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In Leitgeb[6] we have shown that certain networks called ‘inhibition nets’ may be
regarded as mechanisms drawing nonmonotonic inferences. The main characteristic
of inhibition nets is that there are not only excitatory connections between nodes
but also inhibitory connections between nodes and excitatory connections. On the
cognitive side, contents of belief are assigned to the patterns of activity in such net-
works, i.e., distributed representation is employed. An inhibition net together with
an interpretation of its net states as belief states is called an ‘interpreted inhibition
net’. The state transitions which lead from an initial activity pattern to a final stable
activity pattern are regarded as nonmonotonic inferences from an initial total belief
to a final plausible belief. The nonmonotonicity of the inferences drawn by interpreted
inhibition nets is due to the effect of inhibitory connections. In [6] it has been proved
that the system CL (introduced by KLM[5], pp.186–189) of nonmonotonic reasoning
is sound and complete with respect to the inferences drawn by interpreted finite hi-
erarchical inhibition nets. In this paper the latter result is extended: we characterize
further classes of interpreted inhibition networks, s.t. each of the cumulative logical
systems studied by KLM[5] may be proved to be sound and complete with respect
to one of the classes. Thus, there is an adequate cognitive network semantics for the
systems C, CL, P, CM, and M of (nonmonotonic) logic. Inhibition nets are at the
same time closely related to (i) logical systems of symbolic nonmonotonic reasoning
in the style of KLM[5], (ii) mechanisms like logic programs or truth maintenance
systems, and (iii) neural networks. We will briefly indicate some connections to logic
programs in our final section 6 (also compare [6], section 6).We omit any discussion
of the relationship between inhibition nets and neural nets (but see [6], section 7 for
such a discussion). One can show that results similar to the ones that we prove for
inhibition nets may also be achieved on the basis of logic programs, or on the basis
of artificial neural networks, as long as a network semantics employing distributed
representation is used. Balkenius&Gärdenfors [1] and Gärdenfors[4] have studied the
relationship between nonmonotonic reasoning and artificial neural networks in a sim-
ilar way, but without stating any formal results. The main motivation of this study
is to show that very simple networks are able to reason according to the rationality
constraints expressed in [5], if distributed representation is employed on the cognitive
side. This might have consequences for our view of natural cognitive agents as non-
monotonic reasoners (see Leitgeb[7]). This paper is a successor to [6] and an extension
of [8], where we have announced the results to be presented without proof and further
discussion.
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1. Inhibition Nets

Inhibition nets are directed graphs with two types of edges: (i) edges between nodes,
and (ii) edges between nodes and edges of type (i):

Definition 1.1. (Inhibition Nets)

1. Let N be a non-empty set (the set of nodes).

2. Let E ⊆ N ×N (the set of excitatory connections).

3. Let I ⊆ N × E (the set of inhibitory connections).

4. Let bias ∈ N be fixed (the bias node).

Then I = 〈N,E, I, bias〉 is an inhibition net(work).

In the following we use ‘m’ and ‘n’ (with or without indices) as variables ranging
over nodes. We will only consider finite inhibition nets.

The nodes may be thought of as formal neurons, the excitatory connections be-
tween nodes as excitatory connections between neurons, and the inhibitory connec-
tions as presynaptic inhibitory connections. By means of the latter, neurons may
inhibit excitatory connections between other neurons without inhibiting the target
neurons of such connections themselves. Inhibition nets differ from usual artificial
neural networks in having (i) no weigths attached to the connections, (ii) no in-
hibitory connections from nodes to other nodes, and, concerning dynamics, (iii) no
continuous activation states for nodes, no weighted input summation within nodes,
and no complex activation functions. On the other hand, if only artificial neural net-
works are considered where the output of a neuron is a binary signal, the dynamics
of a neural network with a fixed set of weights may be shown to coincide with the
dynamics of an inhibition network (see Leitgeb[6], section 7).

The bias node bias is the only node which is active in every state of the network.
Thus we may assume that there is no n ∈ N s.t. n E bias, since excitatory connections
to bias would be without use. In [6] we have concentrated on a particular subclass of
inhibition nets:

Definition 1.2. (Hierarchical Inhibition Nets)
An inhibition net I is hierarchical iff it does not have cycles (where paths are

along excitatory connections, or along inhibitory connections towards the target node
of the inhibited connection).

By an E-path we mean a path in an inhibition net which is along excitatory
connections only.
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In fig.1 you can see a finite hierarchical inhibition net (we abbreviate in the fol-
lowing by ‘FHIN’); we have omitted the bias node graphically since it is assumed to
have no influence on the other nodes in this example. Fig.2 depicts a non-hierarchical
inhibition network:

Example 1.3. Let I1 = 〈N1, E1, I1, bias〉, s.t. N1 = {bias, n1, n2, n3, n4}, n1 E1 n2,
n1 E1 n3, n4 I1 〈n1, n2〉, and there are no other connections.

Fig. 1: I1

Example 1.4. Let I2 = 〈N2, E2, I2, bias〉, s.t. N2 = {bias, n1, n2, n3}, bias E2 n2,
bias E2 n3, n2 E2 n3, n3 E2 n2, n1 I2 〈n2, n3〉, n1 I2 〈n3, n2〉, n2 I2 〈bias, n3〉, n3 I2
〈bias, n2〉, and there are no other connections.

Fig. 2: I2

2. Inhibition Nets as Dynamical Systems

Inhibition nets may be considered as simple dynamical systems. We postulate that the
nodes of inhibition nets have a certain binary state of activity, i.e. they are “on” (1)
or “off” (0). We assume that nets receive external (“sensory”) inputs which dictate
certain nodes to fire independently of the current net state. We allow such inputs to
affect every node in the network and not just the nodes of a distinguished layer of
input nodes.

