
SHOE: A Prototype Language for the Semantic Web

Je� He
in

James Hendler

Sean Luke

Department of Computer Science

University of Maryland,

College Park, MD 20742, USA

July 16, 2001

Abstract

The term Semantic Web was coined by Tim Berners-Lee to describe his proposal for \a web of

meaning," as opposed to the \web of links" that currently exists on the Internet. To achieve this vision,

we need to develop languages and tools that enable machine understandable web pages. The SHOE

project, begun in 1995, was one of the �rst to begin exploring these issues. In this paper, we describe

our experiences developing and using the SHOE language. We begin by describing the unique features

of the World Wide Web and how they must in
uence potential Semantic Web languages. We then

discuss why web standards such as XML and RDF are currently insu�cient for the Semantic Web. We

present SHOE, a language which allows web pages to be annotated with semantics, describe its syntax

and semantics, and discuss our approaches to handling characteristics of the Web such as distributed

authority and rapid evolution. We discuss the implementation issues of such a language, and describe

some generic tools that we have built to aid in its use. Finally, we demonstrate the language and tools

by applying them to two di�erent domains. The language, tools, and details of the applications are all

available on the World Wide Web at http://www.cs.umd.edu/projects/plus/SHOE/.

1 Introduction

The World Wide Web is a vast repository of information, but its utility is restricted by limited facilities for
searching and integrating this information. The problem of making sense of the Web has engaged the minds
of numerous researchers from �elds such as databases, arti�cial intelligence, and library science; and these
researchers have applied numerous approaches in an attempt to solve it. Tim Berners-Lee, inventor of the
Web, has coined the term Semantic Web to describe a vision of the future in which the \web of links" is
replaced with a \web of meaning." In this paper, we examine the thesis that the \the Semantic Web can be
achieved if we describe web resources in a language that makes their meaning explicit."

Although a Semantic Web language should draw on the research conducted in knowledge representation,
it should also take into account the very nature of the Web. Let's consider some of the issues that arise:

� The Web is distributed. One of the driving factors in the proliferation of the Web is the freedom
from a centralized authority. However, since the Web is the product of many individuals, the lack of
central control presents many challenges for reasoning with its information. First, di�erent communities
will use di�erent vocabularies, resulting in problems of synonymy (when two di�erent words have the
same meaning) and polysemy (when the same word is used with di�erent meanings). Second, an
intelligent web agent simply cannot assume that all of the information has been entered solely under
a knowledge engineer's watchful eye and is therefore correct and consistent. The lack of editorial
review or quality control means that each page's reliability must be questioned: there are quite a
number of well-known \web hoaxes" where information was published on the Web with the intent

1

to amuse or mislead. Furthermore, since there can be no global enforcement of integrity constraints
on the Web, information from di�erent sources may be in con
ict. Some of these con
icts may be
due to philosophical disagreement; di�erent political groups, religious groups, or nationalities may
have fundamental di�erences in opinion that will never be resolved. Any attempt to prevent such
inconsistencies must favor one opinion, but the correctness of the opinion is very much in the \eye of
the beholder."

� The Web is dynamic. The web changes at an incredible pace, much faster than a user or even a
\softbot" web agent can keep up with. While new pages are being added, the content of existing pages
is changing. Some pages are fairly static, others change on a regular basis and still others change at
unpredictable intervals. These changes may vary in signi�cance: although the addition of punctuation,
correction of spelling errors or reordering of a paragraph does not a�ect the semantic content of a
document, other changes may completely alter meaning, or even remove large amounts of information.
A web agent must assume that its data can be, and often will be, out of date.

The rapid pace of information change on the Internet poses an additional challenge to taxonomy
and ontology designers. Without a reasonably unifying ontological framework, knowledge on the web
balkanizes, and web agents will struggle to learn and internally cross-map a myriad of incompatible
knowledge structures. But an imposed unifying framework risks being too in
exible to accommodate
new topics, new ideas, and new knowledge rapidly entering the Web.

� The Web is massive. Recent estimates place the number of indexable web pages at over 2 billion
and this number is expected to double within a year. Even if each page contained only a single piece of
agent-gatherable knowledge, the cumulative database would be large enough to bring most reasoning
systems to their knees. To scale to the size of the ever growing Web, we must either restrict expressivity
of the language or use incomplete reasoning algorithms.

� TheWeb is an open world. Aweb agent is not free to assume it has gathered all available knowledge;
in fact, in most cases an agent should assume it has gathered rather little available knowledge. Even
the largest search engines have only crawled about 25% of the available pages. However, in order to
deduce more facts, many reasoning systems make the closed-world assumption. That is, they assume
that anything not entailed in the knowledge base is not true. Yet it is clear that the size and evolving
nature of the Web makes it unlikely that any knowledge base attempting to describe it could ever be
complete.

In an attempt to deal with these issues, we have designed a language named SHOE, for Simple HTML
Ontology Extensions.1 SHOE is one of the �rst languages that allows ontologies to be designed and used
directly on the World Wide Web [31]. The purpose of this paper is to identify the critical issues in designing

the Semantic Web and and to describe initial steps towards solutions. We describe work that in
uenced
SHOE, present an overview of the language, describe its syntax and semantics, and discuss how SHOE
addresses the issues posed in this introduction. We then discuss the problem of implementing a system
that uses SHOE, focusing on the query engine aspect of the system. Then we describe some generic tools
(applets and class libraries) that make SHOE more usable in the web environment. We describe some current
applications of SHOE designed to show its applicability, and then discuss some lessons learned from these
implementations, concluding with some directions for future work.

2 Background

There are severals areas that can serve as a foundation for a Semantic Web language. Markup languages such
as HTML and XML have great support in the Web community, and their role in the Semantic Web must
be considered. The �eld of knowledge representation is directly concerned with the issue of semantics, and

1There are several reasons we chose this name. In the spirit of early KR languages, we wanted an acronym that was also a

natural language term. In a spirit of \putting our money where our mouth is," we wanted a word which could not be searched

for on the web without some sort of ontological context { at the time this paper is being written, Google �nds 1,900,000 pages

containing the word \shoe." And in the spirit of putting some of the fun back into AI, we wanted to refer to the web agents

we de�ne using this language as really \kicking butt." Thus, this acronym was an obvious choice.

2

has resulted in many languages from which ideas can be drawn. Work in deductive databases has studied
reasoning with large amounts of data, and the datalog language can be used for inspiration. Finally, research
into ontology can o�er insights into reusable, modularized knowledge components. This section discusses
each of these areas in more detail. It should be noted that although approaches such as information retrieval,
wrappers, semi-structured databases, machine learning, and natural language processing have been applied
to the problem of querying and understanding the Web, they do not directly relate to the design of a language
for the Semantic Web and thus will not be covered here.

2.1 SGML

The Standard Generalized Markup Language (SGML) [24] is a language that allows special codes to be
embedded in a text data stream. These codes, also called tags, can provide additional information about
the text, such as indicating that a certain word should be emphasized. The term element is used to describe
a start-tag, a end-tag and the data contained between them. An attribute can be included in a start-tag to
include additional information about the element. SGML is \generalized" because it allows one to de�ne
the elements and attributes that describe a speci�c markup language. This information is contained in a
document type de�nition (DTD) that speci�es valid elements, the contents of these elements, and which
attributes may modify an element. The bene�ts of SGML include platform independence, separation of
content from format, and the ability to determine if documents conform to structural rules.

2.2 HTML

HTML is commonly thought of as the language of the Web. It introduced many people to the syntax of
SGML, but can be thought of as an SGML application: a markup language that can be described using
SGML. Originally, HTML was concerned mostly with presentation. Besides the all important anchor tag
that gives HTML its hypertext character, it includes tags to indicate paragraphs, headings, lists, etc. HTML
2.0 [3] introduced a number of weak semantic markup mechanisms. The META element speci�es meta-data
in the form of a name/value pair. The REL attribute of the anchor and link elements names a relationship
from the enclosing document to the document pointed to by a hyperlink; the REV attribute names the
relationship in the reverse direction. HTML 3.0 [36] added the CLASS attribute, which could be used within
almost any tag to create semantic subclasses of that element, Unfortunately, the semantic markup elements
of HTML are rarely used, and even if they were more widely accepted could only establish relationships
along hypertext links (using <LINK> or <A>).

To address the semantic limitations of HTML, Dobson and Burrill [15] attempted to reconcile it with the
Entity-Relationship (ER) database model. This is done by supplementing HTML with a simple set of tags
that de�ne \entities" within documents, labeling sections of the body text as \attributes" of these entities,
and de�ning relationships from an entity to outside entities.

2.3 XML

The World Wide Web Consortium (W3C) developed the Extensible Markup Language (XML) [8] to serve
as a simpli�ed version of SGML for the Web. Like SGML, XML can use DTDs to ensure that documents
conform to a common grammar.2 Thus a DTD provides a syntax for an XML document, but the semantics
of a DTD are implicit. That is, the meaning of an element in a DTD is either inferred by a human due
to the name assigned to it, is described in a natural-language comment within the DTD, or is described
in a document separate from the DTD. Humans can then build these semantics into tools that are used to
interpret or translate the XML documents, but software tools cannot acquire these semantics independently.
Thus, an exchange of XML documents works well if the parties involved have agreed to a DTD beforehand,
but becomes problematic when one wants to search across the entire set of DTDs or to spontaneously
integrate information from multiple sources.

One of the hardest problems in any integration e�ort is mapping between di�erent representations of the
same concepts { the problem of integrating DTDs is no di�erent. One di�culty is identifying and mapping

2A document that does so is said to be valid, while documents which are consistent with XML's syntax but do not have a

DTD are said to be well-formed.

3

<!-- The NAME is a subelement with character content -->

<PERSON>

<NAME>John Smith</NAME>

</PERSON>

<!-- The NAME is a subelement with element content -->

<PERSON>

<NAME><FNAME>John</FNAME><LNAME>Smith</LNAME></NAME>

</PERSON>

<!-- The NAME is an attribute of PERSON -->

<PERSON NAME="John Smith">

Figure 1: Structural Di�erences in Representation

di�erences in naming conventions. As with natural language, XML DTDs have the problems of polysemy
and synonymy. For example, the elements <PERSON> and <INDIVIDUAL> might be synonymous. Similarly,
an element such as <SPIDER> might be polysemous: in one document it could mean a piece of software
that crawls the World Wide Web while in another it means an arachnid that crawls a web of the silky kind.
Furthermore, naming problems can apply to attribute names just as easily as they apply to element names.
In general, machines do not have access to the contextual information that humans have, and thus even an
automated dictionary or thesaurus would be of little help in resolving the problems with names described
here.

An even more di�cult problem is identifying and mapping di�erences in structure. XML's
exibility
gives DTD authors a number of choices. Designers attempting to describe the same concepts may choose
to do so in many di�erent ways. In Figure 1, three possible representations of a person's name are shown.
One choice involves whether the name is a string or is an element with structure of its own. Another choice
is whether the name is an attribute or an element. One of the reasons for these problems is the lack of
semantics in XML. There is no special meaning associated with attributes or content elements. Element
content might be used to describe properties of an object or group related items, while attributes might be
used to specify supplemental information or single-valued properties.

Once humans have identi�ed the appropriate mappings between two DTDs, it is possible to write XSL
Transformations (XSLT) stylesheets [12] that can be used to automatically translate one document into the
format of another. Although this is a good solution to the integration problem when only a few DTDs are
relevant, it is unsatisfactory when there are many DTDs; if there are n DTDs, then there would need to be
O(n2) di�erent stylesheets to allow automatic transformation between any pair of them. Furthermore, when
a DTD was created or revised, someone would have to create or revise the n stylesheets to transform it to
all other DTDs. Obviously, this is not a feasible solution.

Of course, the problems of mapping DTDs would go away if we could agree on a single universal DTD,
but even at the scale of a single corporation, data standardization can be di�cult and time consuming {
data standardization on a worldwide scale would be impossible. Even if a comprehensive, universal DTD
was possible, it would be so unimaginably large that it would be unusable, and the size of the standards
committee that managed it would preclude the possibility of extension and revision at the pace required for
modern data processing needs.

2.4 Knowledge Representation

One of the venerable sub-�elds of arti�cial intelligence is that of knowledge representation (KR). The goal
of KR is to provide structures that allow information to be stored, modi�ed, and reasoned with, all in an
e�cient manner. Thus, a good KR language is expressive, concise, unambiguous and independent of context,
while systems built upon the language should be able to acquire information and perform useful inferences
e�ciently. From the very beginnings of AI, KR has been crucial to the pursuit, and the �eld has remained
an active and important research area spawning entire sub-disciplines of its own. Early languages, such as

4

KL-ONE [6] and KRL [4] have evolved into modern powerhouses like LOOM [32] , Classic [7], and CYC-L
[29].

One of the oldest knowledge representation formalisms is semantic networks. A semantic net represents
knowledge as a set of nodes connected by directed links; essentially it can be described by a directed acyclic
graph. In such a representation, meaning is implied by the way a concept is connected to other concepts.
Frame systems are another representation that is isomorphic to semantic networks. In the terminology of
such systems, a frame is a named data object that has a set of slots, where each slot represents a property
or attribute of the object. Slots can have one or more values; these values may be pointers to other frames.
KRL [4] is an example of an early KR language based on frame systems.

