
of thought without too much interference. The main tool for
guidance has been my natural curiosity. If there is something I
think I can do better I can not leave it alone.

The combination of these things have led me down many
blind alleys during my studies in diagnosis. Very often some-
thing may look very easy to improve when you �rst look at it
but once you take a deeper look it becomes clear that it may
not be very easy at all. Very often the things I have tried to
improve have actually become worse. Those things have natu-
rally been sent to the recycling bin and may very well be part
of your yesterdays newspaper.

This thesis is about a few of the things I found that did not
end up in the recycling bin.

1.1 Introduction to Diagnosis

To describe ones �eld of research in a few simple words with-
out getting into details is a challenge. How many times have
you been asked by a student or friend about your research and
found that your brain goes into an endless loop trying to �nd an
understandable answer. Well, it happened to me a few times.
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Anyway here is an attempt to introduce diagnosis, the details
will be discussed later.

To introduce diagnosis let us start with the basics. Every
now and then something around us goes wrong. This may be
more or less anything like windows98 crashing, a person who
is not feeling well, a car that will not start in the morning, a
space shuttle that blows up, a plane that crashes or maybe even
the climate on earth. Diagnosis is to �gure out what causes
something to go wrong.

The best diagnostician is still in most cases the human ex-
pert. Unfortunately the humans who are true experts are rare
and have limited capacity while the diagnostic needs are plenty.
Thus it would be very nice if a computer program could be used
to accurately produce a diagnosis or at least help a human to
do so. If this can be done the experts knowledge can be shared
with others who can make use of the experts diagnostics skills.
This is one of the goals in diagnosis research, put the diagnostic
power of the expert in the hands of those who need it.

Another motivation for diagnosis research is that computers
can exist and function in places where a human simply can not
survive. A computer can be sent to Mars or into places in a
nuclear power plant where no human would want to go.

Another big advantage of the computer is that it can go
on performing a monotone diagnostic task for years without
needing to eat or sleep or rest in any way. This is something a
human can never do.

Unfortunately the computer does not only have advantages
to o�er to humans, a fact that should be well known to most
of us. A human expert has the ability to understand and draw
conclusions from complex information. This is where the hu-
man expert is far superior to any computer. The computer on
the other hand is far better when it comes to processing large
amounts of simple data. A computer can process this informa-
tion much faster than a human.

This vital di�erence between humans and computers makes
it virtually impossible for a computer to copy some of the diag-
nostic tools of a human. This is why �nding e�cient diagnostic
tools suitable to a computer is such a hard problem. This is the
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main challenge in diagnosis research.

Diagnosis is closely related to several other �elds of research
such as veri�cation, debugging, monitoring, fault tolerant sys-
tems. The common factor is that in all these cases a vital part
of the problem is either to identify a deviance from normal be-
havior or to �nd the cause of that behavior. The main di�erence
between these subjects is where the deviance is expected to be
and what action should be taken once it is found.

In monitoring the main goal is to detect deviances between
the expected behavior and actual behavior. Here the assump-
tion is that our knowledge of what to expect is correct, any de-
viances from the expected are reported. The deviances reported
by a monitoring task may trigger a diagnosis task.

An example would be when you go to the doctor for a checkup.
If everything is normal you can go home happy, if on the other
hand something is not normal it is likely that the doctor will
use his diagnostics knowledge and experience to diagnose what
is causing the abnormal behavior.

Another example is what you are doing when you drive your
car. If you think something is not as should be with your car you
will probably take it to the mechanic. You are subconsciously
monitoring your car.

Monitoring and diagnosis also have a central part in creating
some types of fault tolerating systems. A fault tolerant system
is a system that is able to perform its tasks despite faults in the
system. To achieve this the system needs to monitor itself to
detect deviances from normal behavior. If a deviance is detected
it is likely that a diagnosis have to be made identifying the
cause of the deviance in order for the system to know if it can
compensate for the deviance and if so how to do it.

One good example of such a fault tolerant system is the in-
teraction between a multi-engine airliner and its pilot. If for
some reason one engine has problems which is threatening to
cause worse problems like an engine �re this will be detected by
the pilot. Either the pilot detects this himself or the airliners
warning system attracts his attention. The pilot quickly diag-
noses the problem and knows from his training that since the
airliner has other engines he can shut down the problem engine
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and keep �ying. Together the pilot and the plane becomes a
fault tolerant system.

Veri�cation is slightly di�erent from monitoring. In veri�ca-
tion the goal is to verify that a systems behavior conforms to a
speci�cation. Both the system and speci�cation is assumed to
be free from faults, the faults that one is looking for is faults
which lead to a violation of the systems speci�cation. The main
di�erence from monitoring is that where monitoring is only in-
terested in if the system is performing as expected, veri�cation
is interested in if the system will perform as expected in every
case.

When doing debugging on the other hand one is looking for
construction faults in the speci�cation. The system is expected
to conform to the speci�cation but since the speci�cation is
wrong the system will not behave as intended.

Diagnosis has a natural place in all the �elds of research
mentioned above. Often one of these tasks (monitoring, veri�-
cation, debugging) are necessary to detect the need for a diag-
nostic task. Once diagnosis pinpoints the cause of the detected
problem, repair or fault tolerance actions can be taken.

1.2 Contributions

The main subject for this thesis is the de�nition and computa-
tion of a diagnosis. This is also where my main contributions
to diagnosis research are. Here is a short list of contributions to
diagnosis research presented in this thesis.

� A new diagnosis criteria.

� A method for computing a diagnosis according to this new
diagnosis criteria.

� An analysis of the computational complexity of computing
a diagnosis.

The new diagnosis criteria introduced allows more precise di-
agnosis statements then the traditional methods. On the other

8



hand it also demands better quality models and access to ob-
servations to be useful.

The computation of a diagnosis according to this new criteria
can be done just as e�cient as for more imprecise diagnosis
criteria.

The last contribution is an analysis of the computational
complexity of �nding a diagnosis.

1.3 What this Thesis is Not About

This thesis is not about modeling for diagnosis. Modeling for
diagnosis is a separate �eld of research which I have not studied.
Thus this thesis does not contain any modeling examples.

This thesis does not consider the temporal aspects of diag-
nosis. Although this is a very interesting branch of diagnosis
research posing many challenging questions I have decided this
to be out of the scope of this thesis. I do however hope to return
to this subject later on.

Similarly I hope to study diagnosis methods based on/using
continuous values. But so far this has also been decided to be
out of the scope of this thesis.

1.4 The Structure of this Thesis

If you have read everything this far you probably have some
idea of what this thesis is about. Now it is about time I tell you
where in this thesis you will �nd what.

This thesis is more or less divided into two parts. Chapters
1 and 2 serve as an introduction to discrete diagnosis and this
thesis. Chapters 3, 4 and 5 present my contributions to diagnosis
research. Since you have read the introduction we will skip that.

� Chapter 2 Discrete Diagnosis
This chapter is an introduction to discrete diagnosis. If
you are new to diagnosis research or even discrete diagno-
sis it may be worth reading this. If on the other hand you
know your diagnosis research you should probably skip
this chapter.
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� Chapter 3 Diagnosis Theory
This chapter introduces a new diagnosis criteria. The re-
lationship between this new diagnosis criteria and other
existing diagnosis criteria is explored. This is one of the
main contributions to diagnosis presented in this thesis.

� Chapter 4 Computing a Diagnosis Using Binary
Decision Diagrams
This chapter presents a method for computing a diagnosis
according to the new diagnosis criteria presented in the
previous chapter. This method is based on binary decision
diagrams and is to my knowledge new to diagnosis.

� Chapter 5 Evaluation
This chapter presents an evaluation of the methods intro-
duced in this thesis.

Now that you have been properly introduced to this thesis
you should be ready to read and enjoy it fully.

1.5 Acknowledgements

I am in debt to Krzysztof Kuchcinski for putting up with my
endless writing of this thesis and the endless reading that comes
with it. Also Christer Bäckström for allowing me the freedom
to follow my own thread of thought and develop the material
in this thesis as well as answering endless questions on the the-
ory of computational complexity, something which I am also in
debt to Peter Jonson for doing. Thomas Drakengren for keeping
me from heading into several dead ends and inspiring me to a
healthy doze of critical thinking. Simin for reading and helping
me maintain a realistic view on life as a PhD student. My family
and friends for keeping me sane during the process of producing
this thesis.
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Chapter 2

Discrete Diagnosis

In this chapter most of the e�ort will be spent on discrete diag-
nosis which is the main subject for this thesis.

2.1 Classifying Diagnosis

One common way to classify diagnosis is to look at the infor-
mation used to produce a diagnosis. Let us use the human
expert as a reference. Humans have an astonishing ability to
make use of complex information. Especially humans are ex-
perts at selecting relevant information from a huge amount of
largely irrelevant data. Computers have problems to do both
these things.

Computers on the other hand are very good at processing
large amounts of simple data, something they can also do very
fast. Unfortunately the number of possible solutions to a diag-
nostics task su�ers from a combinatorial explosion. The number
of possible solutions for a computer to consider quickly becomes
too large for any computer. In order to reduce the amount of
data that the computer has to process di�erent forms of ab-
straction are used.

The classi�cation presented here is based on di�erent levels
of abstraction concerning two fundamental factors in diagnosis;
time and data. Some diagnosis systems, generally called tempo-
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ral diagnosis systems, consider the e�ects of time while looking
for a diagnosis while others do not. Likewise some diagnosis
systems use continuous data to produce the diagnosis and are
subsequently called continuous diagnosis systems while discrete
diagnosis systems only base the diagnosis on discrete informa-
tion. All combinations of these two factors exist as described by
�gure 2.1.