The internal causal dynamics of inhibition nets is defined by the evolution of states
determined by the input and the topology of the network. The rule governing the state
transitions within inhibition nets is as follows: a node n is excited if and only if (i)
it is directly excited by the input, or (ii) there is an excitatory connection e from a
further node m to n, s.t. m is itself active and e is not inhibited by yet another active
node which is inhibitorily connected to e.

Put formally, this amounts to:
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Definition 2.1. (Dynamics of Inhibition Nets)
Let I = 〈N,E, I, bias〉 be an inhibition net.
Let S = {s |s : N → {0, 1} with s(bias) = 1} be the space of states of the net I

(we omit the reference to I and just use ‘S’ instead of the more adequate ‘SI ’ for
simplicity).

Let s∗ ∈ S be an arbitrary state of I (the “input”):
let Fs∗ : S → S, s.t. for all n ∈ N \ {bias}: Fs∗(s)(n) = 1 iff

1. s∗(n) = 1, or

2. ∃n1 ∈ N (s(n1) = 1, n1 E n,¬∃n2 ∈ N (s(n2) = 1, n2 I 〈n1, n〉)).

Fs∗ is the state transition function given relative to the input s∗ and the net I
(again we omit the reference to I and just say ‘Fs∗ ’ instead of ‘F I

s∗ ’).

If s is a state of I and s(n) = 1, we say that n fires or that n is active (in s). A
set of nodes is called ‘active’ if each of its members is active. We often identify a state
(which is a mapping) with the set of neurons active in the very state: e.g., if we say
that s1 ⊆ s2 we actually mean that for all n ∈ N : if s1(n) = 1 then s2(n) = 1; vice
versa, we often identify sets of neurons with their characteristic functions.

The ‘if’ direction of the clause for Fs∗ above says that if a node is caused to fire,
it indeed fires; the ‘only if’ direction states that a node should only fire if it is also
caused to fire. The inhibition of an excitatory connection is always dominant over
any simultaneous impulse within the very excitatory connection. The bias node fires
in every state s and commits the net to a certain preferred state of minimal energy
which the net always reaches in the case of lacking input.

For each s ∈ S (and each given input s∗ ∈ S) the iterated application of Fs∗

defines a trajectory s, Fs∗(s), F 2
s∗(s) = Fs∗(Fs∗(s)), F 3

s∗(s) = Fs∗(Fs∗(Fs∗(s))),. . . of
states. F k

s∗(s) is the net state at time k given that s has been the initial state at time
0, and given the input s∗ which is considered to be constant for a sufficient amount
of time. 〈S, Fs∗〉 is a discrete dynamical system which is associated with the input
s∗ and the net I. (〈S, Fs∗〉)s∗∈S is a family of discrete dynamical systems associated
with I.

E.g., consider I1: if n1 is the only node that fires at time 0, n2 is caused to fire
at time 1, but if both n1 and n4 fire initially, then n2 does not fire at the next step
due to inhibition. This is going to be the reason for the potential nonmonotonicity of
the inferences drawn by inhibition nets. If {n1} is the constant input for I1, then the
network reaches the stable state {n1, n2, n3}, and this is the only stable state under
the input {n1}; if {n1, n4} is the constant input for I1, then {n1, n3, n4} is the unique
stable state. Here we use the following notion of a stable state:

Definition 2.2. (Stable States)
s is a stable state under input s∗ iff Fs∗(s) = s, i.e. if s is a fixed point of Fs∗ .

The existence of uniquely defined stable states in I1 under arbitrary inputs is a
consequence of the fact that I1 is an FHIN (see Leitgeb[6], p.170):
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Theorem 2.3. (Stability Property for FHINs)
For every FHIN I = 〈N,E, I, bias〉, for every s∗ ∈ S there is exactly one stable

state s of I under the input s∗.

This justifies the following definition:

Definition 2.4. (Closure Operator for FHINs)
For every FHIN I let Cl : S → S, s.t. Cl(s∗) is the unique stable state under input

s∗ (again actually Cl = ClI , but we drop the index ‘I’). Cl is the closure operator of
I, Cl(s∗) is the closure of s∗.

Stable (resonant, equilibrium) states play an excellent role in the literature on
neural networks. Often they are considered to be the “answers” of neural networks to
inputs (“questions”), and this is also our motivation for studying such states. FHINs
do not only possess unique stable states Cl(s∗) for all input s∗, but the states of an
FHIN may also be shown to finally converge to Cl(s∗) under the constant input s∗,
where the selection of the initial state s is irrelevant (see Leitgeb[6], pp.170f):

Theorem 2.5. (Convergence Property for FHINs)
For every FHIN I = 〈N,E, I, bias〉, every input s∗ and every initial state s:
there is an i ∈ N with F i

s∗(s) = Cl(s∗).

Now let us generalize the notion of closure to finite inhibition nets which are not
necessarily hierarchical. Cl(s∗) may be defined as the unique stable state to which
every state converges under the constant input s∗, given there is such a stable state;
otherwise Cl(s∗) is left undefined:

Definition 2.6. (Closure Operator)
For every finite inhibition net I, let Cl : S → S be a partial mapping, s.t. for all

s∗ ∈ S:
if there is a state s′ which is stable under the input s∗, s.t. for all s ∈ S there is

an i ∈ N with F i
s∗(s) = s′, then let Cl(s∗) := s′.