Advanced semantic networks and frame systems typically include the notion of abstraction, which is
represented using is-a and instance-of links. An is-a link indicates that one class is included within another,
while an instance-of link indicates that an individual is a member of a class. These links have correlations in
basic set theory: is-a is like the subset relation and instance-of is like the element of relation. The collection
of is-a links speci�es a partial order on classes; this order is often called a taxonomy or categorization
hierarchy. The taxonomy can be used to generalize a concept to a more abstract class or to specialize a
class to its more speci�c concepts. As demonstrated by the popularity of Yahoo and the Open Directory,
taxonomies are clearly useful for aiding a user in locating relevant information on the Web.

A more recent KR formalism is description logic, which grew out of the work on KL-ONE [6]. In a
description logic, de�nitions of terms are formed by combining concepts and roles that can provide either
necessary and su�cient conditions or just necessary conditions. A description is said to subsume another
if it describes all of the instances that are described by the second description. An important feature of
description logic systems is the ability to perform automatic classi�cation, that is, automatically insert a
given concept at the appropriate place in the taxonomy. The advantages of descriptions logics are they have
well-founded semantics and the factors that a�ect their computational complexity are well understood, but
it is unclear whether their inferential capabilities are the right ones for the Web.

In general, knowledge representation can o�er the Semantic Web insight into the design of semantic
languages and the development of reasoning methods for them. However, most KR systems do not scale
well, and would thus be unable to support data gathered from even a tiny portion of the Web. Additionally,
KR research often assumes a centralized knowledge base with a single controlling authority; obviously this
assumption must be dropped when dealing with the Web.

2.5 RDF

The Resource Description Framework (RDF) [28] is a recommendation endorsed by the W3C that attempts
to address XML's semantic limitations. Technically, RDF is not a language, but a data model of metadata
instances. To include RDF in �les, its designers have chosen a frame-like, XML syntax although they
emphasize this is only one of many possible representations of the RDF model. RDF has a number of
abbreviated syntactical variations which is an advantage for content providers but requires more machinery
in RDF parsers. Since these syntaxes all have a well-de�ned mapping into the data model, they avoid some
of the problems with representational choices in basic XML. Nevertheless, it is still easy to create di�erent
representations for a concept.

The RDF data model is little more than a semantic network without inheritance; it consists of nodes
connected by labeled arcs, where the nodes represent web resources and the arcs represent attributes of these
resources. Since RDF is based on semantic networks, it is inherently binary. Of course, any n-ary relation
can be expressed as a set of binary relations. Furthermore, authors can use an abbreviated form of the RDF
syntax to express the values for many properties at once, essentially simulating an n-ary relation.

To allow for the creation of controlled, sharable, extensible vocabularies the RDF working group has
developed the RDF Schema Speci�cation [10]. This speci�cation de�nes a number of properties that have
speci�c semantics. The property rdf:type is used to express that a resource is a member of a given class,
while the property rdfs:subClassOf essentially states that one class is a subset of another. These properties
are equivalent to the instance-of and is-a links that have been used in AI systems for decades. With the
rdfs:subClassOf property, schema designers can build taxonomies of classes for organizing their resources. RDF
Schema also provides properties for describing properties; the property rdfs:subPropertyOf allow properties to
be specialized in a way similar to classes, while the properties rdfs:domain and rdfs:range allow constraints to

5

be placed on the domain and range of a property.
Since it is possible that di�erent schemas may use the same strings to represent di�erent conceptual

meanings, RDF uses XML namespaces [9] to assign a separate namespace to each schema. This approach
has two disadvantages. First since namespaces can be used with any element and RDF schemas need not be
formally speci�ed, it is possible to write RDF statements such that it is ambiguous as to whether certain tags
are RDF or intermeshed tags from another namespace. Second, each set of RDF statements must explicitly
specify the namespace for every schema that is referenced by one of the statements, even for schemas that
were extended by a schema whose namespace has already been speci�ed.

In RDF, schemas are extended by simply referring to objects from that schema as resources in a new
schema. Since schemas are assigned unique UniformResource Identi�ers (URIs), the use of XML namespaces
guarantees that exactly one object is being referenced. Unfortunately, RDF does not have a feature that
allows local aliases to be provided for properties and classes; such a feature is necessary because achieving
consensus for schema names will be impossible on a worldwide scale. Although an alias can be approximated
using the rdfs:subClassOf or rdfs:subPropertyOf properties to state that the new name is a specialization of the
old one, there is no way to state an equivalence. This can be problematic if two separate schemas \rename"
a class; since both schemas have simply subclassed the original class, the information that all three classes
are equivalent is lost.

RDF schema is written entirely in RDF statements. Although at �rst this may seem like elegant boot-
strapping, closer inspection reveals that it is only a reuse of syntax. RDF is not expressive enough to de�ne
the special properties rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range, and thus correct usage of
these properties must be built into any tool that processes RDF with RDF schemas. However, a very subtle
but potentially dangerous problem is hidden here. The de�nition of a class (or property) is a collection of
RDF statements about a particular resource using properties from the RDFS namespace. Typically, these
statements appear on a single web page, grouped using a rdf:Description element. However, since a resource
is identi�ed by a URI, there is no reason why some of these statements could not appear on another page.
Thus anyone could add to the de�nition of an object introduced in another schema. Although there are
many situations where this is bene�cial, accidental or malicious de�nitions may alter the semantics in an
undesirable way. For example, someone could make the class WebDeveloper a subclass of OverpaidPerson, and
anyone who stated that they were a WebDeveloper, would now also be implicitly stating they were an Over-

paidPerson. To resolve such problems one would have to add to RDF the ability for a document to specify
which other documents (including schemas) it is consistent with.

RDF does not possess any mechanisms for de�ning general axioms (rules that allow additional reasoning).
For example, one could not specify that the subOrganization property is transitive or that the parentOf and
childOf properties are inverses of each other. In logic, axioms are used to constrain the possible meaning
of a term and thus provide stronger semantics. However, there are other bene�ts to the use of axioms: an
axiom can provide additional information that was not explicitly stated and, perhaps more importantly for
distributed systems such as the Web, axioms can be used to map between di�erent representations of the
same concepts.

Another potential problem for RDF is the Web's tendency towards rapid change. Although RDF provides
a method for revising schemas, this method is insu�cient. Essentially, each new version of a schema is given
its own URI and thus can be thought of as a distinct schema in and of itself. However, the version is
really just a schema that extends the original version; its only link to the original schema is by use of the
rdfs:subClassOf and rdfs:subPropertyOf properties to point to the original de�nitions of each class and property.
As such, a true equivalence is not established between the items. Additionally, if schemas and resources that
refer to the schema that was updated wish to re
ect the changes, they must change every individual reference
to a schema object to use the new URI. Finally, since schemas do not have an o�cial version associated
with them, there is no way to track the revisions of a schema unless the schema maintainer uses a consistent
naming scheme for the URIs.

2.6 Datalog

Datalog is a language frequently used in describing deductive databases. It is similar to Prolog in that
it consists entirely of Horn clauses, but di�ers in that it does not allow function symbols and is a strictly

6

declarative language.3 Datalog is based on the relational model but de�nes two types of relations: extensional
database (EDB) relations are those predicates which are physically stored in the database, while intensional
database (IDB) relations are those that can be computed from a set of logical rules.

Datalog restricts its horn clauses to be safe, meaning that all of its variables are limited. Datalog de�nes
\limited" as follows: variables are limited if they appear in an ordinary predicate of the rule's body, appear in
an `=' comparison with a constant, or appear in an `=' comparison with another limited variable. Datalog's
Horn clauses may depend on each other recursively. Datalog allows negation in a limited form called strati�ed

negation, which we will not discuss here.
Datalog is relevant to the design of a Semantic Web language because it allows important classes of

rules to be expressed while recent optimizations such as magic sets, which combine forward and backward
chaining, have made reasoning more e�cient. Additionally, it seems reasonable to expect that the Web will
consist of a large EDB and a comparatively small IDB, which is an ideal situation for a datalog system.

2.7 Ontology

The term ontology, which is borrowed from philosophy, is de�ned as \a particular theory about being or
reality." As such, an ontology provides a particular perspective onto the world, or some part there of. Where
a knowledge representation system speci�es how to represent concepts, an ontology speci�es what concepts to
represent and how they are interrelated. Most researchers agree that an ontology must include a vocabulary
and corresponding de�nitions, but it is di�cult to achieve consensus on a more detailed characterization.
Typically, the vocabulary includes terms for classes and relations, while the de�nitions of these terms may
be informal text, or may be speci�ed using a formal language like predicate logic. The advantage of formal
de�nitions is that they allow a machine to perform much deeper reasoning; the disadvantage is that these
de�nitions are much more di�cult to construct.

Numerous ontologies have been constructed, with varying scopes, levels of detail, and viewpoints. Noy
and Hafner [34] provide a good overview and comparison of some of these projects. One of the more prominent
themes in ontology research is the construction of reusable components. The advantages of such components
are clear: large ontologies can be quickly constructed by assembling and re�ning existing components, and
integration of ontologies is easier when the ontologies share components. One of the most common ways to
achieve reusability is to allow the speci�cation of an inclusion relation that states that one or more ontologies
are included in the new theory. If these relationships are acyclic and treat all elements of the included ontology
as if they were de�ned locally then an ontology can be said to extend its included ontologies. This is the case
for most systems, however Ontolingua [18] has the most powerful features for reusability: inclusion relations
that may contain cycles, the ability to restrict axioms, and polymorphic re�nement.

The largest ontology e�ort is Cyc [29], an ongoing project with the ambitious goal of encoding the entirety
of common sense. An essential component of Cyc is the partitioning of its knowledge into microtheories,
which can extend one another using standard ontology inclusion principles. Since Cyc has an enormous
ontology, microtheories are essential to its creation. They simplify the encoding of assertions by knowl-
edge engineers, avoid the inevitable contradictions that arise from a large knowledge base, and help guide
inferencing mechanisms by grouping relevant statements.

We contend that ontologies can be used on the Web to help structure the information { but only if we
design the language to take into account the characteristics of the Web described in the Introduction. All
information is presented in some context. When people read documents, they draw on their knowledge of the
domain and general language to interpret individual statements. Context is often required to disambiguate
terms and to provide a background framework for understanding. Ontologies provide a mechanism by which
context information can be speci�cally encoded, and a Semantic Web language must allow this information
to be speci�ed on web pages or in other repositories that refer to web-based information. Additionally,
the context can be used to resolve the problem of polysemy, while mappings between ontologies can be
used to resolve synonymy. Extending XML-like languages to include ontology features will allow far more
structuring, and by adding inferential capabilities we allow for knowledge collected from distributed sources
to be \fused."

3Prolog is not strictly declarative because the order of the rules determines how the system processes them.

7

3 The SHOE Language

SHOE combines features of markup languages, knowledge representation, Datalog, and ontologies in an
attempt to address the unique problems of semantics on the Web. It supports knowledge acquisition on the
Web by supplementing HTML's presentation oriented tags with tags that provide semantic meaning. The
basic structure consists of ontologies, which are entities that de�ne rules guiding what kinds of assertions may
be made and what kinds of inferences may be drawn on ground assertions, and instances, which are entities
that make assertions based on those rules. As a knowledge representation, SHOE borrows characteristics
from both predicate logics and frame systems.

The original syntax of SHOE was greatly in
uenced by HTML, which made it natural to include SHOE
in HTML documents and eased the learning curve for web authors who wished to use SHOE. We later
de�ned an SGML DTD for SHOE that is derived from the formal HTML DTD, thus making SHOE a formal
application of SGML while maintaining an HTML-compatible syntax. Due to the similarities between SGML
and XML, it was easy to create a slight variant of the SHOE syntax that is compatible with XML. However,
since most websites are still written in HTML (which is not compatible with XML), the SGML version of
SHOE remains the standard for implementation, but websites that have begun to migrate to XML (by using
XHTML or another XML application) can use the SHOE XML DTD. When XML becomes ubiquitous, the
standard version of SHOE will be the XML variant.

There are a number of advantages to using an XML syntax for SHOE. First, although more standard
KR syntaxes, such as �rst-order logic or S-expressions, could be embedded between a pair of delimiting
tags, these would be even more foreign to the average web user than SHOE's syntax, which at least has a
familiar format. Second, the XML syntax allows SHOE information to be analyzed and processed using the
Document Object Model (DOM), allowing software that is XML-aware, but not SHOE-aware to still use the
information in more limited but nevertheless powerful ways. For example, some web browsers are able to
graphically display the DOM of a document as a tree, and future browsers will allow users to issue queries
that will match structures contained within the tree. The third reason for using an XML syntax is that
SHOE documents can then use the XSLT stylesheet standard [12] to render SHOE information for human
consumption. This is perhaps the most important reason for an XML syntax, because it can eliminate the
redundancy of having a separate set of tags for the human-readable and machine-readable knowledge.

In this section, we provide a brief description of the syntax of the language followed by a formal model
and a discussion of SHOE's key features. The complete syntax is presented as an XML DTD in Appendix
A. The interested reader can �nd a detailed description of SHOE's syntax in the SHOE Speci�cation [30].