Temporal Continous
Diagnosis Systems

Temporal Discrete
Diagnosis Systems

Continous
Diagnosis Systems

Discrete
Diagnosis SystemsDiscrete

Continous 

Temporal Static

Figure 2.1: Map of Classi�ed Diagnosis Approaches

Temporal continuous diagnosis systems [9, 10, 18, 46, 31] are
systems that base the diagnosis on continuous valued informa-
tion and consider the e�ects of time on the system to be diag-
nosed. These diagnosis systems are used to diagnose continuous
dynamical systems, a challenging diagnostic problem where val-
ues are continuous (not discrete) and values keep changing over
time.

These diagnosis problems inspired research that evolved into
a separate branch of arti�cial intelligence research now called
qualitative reasoning about physical systems.

One area where these kind of systems are used is in the
automobile industry, or actually, in the cars themselves. Here
residuals [32, 33] are used in order for the vehicles to comply
with the OBD-II[34, 17, 33] emissions regulations. A residual
is basically the di�erence between a measured output from the
system to be diagnosed and the predicted output from a math-
ematical model of the same system.The mathematical model is
expected to be correct, thus the residual is a continuous signal
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describing how well the system conforms to the expected cor-
rect behavior. By studying several residuals sensitive to slightly
di�erent changes in the systems behavior faults in the system
can be detected and identi�ed [33].

Another type of diagnosis system also used in cars is active
diagnosis [3, 44] . Active diagnosis is based on simple tests. By
putting the system to be diagnosed in a certain known state and
observing the results the diagnosis system can draw conclusions
about possible faults in the system to be diagnosed. In order
to perform tests in this manner a concept of time is needed in
the diagnosis system, together with the fact that most of the
observed values from the system (at least in the case of the car)
are continuous this method quali�es as a temporal continuous
diagnosis method.

Temporal discrete diagnosis systems are systems that base
the diagnosis on discrete information such as boolean variables
and consider the e�ects of time. These diagnostic systems are
used to diagnose systems where values are discrete or for which a
discrete abstraction of signi�cant values is adequate as opposed
to continuous values. As with temporal continuous systems val-
ues are expected to change over time.

These may be systems where the domain is inherently dis-
crete such as digital circuit [25] or where information from a
continuous system is discrete-sized into discrete values [35, 16] .

Diagnosis of systems modeled as discrete-event systems [41,
6, 28]would also be in this category.

Continuous (non-temporal) diagnosis systems are systems
that base the diagnosis on continuous valued information but
do not consider the e�ects of time. These diagnostic systems
are used for diagnosing systems where all values are static in
the sense that they do not change over time.

Discrete (non-temporal) diagnosis systems are systems that
base the diagnosis on discrete information without regards to
time. This category is well explored by several logic-based ap-
proaches [37, 39, 12, 11, 29, 38, 13, 20] . These systems are the
main subject for this thesis and what moat of this chapter will
be about.
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2.2 Approaches to Discrete Diagnosis

There are two classical approaches to discrete diagnosis that
have dominated the �eld of discrete diagnosis within arti�cial
intelligence; abductive diagnosis [37] and consistency based di-
agnosis [39, 22, 12, 13]. At this point it is to early to get into
the details, I will get back to this later, the following section is
more intended as an overview.

The two approaches are virtually equivalent except for the
de�nition of a diagnosis. An abductive diagnosis is required to
support the observations. It must be possible to predict the ob-
served outputs of the system (to be diagnosed) given the inputs
to the system together with the diagnosis and a predictive model
(system description) of the system. A consistency based diag-
nosis is considered a diagnosis as long as it does not contradict
the observations or the system description.

The di�erences that do exist are caused by a di�erence in the
use of the system description that originally existed between the
two approaches. Abductive diagnosis was originally intended to
be used together with fault models. The e�ects of each fault on
the system was to be modeled in the system description, thus
the system description should given a correct diagnosis together
with the systems inputs be able to predict the observed outputs.
This is the basis for the abductive diagnosis criteria.

It has been argued, and there are several relevant points to
this argument, that every fault can not be predicted and thus
not be modeled. This is however usually not a problem. It
is obvious that the abductive approach to diagnosis can only
diagnose faults that are known and modeled in the system de-
scription. But as humans we never expect to be able to diagnose
faults we do not know exists. We simply refer to those faults as
unknown, we do not know what is going on only that something
is wrong. When an abductive diagnosis system fails to �nd a
known abductive diagnosis it is quite natural to think of this as
an unknown fault. Thus it is natural to expect this behavior.

The consistency based approach to diagnosis su�ers a similar
problem. As mentioned earlier a consistency based diagnosis is
considered a diagnosis as long as it does not contradict the ob-
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servations or the system description. Unfortunately a diagnosis
is not necessarily the correct one in the sense that it describes
the actual state of the device only because it is consistent. There
may be very many diagnoses that qualify as consistency based
diagnoses but only one of them is the correct one.

Both approaches have recognized the advantages of combin-
ing model's of the correct behavior with fault models. Several
authors have noted the similarities between abductive diagnosis
and consistency based diagnosis. This has resulted in several
frameworks which include both approaches [8, 29].

The di�erences were originally based on fault models vs.
models of the correct behavior. These were more or less elim-
inated because it was realized that both approaches bene�tted
from using both fault models and a model of the correct behav-
ior. Today it seems as if like both approaches were at oppo-
site ends of the same thread. Both approaches are set-covering
methods and virtually every computation method end up com-
puting prime implicants.

2.3 The Diagnosis Framework

I believe the best way to present how discrete diagnosis is done is
to simply show how. In order to do this we need to build a simple
framework. The framework itself is not important, the �eld
of discrete diagnosis is overpopulated by �framework builders�
and this is not intended to become another one. Most existing
frameworks are very similar and when you have studied one you
will easily recognize the others. This framework is presented
only for the purpose of an example to explain the structure of
the problem.

For illustrative purposes this framework will be applied on
a very small example. The simplest of all logic circuits, the
inverter.

To start o� we will begin with the concept of components
and behavior modes[13]. Assume that we have some device D
that we want to diagnose. This device can be anything from
an elephant to a space shuttle, what it is is not important here.
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What is important however is that we consider this device to be
built up from components, thus the device D can be considered
to be a set of components COMP which it is built from.

In our small example the device consists of a single compo-
nent which is the inverter, here we name the inverter inv.

Now each component is modeled using a set of behavior
modes where each mode describes a way in which the compo-
nent can act. For example the two simplest behavior modes a
component could have would be normal and faulty where normal
describes the component to be functioning as it should (however
this would be) and faulty describes the component not function-
ing.

Getting back to our example assuming that the inverter has
two possible faults we want to diagnose we can describe the
inverter using three behavior modes, one for each fault plus the
normal behavior. In this example let us assume that the inverter
can fail with it's input stuck at one or stuck at zero, this yields
the three modes normal, stuck_at_one and stuck_at_zero.

In a completely analog way we can introduce observations
OBS and observation modes. Observations in OBS represent
the entities we can observe while the observation modes describe
the �values� each observed entity can have.

In this example we have two entities we can observe, the
inverters input and output. Here we will name these in and out.
Since they are both �digital� signals they both have the same
observation modes; one and zero.

Now we use this to build a set of variables which we will
use to build a system description1 S of the device. How the
variables are constructed or named is of no importance. It is
important that we assign one unique variable to represent each
combination of component and its behavior modes. We then do
the same for observations and get a set of boolean variables V .

For our example we will use a simple naming scheme to
achieve this, for every component we construct a variable �com-
ponent name�_�behavior mode� for each behavior mode. In this
example we get three such variables; inv_normal, inv_stuck_at

1A system description is a set of formulas which describe the device
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_one and inv_stuck_at_zero. Applying a similar naming scheme
to our observations we get four observation variables; in_one,
in_zero, out_one and out_zero. The complete set V becomes
inv_normal, inv_stuck_at_one, inv_stuck_at_zero, in_one,
in_zero, out_one and out_zero.

These variables can be used to represent the state of the de-
vice. A variable is true if and only if the component is working
according to the behavior mode which the variable represent.
Observations again work in a completely analog fashion. Now
the state of the device can be described in a compact form by
an assignment A of values to the variables in V . This assign-
ment can be expressed as an conjunction of literals that when
evaluated evaluates to true if and only if the concerned variables
have their assigned values. An assignment does not necessarily
have to assign a value to every variable in V , if it did it would
be quite useless later on in this thesis.

In our example we can describe the inverter being in normal
mode with the assignment being a formula consisting of a single
literal inv_normal.

We can now describe the system using a set of �rst order
sentences, a system description. For example if the variable
o1 represents some observation having a certain value and the
variable c1 representing a component being in a certain mode
and we know that if we observe o1 the component can not be in
this mode we would describe this with the sentence o1 ! :c1.
For any legal assignment this sentence will evaluate to true. This
is a general assumption in many frameworks that each sentence
in the system description is expected to evaluate to true for any
legal assignment.

We can build a simple system description for our example
in this way. We begin with describing the basic �rules� in our
system description such as the component can only be in one
behavior mode at a time, for this we use the following formula:

(inv_normal^:inv_stuck_at_one^:inv_stuck_at_zero)_

(:inv_normal^inv_stuck_at_one^:inv_stuck_at_zero)_
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(:inv_normal ^ :inv_stuck_at_one ^ inv_stuck_at_zero)

This also have to be done for each of the observations, this
results in two formulas:

(in_one ^ :in_zero) _ (:in_one ^ in_zero)

and:

(out_one ^ :out_zero) _ (:out_one ^ out_zero)

Once the basic rules are established it is time to describe the
relation between observations and behavior. Let us begin with
the normal behavior which is described by the following formula:

((in_one ^ out_zero) _ (in_zero ^ out_one))! inv_normal

The �stuck at zero� behavior mode:

(in_one ^ out_one)! inv_stuck_at_zero

Finally the �stuck at one� behavior mode:

(in_zero ^ out_zero)! inv_stuck_at_one

With this last formula the example system description is �n-
ished. We now move on towards de�ning a diagnosis.

