We can reason about theories, as well as in them. Many natural phenomena can be captured by theories, often by introducing a modality, true just of the theory. Rather than treat these phenomena as the sentences true in this modality, we can treat the entire theory or modality as an object. This point of view was proposed by McCarthy, who proposed calling these reified modalities contexts.

Contexts, viewed as theories or modalities, have structural properties, and associated natural structural operations, such as union and intersection. These structural properties are most naturally captured by an algebra, a set of operations that can be applied to contexts to form new contexts.

We introduce an algebra, reminiscent of relation or dynamic algebra, but which acts on modalities, not relations. This algebra allows us to construct new modalities from simpler modalities. We use the natural correspondence between a modality and the underlying accessibility relation. The operations on modalities are induced by operations on the underlying relations.

Thus we have a larger space of modalities than just those that are explicitly named. We add quantifiers that range over modalities, so that we can state propositions like, ``no context with the property P exists'', or ``all contexts obey Q''. We give an axiomatization of these quantifiers which we show is complete with respect to a natural semantics.