The uniqueness of closure states follows immediately from the properties that we
have postulated for s′, i.e., Cl is well-defined. Closure operators for FHINs are total
by theorems 2.3 and 2.5. But it is easy to see that this is not the case in general:
there are non-hierarchical nets I and inputs s∗, s.t. there is no stable state under s∗.
E.g., there is no closure for {n1} in I2, since the activity states of n2 and n3 oscillate
from being both active to being both inactive and vice versa under the constant input
{n1}; all other states of I2 indeed have closure states. Note that there also exist non-
hierarchical nets I and inputs s∗, s.t. there is more than one stable state under s∗.
If the closure of an input state is defined, every initial state of the network converges
to the closure state, and thus the closure state is only dependent on the fixed input
state and not on some initial state of the network. Later we will exploit this input-
determinedness of closure states in the way that we interpret input as premises of
an inference and closures as their corresponding conclusions; input-determinedness
entails that the conclusions only depend on the premises.

Where it is defined, Cl has the following obvious properties:
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Remark 1. (Properties of Cl)
For every finite inhibition I = 〈N,E, I, bias〉, for every state s which has a closure

state:

1. s ⊆ Cl(s) (Inclusion).

2. Cl(s) = Cl(Cl(s)) (Idempotence).

Due to the presence of inhibitory connections, the state transitions in inhibition
nets are not generally monotonic, i.e. if s1 ⊆ s2 then it does not necessarily fol-
low that also Cl(s1) ⊆ Cl(s2). E.g. in the case of I1 we have {n1} ⊆ {n1, n4} but
Cl({n1}) = {n1, n2, n3} � {n1, n3, n4} = Cl({n1, n4}). As substitutes for monotonic-
ity, the following two weakenings of monotonicity may be proved for those states of
finite inhibition nets which have closure states, and thus in particular for all states
of finite hierarchical inhibition nets (we have proved the latter but not the former in
Leitgeb[6], pp.171f):

Lemma 2.7. (Cumulativity)
For every finite inhibition net I = 〈N,E, I, bias〉, for all states s1, s2 which have

closure states:

if s1 ⊆ s2 ⊆ Cl(s1), then Cl(s1) = Cl(s2).

Proof:

Let s1, s2 ⊆ N have closure states. We show that Fs2(Cl(s1)) = Cl(s1); after
showing that we are done since Fs2(Cl(s2)) = Cl(s2) by the definition of Cl, and thus
it follows from the uniqueness of closure states that Cl(s1) = Cl(s2).

By definition of Fs∗ we have for all n ∈ N \ {bias}:
Fs1(Cl(s1))(n) = 1 iff
s1(n) = 1 or
∃n1 ∈ N (Cl(s1)(n1) = 1, n1 E n,¬∃n2 ∈ N (Cl(s1)(n2) = 1, n2 I 〈n1, n〉))
iff, since Fs1(Cl(s1)) = Cl(s1), Cl(s1)(n) = 1;
thus it follows for all n ∈ N \ {bias}:
Fs2(Cl(s1))(n) = 1 iff, by def of Fs∗ ,
s2(n) = 1 or
∃n1 ∈ N (Cl(s1)(n1) = 1, n1 E n,¬∃n2 ∈ N (Cl(s1)(n2) = 1, n2 I 〈n1, n〉))
iff, since s2 = s1 ∪ s2,
s1(n) = 1 or s2(n) = 1 or
∃n1 ∈ N (Cl(s1)(n1) = 1, n1 E n,¬∃n2 ∈ N (Cl(s1)(n2) = 1, n2 I 〈n1, n〉))
iff, because of what we have shown for Fs1(Cl(s1)) above,
s2(n) = 1 or Cl(s1)(n) = 1 iff, because Cl(s1) ⊇ s2,
Cl(s1)(n) = 1.
So we have Fs2(Cl(s1)) = Cl(s1) as claimed above. �

In the case of FHINs we can add (see Leitgeb[6], pp.172f):
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Lemma 2.8. (Loop for FHINs)
For every FHIN I = 〈N,E, I, bias〉, for all states s0, . . . , sj :

if s1 ⊆ Cl(s0), s2 ⊆ Cl(s1), . . . , sj ⊆ Cl(sj−1), s0 ⊆ Cl(sj),
then Cl(sr) = Cl(sr′) for all r, r′ ∈ {0, . . . , j} .

For the terminology of ‘cumulativity’, ‘loop’, etc., see Makinson [11] and KLM[5].
If there are no inhibitory connections, Cl is of course monotonic:

Lemma 2.9. (Monotonicity for Nets without Inhibition)
For every finite inhibition net I = 〈N,E,∅, bias〉 (i.e. without inhibitory connec-

tions) the operator Cl is monotonic.

Let us now consider two important kinds of sets of nodes within FHINs and their
corresponding closure properties, which we will need later for the representation the-
orem for the system P. We devote the subsequent section to this topic.

3. Two Important Kinds of Sets of Nodes within FHINs

Later we are going to define the notions of a (i) preferential partially interpreted
antitone inhibition network, and a (ii) preferential partially interpreted odd inhibition
network. It will be shown that the class of preferential partially interpreted nets
which are antitone is precisely the class of networks, which are disposed to draw
inferences obeying the rules of the well-known nonmonotonic system P. The class of
preferential partially interpreted networks which are odd will be proved to be a proper
subclass of the latter class. The property of being antitone depends on the way the
closure operator “behaves” in such networks; the property of being odd will be defined
more directly by stating a constraint on the topology of networks, and thus is more
informative than antitonicity. This is the main reason why oddness is interesting in
itself, although the system P is not complete with respect to the class of preferential
odd networks, but only sound, contrary to the class of preferential antitone networks,
relative to which P is both sound and complete as we will prove later.