The �rst step is to de�ne a legal assignment. A legal as-
signment is one that complies with the system description and
observations.

De�nition 2.1 Legal Assignment
An assignment A is a legal assignment to a system description
S with the observations O i�:

^

S

^
^

O

^A

is satis�able.
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Now we have enough structure to de�ne a diagnosis. We
will begin with the simplest form which is consistency based
diagnosis. In consistency based diagnosis an assignment is a
diagnosis if and only if it does not contradict the observations, it
is consistent with the observations. This is exactly the de�nition
of a legal assignment, thus any legal assignment is a consistency
based diagnosis.

A more complicated de�nition of a diagnosis is abductive di-
agnosis. An assignment is an abductive diagnosis if and only if it
supports the observed outputs. To formulate this in a de�nition
we must �rst partition our set of observations into two parts;
observations regarding the outputs Oout from the device and
other observations Oremain. With this distinction an abductive
diagnosis can be de�ned as follows:

De�nition 2.2 Abductive Diagnosis
A legal assignment A is an abductive diagnosis to a system de-
scription S with the output observations Oout and remaining
observations Oremain i�:

^

S

^
^

Oremain

^A j=
^

Oout

Another diagnosis criteria that evolved out of consistency
based diagnosis is kernel diagnosis[11]. In order to de�ne kernel
diagnosis we �rst de�ne the term covering.

De�nition 2.3 Covering
A conjunction A of literals covers a conjunction B of literals i�
every literal in A occurs in B.

Remembering that assignments can be expressed as a conjunc-
tion of literals (as was done in previous de�nitions) we now
de�ne a partial diagnosis as follows:

De�nition 2.4 Partial Diagnosis
A partial diagnosis for a system description S with the observa-
tions O is a legal assignment A such that for every satis�able
conjunction of literals � covered by A:

^

S

^
^

O

^�
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is satis�able.

This de�nition of partial diagnosis is remarkably similar to the
de�nition of a legal assignment and thus consistency based di-
agnosis. Actually the partial diagnosis can be seen as a compact
representation for all the conjunctions of litterals it covers which
are each a consistency based diagnosis.

Now we are ready to de�ne a kernel diagnosis:

De�nition 2.5 Kernel Diagnosis
A kernel diagnosis is a partial diagnosis with the property that
it is the only partial diagnosis which covers it is itself.

If a partial diagnosis is a compact representation for a collection
of consistency based diagnosiss a kernel diagnosis is the smallest
such representation. One important fact to note at this point
is that the de�nition of a kernel diagnosis allows several ker-
neld diagnoses to exist for the same diagnostic case. This can
be shown with a very simple example which I will leave as a
brainteaser for the interested reader.

Thus �nding a diagnosis in discrete diagnosis results in search-
ing for assignments which satisfy the given diagnosis criteria. It
should by now be clear to anyone that this will be an exponen-
tial problem since there is an exponential number of possible
assignments to search.

With this introduction I leave you to the rest of my thesis.
Hopefully by now you have a grip on what diagnosis is and
especially discrete diagnosis. This introduction may not have
been as exhaustive as you expected but this is intentional, if
you want more information there is good surveys written[24]
that will do the job which I recommend. From now on this
thesis will be presenting my own work.
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Chapter 3

Diagnosis Theory

This chapter describes and motivates the theory behind a new
approach to computing a discrete diagnosis. It is intended as
an introduction and as such does not discuss the details of how
the diagnosis is computed but rather concentrates on explaining
an alternative view of discrete diagnosis and how this view is
related to more conventional views of discrete diagnosis.

3.1 Motivation

In general diagnosis is viewed as a search problem. The search
traverses the search space (more or less randomly) and uses the
diagnosis criteria to �lter out legal assignments as diagnoses.
Any assignment is a potential diagnosis.

The dominance of the search based approaches is very much
due to the diagnosis criteria used. Both the abductive and the
kernel diagnosis criteria more or less imply a search based ap-
proach searching for prime implicants. The consistency based
diagnosis criteria is more general but this is at the cost of weaker
diagnosis statements.

Using the search approach the size of the search space is
a potential problem. Even if a search method has elaborated
heuristics for guiding the search they fall back on exhaustive
search when their guidance methods fail. Having 300 variables is
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not an unreasonable situation. Searching for a legal assignment
for 300 variables, each having two possible values, yields a search
space of 2300 di�erent possible assignments. Compare this with
the estimated total number of atoms in the universe 2220. Even
if there were 1; 000; 000 � 220 legal assignments the probability
of �nding one of them is less than the probability of �nding a
single speci�c atom in the universe. No search based method
can deal with this.

Another problem with commonly used approaches to dis-
crete diagnosis is the answers they provide. In many cases a
diagnosis may be unusable simply due to its sheer size. It lacks
precision.

This has motivated me to search for a diagnosis criteria that
allows e�cient computation of a diagnosis and accurate diagno-
sis statements.

3.2 The Diagnosis Problem as Constraint

Satisfaction

Taking another look at the general diagnosis problem described
in chapter 2 it is quite easy to see how this can be viewed as a
constraint satisfaction problem. The search space is the set of
possible assignments. We know from chapter 2 that for a system
described by a set of variables V the size of the search space is
2jVj.

The system description can be viewed as a set of constraints
limiting which assignments are legal assignments. This does not
however reduce the size of the search space since it is not possible
to tell which assignments are legal without testing them, it only
limits the number of legal assignments.

The observations on the other hand can also be viewed as
constraints but these do reduce the search space by �xing the
value of some variables. If O is the observations then jOj denotes
the number of variables with a �xed value due to the observa-
tions, thus the remaining search space size is 2jVj�jOj. That is,
every observation divides the size of the search space in half.

Now consider the obvious fact that in many cases the sys-
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tem description together with the observations will constrain
the legal assignments in such a way that certain variables must
have a certain value in every legal assignment. In these cases
the value of those variables is �xed and the search space can be
reduced further. The values for the �xed variables form a core
assignment.

This assignment does not only reduce the size of the remain-
ing search space but it is also the basis for a very strong diagnosis
statement.

3.3 A New Diagnosis Criteria

With a new diagnosis criteria at least the issue of precision can
be addressed. The computational complexity remains a chal-
lenge. The worst case computational complexity is still expo-
nential. There is however an opening for repetitive diagnosis
tasks to become more e�cient.

Because the new diagnosis criteria is so closely related to the
kernel diagnosis [11] this will be named Unique Kernel Diagno-
sis.

3.3.1 Unique Kernel Diagnosis

The intention is to let the core assignment form a diagnosis. The
reason that the core assignment is so attractive as a diagnosis
is that it can not be contradicted by any legal assignment.

To formalize the core assignment into a unique kernel di-
agnosis we will need the help of the following de�nition which
de�nes the �core� properties.

De�nition 3.6 Refutable
Given a system description S and a set of observations O an
assignment A is refutable i� there is an assignment A0 such
that:

1. A and A0 assign the same variables.

2. at least one variable is assigned a di�erent value in A0

than in A.
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3. Both A and A0 are legal assignments for the system S
given the observations O.

The e�ect of this de�nition is that an assignment is refutable
if there exists another assignment such that it is both a legal
assignment and in con�ict with that assignment.

For the de�nition of the unique kernel diagnosis we are in-
terested in those assignments that are non refutable. We now
de�ne the unique kernel diagnosis as the largest non refutable
assignment.

De�nition 3.7 Unique Kernel Diagnosis
Given a system description S and a set of observations O a legal
assignment A is a unique kernel diagnosis i�:

1. A is non refutable.

2. All assignments A0 which are covered by A are refutable.

A unique kernel diagnosis is a very strong diagnosis state-
ment. There is no legal assignment that contradicts the unique
kernel diagnosis thus the unique kernel diagnosis can be consid-
ered an undisputable fact. No other diagnosis criteria directly
pinpoints the facts of the diagnostics case in this manner. This
is also the most important di�erence that distinguishes unique
kernel diagnosis from the ordinary kernel diagnosis.

The unique kernel reduces the size of the remaining search
space as well. Given a unique kernel A we denote by jAj the
number of variables whose value are �xed by this kernel. This
yields a remaining search space is of the size 2jVj�jOj�jAj.

3.3.2 Undecidable Variables

Another group of variables which deserve to be treated apart
from the rest is which values are unconstrained. One e�ect of
constraining the search space with observations and a unique
kernel diagnosis is that the number of e�ective constraints in
the system description is reduced while some of the remaining
constraints become more precise. This happens as a result of
some variables having values are �xed which causes some of
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the constraints to have a �xed value. As a result of this some
variables may become unconstrained.

To try to determine the value for an unconstrained variable
is pointless. Instead we identify unconstrained variables as un-
decidable with the following de�nition:

De�nition 3.8 Undecidable Variables
Given a system description S, a set of observations O and a
unique kernel A the set of undecidables U is de�ned as the set
of those variables such that there is no superset O0 of O for
which the corresponding unique kernel A0 assigns any variable
u 2 U .