3.1 SHOE Ontologies

SHOE uses ontologies to de�ne the valid elements that may be used in describing entities. Each ontology
can reuse other ontologies by extending them. An ontology is stored in an HTML �le and is made available

to document authors and SHOE agents by placing it on a web server. This �le includes tags that identify
the ontology, state which ontologies (if any) are extended, and de�ne the various elements of the ontology.
Figure 2 shows an example of a SHOE ontology.

In SHOE syntax, an ontology appears between the tags <ONTOLOGY ID=id VERSION=version> and
</ONTOLOGY> which is identi�ed by the combination of the id and version. An ontology can de�ne
categories, relations and other components by including special tags for these purposes.

The tag <DEF-CATEGORY>) can be used to make category de�nitions that specify the categories (also
called classes) under which various instances could be classi�ed. Categories may be grouped as subcategories
under one or more supercategories, essentially specifying the is-a relation that is commonly used in semantic
networks and frame systems. The use of categories allows taxonomies to be built from the top down
by subdividing known classes into smaller sets. The example ontology de�nes many categories, including
GraduateStudent, which is a subcategory of both Student and Worker.

The tag <DEF-RELATION> (which is closed by a </DEF-RELATION> tag) can be used to make relational
de�nitions that specify the kinds of relational assertion that may be made by instances regarding instances
and other data. Each relation has some �xed number of arguments, and the type of each argument is either
a category or one of four basic data types (string, number, date, or boolean value). One of the relationships
de�ned by the example ontology is advises, which is between an instance of category GraduateStudent and an

8

<HTML>

<HEAD>

<TITLE>University Ontology</TITLE>

Tell agents that we're using SHOE

<META HTTP-EQUIV="SHOE" CONTENT="VERSION=1.0">

</HEAD>

<BODY>

Declare an ontology called \university-ontology".

<ONTOLOGY ID="university-ontology" VERSION="1.0">

Borrow some elements from an existing ontology, pre�xed with a \b."

<USE-ONTOLOGY ID="base-ontology" VERSION="1.0" PREFIX="b"

URL="http://www.cs.umd.edu/projects/plus/SHOE/base.html">

De�ne some categories and subcategory relationships

<DEF-CATEGORY NAME="Person" ISA="b.SHOEentity">

<DEF-CATEGORY NAME="Organization" ISA="b.SHOEentity">

<DEF-CATEGORY NAME="Worker" ISA="Person">

<DEF-CATEGORY NAME="Advisor" ISA="Worker">

<DEF-CATEGORY NAME="Student" ISA="Person">

<DEF-CATEGORY NAME="GraduateStudent" ISA="Student Worker">

De�ne some relations; these examples are binary, but relations can be n-ary

<DEF-RELATION NAME="advises">

<DEF-ARG POS="1" TYPE="Advisor">

<DEF-ARG POS="2" TYPE="GraduateStudent"></DEF-RELATION>

<DEF-RELATION "gpa">

<DEF-ARG POS="1" TYPE="Student">

<DEF-ARG POS="2" TYPE="b.NUMBER"></DEF-RELATION>

<DEF-RELATION "suborganization">

<DEF-ARG POS="1" TYPE="Organization">

<DEF-ARG POS="2" TYPE="Organization"></DEF-RELATION>

<DEF-RELATION "works-for">

<DEF-ARG POS="1" TYPE="Person">

<DEF-ARG POS="2" TYPE="Organization"></DEF-RELATION>

De�ne a transfers-through inference over working for organizations

<DEF-INFERENCE>

<INF-IF>

<RELATION NAME="works-for">

<ARG POS="1" VALUE="x" VAR>

<ARG POS="2" VALUE="y" VAR></RELATION>

<RELATION NAME="suborganization">

<ARG POS="1" VALUE="y" VAR>

<ARG POS="1" VALUE="z" VAR></RELATION></INF-IF>

<INF-THEN>

<RELATION NAME="works-for">

<ARG POS="1" VALUE="x" VAR>

<ARG POS="2" VALUE="z" VAR></RELATION></INF-THEN>

</DEF-INFERENCE>

</ONTOLOGY>

</BODY>

</HTML>

Figure 2: An Ontology Example

9

instance of category Advisor. Similarly, the relationship gpa de�nes a relation that exists between a Student

and a number.
SHOE uses inference rules, indicated by the <DEF-INFERENCE> tag, to supply additional axioms. A

SHOE inference rule consists of a set of antecedents (one or more subclauses describing assertions that
entities might make) and a set of consequents (consisting of one or more subclauses describing an assertion
that may be inferred if all assertions in the body are made). The <INF-IF> and <INF-THEN> tags indicate
the antecedents and consequents of the inference, respectively. There are three types of inference subclauses:
category, relation and comparison. A category clause is satis�ed if the instance is member of a speci�ed
category, a relation subclause is satis�ed if the relation is entailed by existing assertions, and a comparison
subclause is satis�ed if a particular mathematical relation (such as less-than or equal-to) holds between a pair
of values. Although category and relation subclauses can appear in both the antecedents and consequents,
comparison clauses can only appear in the antecedents. The arguments of any subclause may be a constant
or a variable, where variables are indicated by the keyword VAR. Constants must be matched exactly and
variables of the same name must bind to the same value. All variables must be limited, and the type of
each variable, which can be determined from its use it category or relation clauses, must be consistent. The
ontology in the example speci�es that working for organizations transfers through to superorganizations,
that is, (8x2Worker) (8y2Organization) (8z2Organization) works-for(x,y) ^ suborganization(y,z)) works-for(x,z).

As is common in many ontology e�orts, such as Ontolingua and Cyc, SHOE ontologies build on or extend
other ontologies, forming a lattice with the most general ontologies at the top and the more speci�c ones
at the bottom. Ontology extension is expressed in SHOE with the <USE-ONTOLOGY> tag, which indicates
the id and version number of an ontology that is extended. An optional URL attribute allows systems to
locate the ontology if needed and a PREFIX attribute is used to establish a short local identi�er for the
ontology. When an ontology refers to an element from an extended ontology, this pre�x and a period is
appended before the element's name. In this way, references are guaranteed to be unambiguous, even when
two ontologies use the same term to mean di�erent things. By chaining the pre�xes, one can specify a path
through the extended ontologies to an element whose de�nition is given in a more general ontology.

Sometimes an ontology may need to use a term from another ontology, but a di�erent label may be more
useful within its context. The <DEF-RENAME> tag allows the ontology to specify a local name for a concept
from any extended ontology. This local name must be unique within the scope of the ontology in which the
rename appears. Renaming allows domain speci�c ontologies to use the vocabulary that is appropriate for
the domain, while maintaining interoperability with other domains.

3.2 SHOE Instances

Unlike RDF, SHOE makes a distinction between what can be said in an ontology and what can be said on
an arbitrary web page. Ordinary web pages declare one or more instances that represent SHOE entities,
and each instance describes itself or other instances using categories and relations. An example of a SHOE
instance is shown in Figure 3. The syntax for instances includes an <INSTANCE> element that has an
attribute for a KEY that uniquely identi�es the instance. We recommend that the URL of the web page be
used as this key, since it is guaranteed to identify only a single resource. An instance commits to a particular
ontology by means of the <USE-ONTOLOGY> tag, which has the same function as the identically named
element used within ontologies. To prevent ambiguity in the declarations, ontology components are referred
to using the pre�xing mechanism described earlier. The use of common ontologies makes it possible to issue
a single logical query to a set of data sources and enables the integration of related domains. Additionally,
by specifying ontologies the content author indicates exactly what meaning he associates with his assertions,
and does not need to worry that an arbitrary de�nition made in some other ontology will alter this meaning.

An instance contains ground category assertions and relation assertions made by it. A category assertion
is made within the <CATEGORY NAME=y FOR=x> tag, and says that the instance claims that some instance
x should be categorized under category y. In the example, the instance http://univ.edu/john claims that
http://univ.edu/mary is an Advisor.

A relational assertion is enclosed by the <RELATION NAME=foo> and </RELATION> tags, and says
that the instance claims that an n-ary relation foo exists between some n number of appropriately typed
arguments consisting of data or instances. In the example, the instance http://univ.edu/john claims that there
exists the relation advises between http://univ.edu/john and his advisor http://univ.edu/mary and that that the

10

<HTML>

<HEAD>

<TITLE>John's Web Page</TITLE>

Tell agents that we're using SHOE

<META HTTP-EQUIV="SHOE" CONTENT="VERSION=1.0">

</HEAD>

<BODY>

<P>This is my home page, and I've got some SHOE data on it about me and my advisor. Hi, Mom!</P>

Create an Instance. There's only one instance on this web page, so we might as well use the web page's URL as its key.

If there were more than one instance, perhaps the instances might have keys of the form http://univ.edu/john#FOO

<INSTANCE KEY="http://univ.edu/john">

Use the semantics from the ontology \university-ontology", pre�xed with a \u."

<USE-ONTOLOGY ID="university-ontology" VERSION="1.0" PREFIX="u"

URL="http://univ.edu/ontology">

Claim some categories for me and others.

<CATEGORY NAME="u.GraduateStudent">

<CATEGORY NAME="u.Advisor" FOR="http://univ.edu/mary">

Claim some relationships about me and others. \me" is a keyword for the enclosing instance.

<RELATION NAME="u.advises">

<ARG POS="1" VALUE="http://univ.edu/mary">

<ARG POS="2" VALUE="me"> </RELATION>

<RELATION NAME="u.gpa">

<ARG POS="1" VALUE="me">

<ARG POS="2" VALUE="3.8"> </RELATION>

</INSTANCE>

</BODY>

</HTML>

Figure 3: An Instance Example

11

gpa of http://univ.edu/john is 3.8.

3.3 SHOE's Semantics

In order to describe the semantics of SHOE, we will extend a standard model-theoretic approach for de�nite
logic with mechanisms to handle distributed ontologies. For simplicity, this model intentionally omits those
features of the SHOE language that are rarely used.

We de�ne an ontology O to be a tuple < V;A > where V is the vocabulary and A is the set of axioms
that govern the theory. Formally, V is a set of predicate symbols, each with some arity � 0 and distinct
from symbols in other ontologies,4 while A is a set of de�nite program clauses that have the standard logical
semantics.5 We now discuss the contents of V and A, based upon the components that are de�ned in the
ontology:

A <USE-ONTOLOGY> statement adds the vocabulary and axioms of the speci�ed ontology to the current
ontology. Due to the assumption that names must be unique, name con
icts can be ignored.

A <DEF-CATEGORY> adds a unary predicate symbol to the vocabulary and possibly a set of rules
indicating membership. If the name is C, then C 2 V . For each super-category Pi speci�ed, [C(x) !
Pi(x)] 2 A.

A <DEF-RELATION> statement adds a symbol to the vocabulary and, depending on the data types of
arguments, possibly some number of axioms. If an argument has a data type is a basic data type (such as
number), then it is simply used to check the syntax of the data and to perform comparisons. In this case,
no additional axioms are added. However, if the argument has a data type that is a category, then there
is an axiom that states that an instance in that argument must be a member of the category. If the tag
speci�es a name R and has n arguments then there is an n-ary predicate symbol R in V . If the type of the
ith argument is C, then [R(x1; :::; xi; :::xn)! C(xi)] 2 A. This rule is a consequence of SHOE's open-world
policy: since there is no way to know that a given object in a relation assertion is not a member of a category
appropriate for that relation, it is better to assume that this information is yet undiscovered than it is to
assume that the relation is in error. Note that this is in contrast to arguments that are basic data types,
where type checking is performed to validate the relation. Basic data types are treated di�erently because
they are di�erent. They have syntax which can be checked in ways that category types cannot, which allows
us to impose stringent input-time type checking on basic data types.

A <DEF-INFERENCE> adds one or more axioms to the theory. If there is a single clause in the <INF-

THEN>, then there is one axiom with a conjunction of the <INF-IF> clauses as the antecedent and the
<INF-THEN> clause as the consequent. If there are n clauses in the <INF-THEN> then there are n axioms,
each of which has one of the clauses as the consequent and has the same antecedent as above. For comparison
clauses, it is assumed that there exists built-in predicates that can compare each of the basic data types.

A <DEF-RENAME> provides an alias for a non-logical symbol. It is meant as a convenience for users
and can be implemented using a simple pre-processing step that translates the alias to the original, unique
non-logical symbol. Therefore, it can be ignored for the logical theory.

A formula F is well-formed with respect to O if 1) F is an atom of the form p(t1; :::; tn) where p is a
n-ary predicate symbol such that p 2 V or 2) F is a Horn clause where each atom is of such a form. An
ontology is well-formed if every axiom in the ontology is well-formed with respect to the ontology.

Now we turn our attention to data sources, such as one or more web pages, that use an ontology to make
relation and category assertions. Let S =< OS; DS > be such a data source, where OS =< VS ; AS > is the
ontology and DS is the set of assertions. S is well-formed if OS is well-formed and each element of DS is a
ground atom that is well-formed with respect to OS . The terms of these ground atoms are constants and
can be instance keys or values of a SHOE data type.

We wish to be able to describe the meaning of a given data source, but it is important to realize that
on the Web, the same data could have di�erent meanings for di�erent people. An agent may be able to
draw useful inferences from a data source without necessarily agreeing with the ontology intended by the
data's author. A common case would be when an agent wishes to integrate information that depends on two
overlapping but still distinct ontologies. Which set of rules should the agent use to reason about this data?