In order to be able to define in the subsequent section what odd, or antitone,
preferential partially interpreted inhibition networks are, we have first to specify two
auxiliary notions: the notion of a set of nodes being odd in a network, and the notion
of a set of nodes being antitone in a network. We will furthermore prove some of their
properties:

Definition 3.1. (Odd)
Let I = 〈N,E, I, bias〉 be an FHIN. Let N̄ ⊆ N (later we will always assume that

bias ∈ N̄).
N̄ is odd in I iff
there is no path n1

0, . . . , n
1
k1
, n2

0, . . . , n
2
k2
, . . . , nr

0, . . . , n
r
kr

in I with

• n1
0 ∈ N̄ , n1

0 �= bias, nr
kr
∈ N̄ ,

• for all i ∈ {1, . . . , r}, j ∈ {0, . . . , ki − 1}: ni
j E ni

j+1,
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• for all i ∈ {1, . . . , r − 1}: there is an m ∈ N s.t. ni
ki
I

〈
m,ni+1

0

〉
,

• and r − 1 is even.

See fig.3 for a “forbidden” path (given N̄ is odd in I, and given that the first and
the last node in the path are members of N̄):

Fig.3: A “Forbidden” Path for Odd Subsets

Remark 2. Def.3.1 implies that, if N̄ is odd in I, there are no n0, n1 ∈ N̄ with
n0 �= bias, s.t. n0 E n1; this says, roughly, that a node in a odd set N̄ must not have
any direct, excitatory influence on other nodes in N̄ . More generally, by def.3.1, a node
in a odd set N̄ must also not have any indirect excitatory influence on other nodes in
N̄ , via an even number of inhibitions, s.t. the last inhibitory connection blocks a path
originating from the bias node. Let us draw an analogy: suppose, for some reason, we
want to exclude “directly positive” formulas α, i.e. formulas without negation (but
just with, say, disjunction), from a propositional language; then we might also want
to exclude the “indirectly positive” formulas of the form ¬¬α, ¬¬¬¬α,. . . , where
α is “directly positive”, since the latter are logically equivalent to the former. In a
similar way, direct and indirect excitatory connections between nodes of odd sets are
excluded.

Corollary 3.2. Let I = 〈N,E, I, bias〉 be an FHIN. Let N̄ ⊆ N , s.t. N̄ is odd in I.
If there are nodes n1, n2, n3 ∈ N̄ , s.t. n2 lies on a path leading from n1 to n3,

then either n1 = n2, or n2 = n3.

Proof:

If n1 �= n2, and n2 �= n3 (n1 �= n3 since I is an FHIN), it follows from N̄ being odd
in I that there is a path from n1 to n2 having an odd number of inhibitions, and that
there is a path from n2 to n3 having an odd number of inhibitions. By concatenating
those paths, there is a path from n1 to n3 having an even number of inhibitions, which
contradicts N̄ being odd in I. �

For odd sets in FHINs one can show a distribution property of closure states:

Lemma 3.3. (N̄ -Distribution I)
For every FHIN I = 〈N,E, I, bias〉, for every N̄ ⊆ N , s.t. bias ∈ N̄ and N̄ is odd

in I, it holds for all states s1, s2 ⊆ N̄ :

N̄ ∩ Cl(s1) ∩ Cl(s2) ⊆ N̄ ∩ Cl(s1 ∩ s2).

Proof:

Let n1 ∈ N̄ : assume that Cl(s1)(n1) = 1, Cl(s2)(n1) = 1, and, for contradiction,
suppose that Cl(s1 ∩ s2)(n1) = 0.
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1. In this case n1 /∈ s1 ∩ s2, and thus we may assume that n1 /∈ s1, without loss
of generality. But since Cl(s1)(n1) = 1, and since I is finite, it follows that
there is a (not necessarily unique) E-path m1

0, . . . ,m
1
k1

of maximal length, s.t.
Cl(s1)(m1

0) = 1, m1
k1

= n1, and there is no node m s.t. Cl(s1)(m) = 1, m I〈
m1

i ,m
1
i+1

〉
for some i ∈ {0, . . . , k1 − 1}. Since N̄ is odd in I, m1

0 cannot be a
member of N̄ \{bias}. Thus, also m1

0 /∈ s1\{bias}. Moreover, there is no node m
s.t. m E m1

0, and Cl(s1)(m) = 1, because this would contradict the maximality
of the path m1

0, . . . ,m
1
k1

. Therefore, because of Cl(s1)(m1
0) = 1, it follows that

m1
0 = bias.

2. Cl(s1∩s2)(n1) = 0 implies that there has to be a node n2, s.t. Cl(s1∩s2)(n2) =
1, and n2 I

〈
m1

i1
,m1

i1+1

〉
for some i1 ∈ {0, . . . , k1 − 1}. n2 �= n1, for I being

hierarchical. From above we know that Cl(s1)(n2) = 0, therefore n2 /∈ s1,
and so we also have that n2 /∈ s1 ∩ s2, and n2 �= bias. Again, it follows that
there is a (not necessarily unique) E-path m2

0, . . . ,m
2
k2

of maximal length s.t.
Cl(s1∩s2)(m2

0) = 1, m2
k2

= n2, and there is no node m s.t. Cl(s1∩s2)(m) = 1, m

I
〈
m2

i ,m
2
i+1

〉
for some i ∈ {0, . . . , k2 − 1}. Since n2 is not necessarily a member

of N̄ , we cannot simply infer again that m2
0 = bias. But for the maximality of

the selected path, we know at least that m2
0 ∈ s1∩s2, and thus also s1(m2

0) = 1.