In other words, there is now way to constrain the remaining
search space such that the value of the value of the variables in U
can be determined. Once the undecidables have been identi�ed
the remaining search space is again reduced since we no longer
have to �nd values for the undecidable variables. The size of
the remaining search space is now 2jVj�jOj�jAj�jUj

3.3.3 Extensions

Since a unique kernel diagnosis rarely is a complete assignment
we de�ne extensions. An extension is an assignment that to-
gether with a unique kernel is a complete consistent assignment
for every variable that is not undecidable. This is re�ected by
the following de�nition.

De�nition 3.9 Extension
Given a system description S, a set of observations O, a unique
kernel A and a set of undecidables U the assignment E is an
extension i�:

1. A ^ E assigns all variables in V � U .

2. S ^ O ^ A ^ E is consistent.

While there is only one unique kernel for each diagnostics case
there may be several extensions.
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3.3.4 Unique Kernel Diagnosis and Kernel Di-
agnosis

The unique kernel turned out to be so very similar to the ordi-
nary kernel that it is convenient to consider the unique kernel a
variant of the ordinary kernel.

There is actually only one very simple but crucial di�erence
between the ordinary kernel diagnosis and the unique kernel
diagnosis; while there can be several ordinary kernel diagnoses
there can be only one single unique kernel diagnosis.

The ordinary kernel diagnosis criteria allows multiple kernels
to exist as long as they do not cover each other. The unique
kernel on the other hand requires the kernel to be the largest
unrefutable assignment which makes it unique.

3.3.5 Unique Kernel Diagnosis and Consistency

The relationship between unique kernel diagnosis and consis-
tency based diagnosis is quite trivial. A unique kernel diagnosis
is also a consistent diagnosis since it is per de�nition a legal as-
signment. This can be summed up with the following theorem.

Theorem 3.1 The Unique Kernel is Consistent
If an assignment A is a Unique Kernel Diagnosis then A is also
a Consistent Diagnosis.
Proof
Trivial, since A is per de�nition a legal assignment.

This knowledge is important because it is necessary for a unique
kernel diagnosis to be consistent for it to be able to have exten-
sions. Extensions are also per de�nition consistent.

3.3.6 Unique Kernel Diagnosis and Abduction

The relation between unique kernel diagnosis and abduction is
not as straightforward as that between unique kernel diagnosis
and consistency based diagnosis. A unique kernel diagnosis is
not necessarily an abductive diagnosis and an abductive diagno-
sis is not generally a unique kernel diagnosis. The main reason
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is that there is no guarantee that the �outputs� of the system
can be predicted given the �inputs� and a unique kernel.

The unique kernel diagnosis and the abductive diagnoses for
the same diagnostics case have to be consistent with each other.
The reason for this is quite simple, an abductive diagnosis have
to be a legal assignment and no legal assignment contradicts the
unique kernel diagnosis.

Theorem 3.2 The Unique Kernel is Consistent with Ab-
duction
If an assignment A is a unique kernel diagnosis and A0 is an
abductive diagnosis then A ^ A0 is consistent for any abductive
diagnosis A0.
Proof
We prove this by refutation. Assume that A is a unique kernel
diagnosis and A0 is an abductive diagnosis inconsistent with A.
Since A0 has to be a legal assignment this means that A can
not be a unique kernel since it is now refutable. Thus if A is a
unique kernel it must be consistent with A0.

There is no similar relation between extensions and abduction
even though every extension is a possible abductive diagnosis.
The reason for this is that extensions per de�nition are consis-
tent with the unique kernel diagnosis.

It is possible to extend the unique kernel de�nition to a
unique abductive kernel. This is done in the same way as it
is done for the ordinary kernel diagnosis [11] by simply adding
the requirement that from the unique kernel and its extensions
given the �inputs� of the system it should also be possible to
predict the �outputs� of the system.

In order to do this the observations O must be partitioned
into two parts; one part Oout contains observations concerning
the �outputs� of the system while the remaining observations
not concerning outputs are placed Oremain. Now the unique
abductive kernel diagnosis can be de�ned as follows.

De�nition 3.10 Unique Abductive Kernel Diagnosis
Given a system description S, a set of observations O, a unique
kernel A and a set of undecidables U and the extensions E then
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A is a unique abductive kernel diagnosis i� for every extension
� 2 E:

S [ Oremain [ A [ � j= Oout

The unique abductive kernel diagnosis criteria is even more re-
strictive than the unique kernel and ordinary abductive kernel.
The �outputs� have to be predicted for every extension to the
unique kernel or else it is not considered a unique abductive ker-
nel. This is analog to the ordinary abductive kernel de�nition.

3.4 Consequences of the Unique Ker-

nel Diagnosis

There are some consequences of using a unique kernel diagnosis
approach that deserves to be mentioned.

3.4.1 Diagnosis Statements

One of the most precious consequences is the possibility to make
de�nite and precise diagnosis statements where more traditional
approaches only can give a list of possible diagnoses. Given a
unique kernel it is possible to say that the variables assigned
by the unique kernel must have the assigned value, this is an
unrefutable truth. If any variables for some reason could have a
value other then that assigned by the unique kernel this would
indicate a modeling error, there is something about the system
that is not described properly in the system description.

In the same way it is possible to make a de�nite statement
that nothing can be said about the value of the undecidable
variables. There is simply not enough knowledge represented in
the system description to make any such statement.

Likewise it is possible to say the there is not enough knowl-
edge about the current diagnostics case (observations) to make
any de�nite statements about the rest of the variables even if
the knowledge is there in the system description.
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3.4.2 Extensions

The trick with the unique kernel diagnosis is to separate vari-
ables for which de�nite statements can be made about their
value from the rest. The obvious consequence is that for most
cases we get a group of variables for which no de�nite statement
about their value can be made. This is where extensions come
into the picture.

Extensions are simply the legal assignments for the rest of
the variables. Obviously extensions su�er from the same prob-
lem as traditional diagnosis approaches, they are only a list of
alternative assignments. As such they are equally bulky and
expensive to compute.

For this reason it should be considered for each application
if and when extensions are relevant and should be computed.

3.4.3 Requirements

The advantages comes at a price. This approach places heavy
demands on the quality of the system description and the ob-
servations.

To be e�ective the unique kernel should be as large as pos-
sible while the undecidables and the extensions should be few.
This depends mostly on how complete the system description is
and whether there are enough relevant observations.

Without a good system description it is likely that there will
be plenty of undecidables and large extensions while the unique
kernel itself is likely to be small. Under these circumstances
this approach will be ine�cient, but then again so will other
approaches.
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Chapter 4

Computing a Diagnosis

Using Binary Decision

Diagrams

Binary decision diagrams (BDD) was invented by Akers [1] in
1978. Ordered binary decision diagrams (OBDD) where intro-
duced by Bryant [4] in a paper from 1986 together with methods
for e�cient manipulation. Today BDD is used as a synonym for
OBDD since the unordered BDD is very little used.

BDD's have proven successful in representing and manip-
ulating boolean functions symbolically in a variety of applica-
tions. For this reason I have become interested in exploring the
use of BDD's in discrete static diagnosis. This chapter reports
my �ndings in how BDD's can be used for computing a unique
kernel diagnosis.

4.1 Binary Decision Diagram Theory

Before discussing using BDD's for diagnosis an explanation of
BDD's and their most important properties is in place. To do
this I will use a simple example.
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4.1.1 What is a BDD

A BDD is a simple data structure that sometimes provides an
e�cient representation of a binary decision tree (BDT).

A BDT represents a boolean function in a similar way to a
function table listing the functions value for each possible as-
signment of values to the variables in the function. A BDT is a
full binary tree with the same number of levels as the number
of boolean variables in the function plus one level of terminal
nodes (the leafs). Each path from the root to a leaf represents
an assignment of values to the variables in the boolean function,
the leaf is marked with the functions value for that assignment.
A more formal de�nition of a binary decision tree would be as
follows:

De�nition 1 Binary Decision Tree
A Binary Decision Tree is a full binary tree where:

1. Every node is either a decision node (inner node) or a
terminal node (leaf).

2. Every decision node is marked with a boolean variable name
and has two children, one false child and one true child.

3. Every terminal node is marked with either true or false.

4. Every decision node in the same level is marked with the
same boolean variable name.

5. Every boolean variable name in the path from the root to
any terminal node is unique in that path.

This representation of a boolean function is signi�cantly
more e�cient then the function table in terms of storage space.
The BDT for a boolean function with n variables can be stored
in a storage space proportional to 2�2n while the function table
requires a storage space proportional to n � 2n.

To visualize this we will use a simple example. Imagine that
we want to represent the following formula:

((a ^ :b) _ (:a ^ b)) ^ (b _ c) ^ (c _ d)
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a b c d f(a,b,c,d)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 4.1: Table representing the example formula

This formula can be represented by a table (table 4.1.1).

If we represent the example formula using a BDT instead
it would look like �gure 4.1. In this �gure the left child is the
false child and thus the right child is the true child. To �nd
the evaluated value for a given variable assignment one follows
the corresponding path in the BDT and reads the value of the
leaf you end up on. For example given the variable assignment
a = 0; b = 1; c = 0; d = 1 the value of the formula is found by
beginning at the root. Since a = 0 we follow the left branch
from a to b. Since b = 1 we follow the right branch from b to c.
Following the same pattern we take a left at c and a right at d
we end up at a leaf which marks the value to true.

The advantage gained in storage space is at the cost of �nd-
ing the function value for an assignment. While �nding the func-
tions value from a table can be done in constant time it takes
time proportional to the number of variables for the BDT.