4In actuality, SHOE has a separate namespace for each ontology, but one can assume that the symbols are unique because

it is always possible to apply a renaming that appends a unique ontology identi�er to each symbol.
5A de�nite program clause is a Horn clause that has at least one antecedent and exactly one consequent.

12

There are many possible answers, and we propose that the agent should be free to choose. To describe this
notion, we de�ne a perspective P =< S;O > as a data source S =< OS; DS > viewed in the context of an
ontology O =< V;A >. If O = OS then P is the intended perspective, otherwise it is an alternate perspective.
If there are elements of DS that are not well-formed with respect to O, these elements are considered to be
irrelevant to the perspective. If WS is the subset of DS that is well-formed with respect to O, then P is said
to result in a de�nite logic theory T = WS [A.

Finally, we can describe the semantics of a perspective P using a model theoretic approach. An inter-
pretation of the perspective consists of a domain, the assignment of each constant in S to an element of
the domain, and an assignment of each element in V to a relation from the domain. A model of P is an
interpretation such that every formula in its theory T is true with respect to it. We de�ne a query on P as a
Horn clause with no consequent that has the semantics typically assigned to such queries for a de�nite logic
program T .

We also introduce one additional piece of terminology that will be used later in the paper. If every ground
atomic logical consequence of perspective P is also a ground atomic logical consequence of perspective P 0

then P
0 is said to semantically subsume P . In such cases, any query issued against perspective P 0 will have

at least the same answers as if the query was issued against P . If two perspectives semantically subsume
each other, then they are said to be equivalent.

3.4 Discussion

SHOE was designed speci�cally with the needs of distributed internet agents in mind. In particular, it is
designed to enable interoperability in environments with multiple authors, where the underlying represen-
tations are likely to change, and where the amount of data is voluminous. In this section, we discuss how
SHOE addresses each of these issues.

3.4.1 Interoperability in Distributed Environments

SHOE attempts to maximize interoperability through the use of shared ontologies, pre�xed naming, preven-
tion of contradictions, and locality of inference rules. This section discusses each of these in turn.

Figure 4 shows how the ontology extension and renaming features of the language promote interoper-
ability. When two ontologies need to refer to a common concept, they should both extend an ontology in
which that concept is de�ned. In this way, consistent de�nitions can be assigned to each concept, while still
allowing communities to customize ontologies to include de�nitions and rules of their own for specialized
areas of knowledge. These methods allow the creation of high-level, abstract unifying ontologies extended
by often-revised custom ontologies for specialized, new areas of knowledge. There is a trade-o� between
trust of sources far down in the tree (due to their
eeting nature) and the ease of which such sources can be
modi�ed on-the-
y to accommodate new important functions (due to their
eeting nature). In a dynamic
environment, an ontology too stable will be too in
exible; but of course an ontology too
exible will be too
unstable. SHOE attempts to strike a balance using simple economies of distribution.

The problems of synonymy and polysemy are handled by the extension mechanism and <DEF-RENAME>

tag. Using this tag, ontologies can create aliases for terms, so that domain-speci�c vocabularies can be used.
For example, in Figure 4, the term WebBot in internet-ont2 means the same thing as Spider in internet-ont due
to a <DEF-RENAME> tag in internet-ont2. Although the extension and aliasing mechanisms solve the problem
of synonymy of terms, the same terms can still be used with di�erent meanings in di�erent ontologies. This
is not undesirable, a term should not be restricted for use in one domain simply because it was �rst used in
a particular ontology. As shown in Figure 4, in SHOE di�erent ontologies may also use the same term to
de�ne a di�erent concept. Here, the term Spider means di�erent things in internet-ont and bug-ont because the
categories have di�erent ancestors. To resolve any ambiguity that may arise, ontological elements are always
referenced using special pre�xes that de�ne unique paths to their respective enclosing ontologies. Instances
and ontologies that reference other ontologies must include statements identifying which ontologies are used
and each ontology is assigned a pre�x which is unique within that scope. All references to elements from
that ontology must include this pre�x, thereby uniquely identifying which de�nition is desired.

In the case of instances, each must be assigned a key; SHOE's protocol further allows agents on the web
to guarantee key uniqueness by including in the key the URL of the instance in question. In SHOE, it is

13

Thing

Software Organism

Spider Spider

WebBot

general-ontology

internet-ont

internet-ont-2

Arachnid

bug-ont

bug-ont-2

isa isa

isa isa

renames renames

Figure 4: Ontology Interoperability

assumed that each key identi�es exactly one entity, but no assumptions are made about whether two keys
might identify the same entity. This is because many di�erent URLs could be used to refer to the same
page, due to the facts that a single host can have multiple domain names and operating systems may allow
many di�erent paths to the same �le. To solve these problems in a practical setting, a canonical form can
be chosen for the URL; an example rule might be that the full path to the �le should be speci�ed, without
operating systems shortcuts such as '~ ' for a user's home directory. Even then, there are still problems with
multiple keys possibly referring to the same conceptual object. At any rate, this solution ensures that the
system will only interpret two objects as being equivalent when they truly are equivalent. Ensuring that two
object references are matched when they conceptually refer to the same object is an open problem.

In distributed systems, a contradiction cannot be handled by simply untelling the most recent assertion,
otherwise the system would give preference to those authors who provided their information �rst, regardless of
whether it was true, false or a matter of opinion. Rather than delve into complex procedures for maintaining
consistency, we chose to keep SHOE easy to understand and implement. Therefore, we have carefully
designed the language to eliminate the possibility of contradictions between agent assertions. SHOE does
this in four ways:

1. SHOE only permits assertions, not retractions.

2. SHOE does not permit logical negation.

3. SHOE does not have single-valued relations, that is, relational sets which may have only one value (or
some �xed number of values).

4. SHOE comparisons only appear in the antecedents of inference rules, so that it is impossible to infer
a fact that contradicts the inherent sorting of a data type.

Although this restricts the expressive power of the language, in our practical experience, we have not
yet found it to be a signi�cant problem. Databases have provided useful services to many organizations and

14

individuals despite having far less expressive power than SHOE. The intent of SHOE is to provide a solution
that works e�ciently in large, distributed data situations.

It should be noted that SHOE does not prevent \contradictions" that are not logically inconsistent.
If source A says father(Mark;Katherine) and source B says father(Katherine;Mark), the apparent
contradiction is because one source is misusing the father relation. However, this does not change the fact
that A and B made those assertions. A similar problem may occur in an ontology where an inference rule
derives a conclusion whose interpretation would be inconsistent with another ontology. Therefore, it is the
ontology designer's responsibility to make sure that the ontology is correct and that it is consistent with
all ontologies that it extends. It is expected that ontologies which result in erroneous conclusions will be
avoided by users, and will thus be weeded out by natural selection.

Yet another problem with distributed environments is the potential interference of rules created by other
parties: a rule created by one individual could have unwanted side-e�ects for other individuals. For these
reasons, SHOE only allows rules to be de�ned in ontologies, and the only rules that could apply to a given
assertion are those which are de�ned in the ontologies used by the instance making the assertion. Since rules
can only be expressed in ontologies, the process of determining when a rule is applicable is simpli�ed, and
page authors can use this to control the side-e�ects of their assertions. If a user wishes to view an instance in
a di�erent context or use it in ways not originally intended by the author, then the user can use an alternate
perspective for the instance that is based on a di�erent, but compatible ontology.

3.4.2 Ontology Evolution

The Web's changing nature means that ontologies will have to be frequently changed to keep up with
current knowledge and usage. Since physically revising an ontology can invalidate objects that reference it
for vocabulary and de�nitions, it is useful to think of a revision as a new ontology that is a copy of the
original ontology to which modi�cations have been made. In fact, this is exactly what SHOE does: each
version of an ontology is a separate �le and is assigned a unique version number, while all references to an
ontology must denote a speci�c version. How then, is a revision di�erent from an ontology with a di�erent
identi�er? The answer is that a revision can specify that it is backwardly-compatible with an earlier version
(using the backward-compatible-with attribute of the ontology), which allows interoperability between sources
that use di�erent versions of an ontology.

Before we de�ne backward-compatibility, we will �rst characterize and compare di�erent types of revisions
using the formal model developed in Section 3.3. To be succinct, we will only discuss revisions that add
or remove components; the modi�cation of a component can be thought of as a removal followed by an
addition. In the rest of this section, O will refer to the original ontology, O0 to its revision, P and P 0 to the
perspectives formed by these respective ontologies and an arbitrary source S =< O;DS >, and T and T 0 to
the respective theories for these perspectives.

If a revisionO0 adds an arbitrary rule to ontologyO, then for any source S, the perspective P 0 semantically
subsumes P . Since the revision only adds a sentence to the corresponding theory T 0 � T , and since �rst-order
logic is monotonic any logical consequence of T is also a logical consequence of T 0. Thus, when a revision
that adds rules provides an alternate perspective of a legacy data source, there may be additional answers
that were not originally intended by the author of the data. Similar reasoning is used to ascertain that if
the revision removes rules, then P semantically subsumes P 0.

If O0 consists of the removal of categories or relations from O, then P semantically subsumes P 0. This is
because there may be some atoms in S that were well-formed w.r.t. O that are not well-formed w.r.t. O0.
Informally, if categories or relations are removed, predicate symbols are removed from the vocabulary. If the
ground atoms of S depended on these symbols for well-formedness then when the symbols are removed the
sentences are no longer well-formed. Thus, T 0 � T and due to the monotonicity of de�nite logic every logical
consequence of T 0 is a logical consequence of T . Revisions of this type may mean that using the revised
ontology to form a perspective may result in fewer answers to a given query.

Finally, if the revision only adds categories or relations, the corresponding perspective P 0 is equivalent to
P . Since T 0 � T it is easy to show that P 0 semantically subsumes P . The proof of the other direction depends
on the nature of the axioms added: R(x1; :::; xi; :::xn)! C(xi) for relations and C(x)! Pi(x) for categories.
It also relies on the fact that due to the de�nitions of categories and relations, the predicate of each antecedent
is a symbol added by the new ontology and must be distinct from symbols in any other ontology. Therefore

15

any atoms formed from these predicates are not well-formed with respect to any preexisting ontology. Thus,
there can be no such atoms in S, since S must be well-formed with respect to some ontology 6= O. Since
the antecedents cannot be ful�lled, the rules will have no new logical consequences that are ground atoms.
Since P semantically subsumes P 0 and vice versa, P and P

0 are equivalent. This result indicates that we
can safely add relations or categories to the revision, and maintain the same perspective on all legacy data
sources.

We can now de�ne backward-compatibility: an ontology revision O
0 can be said to be backward-

compatible with an ontology O if for any data source S =< O;DS >, the perspective P
0 =< S;O

0
>

semantically subsumes the perspective P =< S;O >. Put simply, if every logical consequence of the original
is also a consequence of the revision, then the revision is backward-compatible. By our analysis above, if a
revision only adds categories, relations, or rules then it is backward compatible with the original, while if it
removes any of these components then it is not backward compatible.

With this notion of backward compatibility, agents can assume with some degree of con�dence that
a perspective that uses the backward compatible revision will not alter the original meaning of the data
source, but instead supplement it with information that was originally considered an implicit assumption of
the ontology. Agents that don't wish to assume anything, may still access the original version because it still
exists at the original URL. However, it should be noted that this versioning mechanism is dependent on the
compliance of the ontology designers. Since an ontology is merely a �le on a web server, there is nothing to
prevent its author from making changes to an existing ontology version. This is the price we pay for have
having a system that is
exible enough to cope with the needs of diverse user communities while being able
to change rapidly. However, we presume that users will gravitate towards ontologies from sources that they
can trust and ontologies that cannot be trusted will become obsolete.

Although, ideally integration in SHOE is a byproduct of ontology extension, a distributed environment
in which ontologies are rapidly changing is not always conducive to this. Even when ontology designers have
the best intentions, a very specialized concept may be simultaneously de�ned by two new ontologies. To
handle such situations, periodic ontology integration must occur. Ontologies can be integrated using a new
ontology that maps the related concepts using inference rules, by revising the relevant ontologies to map to
each other, or by creating a new more general ontology which de�nes the common concepts, and revising
the relevant ontologies to extend the new ontology. We discuss each of these solutions in more detail in [21].

3.4.3 Scalability

The scalability of a knowledge representation depends on the computational complexity of the inferences that
it sanctions. We intentionally omitted from SHOE features such as disjunction and negation that typically
make knowledge representation systems intractable. Since SHOE is essentially a set of Horn clauses, a naive
forward-chaining inference algorithm can be executed in polynomial time and space in the worst case. Of
course, the expected size of an extensional database built from the Web makes this an undesirable option.

Fortunately, SHOE can be mapped to datalog, and take advantage of optimized algorithms such as magic
sets [40]. The semantics of SHOE categories can be easily described using a datalog rule. For example,
category membership such as the fact that a Person is a Mammal may be expressed by using unary predicates
and a rule of the form:

Mammal(X) :- Person(x)

Since basic data types are only used to determine the well-formedness of SHOE instances, and to determine
what kind of comparison to perform, they do not need a datalog equivalent. The axioms generated for
relations are simple Horn clauses, and can be expressed easily. Since SHOE's inferential rules are basically
Horn clauses, they also map directly to datalog. Furthermore, SHOE's limited variable rule ensures that all
SHOE inference rules are safe. Finally, datalog is assumed to have a set of built-in predicates that can be
used for the comparison clauses. Thus, SHOE is equivalent to safe datalog without negation.