Cl(s1)(n2) = 0 therefore implies that there has to be a node n3 s.t. Cl(s1)(n3) =
1, and n3 I

〈
m2

i2
,m2

i2+1

〉
for some i2 ∈ {0, . . . , k2 − 1}. n3 �= n1, n3 �= n2,

since I is hierarchical. Suppose, for contradiction, that n3 ∈ s1: then n3 ∈ N̄ ,
n3 �= bias because Cl(s1 ∩ s2)(n3) = 0, and there is a path u0, . . . , uk in I with
u0 = n3 (thus u0 ∈ N̄), u1 = m2

i2+1,. . . , uk2−i2 = m2
k2

, uk2−i2+1 = m1
i1+1,. . . ,

uk = m1
k1

(thus uk ∈ N̄), s.t. u0 I
〈
m2

i2
, u1

〉
, uk2−i2 I

〈
m1

i1
, uk2−i2+1

〉
, and

between the rest of the nodes in the path, there are excitatory connections. But
this contradicts N̄ being odd in I. Therefore, n3 /∈ s1.

3. Now, we are in a similar situation, as we have been at the stage of proof item
1: n3 /∈ s1, Cl(s1)(n3) = 1, Cl(s1 ∩ s2)(n3) = 0. There has to be a (not nec-
essarily unique) E-path m3

0, . . . ,m
3
k3

of maximal length, s.t. Cl(s1)(m3
0) = 1,

m3
k3

= n3, and there is no node m s.t. Cl(s1)(m) = 1, m I
〈
m3

i ,m
3
i+1

〉
for some

i ∈ {0, . . . , k3 − 1}. Since N̄ is odd in I, m3
0 cannot be a member of N̄ \ {bias},

because otherwise we can find a path from m3
0 to n1 with an even number of

inhibitions. Again, it follows that m3
0 = bias. Extending the argument, anal-

ogously as above, it follows that there is an infinite sequence n1, n2, n3, . . . of
pairwise distinct nodes in N , contradicting the finiteness of I.

Therefore, Cl(s1 ∩ s2)(n1) = 1. �

If Cl has the property that for every N̄ ⊆ N s.t. bias ∈ N̄ , for all states s1, s2 ⊆ N̄ ,

N̄ ∩ Cl(s1) ∩ Cl(s2) ⊆ N̄ ∩ Cl(s1 ∩ s2)

it will be called to satisfy ‘ (N̄ -)distribution’ (corresponding to the distribution prop-
erty of closure operators for sets of formulas; see Makinson[11], p.47).

Now we turn to antitonicity:
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Definition 3.4. (Antitone)
Let I = 〈N,E, I, bias〉 be an FHIN. Let N̄ ⊆ N (later we will always assume that

bias ∈ N̄).
N̄ is antitone in I iff
for all n ∈ N̄ the mapping

Fn : ℘(N̄ \ {n}) → {0, 1}
s �→ Cl(s)(n)

is antitone, i.e., for all s1, s2 ∈ ℘(N̄ \ {n}): if s1 ⊆ s2 then Fn(s1) � Fn(s2).
(℘ is the powerset operation.)

We can state some equivalent reformulations of def.3.4, and also one of its impli-
cations:

Corollary 3.5. Let I = 〈N,E, I, bias〉 be an FHIN. Let N̄ ⊆ N .

1. N̄ is antitone in I iff

for all n ∈ N̄ , for all s2 ∈ ℘(N̄ \ {n}):
if Cl(s2)(n) = 1 then for all s1 s.t. s1 ⊆ s2, it holds that Cl(s1)(n) = 1.

2. If N̄ is antitone in I, for all n ∈ N̄ : if there is an s ∈ ℘(N̄ \{n}) s.t. Cl(s)(n) = 1,
then Cl({bias})(n) = 1.

3. N̄ is antitone in I iff

for all X ⊆ N̄ , for all s1, s2 ∈ ℘(N̄ \X):

if s1 ⊆ s2 then Cl(s1) ∩X ⊇ Cl(s2) ∩X.

4. In def.3.4, we could equivalently demand the mapping

F ′
n : ℘(

[
N̄ ∩ In(n)

]
\ {n}) → {0, 1}

s �→ Cl(s)(n)

to be antitone, where In(n) is the set of nodes, from which there are paths to
n (i.e., which may have “causal influence” on n). This makes it easier to check
whether a set N̄ is antitone in I.

Proof:

1. straightforward;

2. this follows from claim 1, since {bias} is a subset of every state;

3. “→”: assume that N̄ is antitone in I, let X ⊆ N̄ , s1, s2 ∈ ℘(N̄ \ X), and
s1 ⊆ s2. If Cl(s1) ∩ X � Cl(s2) ∩ X, then there is an n ∈ Cl(s2) ∩ X, s.t.
n /∈ Cl(s1) ∩ X. Since n ∈ X, it follows that s2 ∈ ℘(N̄ \ {n}). But because
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Cl(s2)(n) = 1, and since N̄ is antitone in I, we have that Cl(s1)(n) = 1 (by
claim 1 of this theorem), and therefore n ∈ Cl(s1)∩X, which is a contradiction.

“←”: assume the property stated in claim 3 on the right hand side of the equiva-
lence sign, and suppose for contradiction that N̄ is not antitone in I. By 1, there
is an n ∈ N̄ , an s2 ∈ ℘(N̄ \ {n}), and an s1 with s1 ⊆ s2, s.t. Cl(s2)(n) = 1,
and Cl(s1)(n) = 0. Now we simply set X := {n}, and then we have: {n} ⊆ N̄ ,
s1, s2 ∈ ℘(N̄ \X), s1 ⊆ s2, but Cl(s1)∩X = ∅ � {n} = Cl(s2)∩X, which is a
contradiction.