Even if a BDT is signi�cantly smaller than the corresponding
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Figure 4.1: The BDT representing the example formula.
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table it is still very large. A BDD is a compact representation
of a BDT that in many cases is signi�cantly smaller then the
corresponding BDT. Bryant [4] showed that a subset of boolean
functions can be represented by a BDD that is proportional
to the number of variables in the function. It is important to
remember however that in the worst cases the size of the BDD
is still comparable to that of the BDT.

The BDD data structure makes use of �don't care� in the
corresponding function table. A �don't care� is when the value
of the boolean function is independent of a certain variable's (or
subset of variables) value. For example if we have the following
two lines in the table:

101! 1

100! 1

Both these lines can be compacted into one with a �don't care�:

10x! 1

Since the value of the function is independent of the value of
x. These �don't cares� become �shortcuts� in the corresponding
BDD graph thus truncating a lot of duplicate nodes in the graph,
This is why it is more e�cient then BDT's. A BDD can be
de�ned as follows:

De�nition 2 Binary Decision Diagram
A Binary Decision Diagram (BDD) is a rooted directed graph
with a node set V where:

1. Every node is either a decision node (inner node) or a
terminal node (leaf).

2. Every decision node is marked with an index and has two
children, one false child and one true child.

3. Every terminal node is marked with either true or false.

4. For every decision node v index(v) < index(child(v)).
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This de�nition can be found in Johan Gunnarssons thesis [23] in
a more general form. In the following text the false (true) child
of s is denoted by child(s, false) (respectively child(s, true)).

Now by a series of de�nitions we will make the BDD a canon-
ical form. The �rst step is to de�ne isomorphic BDD's.

De�nition 3 Isomorphic Binary Decision Diagram
The BDD's G and G0 are isomorphic if there exists a one-to-one
function � from nodes in G to nodes in G0 such that if �(v) = v0

then:

1. Both v and v0 are terminal nodes with value(v) = value(v0).

2. Both v and v0 are decision nodes with index(v) = index(v0),
�(child(v; true))=child(v0 ; true) and
�(child(v; false))=child(v0; false).

De�nition 4 Subgraph
For any node v in a BDD G the subgraph rooted by v is de�ned
as the node itself and all of it's descendants.

Now we can de�ne a reduced BDD as follows:

De�nition 5 Reduced Binary Decision Diagram
A binary decision diagram G is reduced if it contains no nodes
v where:

1. child(v; true) = child(v; false).

2. distinct nodes v; v0 such that the subgraphs rooted by v and
v0 are isomorphic.

These de�nition lead to the following theorem:

Theorem 1 Reduced BDD is a Canonical Form
For any function f over a �nite domain there exists a unique
reduced binary decision diagram denoting f and any other deci-
sion diagram denoting f contains more nodes.
Proof
The theorem is proved by Bryant [4] for the boolean case.
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Figure 4.2: The BDD representing the example formula.

If we return to our example formula the corresponding BDD
would look like �gure 4.2. In a BDD it may no longer be neces-
sary to consider the value of every variable but the value of the
formula is still found in the same way as for the BDT.

At this point BDD's seems very promising. A reduced BDD
is a canonical representation of a boolean function. As always
there is a catch.

The de�nitions of a BDD and reduced BDD does not impose
any restrictions on the variable order. Thus a BDD is only a
canonical representation with respect to a given variable order.
Reduced BDD's with di�erent variable ordering may very well
have di�erent size.

The most important part of this catch is that deciding what
is in the worst case achieved by performing an exhaustive search.

Another ��aw� is that for some functions the corresponding
BDD will be of exponential size for every variable ordering. One
such example is the output functions for a combinatorial multi-
plier [5]. To overcome this problem there has been what Bryant
calls �the acronym soup� of proposed variants of BDD's [5]. As
far I know none of them succeed in the general case.
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4.1.2 BDD Construction

Building the corresponding BDD for a boolean function can gen-
erally be separated into two parts: �nding a decent variable
ordering and building the BDD graph.

As previously mentioned �nding the optimal variable order-
ing is a very exhaustive project. For this reason most approaches
rely on heuristic methods for �nding a decent variable ordering.

Another approach is Rudell's dynamic variable ordering [40].
This approach is capable of dynamically reorder variables in
a BDD and works on computer idle time to experiment with
di�erent variable orderings to reduce the size of the BDD.

The approaches to building the BDD graph given a variable
ordering can largely be divided into two groups: those traversing
the BDT breadth �rst and those using a depth �rst strategy.
Depth-�rst was the original strategy and has the bene�t of a
small memory overhead1. Breadth-�rst approaches are generally
faster but su�er from a larger memory overhead.

A third smaller category is the hybrid approach [7]. This
approach makes use of the breadth-�rst speed until a certain
memory-overhead threshold is reached when it makes use of the
more memory e�cient depth-�rst approach to prune the search
tree and lower the memory overhead. Once lowered the breadth
�rst approach can be used again.

Since there is no �superior� or perfect general method for
BDD construction there is little motivation for describing any of
the methods in detail here. There is an abundance of strategies
suited for it's own particular applications but they generally
behave poorly in the general case. In any application one will
have to select a strategy that is most suited to that particular
case. Thus we end the discussion on BDD construction here and
move on.

1Memory overhead is any memory used that do not store nodes in the
graph.
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4.2 Diagnosis With Binary Decision Di-

agrams

Now it is time to take a look at how BDD's can be used for
computing a unique kernel diagnosis. This discussion is more or
less based on the material presented in chapter 3.

In some cases a BDD can be an e�cient representation of
a boolean function. For the cases discussed in this thesis the
system description is in the form of a boolean function, it is
a set of �rst order sentences that for every legal assignment
evaluate to true. If these system descriptions can be represented
e�ciently with a BDD there is a basis for e�cient diagnosis of
the system.

4.2.1 Preprocessing

Before we can compute a unique kernel we need to make some
preparations. The �rst step is to represent the system descrip-
tion as a BDD. Because of this �rst step one limitation to this
approach is obvious, some system descriptions can not be e�-
ciently represented with a BDD. The only available solution is
unfortunately to avoid using BDD's for those cases.

When the system description BDD has been built we get
some trivial veri�cation of the quality of the system descrip-
tion. If at this point the true terminal of the representing BDD
is unreachable from the root this means that there is an in-
consistency somewhere. Normally the system description with
observations and assignments should evaluate to true for all le-
gal assignments, in this case the system can never evaluate to
true. This inconsistency is in the system description in the form
of a modeling error.

If the true terminal is reachable this does unfortunately not
mean that the system description does not contain any modeling
errors. The reachability of the true terminal can only indicate
the existence of modeling errors not verify that they do not exist.
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4.2.2 Restricting from Observations

For a system description which can be e�ciently represented
with a BDD we now move on to the actual computation of the
unique kernel diagnosis. The next step is to merge the observa-
tions into the representing BDD.

Each observation restricts the value of a variable, this restric-
tion needs to be re�ected in the represented BDD. This can be
done with a restriction algorithm described in [23]. This restric-
tion is then done for each of the observations. If the restriction
algorithm for BDD's is called Restrict_BDD a simple algorithm
for processing observations would look like this:

Restricting from Observations

// Abstract algorithm for processing observations

// Input: SBDD a reduced BDD

// Input: O a set of observations

// Output: SBDD a restricted BDD

Restrict_Observations( Observations O,
BDD SBDD ) {

for ( o 2 O )

Restrict_BDD( SBDD, o ); }

Processing Observations

Similar to the preprocessing step if the true terminal of the
BDD is not reachable after the restriction of a variable to a
certain value this is an indication of an inconsistency. This
inconsistency can be either in the system description in the form
of a modeling error or in the observations in the form of a faulty
observation.

4.2.3 Finding the Unique Kernel

Assuming that the system description and observations are cor-
rect the unique kernel can be found from the restricted system
description.
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The variables assigned in the unique kernel are characterized
by the fact that assigning the variable another value will cause
the assignment to be illegal i.e. every branch in the BDD for
any other value than the one assigned by the unique kernel will
lead straight to the false terminal of the BDD (see �gure 4.3).

False Terminal True Terminal

Simplified graph arcs

Actual arcs

Node

Constant

Figure 4.3: Characterization of the Unique Kernel in the re-
stricted BDD

Thus the unique kernel can be found by searching for vari-
ables for which all true or all false branches lead straight to the
false terminal, those variables must be assigned the opposite
value in the unique kernel.

There is however one not so obvious obscurity to watch out
for, if there is a branch bypassing the variable that does not lead
to the false terminal then the variable can not be part of the
unique kernel. The reason for this is simple. Every path from
the root of the BDD to the true terminal of the BDD represents
a legal assignment. If a node is bypassed this represents that
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the value of the node does not matter, the assignment is legal
no matter what value is assigned to the variable represented by
the bypassed node. Thus any assignment that assigns a value to
a variable represented by a bypassed node can be refuted which
means that the variable can not be part of the unique kernel.
An algorithm for �nding a unique kernel would look something
like this:

Unique Kernel
// Abstract algorithm for finding the

unique kernel

// Input: SBDD a restricted BDD

// Input: V the set of variables in the BDD

// Output: A the unique kernel

Unique_Kernel ( SBDD, V, A ) {

for ( c 2 V ) {

if ( c is not bypassed except

to the false terminal ) {

if ( 8false_child(c, SBDD) ==

false_terminal )

Append( c, A);
else if ( 8true_child(c, SBDD) ==

false_terminal )

Append( : c, A); } }

return A; }

Finding the Unique Kernel from a restricted BDD

4.2.4 Finding Undecidables

Finding undecidables is similar to �nding the unique kernel, only
somewhat simpler. Undecidables are characterized by being un-
constrained variables. In BDD terms this means that there are
no references to any node representing the variable in the BDD,
the variable is simply bypassed.