Obviously, SHOE systems can bene�t from the datalog research, but the massive size of the resulting
KBs may still yield unacceptable performance. Therefore SHOE has a modular design that allows systems to
cleanly provide di�ering degrees of inferential capability. For example, a system may chose only to implement
transitive category membership, or may chose to implement no inference at all, thus providing only access to
the extensional database. Although such systems might be incomplete reasoners with respect to the intended

16

perspective (see section 3.3), they can be complete reasoners with respect to an alternate perspective based
on an ontology that is identical to that speci�ed by the data source with the exception that it omits all
inference rules and/or category de�nitions. In large data settings, data that can be inferred from one source
may be explicit in another, narrowing the gap between the capabilities of complete and incomplete reasoners.

4 Implementation Issues

In the previous section we described the semantics of SHOE. In this section we consider the design of
systems that incorporate SHOE and discuss the features and components that are required of such systems.
We want to emphasize that SHOE is a language and a philosophy; it does not require any particular method
of implementation.

We begin by discussing implementation of query engines that support SHOE's semantics in an e�cient
way. This is necessary for any system that wants to process signi�cant amounts of SHOE information.
We then discuss issues related to building a complete SHOE system that supports the design and use of
ontologies, markup of web pages with semantics, and use of this information by agents or query tools.

4.1 E�cient SHOE Query Engines

In order to deal with large amounts of SHOE information, the design or selection of the back-end SHOE
engine is very important. While of course SHOE can be implemented relatively easily in semantically
sophisticated knowledge representation systems like LOOM or CYC-L, the language is intended to be feasibly
implementable on top of fast, e�cient KR systems with correspondingly simpler semantics. In order for a
SHOE system to support all possible intended perspectives, it must be able to handle at least the following
features:

� n-ary predicates

� inference of category membership

� constrained horn-clause inference

� built-in comparison predicates such as =, <, and >

SHOE is also intended to be modular in design: an agent might implement all of SHOE except the inferential
rules, for example, depending on domain need.

We understand that in the worst case implementing even the simple semantics described above can be
tricky. However, SHOE's goal is to balance semantic expressivity with computational complexity in practice

given reasonable assumptions about the nature of distributed domain like the World Wide Web. A particular

assumption is that while the World Wide Web potentially contains a great deal of data, and a great many
distributed SHOE ontologies may result in a large ruleset, nonetheless in general the cyclic dependencies in
these rules will be relatively highly localized to a given ontology's domain. In our experience the distributed
nature of SHOE ontologies tends to promote a modular ontology design, and the hierarchical nature of SHOE
ontologies tends to result in acyclic, feed-forward intra-ontology rule dependencies.

In the following sections we discuss how to implement SHOE, or parts of SHOE, using three e�cient
systems with di�erent reasoning capabilities: XSB [38], an open source, logic programming system that can
be used as an deductive database engine, Parka [17, 39], a high-performance KR system whose roots lie in
semantic networks and frame systems, and a generic relational database management system.

4.1.1 XSB

XSB is a logic programming and deductive database system developed at SUNY Stony Brook. XSB is
actually much more expressive than datalog, and thus can be used to completely implement SHOE. The
transformation of SHOE into an XSB program mirrors the construction of the set of axioms for an ontology
as de�ned in Section 3.3. First, some form of renaming must be used to ensure that names used in di�erent
ontologies are distinct. This can be accomplished by simply appending an ontology unique string to each
name. Then for each parent category P speci�ed for some category C, we have a statement of the form:

17

P(x) :- C(X).

and for each inference rule we similarly have it's Prolog equivalent, although SHOE inference rules with n

clauses in the <IF-THEN> section will actually have n statements, one with each clause at the head. Each
category or relation assertion made by an instance adds a ground atom to the program. If we wish to attach
sources to assertions then we must add an additional argument to each of the atoms to indicate its source.

In practice a compiled XSB program representing some set of SHOE data loads quickly and will return
answers to queries in a reasonable amount of time. For example, a 50,000 line program loads in 20 seconds
and answers many common queries in less than a second. However, since the information available to a web
agent will be ever-changing, we cannot expect to have pre-compiled programs for many applications.

4.1.2 Parka

Parka is a high-performance knowledge base system developed at the University of Maryland, and is capable
of performing complex queries over very large knowledge bases in less than a second [39]. For example,
when used with a Uni�ed Medical Language System (UMLS) knowledge base consisting of almost 2 million
assertions, Parka was able to execute typical recognition queries in under 2 seconds. In practice, a Parka
knowledge base loads more quickly than an equivalent XSB program and the system has a faster query
response time. Like SHOE, Parka uses categories, instances, and n-ary predicates. Parka's basic inference
mechanisms are transitive category membership and inheritance.

Parka includes a built-in subcategory relation between categories (isa) and a categorization relation
between a category and an instance (instanceof). Parka also includes a predicate for partial string matching,
and a number of comparison predicates. One of Parka's strong suits is that it can work on top of SQL
relational database systems, taking advantage of their transaction guarantees while still performing very fast
queries.

Parka can support many of SHOE's semantics directly; SHOE's subcategory inference maps to Parka's
isa relation, and SHOE's categorization of instances maps to Parka's instanceof relation. Parka does not have
general inferential capabilities, and thus cannot support SHOE's inference rules. However, its ability to
perform categorization and generalization over large taxonomies supports the most common type of SHOE
inference. If additional SHOE inference rules are important to an agent, they must be implemented using an
inference engine that interfaces with the Parka KB, although how to do this e�ciently is an open research
question.

4.1.3 Relational Database Management Systems

Lastly, we consider commercial relational database management systems (RDBMSs) because they have been
designed to e�ciently answer queries over large databases. However, this e�ciency comes at a cost: there is

no way to explicitly specify inference.
Still, mapping of much of SHOE is possible in an RDBMS. Each n-ary SHOE relation can be represented

by a database relation with n attributes. Categories can be represented by a binary relation isa. Even
certain types of inference rules can be implmented in RDBMSs. As described by Ullman [40], for any set
of safe, non-recursive Datalog rules with strati�ed negation, there exists an expression in relational algebra
that computes a relation for each predicate in the set of rules. Although the semantics of SHOE are safe
and include no negation, SHOE rules can be recursive and therefore, some but not all, of the rules could
be implemented using views. Additionally, some commercial RDBMSs include operators to compute the
transitive closure of a relation (e.g., the CONNECT WITH option in the Oracle SELECT operator). More
complex dependencies must either be ignored or implemented in a procedural host language.

4.2 System Design Issues

There are a number of choices that must be made in designing a SHOE system. These choices can be divided
into the categories of ontology design, annotation, accessing information, and information processing. In this
section, we provide an overview of each of these areas.

18

4.2.1 Ontology Design

Ontology design can be a time consuming process and is the subject of extensive research which is beyond
the scope of this paper. It is believed that an ontology designer can save time and increase interoperability
with other domains by identifying a set of existing ontologies that can be extended for his use. To assist the
designer, there should be a central repository of ontologies. A simple repository could be a set of web pages
that categorize ontologies, while a more complex repository may associate a number of characteristics with
each ontology so that speci�c searches can be issued. A web-based system that uses the later approach is
described in [41].

Another aspect of ontology creation is the availability of the ontology. Internet delays, especially over
long distances, can result in slow downloads of ontologies. To remedy this, commonly used ontologies can
be mirrored by many sites. To use the most accessible copy of an ontology, users should be able to specify
preferred locations for accessing particular ontologies. In this way, the URL �eld in the <USE-ONTOLOGY>

tag is only meant as a recommendation.
Some ontologies may be proprietary and thus placing them on the Web is undesirable. Such ontologies

could be maintained on an intranet, assuming that is where the annotated information is stored too. In
general, if the SHOE instances that use an ontology are available to a user, the ontology should also be
available, so that SHOE-enabled software can appropriately interpret the instances.

4.2.2 Annotation

Annotation is the process of adding SHOE semantic tags to web pages. This can be the biggest bottleneck in
making SHOE available. How to go about this process depends on the domain and the resources available.
If no SHOE tools are available, then annotations can be made using a simple text editor. However, this
requires familiarity with the SHOE speci�cation and is prone to error. Therefore, we have provided the
Knowledge Annotator, a graphical tool that allows users to add annotations by choosing items from lists
and �lling in forms. The Knowledge Annotator is described in more detail in Section 4.4.3.

If there are many many pages to annotate, it may be useful to �nd other methods to insert SHOE into
them. Large organizations that produce data on a regular basis often create web pages from the content
of databases using scripts. In such situations, these scripts can be easily modi�ed to include SHOE tags.
In other cases, there may be a regular format to the data, and a short program can be written to extract
relations and categories based on pattern matching techniques. Finally, NLP techniques have had success
in narrow domains, and if an appropriate tool exists that works on the document collection, then it can be
used to create statements that can be translated to SHOE. It should be mentioned that even if such an NLP
tool is available, it is advantageous to annotate the documents with SHOE because this gives humans the
opportunity to correct mistakes and allows query systems to use the information without having to reparse
the text.

4.3 Accessing Information

Once SHOE ontologies and instances are available on the Web, SHOE agents and search engines must be
able to access this information. There are two basic approaches: direct access and repository-based access.
In the direct access approach, the software makes an HTTP request to the relevant web page or pages and
extracts the SHOE markup. The advantage of this approach is that extracted knowledge is guaranteed to be
current. However, the latency in internet connections means that this approach cannot be realistically used
in situations where many pages must be searched. Therefore, it is best used to respond to speci�c, localized
queries, where incomplete answers are expected. It may also be used to supplement ordinary browsing with
additional semantic information about pages in the neighborhood of a selected page.

The repository-based access approach relies on a web-crawler to gather SHOE information and cache it
in a central location, which is similar to the way contemporary search engines work. Certain constraints may
be placed on such a system, such as to only visit certain hosts, only collect information regarding a particular
ontology, or to answer a speci�c query. Queries are then issued to the repository, rather than the the Web at
large. The chief advantage of the this approach is that accessing a local KB is much faster than loading web
pages, and thus a complete search can be accomplished in less time. However, since a web-crawler can only
process information so quickly, there is a tradeo� between coverage of the Web and freshness of the data.

19

If the system revisits pages frequently, then there is less time for discovering new pages. Expos�e, which is
discussed in Section 4.4.4, is a SHOE web-crawler that enables the repository-based access approach.

4.3.1 Information Processing

Ultimately, the goal of a SHOE system is to process the data in some way. This information may be used
by an intelligent web agent in the course of performing its tasks or it may be used to help a user locate
useful documents. In the later case, the system may either respond to a direct query or the user may create
a standing query that the system responds to periodically with information based on its gathering e�orts.

As discussed in Section 4.1, this processing will need a component that stores the knowledge that has
been discovered and allows queries to be issued against that knowledge. This tool should have an API that
allows various user interfaces, both general and domain speci�c, to use the knowledge.

4.4 Existing Tools

To support the implementation of SHOE we have developed a number of general purpose tools. These tools
are coded in Java and thus allow the development of platform independent applications and applets that can
be deployed over the Web. Since Java is an object-oriented language, we will describe the design of these
tools using object-oriented terminology. Speci�cally, we will use the term class to refer to a collection of
data and methods that operate on that data and object to refer to an instantiation of a class. Additionally,
the term package is used to identify a collection of Java classes.

4.4.1 The SHOE Library

The SHOE library is a Java package that can be used by other programs to parse �les containing SHOE, write
SHOE to �les, and perform simple manipulations on various elements of the language. The emphasis is on
KB independence, although these classes can easily be used with a KB API to store the SHOE information
in a KB. The central class is one that represents a SHOE document and can be initialized using a �le or
internet resource. The document is stored in such a way that the structure and the format is preserved,
while e�cient access to and updating of the SHOE tags within the document is still possible. A SHOE
document object may contain many instance or ontology objects. Since SHOE is order independent but the
interpretation of some tags may depend on others in the same document, the document must be validated
in two steps. The �rst step ensures that it is syntactically correct and creates the appropriate structures
for each document component. The second step ensures that the SHOE structures are internally consistent
with themselves and with the ontologies that they depend on.

In addition to having classes for instances and ontologies, there are classes that correspond to each of
the other SHOE tags. These classes all have a common ancestor and include methods for reading and
interpreting tags contained within them, modifying properties or components and validating that the object
is consistent with the rules of the language. Each class uses data structures and methods that are optimized
for the most common accesses to it. For example, the ontology class includes a hash table for quick reference
to its elements by name. It also keeps track of the most abstract categories that it de�nes so these can be
used as root nodes for trees that describe the taxonomic structure of the ontology.

An ontology manager class is used to cache ontologies. This is important because ontology information
is used frequently and it is more e�cient to access this information from memory than to access it from
disk, or even worse, the Web. However, there may be too many ontologies to store them all in memory, and
therefore a cache is appropriate. One of the most important features of this class is a method which resolves
pre�xed names. In other words, it determines precisely which ontology element is being referred to. This is
non-trivial because pre�x chains can result in lookups in a series of ontologies and objects can be renamed in
certain ontologies. When objects that contain such pre�xed names are validated, the names are resolved into
an identi�er that consists of the id and version of the ontology that originated the object and the name of
the object within that ontology. This identi�er is stored within the object to prevent unnecessary repetition
of the pre�x resolution process.