4. This follows from the fact that, for s ∈ ℘(N̄ \ {n}), Cl(s)(n) does not depend
on the values of s for nodes outside of In(n). �

For antitone sets in FHINs one can also show a distribution property of closure
states:

Lemma 3.6. (N̄ -Distribution II)
For every FHIN I = 〈N,E, I, bias〉, for every N̄ ⊆ N : if N̄ is antitone in I, then

for all states s1, s2 ⊆ N̄ :

N̄ ∩ Cl(s1) ∩ Cl(s2) ⊆ N̄ ∩ Cl(s1 ∩ s2).

Proof:

Suppose that N̄ ⊆ N is antitone in I.
Let n ∈ N̄ ∩ Cl(s1) ∩ Cl(s2). We distinguish the following two cases:

1. n ∈ s1, n ∈ s2. But then also n ∈ s1 ∩ s2 ⊆ Cl(s1 ∩ s2), and thus n ∈ N̄ ∩
Cl(s1 ∩ s2).

2. n /∈ s1, or n /∈ s2. Without restricting generality, assume that n /∈ s2. Now
we have that n ∈ N̄ , s2 ∈ ℘(N̄ \ {n}), Cl(s2)(n) = 1, s1 ∩ s2 ⊆ s2, and
Cl(s1)(n) = 1. By claim 1 of corollary 3.5, it follows that Cl(s1 ∩ s2)(n) = 1,
and therefore n ∈ N̄ ∩ Cl(s1 ∩ s2). �

Antitonicity does not only entail distribution, but it is also itself entailed by dis-
tribution:

Lemma 3.7. (N̄ -Distribution III)
For every FHIN I = 〈N,E, I, bias〉, for every N̄ ⊆ N : if N̄ is not antitone in I,

then not for all states s1, s2 ⊆ N̄ :

N̄ ∩ Cl(s1) ∩ Cl(s2) ⊆ N̄ ∩ Cl(s1 ∩ s2).

Proof:

Suppose that N̄ ⊆ N is not antitone in I.
Then there is an n ∈ N̄ , and there are s1, s2 ∈ ℘(N̄ \ {n}) with s1 ⊆ s2, s.t.

Cl(s1)(n) � Cl(s2)(n). Therefore, Cl(s1)(n) = 0, Cl(s2)(n) = 1. So we have that
n ∈ Cl(s1 ∪{n}), n ∈ Cl(s2), thus also n ∈ Cl(s1 ∪{n})∩Cl(s2), but simultaneously
n /∈ Cl([s1 ∪ {n}] ∩ s2) = Cl(s1), which contradicts N̄ -distribution. �
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Lemmata 3.6 and 3.7 show that N̄ -distribution corresponds precisely to N̄ being
antitone in I.

It follows:

Corollary 3.8. For every FHIN I = 〈N,E, I, bias〉, for every N̄ ⊆ N s.t. bias ∈ N̄ :
if N̄ is odd in I, then N̄ is antitone in I.

Proof:

According to lemma 3.3, if N̄ is odd in I, I satisfies N̄ -distribution. But because
of lemma 3.7, if I satisfies N̄ -distribution, N̄ is antitone in I. �

Remark 3. It is not difficult to show (by counterexamples) that the other direction,
i.e., from being antitone to being odd, is not necessarily satisfied.

4. Inhibition Nets as Cognizers

Inhibition nets will now be regarded as cognitive systems subserving cognitive agents
which have beliefs and which draw inferences. In the following we will ascribe two
kinds of beliefs to networks: (i) factual, occurrent, short-term beliefs, and (ii) normic,
dispositional, long-term beliefs. Let us turn to the former first.

4.1. Ascribing Factual Beliefs to Inhibition Networks

The factual beliefs that we ascribe to inhibition nets are identified with occurrent,
i.e., causally active, patterns of excitation. We may think of these beliefs as either
being directly caused by the current state of the environment – in this case they are
perceptual beliefs – or as being indirectly caused by such a perceptual belief via an
intermediate inference process – in this case they are inferential beliefs. We use a
propositional language L (the “factual” language) in order to ascribe such beliefs to
inhibition nets. L shall consist of finitely many propositional variables and should
be closed under the application of the standard logical connectives (¬,∧,∨,→,↔
,�,⊥) in the usual manner; we use small Greek letters with or without indices as
metavariables ranging over the formulas of L. E.g., we might use the propositional
variables b and f in order to ascribe to a network the belief that the entity right in
front of the network agent is a bird and is able to fly, i.e., the propositional formulas
b and f are actually abbreviations for singular sentences of the form Bird(a) and
CanF ly(a). The corresponding singular beliefs are about current facts in the world,
which usually change rather quickly.

Following the connectionist approaches to representation within artificial neural
networks, we employ a distributed form of representation, i.e., it is not the nodes or
the edges of an inhibition network that represent the contents of occurrent beliefs, but
rather patterns of activation that are distributed over the whole ensemble of nodes.
We define a net agent to believe ϕ in a state s iff a set I(ϕ) of nodes (associated
with ϕ) is active in s. I (the “interpretation”) assigns sets of nodes to formulas of
L; an inhibition net together with an interpretation mapping defines an interpreted
inhibition net which might be thought of as being a part of an agent’s cognitive
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system. I may be demanded to satisfy different kinds of constraints, and, as we will
see below, the constraints in turn entail different kinds of logical properties satisfied
by the inferences that are drawn by such networks. Let us first present the types
of interpreted networks which we will focus on; we will discuss and motivate the
corresponding formal constraints later on:

Definition 4.1. (A Variety of Interpreted Inhibition Networks)

1. (Cumulative Interpreted Inhibition Networks)

A cumulative interpreted inhibition network N is a triple 〈I,L, I〉, where

1. I = 〈N,E, I, bias〉 is a finite inhibition net, s.t. Cl({bias}) � N ,

2. L is a language as characterized above,

3. I : L → ℘(N) satisfies:

1. I(�) = {bias} (� is the logical verum), I(⊥) = N (⊥ is the logical
falsum),

2. let T HI = {ϕ ∈ L |I(ϕ) = {bias}}:
for all ϕ, ψ ∈ L: if T HI  ϕ→ ψ then I(ϕ) ⊇ I(ψ),

3. for all ϕ, ψ ∈ L: I(ϕ ∧ ψ) = I(ϕ) ∪ I(ψ),
4. for all ϕ ∈ L: bias ∈ I(ϕ),

4. for all ϕ ∈ L: Cl(I(ϕ)) is defined.