This can be realized quite easily by considering the conse-
quences of having an unconstrained variable node in a BDD.
Per de�nition since the variable is unconstrained its value can
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not a�ect the value of the boolean expression that the BDD
represents. As a result of this the true child and false child of
any node representing the variable must be identical. This is
however not allowed in a canonical BDD, instead the reference
to the disallowed node is set to refer the child of the disallowed
node, thus the disallowed node is bypassed (see �gure 4.4).

Actual arcs

Node

Illegal arcs

Undecidable

Figure 4.4: How unconstrained variables are bypassed in a BDD

With this knowledge �nding the undecidables can be done
with a simple �ltering algorithm. The algorithm below simply
walks the list of variables and �lters out those variables which
are not referenced in the restricted BDD.

Undecidables
// Abstract algorithm for finding the undecidables

// Input: SBDD the restricted BDD

// Input: V the set of variables in the BDD

// Output: U the set of undecidables

Undecidables ( SBDD, V, U ) {

for ( c 2 V )

if ( 8 c 2 V (c 62 SBDD) )

Append( c, U);
return U; }

Finding the Undecidables from a restricted BDD
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Finding undecidables can very easily be merged with �nding
the unique kernel thus performing both in one step.

4.2.5 Finding Extensions

One of the main advantages of a BDD based approach to com-
puting a unique kernel diagnosis is the computation of the ex-
tensions. As always one has to decide for each application how
important extensions are and whether/how they will be used.
This will then determine if the extensions should be computed
and if so on what form they should be represented.

The BDD based approach yields a compact representation
of the extensions almost as a nice side e�ect from computing the
unique kernel. Only a simple �ltering step is needed to produce
an extension description.

An extension description is analog to the system descrip-
tion a set of �rst order sentences which we expect to evaluate
to true for each valid assignment. Now consider this extension
description to be represented in the form of a BDD. This ex-
tension description can easily be obtained from the restricted
system description by removing undecidables and unique kernel
variables.

Undecidables are as mentioned earlier already bypassed in
the restricted system description, thus they are easily removed.
The unique kernel variables however have to be �ltered out of
the restricted system description. This is done by constructing
a similar bypass as for the undecidables (see �gure 4.5).

This is done with the assumption that the variables in the
unique kernel must have the assigned value. Thus every refer-
ence to the false terminal is irrelevant since it can not be followed
and as such removed. When this is done the unique kernel vari-
ables can be bypassed by pointing every reference to a kernel
variable to it's remaining child. A simple algorithm doing this
would look like this:
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False Terminal

Node

Removed arcs

Kernel node

Inserted arcs

Existing arcs

Figure 4.5: Bypassing unique kernel variables in a BDD
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Extensions Filtering
// Abstract algorithm for bypassing

// kernel variables

// Input: SBDD the restricted BDD

// Input: A is the set of variables in the

// unique kernel

// Output: EBDD is the extension BDD

Extension_Filter ( SBDD, A, EBDD ) {

for ( c 2 A ) {

for ( n 2 nodes( c, SBDD ) {

remove_ref( n, false_terminal );

for ( p 2 parents( n, SBDD )

move_ref( p, n, remaining_child(n) ); } }

return EBDD; }

Bypassing kernel variables.

Unfortunately the result of the above algorithm may not be
a proper BDD, it may include nodes for which the true and false
children are identical (see �gure 4.6).

Fortunately this can be easily �xed by a bottom up algorithm
that merges identical subgraphs and bypasses every node with
identical children.
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False Terminal

Node

Removed arcs

Kernel node

Inserted arcs

Existing arcs

Resulting improper arcs

Figure 4.6: Improper nodes in the resulting extension BDD

Extensions Repair
// Abstract algorithm for repairing the

// extension BDD

// Input: EBDD the extension BDD

// Input: V is the set of variables in bottom

// up order

// Output: EBDD the repaired extension BDD

Extension_Repair ( EBDD, V ) {

for ( c 2 V ) {

for ( n 2 nodes( c, SBDD ) {

if (true_child( n ) == false_child( n ))

for ( p 2 parents( n, EBDD ) {

move_ref( p, n, true_child(n) );

remove( n ); }

for ( m 2 nodes( c, SBDD )

if (( m != n) &&

(subgraph( n ) == subgraph( m ))) {

n = merge( m, n );

remove( m ); } } }

return EBDD; } 47



Repairing the extension BDD.

Now that the BDD is restored we have a compact represen-
tation of the extensions. If for some reason it would be necessary
to list all the extensions this could be done by a simply travers-
ing the graph. More important it can be the basis for more
advanced explorations of the extensions search space.

4.3 Summary

BDD's can be e�cient for use in diagnosis in some cases. If
BDD's are e�cient depends largely on if the system description
can be represented e�ciently with a BDD.

Finding the unique kernel is generally more costly in a BDD
because propagating observations is an O(jF j log(jF j)) opera-
tion. This can generally be done more e�ciently. However a
canonical representation of the extensions can be constructed
with little extra e�ort where this is generally very costly.

There is an opening for a hybrid approach using constraint
propagation to �nd the core and then building a BDD repre-
sentation for the remaining system description to represent the
extensions. Unfortunately due to the complexity of having to
build the extensions BDD �in the diagnosis loop� this approach
may be very costly, even so it will beat exhaustive search ap-
proaches.

The complexity of �nding a diagnosis with this method fol-
lows the BDD size. First of all the BDD construction is a pre-
processing task and thus does not directly a�ect the complexity
of the diagnosis task. Restricting the representing BDD F with
respect to a certain variable assignment is an O(jF j log(jF j))
operation [4], thus restricting with respect to n observations is
an O(njF j log(jF j)) operation. Finding the unique kernel by the
trivial search method is an O(jF j) operation. So is eliminating
the unique kernel from the BDD. This makes the whole diagno-
sis task an O(njF j log(jF j)) operation. For a reasonable sized
BDD this can be very e�cient, however in a bad case for a sys-
tem with m variables the BDD size can be jF j = 2m. If this
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is the case O(njF j log(jF j)) becomes O(n � 2m) which is worse
then plain dumb exhaustive search.

This also gives a hint to when the BDD approach can be
relied on to be decently e�cient. For example if we want to be
sure to beat plain dumb search complexity the BDD size must
satisfy the following relation:

jF j log(jF j) < (2m)=m

But it is important to remember that these are worst case com-
plexities. Practical cases is a whole di�erent story.

There are a number of BDD related data structures that may
be of interest in diagnosis and other applications. One such data
structure is BMD's which takes a completely di�erent approach
to representing a boolean function. These can sometimes be
e�cient where BDD's fail[5].

IDD's and IMD's are generalizations of BDD's and BMD's
to represent integer valued functions[23]. These have proven to
reduce the size of the representing graph in many cases.
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Chapter 5

Evaluation

This is an evaluation chapter which is intended to critically eval-
uate the work presented in the previous chapters. The �rst sec-
tion deals with the unique kernel and intends to analyze the
computational complexity of the problem of �nding a unique
kernel. The next section deals with the algorithm for comput-
ing a unique kernel presented in chapter 4. The last section
contains a general discussion on the material presented in this
thesis which is also the last words of this thesis.

5.1 The Unique Kernel

Every now and then we �nd a hard problem. The problem of
�nding a unique kernel is such a problem. The natural ques-
tion is often how hard the problem actually is. To discuss and
sometimes answer these questions we have the theory of com-
putational complexity[36, 21]. In this section the problem of
�nding a unique kernel will be analyzed according to the theory
of computational complexity.

5.1.1 The FIX-Problem

In order to analyze the problem of �nding a unique kernel we will
study a simpli�ed problem which we will call the FIX-problem.
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To do this we �rst need to take a deeper look at the de�nition
of a unique kernel (de�nition 3.7).

The unique kernel is de�ned as the largest unrefutable (par-
tial) assignment. An assignment is refutable if and only if there
exist another assignment where at least one variable is assigned
a di�erent value in the two assignments and both are legal as-
signments (de�nition 3.6).

Now let us take a closer look at what is required for a variable
to be in the unique kernel. The unique kernel can be created
by starting with an empty assignment (an assignment assign-
ing zero variables) and adding variable-assignments which do
not make the assignment refutable. When no more variable-
assignments can be added the assignment is the largest un-
refutable assignment and thus the unique kernel.

The key problem here is to determine if a variable-assignment
can be added without making the assignment refutable. This
is what we will de�ne as the FIX-problem. To de�ne the FIX-
problem we �rst de�ne what we mean by �x:

De�nition 5.11 FIX
Let F be a satis�able formula involving the variable p. Then p
is �x with respect to F i� p has the same value in every model
for F .

Then we de�ne the �x problem as follows:

De�nition 5.12 FIX-Problem
Let F be a satis�able formula involving the variable p. Is p �x
with respect to F?

The FIX-problem will be used to determine a lower bound
for the problem of �nding a unique kernel. However in order
to build the unique kernel we also need to know what value the
variable is �xed to, the �x problem does not yield this infor-
mation. To determine what value a variable is �xed at we �rst
de�ne what we mean by a variable being �x at a value:

De�nition 5.13 FIX(V)
Let F be a satis�able formula involving the variable p. Then p
is �x at a value v with respect to F i� p has the value v in every
model for F .
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Then we de�ne the �x-at-value problem as follows:

De�nition 5.14 FIX(V)-Problem
Let F be a satis�able formula involving the variable p and v be
a value for p. Is p �x at the value v with respect to F?