20

Figure 5: The Knowledge Annotator

4.4.2 The SHOE KB Library

The SHOE KB library is a Java package that provides a generic API for storing SHOE data and accessing
a query engine. Applications that use this API can be easily modi�ed to use a di�erent reasoning system,
thus allowing them to execute in a di�erence portion of the completeness / execution time tradeo� space.
We have currently implemented versions of this API for Parka, XSB, and OKBC [11].

ShoeKb, the main class of the SHOE KB Library API contains methods for storing ontologies, storing
SHOE document data and issuing queries. This class is supported by a KBInterface class which is loosely
based on a restricted version of OKBC. Additional supporting classes include Sentence, Atom, Query, and
Axiom objects.

In SHOE's formal semantics, we stated that if an instance appears in an argument of a relation which
is not of the base type, then we automatically infer that the instance is of the required type, rather than
perform type checking. This can result in the addition of a large number of rules to the KB. To avoid this,
we treat such situations as if the source has made an implicit category assertion: we store an assertion that
the instance is of the required category.

4.4.3 Knowledge Annotator

The Knowledge Annotator is a tool that makes it easy to add SHOE knowledge to web pages by making
selections and �lling in forms. As can be seen in Figure 5, the tool has an interface that displays instances,
ontologies, and claims. Users can add, edit or remove any of these objects. When creating a new object, users
are prompted for the necessary information. In the case of claims, a user can choose the source ontology from
a list, and then choose categories or relations from a corresponding list. By default, the available relations
will automatically �lter based upon whether the instances entered are known to be of the correct types for
the argument positions. Of course, since SHOE will infer a type from the use of an instance in a relation,
this can be overriden. A variety of methods can be used to view the knowledge in the document. These
include a view of the source HTML, a logical notation view, and a view that organizes claims by subject and
describes them using simple English. In addition to prompting the user for inputs, the tool performs error

21

checking to ensure correctness6 and converts the inputs into legal SHOE syntax. For these reasons, only a
rudimentary understanding of SHOE is necessary to markup web pages.

4.4.4 Expos�e

After SHOE content has been created, whether by the Knowledge Annotator or other tools, it can be accessed
by Expos�e, a web-crawler that searches for web pages with SHOE markup. Expos�e stores the knowledge it
gathers in a knowledge base, and thus can be used as part of a repository-based system. The web-crawler is
initialized by specifying a starting URL, a repository, and a set of constraints on which web sites or directories
it may visit. These constraints allow the search to focus on sources of information that are known to be of
high quality and can be used to keep the agent from accumulating more information than the knowledge
base can handle. Expos�e can either build a new repository of SHOE information or revisit a set of web pages
to refresh an existing repository.

A web-crawler essentially performs a graph traversal where the nodes are web pages and the arcs are the
hypertext links between them. Expos�e maintains an open list of URLs to visit, and a closed list of URLs
that have already been visited. When visiting web pages, it follows standard web robot etiquette by not
requesting pages that have been disallowed by a server's robot.txt �le and by waiting 30 seconds between
page requests, so as not to overload a server.

Upon discovering a new URL, Expos�e assigns it a cost and uses this cost to determine where it will be
placed in a queue of URLs to be visited. In this way, the cost function determines the order of the traversal.
We assume that SHOE pages will tend to be localized and interconnected. For this reason, we currently use
a cost function which increases with distance from the start node, where paths through non-SHOE pages
are more expensive than those through SHOE pages and paths that stay within the same directory on the
same server are cheaper than those that do not.

When Expos�e loads a web page, it parses it using the SHOE library, identi�es all of the hypertext links,
category instances, and relation arguments within the page, and evaluates each new URL as above. Finally,
the agent uses the SHOE KB Library API to store SHOE category and relation assertion in a speci�ed
knowledge base.

4.4.5 SHOE Search

SHOE Search [22] is a tool used to query the information that had been loaded into a SHOE KB. This
interface, which is shown in Figure 6, gives users a new way to browse the web by allowing them to submit
structured queries and open documents by clicking on the URLs in the results. The user �rst chooses an
ontology against which the query should be issued and then chooses the class of the desired object from a
hierarchical list. After the system presents a list of all properties that could apply to that object, and the
user has typed in desired values for one or more of these properties, the user issues a query and is presented
with a set of results in a tabular form. If the user double-clicks on a binding that is a URL, then the
corresponding web page will be opened in a new window of the user's web browser.

SHOE Search is primarily used as a Java applet, and as such is executed on the machine of each user
who opens it. This client application communicates with a central knowledge base through a server that
is located on the website that hosts the applet. When a user starts the applet, it sends a message to the
server. The server responds by creating a new process and establishing a socket for communication with the
applet. When the user issues a query, it is sent to the server, which processes it and sends the answers back
to the applet. SHOE Search uses the SHOE KB Library and consequently supports the use of Parka, XSB,
or OKBC compliant knowledge bases as a backend, although it can be tailored for use with other knowledge
representation systems.

5 How SHOE Can Be Used: Two Applications

We have prototyped two applications to demonstrate the usefulness and capabilities of SHOE. The �rst was
an internal application to initially validate the concept and the second was developed for an outside party

6Here correctness is in respect to SHOE's syntax and semantics. The Knowledge Annotator cannot verify if the user's inputs

properly describe the page.

22

Figure 6: SHOE Search

to solve a real-world problem. We describe each of these applications and then provide some lessons learned
from their development.

5.1 A Computer Science Department Application

The �rst application was developed as a proof of concept of the language. We chose the domain of computer
science departments because it is simple and familiar to researchers interested in internet technology. We
wanted to evaluate the ease of adding SHOE to web pages, the types of queries that could be constructed,
and the performance of SHOE queries in a simple environment. The basic architecture, as shown in Figure
7, consists of annotating web pages using the Knowledge Annotator or some other tool, using Expos�e to
discover knowledge, and using a graphical Java applet to query the knowledge base that stores the knowledge.

The �rst step was to create a simple computer science department ontology that extends the base SHOE
ontology. Some of the categories de�ned were Student, Faculty, Course, Department, Publication and Research.
Relations such as publicationAuthor, emailAddress, advisor, and member were also de�ned. The �nal ontology7

had 43 categories and 25 relations and was created by hand. It includes a standard HTML section to present
a human readable description as well as a section with the SHOE syntax. In this way, the �le serves the
purpose of educating users in addition to providing machine understandable semantics.

The next step was to annotate a set of web pages (i.e., add SHOE semantic markup to them). Every
member of the Parallel Understanding Systems (PLUS) Group marked up their own web pages. Although
most members used the Knowledge Annotator, a few added the tags using their favorite text editors.

To get even more SHOE information about computer science departments, we looked for web pages with
semi-regular structure. Most departments had lists of faculty, users, courses and research groups which �t
this criteria. We extracted SHOE tags from this data by specifying patterns in the HTML source that
marked the beginning and ends of instances that participated in relations or could be categorized according
to our ontology. The resulting tags were added to the summary pages mentioned above. We also created
a tool that could extract publication information from CiteSeer (http://citeseer.nj.nec.com/cs), an index of
on-line computer science publications.

Expos�e was used to acquire the SHOE knowledge from the web pages. This resulted in a total of

7This ontology is located at http://www.cs.umd.edu/projects/plus/SHOE/onts/cs1.0.html

23

Annotator
Knowledge Text

Editor
SHOE
Search

Domain
Interfaces

Web Pages

Annotation User Interfaces

Expose KB

Figure 7: The SHOE Architecture

38,159 assertions, which were then stored in Parka. Although the KB for this demo is very small when
compared to the scale of the entire Web, the initial results are promising. For example, a query of the form
member(http://www.cs.umd.edu, x) ^ instance(Faculty, x) takes less than 250 milliseconds to answer.

Although Parka possesses most of the features required for a system to implement the full SHOE seman-
tics, as mentioned in Section 4.1.2, it still lacks the ability to do arbitrary inference. Therefore, we also used
Expos�e to load an XSB database with the same data and perform queries. Queries to XSB were slower than
those sent to Parka, but the response time was still generally in the range of a few seconds. Future work will
involve a thorough performance evaluation using much larger knowledge bases and an evaluation of what
percentage of the complete results are returned by Parka for typical real-world queries.

As this example demonstrates, there are many possible means of acquiring SHOE information. Here, text
editors, a GUI, and custom pattern extraction tools were all used to encode the knowledge. This allowed
the development of a signi�cant number of SHOE assertions in days. By combining the ability to annotate
one's own pages with the ability to make assertions about the content of other web pages, SHOE allows the
e�orts of information providers and professional indexers to be combined.

The possible bene�ts of a system such as this one are numerous. A prospective student could use it
to inquire about universities that o�ered a particular class or performed research in certain areas. Or a
researcher could design an agent to search for articles on a particular subject, whose authors are members
of a particular set of institutions, and were published during some desired time interval. Additionally,
SHOE can combine the information contained in multiple sources to answer a single query. For example, to
answer the query \Find all papers about ontologies written by authors who are faculty members at public
universities in the state of Maryland" one would need information from university home pages, faculty listing
pages, and publication pages for individual faculty members. Such a query would be impossible for current
search engines because they rank each page based upon how many of the query terms it contains.

5.2 A Food Safety Application

The Joint Institute for Food Safety and Applied Nutrition (JIFSAN), a partnership between the Food and
Drug Administration (FDA) and the University of Maryland, is working to expand the knowledge and
resources available to support risk analysis in the food safety area. One of their goals is to develop a website
that will serve as a clearinghouse of information about food safety risks. This website must serve a diverse
group of users, including researchers, policy makers, risk assessors, and the general public, and thus must

24

Figure 8: The TSE Path Analyzer

be able to respond to queries where terminology, complexity and speci�city may vary greatly. This is not
possible with keyword based indices, but can be achieved using SHOE. This section discusses our experiences
using SHOE to support the TSE Risk Website, the �rst step in building a food safety clearinghouse.

In order to scope the project, JIFSAN decided to focus the SHOE e�ort on a speci�c issue of food
safety. The chosen issue was Transmissible Spongiform Encephalopathies (TSEs), which are brain diseases
that cause sponge-like abnormalities in brain cells. \Mad Cow Disease," which is technically known as
Bovine Spongiform Encephalopathy (BSE), is the most notorious TSE, mainly because of its apparent link
to Creutzfeldt-Jakob disease (CJD) in humans. Recent Mad Cow Disease epidemics and concerns about the
risks BSE poses to humans continue to spawn international interest on the topic.

The initial TSE ontology was
eshed out in a series of meetings that included members of the FDA and
the Maryland Veterinarian School. The ontology focused on the three main concerns for TSE Risks: source
material, processing, and end-product use. Currently, the ontology has 73 categories and 88 relations.8 In
addition to speci�c TSE concepts such as Disease and Risk, general terms such as Person, Organization, Process,
Event, and Location were de�ned. Twelve of the relations have three or more arguments, indicating the
usefulness of n-ary relations. One reason for the need of n-ary relations is that scienti�c data tends to have
many parameters. For example, the infectivityTitre relation measures the degree of infectivity in a tissue given
a disease, source animal, and tissue type.

Following the creation of the initial ontology, the team annotated web pages. There are two types of
pages that this system uses. Since the Web currently has little information on animalmaterial processing, we
created a set of pages describing many important source materials, processes and products. The second set
of pages are existing TSE pages that provide general descriptions of the disease, make recommendations or
regulations, and present experimental results. Early annotations were di�cult because the original ontology
did not have all of the concepts that were needed.

When the initial set of pages was completed, we ran Expos�e, using Parka as the knowledge base system.
Since the TSE Ontology currently does not de�ne inference rules, Parka is able to provide a complete

8Those interested in the details of the ontology can view it at http://www.cs.umd.edu/projects/plus/SHOE/onts/tseont.html

25

reasoning capability for it. The Parka KB can be queried using SHOE Search as discussed earlier, but
JIFSAN also wanted a special purpose tool to help users visualize and understand the processing of animal
materials.

To accommodate this, we built the TSE Path Analyzer, a graphical tool that can be used to analyze how
source materials end up in products that are eventually consumed by humans or animals. This information
is extremely valuable when trying to determine the risk of contamination given the chance that a source
material is contaminated. It is expected that information on each step in the process will be provided
on di�erent web sites (since many steps are performed by di�erent companies), thus using a language like
SHOE is essential to integrating this information. The TSE Path Analyzer allows the user to pick a source,
process and/or end product from lists that are derived from the taxonomies of the ontology. The system
then displays all possible pathways that match the query; an example is shown in Figure 8. Since these
displays are created dynamically based on the semantic information in the SHOE web pages, they are kept
current automatically, even when the SHOE information on some remote site is changed.

We are still testing the system and gradually accumulating the mass of annotated web pages that is
necessary to make it really useful. When it is publicly released, the system's operation will be as follows:

1. Knowledge providers who wish to make material available to the TSE Risk Website use the Knowledge
Annotator or other tools to add SHOE markup their pages. The instances within these pages are
described using elements from the TSE Ontology.