2. (Cumulative-Ordered Interpreted Inhibition Networks)

A cumulative-ordered interpreted inhibition network N is a triple 〈I,L, I〉 de-
fined analogously to 1, with the only difference that I = 〈N,E, I, bias〉 is an
FHIN.

3. (Preferential Partially Interpreted Antitone Inhibition Networks)

A preferential partially interpreted antitone inhibition network N is a quadruple〈
I,L, I, N̄

〉
defined analogously to 2, with the differences that

1. there is a distinguished non-empty subset N̄ of N , s.t. Cl({bias}) � N̄ ,
and N̄ is antitone in I,

2. I : L → ℘(N̄), s.t. I additionally satisfies:

1. for all ϕ, ψ ∈ L: I(ϕ ∨ ψ) = I(ϕ) ∩ I(ψ),
2. for all ϕ ∈ L: I(¬ϕ) = N̄ \ I(ϕ).

4. (Preferential Partially Interpreted Odd Inhibition Networks)

Those are defined just as in 3 with the only exception that the term ‘antitone’
is replaced by ‘odd’.

5. (Simple Cumulative Interpreted Inhibition Networks)

A simple cumulative interpreted inhibition network N is a cumulative inter-
preted inhibition network 〈I,L, I〉, where I has no inhibitory connections.
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6. (Simple Preferential Partially Interpreted Inhibition Networks)

A simple preferential partially interpreted inhibition network N is a preferential
partially interpreted inhibition network

〈
I,L, I, N̄

〉
, where I has no inhibitory

connections.

We have added the constraint that Cl({bias}) � N since otherwise for every
parameter-setting s lemma 2.7 would entail that Cl(s) = N , since {bias} ⊆ s ⊆ N =
Cl({bias}). In this case the cognitive activity generated by an interpreted network
would always trivially converge to a stable state identical to N . As we will see, for
the class of net agents that we are going to define later, N is identical to the neural
interpretation of the logical falsum, i.e. a net agent would always finally believe a
contradiction, if we allowed for Cl({bias}) = N .

Note that clause 1.4 above does not say that closure states have to exist for all
states but just for the states which are represented in the object language, i.e., for all
“cognitive” states of a network; usually, by far not every state of a network will be
cognitive in this sense, any thus by far not every state of an interpreted network is de-
manded to have a closure state. In the case of cumulative-ordered/preferential/simple
preferential interpreted inhibition networks clause 1.4 may be dropped because in
each of the latter cases Cl is defined everywhere.

In the case of a (preferential/simple preferential) partially interpreted network, the
nodes contained in N \ N̄ may considered to be auxiliary “inter-neurons”, without
any representational function. The nodes contained in N̄ might be called ‘cognitive’.

Now we can state our informal presentation of the association of net states and
belief states from above more precisely:

Definition 4.2. (Ascription of Factual Beliefs)
Let N = 〈I,L,I〉 be an interpreted inhibition network of one of the types of def.4.1.

Let s be a state in the state space S of I:

Bel(N, s, ϕ) iff I(ϕ) ⊆ s

(i.e.: N believes in s the formula ϕ iff the pattern associated with ϕ is active in s).

We can also introduce the important concept of a total belief expressed by an
all-the-agent-believes predicate (Levesque[9] has introduced the same notion as a sen-
tential operator):

Definition 4.3. (Ascription of Total Factual Beliefs)
Let N = 〈I,L,I〉 be an interpreted inhibition network of one of the types of def.4.1.

Let s be a state in the state space S of I:

AllBel(N, s, ϕ) iff I(ϕ) = s

(i.e.: all that N believes in s is the formula ϕ iff the pattern associated with ϕ is
identical to the set of active nodes in s).
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By def.4.3, if AllBel(N, s, ϕ) then also Bel(N, s, ϕ), and N does not believe a
formula in s that is “stronger” than ϕ, i.e., which has a larger associated pattern of
activation.

The postulates for I which characterize cumulative interpreted networks may be
motivated by (i) rationality/justification considerations, and by (ii) considering the
properties of distributed representations in general (see Rumelhart[13], chapter 3).
Since, if an interpreted inhibition network is aimed to be both rational and connec-
tionist:

• I(�) = {bias}, I(⊥) = N :

N should believe that � is true in every possible parameter-setting, and thus,
by def.4.2, I(�) has to be a pattern which is active in every possible parameter-
setting; we choose {bias} as such a pattern. The postulate for ⊥ is a kind of
“normalization” constraint – if one liked to drop it, one might simply replace
‘N ’ in the considerations below by ‘I(⊥)’.