5.1.2 The Computational Complexity of the
FIX-Problem

To establish the computational complexity of the FIX-problem
we will study the complementary problem (coFIX-Problem) and
prove that this problem is NP-complete thus proving that the
FIX-problem is coNP-complete. First we de�ne the coFIX-
problem.

De�nition 5.15 coFIX-Problem
Let F be a satis�able formula involving the variable p. Is p not
�x with respect to F?

It is relatively easy to see that coFIX is in NP. A non-
deterministic algorithm only need to �nd two models for the
given formula where the chosen variable have a di�erent value
in the two models. If these can not be provided the variable
is �xed, if they can be provided the variable is not �xed and
this can be veri�ed in polynomial time. Now to prove that the
coFIX-problem is NP-complete we show that SAT can be solved
by solving coFIX.
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Proof: coFIX solves SAT

Let F 0 be an arbitrary formula.
Let p be a variable that does not occur in F 0.
Construct F = p! F 0 (p implicates F 0).
Case I: F 0 is sat.
Assume F 0 is sat. Then F is sat for any p.
Thus p can not be �xed with respect to F .

Case II: F 0 is not sat.
Case A: Assume p = 1.
F = p! F 0 must be sat (precondition for coFIX).
p = 1 forces F 0 to be a tautology. But if F 0 is a
tautology
p = 0 is possible which contradicts the assumption.
Thus this case is impossible.

Case B: Assume F 0 not sat.
If F 0 is not sat. Then since the implication F = p! F 0

must be sat and F 0 is never sat this forces p = 0
to be �xed.

Thus p must be �xed with respect to F .
Conclusion:
It is possible to determine if an arbitrary formula F 0 is sat
by constructing a new formula F = p! F 0 where p is a
variable that is not in F 0 and asking coFIX if p is not �x
with respect to F . If the answer is yes F 0 is sat if the
answer is no F 0 is not sat.

The proof that shows how SAT reduces to coFIX and thus how

coFIX is NP-Complete

Now we know that the coFIX-problem is NP-complete since
we know that SAT is NP-complete. From this information
we can also conclude that the complementary FIX-problem is
coNP-complete[36].
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5.1.3 The Computational Complexity of the
FIX(V)-Problem

In the FIX-problem we are only asking if a variable is �x or
not, we take no interest in what value the variable is �xed at.
The FIX(V)-problem asks a slightly di�erent question asking if
a variable is �xed at a speci�c value. Again we will study this
problem by studying it's complementary problem.

De�nition 5.16 coFIX(V)-Problem
Let F be a satis�able formula involving the variable p and v be
a value for p. Is p not �x at the value v with respect to F?

It is very easy to see that this problem is in NP. The non-
deterministic algorithm only needs to provide a model for the
function where the variable has the value asked for. The model
provided is easily veri�ed in polynomial time. This puts the
FIX(V)-problem in NP.

Now it remains to show (co)NP-completeness for the FIX(V)-
problem. To achieve this we will �reuse� the proof for NP-
completeness of the FIX-problem to show that coFIX(0)1 can
be used to solve SAT. Very little is changed from the original
proof.

1The case of coFIX(V) when the asked value v=0.
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Proof: coFIX(0) solves SAT

Let F 0 be an arbitrary formula.
Let p be a variable that does not occur in F 0.
Construct F = p! F 0 (p implicates F 0).
Case I: F 0 is sat.
Assume F 0 is sat. Then F is sat for any p.
Thus p can not be �xed with respect to F .

Case II: F 0 is not sat.
Case A: Assume p = 1.
F = p! F 0 must be sat (precondition for coFIX(V)).
p = 1 forces F 0 to be a tautology. But if F 0 is a
tautology
p = 0 is possible which contradicts the assumption.
Thus this case is impossible.

Case B: Assume F 0 not sat.
If F 0 is not sat. Then since the implication F = p! F 0

must be sat and F 0 is never sat this forces p = 0 to be
�xed.

Thus p must be �xed p = 0 with respect to F .
Conclusion:
It is possible to determine if an arbitrary formula F 0 is sat by
constructing a new formula F = p! F 0 where p is a variable
that is not in F 0 and asking coFIX(0) if p is not �x p = 0 with
respect to F . If the answer is yes F 0 is sat if the answer is no
F 0 is not sat.

The proof that shows how SAT reduces to coFIX(0).

Before we can conclude that coFIX(V) is NP-complete there
is one more case to prove, coFIX(1). Fortunately this is com-
pletely analog to the proof for coFIX(0) with only a few minor
changes. The construction F = p! F 0 (p implicates F 0) in the
proof for coFIX(0) is changed to F = :p ! F 0 (:p implicates
F 0) in coFIX(1) and the variable p's value is swapped in all
occurrences in case II. Otherwise the proof remain unchanged.

Now we can conclude that coFIX(V) is NP-complete and
thus as before we can also conclude that FIX(V) is coNP-complete.
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This information can now be used to establish upper and lower
bounds for the problem of �nding a unique kernel.

5.1.4 Upper Bound to the Computational Com-
plexity of Finding a Unique Kernel

Now it is time to return to the original problem. Now we have
the tools to produce an upper bound for the computational com-
plexity of �nding a unique kernel. First we need to de�ne the
problem of �nding a unique kernel.

De�nition 5.17 UK-Problem
Let F be a satis�able formula and C be a set of variables in
F . Find the �xed value for each variable in C that is �xed with
respect to F .

It is quite easy to see that UK is unlikely to be in NP. Even if
a non-deterministic algorithm could provide a suggested answer
that is polynomial in size verifying this answer would require
checking it against every model to the formula. Since there
may be an exponential number of models this check would be
exponential.

It is however possible to solve the UK-problem by a polyno-
mial number of coNP-complete steps. To achieve this we �rst
build a block which determines if a single variable is �xed and
tells us at what value the variable is �xed.

UK Building Block
Let F be a satis�able formula and p be a variable.
Ask two FIX(V) questions for p (FIX(0) and FIX(1)).
Case I: If the answer to both questions is no.
Then the variable p is not �xed at any value and should
not be a part of the answer to the UK-problem.

Case II: If the answer to FIX(0) is yes and FIX(1) is no.
Then the variable p is �xed at p = 0 and p = 0 should be
part of the answer to the UK-problem.

Case II: If the answer to FIX(1) is yes and FIX(0) is no.
Then the variable p is �xed at p = 1 and p = 1 should
be part of the answer to the UK-problem.
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Building block that decides if a variable is �xed and at what value.

The fourth case in the UK-BB can obviously never occur
since a variable never can be �xed to more then one value. The
UK-BB is de�nitely in the polynomial hierarchy [21] since it
conforms nicely to the de�nition of PNP = P coNP which allows
a polynomial number of calls (in this case two) to a coNP oracle.

Now all we have to do to produce a unique kernel is to call
UK-BB for each variable in the set of variables and save the
output. Since there is a polynomial number of variables, in this
case the number of variables determines the size of the problem,
we have only used a polynomial number of calls to coNP produce
the unique kernel. Thus the computational complexity of �nding
a unique kernel is in PNP .

5.2 The BDD-Based Algorithm

Now let us take a deeper look at the BDD-based algorithm pre-
sented in this thesis (see chapter 4) that actually solves the UK-
problem. As we have shown in the previous section we should
not expect the worst case complexity for this algorithm to be
any less then exponential.

5.3 How it works

This algorithm does the classical trade of space for speed and
works in a series of steps. The �rst step is a preprocessing
step producing a BDD-representation of the system description.
When the BDD is constructed it is restricted with respect to the
observations of the current diagnostics case. When the BDD is
restricted a search of the BDD �nds the answer to the UK-
problem.

5.3.1 Constructing the BDD

A BDD is in the worst case exponential in size[4, 5]. This means
that there is little hope to �nd a general algorithm that can
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produce any BDD in less then worst case exponential time. In
fact it is easy to show that the construction of a BDD is NP-
hard since the the SAT problem is trivial to solve by building
the BDD for the formula in question. If the only branch from
the root of the BDD is to the false terminal the formula is not
SAT otherwise the formula is SAT since there exists at least one
path from the root to the true terminal.

With a similar reasoning it is equally easy to show how the
UNIQUE-SAT problem can be solved by constructing a BDD.

De�nition 5.18 UNIQUE-SAT
Let F be a formula. Is it true that there is a unique satisfying
truth assignment to F?

This question can be answered by constructing a BDD for
the formula and checking if there is a single path from the root
to the true terminal of the BDD. Since we know UNIQUE-SAT
to DP-complete[36] we know that the construction of a BDD is
DP-hard.

With this in mind we can not expect the �rst step to be
anything less then exponential in the worst case. In practice
however BDD's have proved themselves to be e�cient in many
cases, but that is a completely di�erent thing.

5.3.2 Restricting the BDD

The next step is to restrict the BDD with respect to the ob-
servations. According to Bryant[4] the worst case complexity
of restricting a BDD with respect to a single variable is an
O(jF j log(jF j) operation where jF j is the size of the BDD in
number of vertices. This measure is a little tricky since in terms
of the number of variables this would translate into an exponen-
tial growth rate since in the worst case jF j = 2jCj where jCj is
the number of variables. Restricting several variables individ-
ually could possibly be very costly if the number of vertices is
high.

Fortunately there is a trivial exponential algorithm that re-
stricts any number of vertices in a single sweep. I have not found
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any reference to this algorithm but I am sure it is well known
simply due to its simplicity.

The basic idea is to perform several restrictions before re-
constructing the BDD properties instead of reconstructing after
each restriction. The �rst step is to perform the restriction.