2. The knowledge providers then place the pages on the Web and notify JIFSAN.

3. JIFSAN reviews the site and if it meets their standards, adds it to the list of sites that Expos�e, the
SHOE web-crawler, is allowed to visit.

4. Expos�e crawls along the selected sites, searching for more SHOE annotated pages with relevant TSE
information. It will also look for updates to pages.

5. SHOE knowledge discovered by Expos�e is loaded into a Parka knowledge base. Alternate KBs may be
added later.

6. Java applets on the TSE Risk Website access the knowledge base to respond to users' queries or update
displays. These applets include the TSE Path Analyzer and SHOE Search.

It is important to note that new websites with TSE information will be forced to register with JIFSAN.
This makes Expos�e's search more productive and allows JIFSAN to maintain a level of quality over the data
they present from their website. However, this does not restrict the ability of approved sites to get current
information indexed. Once a site is registered, it is considered trusted and Expos�e will revisit it periodically.

5.3 Lessons Learned

While formally evaluating the methodologies and processes described above is di�cult, the process has taught
us some valuable lessons.

The knowledge engineering aspects of the TSE application were much more di�cult than those of CS
department application. We believe the main reason for this is that the problem had ill-de�ned boundaries.
In an attempt to describe an ontology to the best detail possible, it is easy to lose sight of the original intent
of the ontology. As a result, we have developed the following guidelines for determining the scope of the
ontology:

� What kind of pages will be annotated?

� What sorts of queries can the pages be used to answer?

� Who will be the users of the pages?

� What kinds of objects are of interest to these users?

� What are the interesting relationships between these objects?

26

During the annotation process, we found it helpful to have guidelines for identifying what concepts to
annotate. Based on our experiences with this application, we make the following suggestions. First, if the
document represents or describes a real world object then an instance whose key is the document's URL
should be created. Second, hyperlinks are often signs that there is some relation between the object in the
document and another object represented by the hyperlinked URL. If a hyperlinked document does not have
SHOE annotations, it may also be useful to make assertions about its object. Third, one can create an
instance for every proper noun, although in large documents this may be excessive. If these concepts have a
web presence, then the corresponding URLs should be used as keys, otherwise a unique key can be created
by appending a \#" and a unique string to the end of the annotated document's URL.

However, even with these guidelines, the annotation process was more di�cult for the TSE application.
Although this is partly because no annotators were both AI researchers and domain experts, we believe the
main di�culty was due to the di�erence in the data. In the computer science application, each instance of
the major concepts (e.g., department, course, professor, publication) typically has its own home page. These
pages often have a form or list-based look and feel that can easily be mapped into predicates or a frame
system. The content of TSE pages on the other hand mostly consists of free text documents that refer to
shared entities such as BSE or the North American continent. As such, determining the relevant relations
required much more e�ort and choosing a single URL as a key was di�cult. In the later case, we created
constants in the ontology to represent the shared objects, although we are investigating better alternatives.

Annotators of TSE pages also had di�culty in determining the level of detail that is required. Although
more detailed information increases the likelihood that a page will be returned to a precise query that
matches its contents, adding such annotations is a time consuming process and certain details are likely to
never be of use to anyone. The following guidelines can be helpful in making these decisions:

� The utility of a page can be considered from a search perspective. If some of the information consumers
are available, they can be asked to make a list of the most important questions that the page can be
used to answer. The information provider can translate these questions into SHOE queries and make
sure that the categories and relations in those queries are correctly speci�ed in the page.

� A summary of the document should contain the important concepts of the document. If a summary is
available, it helps the knowledge provider to clearly understand the value of the document.

� If the document author is available, he or she can be asked to identify the key or novel statements
made by the document. Comparison of the nouns and verbs in these statements to the ontology can
be used to discover useful assertions.

Besides learning the need for annotation and ontology design guidelines, we learned that web users are
often willing to sacri�ce power for simplicity. When we demoed SHOE at a TSE conference, we found that
most users were much more impressed with the Path Analyzer than with tools like SHOE Search that allowed
a wider range of possible queries. They cited the fact that it was easier to learn and that it displayed the
results in a customized way that allowed them to explore the problems of interest to them.

6 Future Work

So far we have described the requirements for an internet knowledge representation language, described one
such language and then analyzed the language by using it in various applications. This initial work shows
much promise, but there is still much work to do. Future work can be divided into three areas of research:
addressing performance issues, enhancing functionality of the language, and improving the usability of the
language and tools. Each of these areas is discussed in one of the following subsections.

6.1 Performance

One of the most critical components in a SHOE system is the underlying knowledge representation system.
To deal with the quantity of information available on the Web, such a system must strike a balance between
scalability and complete reasoning. As we discussed in Section 4.1, there are many possible candidate
back-end systems. For example, a deductive database can support the full semantics of SHOE, but there

27

will be performance tradeo�s. On the other hand, relational database management systems can provide
performance gains but at the cost of no inference. We envision a Web in which SHOE search engines
di�erentiate themselves by the degree of inference supported and the size of the underlying KB (which
depends on whether the engine is general purpose or domain speci�c). Each of these systems can be thought
of as providing an alternate perspective for the data sources, and the choice of which is best depends on the
priorities of the user. To help in such decisions, we will measure the costs and bene�ts of di�erent types of
KR systems by varying the size of the KB, the complexity of the inference rules, and the types of queries.

Due to the changing nature of the Web, another important performance issue is the freshness of the data.
When a web-crawler is used as we have done in our demonstrations, the data is only as current as the last
time the crawler was able to visit the pages. While this may be su�cient for a basic search application, it
could be problematic for a comparison shopping agent. In the later case, an on-line search agent would be
more applicable, but di�cult issues must be addressed to make such agents work. For example, the agent
must be able to choose a good starting point for a particular search and then must use its knowledge to help
it traverse the Web and locate the requested information e�ciently.

6.2 Functionality

Although we have initially restricted the SHOE language to reduce computational complexity and make it
easier to learn, our experiences have led us to consider a number of enhancements. In particular, additional
features may further address the issues of trust in sources, inconsistency and interoperability.

Due to reliability considerations of a source and potential inconsistencies between sources, the issue of
trust becomes important. Trust can be very subjective, and two individuals may disagree on whether a
particular source is reliable. Since the formal model described in Section 3.3 de�nes a perspective as a data
source viewed in the context of an ontology, a user could create a perspective that restricts the data source
to those web pages which are considered reliable by him or her. However, this is a simplistic notion of
trust because a source may be reliable only on certain subject matter, reliability may depend on supporting
evidence, or di�ering degrees of belief could be considered. A solution to the �rst two problems is to create
special ontologies that provide belief systems using sets of rules that �lter out assertions which may be
suspect. Such ontologies will require special SHOE relations such as claims(x; c), which is true if x is the
source of claim c, and believe(c), which is true if the agent should believe claim c. On the other hand,
the varying degrees of belief could be accommodated by allowing a user to de�ne a special function for
propagating belief from antecedents to consequents.

Although SHOE avoids contradictions by disallowing logical negation and constraints such as single-
valued relations, such constructs are very useful in validating and evaluating data that is discovered. For
this reason we are considering the addition of some limited constraints to the language, but in a distributed
system a constraint may only apply from a particular perspective or the violation of a constraint may be due
to bad data that was discovered earlier. As such, a constraint should not prevent data from being included
in the KB, instead it should be used as a �lter at query time that results in a warning or lowering of the
belief in a particular claim. For example, the more constraints that some datum violates, the less likely that
we would be to believe it.

Due to the distributed nature of SHOE ontologies, the need to convert between di�erent measurement
units is inevitable. One way to achieve this is to allow arithmetic functions in inference rules. However, if
an arithmetic function is used recursively in a rule, inference procedures may never terminate. Other types
of conversions may also be necessary, and arbitrary functions should be considered. Since the de�nition of
an arbitrary function would require a much more complex language, an alternative may be the speci�cation
of a remote procedure call.

Although, SHOE takes an open-world approach, there are many useful queries and actions that cannot be
performed by web agents without closed-world information. Localized closed-world (LCW) statements [16]
are a promising step in this direction. LCW statements can be used to state that the given source has all of
the information on a given topic. LCW statements are more appropriate for the Web than the closed-world
assumption, but there is still a question as to how a query system acquires the set of LCW statements that
could be relevant. One possible extension to SHOE is to allow LCW statements to be expressed in the
language.

28

6.3 Usability

Usability is too often overlooked, but is essential for success on the Web. Most users do not have the time
or desire to learn complicated tools or languages. To evaluate the system's usability, we must ask questions
such as: How easy is it to annotate pages? How long does it take to annotate a page? How user-friendly are
the tools? Is the process intuitive?

The knowledge acquisition bottleneck has caused many knowledge based approaches to fail. SHOE hopes
to overcome this problem by getting the largest possible number of individuals involved in the knowledge
acquisition process by way of annotation. For such an approach to work, we must make the process simple
and straightforward for the layperson. We are actively working with our users to determine what interfaces
are the most intuitive. Certainly, the ultimate annotation process would be fully automatic, but due to
limitations of NLP in general domains, this goal is currently unrealistic. However, a semi-automatic method
that incorporated ideas from NLP or machine learning may simplify the the process for the user.

It is well known that ontology development is a di�cult task. To keep up with the changing nature of
the Web, it is important that good ontologies can be designed quickly. To this end, we intend to create a set
of tools and methods to help in the design process. First, we plan to create an ontology design tool which is
the ontology equivalent of the Knowledge Annotator. Second, we will design a library of SHOE ontologies,
so that ontology authors can use SHOE's extension mechanism to reuse existing components and focus on
the fundamental issues of their ontologies. To initialize our library, we can make use of publicly available
ontologies such as those found on the Ontolingua Server [18]. We will write translation tools to and from
the most common ontology formats. Third, we will try to identify how, if at all Web ontology design should
di�er from traditional ontology design. For example, we believe that SHOE ontologies will be used mostly
to categorize information and �nd simple relationships. As such, extremely detailed ontologies may not be
necessary.

7 Related Work

In recent years, there has been work to use ontologies to help machines process and understand Web doc-
uments. Fensel et al. [19] have developed Ontobroker, which proposes minor extensions to the common
anchor tag in HTML. The theoretical basis for Ontobroker is frame logic, a superset of Horn logic that treats
ontology objects as �rst class citizens. However, this approach depends on a centralized broker, and as a
result, the web pages cannot specify that they reference a particular ontology, and agents from outside the
community cannot discover the ontology information. Kent [26] has designed the Ontology Markup Lan-
guage (OML) and the Conceptual Knowledge Markup Language (CKML), which were in
uenced by SHOE,
but are based on the theories of formal concept analysis and information
ow. However, the complexity of
these theories make it unlikely that this language will be accepted by the majority of existing web developers
and/or users. The Ontology Interchange Language (OIL) [14] is a new web ontology language that extends
RDF and RDF Schema with description logic capabilities. More recently, the DARPA Agent Markup Lan-
gauge (DAML) [23] has attempted to combine the best features of SHOE, RDF, and OIL. Jannink et al. [25]
suggest a di�erent approach from creating web ontology languages and annotating pages; they propose that
an ontology should be built for each data source, and generalization is accomplished by integrating these
data sources. In this way, the data dictates the structure of the ontology rather than the other way around.

Querying the Web is such an important problem that a diverse body of research has be directed towards
it. Some projects focus on creating query languages for the Web [1, 27], but these approaches are limited to
queries concerning the HTML structure of the document and the hypertext links. They also rely on index
servers such as AltaVista or Lycos to search for words or phrases, and thus su�er from the limitations of
keyword search. Work on semistructured databases [33] is of great signi�cance to querying and processing
XML, but the semistructured model su�ers the same interoperability problems as XML. Even techniques
such as data guides will be of little use when integrating information developed by di�erent communities
in di�erent contexts. Another approach involves mediators (or wrappers), custom software that serves as
an interface between middleware and a data source [42, 35, 37]. When applied to the Web, wrappers allow
users to query a page's contents as if it was a database. However, the heterogeneity of the Web requires that
a multitude of custom wrappers must be developed, and it is possible that important relationships cannot
be extracted from the text based solely on the structure of the document. Semi-automatic generation of

29

wrappers [2] is a promising approach to overcoming the �rst problem, but is limited to data that has a
recognizable structure.

In order to avoid the overhead of annotating pages or writing wrappers, some researchers have proposed
machine learning techniques. Craven et al. [13] have trained a system to classify web pages and extract
relations from them in accordance with a simple ontology. However, this approach is constrained by the
time-consuming task of developing a training set and has di�culty in classifying certain kinds of pages due
to the lack of similarities between pages in the same class.

8 Conclusion

In this paper, we have described many of the challenges that must be addressed by research on the Semantic
Web and have described SHOE, one of the �rst languages to explictly address these problems. SHOE
provides interoperability in distributed environments through the use of extensible, shared ontologies, the
avoidance of contradictions, and localization of inference rules. It handles the changing nature of the Web
with an ontology versioning scheme that supports backward-compatibility. It takes steps in the direction of
scalability by limiting expressivity and allowing for di�erent levels on inferential support. Finally, since the
Web is an \open-world," SHOE does not allow conclusions to be drawn from lack of information.

