Temporary registration page before publication by Linköping University Electronic Press, series Computer and Information Science
The following article is intended to be published shortly by Linköping University Electronic Press. The present page gives access to the article, but does not provide the guarantees of persistence.

Learning structure and parameters of Stochastic Logic Programs.

Title:Learning structure and parameters of Stochastic Logic Programs.
Authors: Stephen Muggleton
Series:Linköping Electronic Articles in Computer and Information Science
ISSN 1401-9841
Issue:Vol. 7(2002): nr 016
URL: http://www.ep.liu.se/ea/cis/2002/016/

Abstract: Previous papers have studied learning of Stochastic Logic Programs (SLPs) either as a purely parametric estimation problem or separated structure learning and parameter estimation into separate phases. In this paper we consider ways in which both the structure and the parameters of an SLP can be learned simultaneously. The paper assumes an ILP algorithm, such as Progol or FOIL, in which clauses are constructed independently. We derive analytical and numerical methods for efficient computation of the optimal probability parameters for a single clause choice within such a search. An implementation of this approach in Progol4.5 is demonstrated.


Intended publication
Postscript Checksum
Info from authors  
Third-party information  

[About LiEP] [About Checksum validation] [About compression formats]

Editor-in-chief: editor@ep.liu.se
Webmaster: webmaster@ep.liu.se