For each variable that is to be restricted to a certain value
for each node representing that variable shift the child reference
which represents the opposite value to refer to the false terminal.
when a variable have been restricted some nodes may get a
zero reference count, there are no nodes which reference them.
These have to be removed. By doing this in a �top down� fashion
starting with the nodes closes to the top some extra work can be
saved by avoiding to restrict nodes that will be removed anyway.

When all variables have been restricted the BDD-properties
can be reconstructed by the algorithm presented in chapter 4
used for extension repair.

This algorithm is trivially exponential. If one studies the
worst case for BDD's which occurs when the BDD �is� a full bi-
nary tree until the last level this algorithm will visit each node
in the BDD only once. This is generally true for other cases
as well. The algorithm works in two phases. The �rst shifts
arcs and removes nodes with zero reference count which are no
longer needed, this part is proportional to the number nodes
removed. The second phase restores the BDD properties among
the remaining nodes of the BDD, as this part also visits every
node only once it must be proportional to the number of re-
maining nodes. Put together this makes the whole algorithm
linear in the number of nodes in the BDD, if F is a BDD and
jF j is the size of the BDD in the number of nodes the multiple
restrict algorithm is O(jF j). Since the number of nodes in a
BDD is in the worst case exponential to the number of variables
in the represented expression this makes the multiple restrict
algorithm exponential in the number of variables.

5.3.3 Finding the Unique Kernel

Finding the unique kernel is now a search in the BDD. This
search is proportional to the number of vertices in the BDD in
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the worst case. Even if variables which are bypassed can be
skipped in the search thus saving a lot of e�ort these can not
be skipped in the worst case since they can not be expected
to exist. Thus the worst case complexity of the search will be
O(2jCj).

5.3.4 The Worst Case

Putting everything together gives us a rough estimate of the
worst possible situation. Assuming that the BDD can be built
by an exponential algorithm, that all the variables have to be
restricted (which of course is completely unreasonable) using an
algorithm that is at worst O(jCj2jCj) for each variable and that
we still have to do the search for the unique kernel (which is also
completely unreasonable since all the values for all the variables
are known) using an algorithm that is O(2jCj) the whole process
is O(jCj22jCj).

Using the multiple restrict algorithm the restrict operation
will instead be in O(2jCj) for all the restrictions we need to
make. This makes the whole process of �nding a unique kernel
a process of three exponential steps thus it is in O(2jCj).

Both of these estimates are crude over estimates. In any
real case after the initial BDD is built the size of this BDD
determines the performance of the remaining algorithm. The
restriction reduces the size of the BDD, thus it reduces work for
the remaining search.

If this solution to the UK-problem would have to be redone
every time then this algorithm would be of little use. Practical
cases is something completely di�erent.

5.3.5 Practical Cases

For instance if the same system is to be diagnosed several times
(which is likely) the BDD would only have to be constructed
once. This BDD could then be used to diagnose several cases
where the computational complexity of each case would be de-
pending on the size of the BDD.
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Restricting the BDD from observations is another very costly
operation. This depends on the number of observations and the
size of the BDD. If it is known beforehand which observations
that will be available it is possible to do this beforehand for a
number of frequent cases and then use the pre-restricted version
when needed. As usual this is a trades o� speed against space.

If the BDD can be constructed and at least partially re-
stricted as preprocessing there is plenty of hope for the remain-
ing restriction of observations and search for the unique kernel
to be reasonably e�cient.

5.4 Discussion

At last here is a discussion section which concludes this thesis.

5.4.1 The Unique Kernel

The unique kernel does not address the issue of e�ciency, at
least not when it comes to worst case e�ciency. This is apparent
from the previous theoretical analysis that �nding an e�cient
algorithm will be very hard since the computational complex-
ity of �nding a unique kernel is in PNP . However the problem
can be solved by an exponential algorithm based on BDD's pre-
sented in this thesis. This more or less makes it equal to other
approaches in discrete diagnosis. Since BDD's have proven to
be e�cient in many other cases of NP-complete problems there
is some hope that this algorithm will be e�cient in at least some
practical cases. This however remains to be proven in further
research. Instead the unique kernel focuses on the precision of
the resulting diagnosis.

5.4.2 Getting a Useful Answer

In order for a diagnosis system to be useful it must at least
provide a useful answer. The user of the diagnosis system must
be able to draw at least some useful conclusions from the an-
swer that the system provides. The traditional approaches to
discrete diagnosis consistency based diagnosis [39, 22, 12, 13]
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and abduction [37] su�er from the same problem; there is in the
worst cases an exponential number of possible diagnoses.

This provides us with an intricate problem. If the diagnosis
system provides every possible diagnosis the risk is that the an-
swer is useless simply due to its sheer size. Extensive processing
of the answer would be needed to draw any useful conclusions
if at all possible. If on the other hand the diagnosis system pro-
vides us with one of the possible diagnoses as a suggested answer
this severely a�ects the strength of a diagnosis. If the answer is
one of possibly an exponential number of answers equally likely
to be correct the only possible conclusion is that we know the
odds that the provided diagnosis is the answer. Kernel diagnosis
[11] su�ers a similar problem allowing multiple diagnoses.

The unique kernel diagnosis guarantees a diagnosis that is
polynomial in size (linear actually). This means that the answer
will never become too large to be useful. Even if some processing
of the answer would have to be done there is hope that this could
be done e�ciently. A unique kernel is also an unrefutable truth
with respect to the knowledge we have about the system we
diagnosis and the current diagnostic case. The variables given
in the unique kernel must have those exact values.

This is also the weakness of the unique kernel. For a system
where very little is known about the system and/or there is little
knowledge about the facts of the current diagnostics case there
will obviously be very few unrefutable facts. Thus the unique
kernel will be very small.

There is a distinct tradeo� between di�erent notions of di-
agnosis with regards to the strength of the answer. This should
of course be used when selecting which notion to use. If one is
confronted with a system of which very little is known and no
good system description is available, then a unique kernel may
be very small and due to this fact quite useless. In this case
it may very well be better to use a weaker notion of diagnosis
like consistency or abduction and process the information this
provides. If the system instead is well known and a high qual-
ity system description exists then a unique kernel can provide a
distinct accurate diagnosis and thus may be a better choice.

To be fair one has to mention that all methods I am aware
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of (including the traditional methods mentioned earlier) does
become more accurate as the quality of the system description
increases. The important thing here is that they do not guar-
antee a unique diagnosis.

5.4.3 Undecidables and Extensions

It is easy to forget that the unique kernel is not the only di-
agnosis result that can be found using the approach presented
in this thesis. With a little extra e�ort the undecidables can
be found. Where the unique kernel tells us exactly what we
know the undecidables tell us what we can never know about
the system. This is normally due to the fact that there is not
enough knowledge about the system in the system description
about the systems current state to draw any useful conclusions.
It may in many cases be equally important to know what we
can never know as well as to know what we know.

The remainder from the process of �nding the unique kernel
and the undecidables is the basis for the extensions. Using the
BDD-based approach the remaining BDD can be simpli�ed with
respect to the unique kernel and the undecidables to produce a
BDD describing the extensions. This can now be used to further
explore the diagnosis problem.

5.4.4 Combining Set Covering and the Unique
Kernel

It would be quite easy to integrate the unique kernel with most
common set covering techniques such as consistency based diag-
nosis, abduction or kernel diagnosis. The unique kernel can be
seen simply as a focusing strategy for some other method. For a
given diagnostics case one would �rst establish the unique ker-
nel, the undecidables and the extensions. Then the extensions
could be explored using conventional set covering methods thus
yielding a combined diagnosis.

One should probably note however that abduction is not a
suitable technique in this combination. Abduction relies on the
fact that there exists some observation. However all the obser-
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vations are �consumed� by the previous steps and not available
in the extensions.

5.4.5 Using stochastic methods to �nd/focus
the Unique Kernel

One other interesting approach to �nding or at least focusing a
unique kernel is the use of stochastic methods. This is founded
on the following observation: given two di�erent legal assign-
ments2 the unique kernel is a �subset� of the variables which are
assigned the same value in both assignments. With this in mind
it would be possible to search for satis�able assignments using
some stochastic method and maintaining a least common part
as a focus.

Even if this seems simple this approach has several problems.
The �rst one is that there is no guarantee in stochastic methods,
only probabilities. We may walk around for ever without �nding
any satis�able assignment even if it exists. Another problem is
when to give up since there is no way to tell when we are �nished.

5.4.6 Further Research

The path to e�cient unique kernel diagnosis is ... well there is
one little problem, we have to show that P = NP . Once we do
that it will be easy using any approach.

Other than that there are some interesting ideas besides the
two mentioned in previous sections. One would be to introduce
the unique kernel into an iterative framework where each new
unique kernel is used to guide further observations in order to
successively bootstrap the unique kernel diagnosis until no fur-
ther interesting information can be found. Such an iterative
process would be interesting to use in combination to residu-
als to gain access to continuous diagnosis methods, this would
strengthen discrete diagnosis in one of it's weakest areas.

Also other methods which can be used to pre-process in-
formations should be looked at. The task of discrete diagnosis
seems hopelessly NP . I believe that the only way to make at

2These are for example two di�erent consistency based diagnoses.
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least repetitive diagnosis tasks e�cient is to make the classic
tradeo� between space and speed, storing relevant preprocessed
information.

5.4.7 Did I succeed?

Did I achieve my goals? Yes and no! I originally wanted to
do diagnosis e�ciently, this was of course bound to fail in the
worst case scenario. I also did not like the structure of the
other approaches, they lacked precision. I believe I �xed that.
I also wanted this thesis to be less then 50 pages thus avoiding
unnecessary junk, we all know by now that I failed that.
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