To demonstrate SHOE's features, we have described applications that show the use of SHOE. We've
developed a freely available ontology for computer science pages, and we've also worked with biological
epidemiologists to design an ontology for a key food safety area. These applications show that SHOE can
exist on the web, and that tools using SHOE can be built and used. Future work includes an evaluation
of di�erent implementation strategies, enhancements that make the language even more suit to distributed,
dynamic environments, and the development of tools that make the language more user friendly.

Although we believe SHOE is good language that has practical use, we do not mean to suggest that it
solves all of the problems of the Semantic Web. We are at the beginnings of a new and exciting research
�eld and there is still much research to do. As early \pioneers," we hope that our experience with SHOE can
inspire and inform others. A key goal of this project is to raise the issues that are crucial to the development
of the Semantic Web and encourage others to explore them. To this end, we have made SHOE freely available
on the Web, including the Java libraries and our prototype tools. Interested readers are urged to explore
our web pages at http://www.cs.umd.edu/projects/plus/SHOE/ for the full details of the language and the
applications.

Acknowledgments

This work was supported by the Army Research Laboratory under contract number DAAL01-97-K0135
and Air Force Research Laboratory under grant F306029910013.

References

[1] G. Arocena, A. Mendelzon and G. Mihaila, Applications of a Web Query Language, in: Proceedings of
ACM PODS Conference Tuscon, AZ (1997).

[2] N. Ashish and C. Knoblock, Semi-automatic Wrapper Generation for Internet Information Sources, in:
Proceedings of the Second IFCIS Conference on Cooperative Information Systems (CoopIS) Charleston,
SC (1997).

[3] T. Berners-Lee, and D. Connolly, Hypertext Markup Language - 2.0, IETF HTML Working Group, at:
http://www.cs.tu-berlin.de/~ jutta/ht/draft-ietf-html-spec-01.html (1995).

[4] D. Bobrow and T. Winograd, An overview of KRL, a knowledge representation language, Cognitive
Science 1(1) (1977).

[5] P. Borst, J. Benjaminm, B. Wielinga, and H. Akkermans. An Application of Ontology Construction, in:
Proceedings of ECAI'96 Workshop on Ontological Engineering (1996).

30

[6] R. Brachman and J. Schmolze, An overview of the KL-ONE knowledge representation system, Cognitive
Science, 9(2) (1985).

[7] R. Brachman, D. McGuinness, P.F. Patel-Schneider, L. Resnick,and A. Borgida, Living with Classic:
When and how to use a KL-ONE-like language, in: J. Sowa, ed., Explorations in the representation of

knowledge (Morgan-Kaufmann, CA, 1991).

[8] T. Bray, J. Paoli and C. Sperberg-McQueen, Extensible Markup Language (XML), W3C (World Wide
Web Consortium), February 1998, at: http://www.w3.org/TR/1998/REC-xml-19980210.html. (1998)

[9] T. Bray, D. Hollander, and A. Layman, Namespaces in XML, W3C (World Wide Web Consortium),
January 1999, at: http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[10] D. Brickley and R.V. Guha, Resource Description Framework (RDF) Schema Speci�-
cation (Candidate Recommendation), W3C (World-Wide Web Consortium) (2000). (At
http://www.w3.org/TR/2000/CR-rdf-schema-20000327)

[11] V. Chaudhri, A. Farquhar, R. Fikes, P. Karp and J. Rice, OKBC: A Programatic Foundation for
Knowledge Base Interoperbility, in: Proc. of AAAI-98 (AAAI/MIT Press, Menlo Park, CA, 1998)
600-607.

[12] J. Clark, XSL Transformations (XSLT) W3C (World-Wide Web Consortium) (1999). (At
http://www.w3.org/TR/1999/REC-xslt-19991116)

[13] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigram, and S. Slattery, Learning
to Extract Symbolic Knowledge From the World Wide Web, in: Proceedings of the Fifteenth American

Association for Arti�cial Intelligence Conference (AAAI-98) (AAAI/MIT Press, 1998).

[14] S. Decker, D. Fensel , F. van Harmelen , I. Horrocks, S. Melnik , M. Klein, and J. Broekstra, Knowledge
Representation on the Web, in: Proceedings of the 2000 International Workshop on Description Logics

(DL2000) (Aachen, Germany, August 2000).

[15] S. Dobson and V. Burrill, Lightweight Databases, in: Proceedings of the Third International World Wide

Web Conference (special issue of Computer and ISDN Systems) 27(6) (Elsevier Science, Amsterdam,
1995).

[16] O. Etzioni, K. Golden, and D. Weld, Sound and e�cient close-world reasoning for planning,Artif. Intell.
89 (1997) 113-148.

[17] M. Evett, W. Andersen and J. Hendler, Providing Computational E�ective Knowledge Representation
via Massive Parallelism, in: L. Kanal, V. Kumar, H. Kitano, and C. Suttner, eds., Parallel Processing
for Arti�cial Intelligence, (Elsevier Science, Amsterdam, 1993).

[18] A. Farquhar, R. Fikes and J. Rice The Ontolingua Server: A tool for collaborative ontology construction,
International Journal of Human-Computer Studies 46(6) (1997) 707-727.

[19] D. Fensel, S. Decker, M. Erdmann, and R. Studer, Ontobroker: How to enable intelligent access to
the WWW, in: AI and Information Integration, Papers from the 1998 Workshop, Technical Report
WS-98-14 (AAAI Press, Menlo Park, CA, 1998).

[20] M. Gr�uninger. Designing and Evaluating Generic Ontologies, in Proceedings of ECAI'96 Workshop on

Ontological Engineering (1996).

[21] J. He
in, and J. Hendler, Dynamic Ontologies on the Web, in: Proc. of the Seventeenth National

Conference on Arti�cial Intelligence (AAAI-2000) (AAAI/MIT Press, Menlo Park, CA, 2000) 443-449.

[22] J. He
in and J. Hendler, Searching the Web with SHOE, in: Arti�cial Intelligence for Web Search.

Papers from the AAAI Workshop. WS-00-01 (AAAI Press, Menlo Park, CA, 2000) 35-40.

31

[23] J. Hendler and D. McGuinness. The DARPA Agent Markup Language, IEEE Intelligent Systems 15(6)
(2000) 72-73.

[24] ISO (International Organization for Standardization) ISO 8879:1986(E). Information processing { Text

and O�ce Systems { Standard Generalized Markup Language (SGML) (International Organization for
Standardization, Genevea, 1986).

[25] J. Jannink, S. Pichai, D. Verheijen, and G. Wiederhold., G. Encapsulation and Composition of Ontolo-
gies, in: AI and Information Integration, Papers from the 1998 Workshop, Technical Report WS-98-14
(AAAI Press, Menlo Park, CA, 1998) 43-50.

[26] R.E. Kent. Conceptual Knowledge Markup Language: The Central Core, in: Twelfth Workshop on

Knowledge Acquisition, Modeling and Management (1999).

[27] D. Konopnicki and O. Shemueli, W3QS: A Query System for the World Wide Web, in: Proceedings of
the 21st International Conference on Very Large Databases (Zurich, Switzerland, 1995).

[28] O. Lassila, Web Metadata: A Matter of Semantics, IEEE Internet Computing 2(4) (1998) 30-37.

[29] D. Lenat and R. Guha, Building Large Knowledge Based Systems, (Addison-Wesley, MA, 1990).

[30] S. Luke and J. He
in, SHOE 1.01, Proposed Speci�cation, at:
http://www.cs.umd.edu/projects/plus/SHOE/spec.html (2000).

[31] S. Luke, L. Spector, D. Rager, and J. Hendler, Ontology-based Web Agents, in: Proceedings of the First
International Conference on Autonomous Agents (Association of ComputingMachinery, New York, NY,
1997) 59-66.

[32] R. MacGregor, The Evolving Technology of classi�cation-based knowledge representation systems, in:
J. Sowa, ed., Explorations in the representation of knowledge (Morgan-Kaufmann, CA, 1991).

[33] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, Lore: A Database Management
System for Semistructured Data, SIGMOD Record, 26(3) (1997) 54-66.

[34] N. Noy and C. Hafner, C. The State of the Art in Ontology Design. AI Magazine 18(3) (1997) 53-74.

[35] Y. Papakonstantinou, et al., A Query Translation Scheme for Rapid Implementation of Wrappers, in:
Procedeedings of the Conference on Deductive and Object-Oriented Databases(DOOD) Singapore (1995).

[36] D. Ragget, Hypertext Markup Language Speci�cation Version 3.0, W3C (WorldWide Web Consortium),
at: http://www.w3.org/pub/WWW/MarkUp/html3/CoverPage.html (1995).

[37] M. Roth, and P. Schwarz, Don't Scrap It, Wrap It! A Wrapper Architecture for Legacy Data Sources,
in: Proceedings of 23rd International Conference on Very Large Data Bases (1997).

[38] K. Sagonas, T. Swift, and D. S. Warren, XSB as an E�cient Deductive Database Engine, in: R. T.
Snodgrass and M. Winslett, editors, Proc. of the 1994 ACM SIGMOD Int. Conf. on Management of

Data (SIGMOD'94) (1994) 442-453.

[39] K. Sto�el, M. Taylor and J. Hendler, E�cient Management of Very Large Ontologies, in: Proceedings
of American Association for Arti�cial Intelligence Conference (AAAI-97) (AAAI/MIT Press, 1997).

[40] J. Ullman, Principles of Database and Knowledge-Base Systems, (Computer Science Press, MD, 1988).

[41] J. Vega, A. Gomez-Perez, A. Tello, and Helena Pinto, How to Find Suitable Ontologies Using an
Ontology-Based WWW Broker, in: International Work-Conference on Arti�cial and Natural Neural

Networks, IWANN'99, Proceeding, Vol. II, Alicante, Spain (1999) 725-739.

[42] G. Wiederhold, Mediators in the Architecture of Future Information Systems, IEEE Computer 25(3)
(1992).

Appendix

32

A SHOE XML DTD

This appendix provides an XML DTD for SHOE.

<!ELEMENT shoe (ontology | instance)* >

<!-- Since this may be embeded in a document that doesn't have META

elements, the SHOE version number is included as an attribute

of the shoe element. -->

<!ATTLIST shoe

version CDATA #REQUIRED >

<!-- Declarations for ontologies -->

<!ELEMENT ontology (use-ontology | def-category | def-relation |

def-rename | def-inference | def-constant |

def-type)* >

<!ATTLIST ontology

id CDATA #REQUIRED

version CDATA #REQUIRED

description CDATA #IMPLIED

declarators CDATA #IMPLIED

backward-compatible-with CDATA #IMPLIED >

<!ELEMENT use-ontology EMPTY >

<!ATTLIST use-ontology

id CDATA #REQUIRED

version CDATA #REQUIRED

prefix CDATA #REQUIRED

url CDATA #IMPLIED >

<!ELEMENT def-category EMPTY >

<!ATTLIST def-category

name CDATA #REQUIRED

isa CDATA #IMPLIED

description CDATA #IMPLIED

short CDATA #IMPLIED >

<!ELEMENT def-relation (def-arg)* >

<!ATTLIST def-relation

name CDATA #REQUIRED

short CDATA #IMPLIED

description CDATA #IMPLIED >

<!ELEMENT def-arg EMPTY >

<!ATTLIST def-arg

pos CDATA #REQUIRED

type CDATA #REQUIRED

short CDATA #IMPLIED >

<!-- pos must be either an integer, or one of the strings: FROM or TO -->

<!ELEMENT def-rename EMPTY >

<!ATTLIST def-rename

from CDATA #REQUIRED

to CDATA #REQUIRED >

33

<!ELEMENT def-constant EMPTY >

<!ATTLIST def-constant

name CDATA #REQUIRED

category CDATA #IMPLIED >

<!ELEMENT def-type EMPTY >

<!ATTLIST def-type

name CDATA #REQUIRED

description CDATA #IMPLIED

short CDATA #IMPLIED >

<!-- Declarations for inferences -->

<!-- Inferences consist of if and then parts, each of which

can contain multiple relation and category clauses -->

<!ELEMENT def-inference (inf-if, inf-then) >

<!ATTLIST def-inference

description CDATA #IMPLIED >

<!ELEMENT inf-if (category | relation | comparison)+ >

<!ELEMENT inf-then (category | relation)+ >

<!ELEMENT comparison (arg, arg) >

<!ATTLIST comparison

op (equal | notEqual | greaterThan |

greaterThanOrEqual | lessThanOrEqual |

lessThan) #REQUIRED >

<!-- Declarations for instances -->

<!ELEMENT instance (use-ontology | category | relation | instance)* >

<!ATTLIST instance

key CDATA #REQUIRED

delegate-to CDATA #IMPLIED >

<!ELEMENT category EMPTY >

<!ATTLIST category

name CDATA #REQUIRED

for CDATA #IMPLIED

usage (VAR | CONST) "CONST" >

<!-- If VAR is specified for a category that is not within a <def-inference>,

then it is ignored -->

<!ELEMENT relation (arg)* >

<!ATTLIST relation

name CDATA #REQUIRED >

<!ELEMENT arg EMPTY >

<!ATTLIST arg

pos CDATA #REQUIRED

value CDATA #REQUIRED

usage (VAR | CONST) "CONST" >

<!-- pos must be either an integer, or one of the strings: FROM or TO -->

<!-- If VAR is specified for an arg that is not within a <def-inference>,

then it is ignored -->

34