• For all ϕ, ψ ∈ L: if T HI  ϕ → ψ then I(ϕ) ⊇ I(ψ) (where T HI =
{ϕ ∈ L |I(ϕ) = {bias}}):
T HI is the set of formulas ϕ, s.t. ϕ is believed by the net in every possible
parameter-setting (since I(ϕ) = {bias} ⊆ s for arbitrary s). If T HI  ϕ → ψ
the net should also believe that ϕ→ ψ is true in every parameter-setting. Now
suppose the net is in the parameter-setting I(ϕ), i.e., all and only the nodes
within I(ϕ) fire; in this case the net also believes that ϕ is true by def.4.2 again.
But then, by detachment, the net agent should also believe that ψ is true in
this case, which entails, according to the way in which we have associated net
states with belief states, that I(ϕ) must be a superset of I(ψ).

We forgo to postulate also the direction from the right to the left, i.e. [if I(ϕ) ⊇
I(ψ) then also T HI  ϕ → ψ] since this will have some technical advantages
concerning the proof of the representation theorem in the next section.

• For all ϕ, ψ ∈ L: I(ϕ ∧ ψ) = I(ϕ) ∪ I(ψ):

at first it might look strange that the interpretation of a conjunction should
be identical to the union of the component interpretations, since we are rather
used to define it by some intersection of the component values.But the postulate
matches intuitively the interpretation of neurons as “elementary-feature detec-
tors”: suppose there are just two neurons n1 and n2; n1 fires iff a red object has
been detected, whereas n2 fires iff a large object has been detected. If now a
both red and large object has been detected, this will be the case if and only if
both n1 and n2 fire, i.e. the set of firing neurons will be identical to the union
of {bias, n1} and {bias, n2} and not to their intersection (but still this postulate
is not as unproblematic as it may seem: compare the discussion in Leitgeb[6],
p.177),

• For all ϕ ∈ L: bias ∈ I(ϕ):

bias fires in every state anyway.
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Match the first two items in this list with the following quotation of Rumelhart et
al.[13], p.84, on distributed representations: “. . . the relation between a type and an
instance can be implemented by the relationship between a set of units and a larger
set that includes it. Notice that the more general the type, the smaller the set of units
used to encode it. As the number of terms in an intensional description gets smaller,
the corresponding extensional set gets larger.” Furthermore, compare the third item
to the following quotation taken again from Rumelhart et al.[13], p.94: “A distributed
representation uses a unit for a set of items, and it implicitly encodes a particular
item as the intersection of the sets that correspond to the active units”; on p.95, such
distributed representations are explicitly referred to as “conjunctive”.

The postulates for cumulative interpreted networks thus seem to be quite natural
and have the consequence that the set of factual beliefs of such networks are closed
both under conjunction and modus ponens. On the other hand, our postulates for
interpretation mappings with respect to disjunction and negation – i.e., as far as
preferential interpreted networks are concerned – are not motivated as clearly, or
so it seems; the main reason why we have introduced them is for the sake of the
soundness and completeness results for the system P below. The same holds for the
introduction of antitonicity and oddness. However, the constraints which we have
imposed on preferential networks should not be mistaken for implying such obviously
counter-intuitive postulates like: if N rationally believes in s the formula ϕ ∨ ψ, then
she rationally believes in s the formula ϕ, or she rationally believes in s the formula
ψ; if N does not rationally believe in s the formula ϕ, then she rationally believes in
s the formula ¬ϕ. The latter are indeed not entailed.

4.2. Ascribing Normic Beliefs (Nonmonotonic Inference Dispositions) to
Interpreted Inhibition Networks

Now let us turn to the second class of belief states which we are going to ascribe
to inhibition networks: the class of normic beliefs. The contents of such beliefs are
not expressed by singular sentences about the current state of the world, but rather
by normic laws of the form “normal ϕs are ψs”, i.e., their contents are general laws,
which do not change in time. We use a “conditional” language L⇒ in order to ascribe
normic beliefs inhibition networks, where the members of L⇒ are conditionals ϕ⇒ ψ,
for ϕ, ψ ∈ L. E.g., we might use the conditional b ⇒ f to ascribe the normic belief
“normally, a bird can fly” to a network, i.e., the conditional b ⇒ f is actually an
abbreviation for a general sentence of the form Bird(x) ⇒ CanF ly(x), where x may
be considered bound by ⇒. Such general beliefs states are identified with long-term
dispositional states of a network, i.e., they manifest in the way the node activities
change given certain circumstances. In our case, these circumstances are constituted
by the current external input s∗ and the current activity state s of the network, and
the way the activity state of the network changes under s∗ plus s, is determined by
the topology of the network. Thus, whether a network has a certain normic belief
or not depends on what the topology of the network looks like. If we are given an
interpreted network, every trajectory of activity states corresponds to a trajectory of
factual beliefs; every such trajectory might be interpreted as a nonmonotonic inference
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which is drawn by the interpreted network; every such trajectory is determined, on
the one hand, by a fixed input state, and, on the other hand, by a dispositional normic
belief state. More precisely, we are going to ascribe to an interpreted net the normic
belief expressed by ϕ⇒ ψ if and only if the interpreted network is disposed to draw a
nonmonotonic inference from the total premise belief that ϕ is true, to the conclusion
belief that ψ is true. A conclusion is reached when a stable closure state is obtained;
the external input corresponds to the activation pattern that is associated with ϕ,
and the stable closure state contains the activation pattern that is associated with ψ
(recall definition 4.2 of factual belief ascription). We may think of a closure state as
a plausible hypothesis generated by the agent in light of the evidence given by the
input. In our example from above we would thus ascribe the normic belief expressed
by b ⇒ f to an interpreted inhibition net iff the interpreted network is disposed to
draw a nonmonotonic inference from the total belief that there is a bird to the belief
that there is something which is able to fly.

Since we regard the topology of inhibition networks as fixed, we also have to con-
sider normic beliefs as being fixed and unalterable, although a natural extension of
our approach would be to view such beliefs as being the results of a learning proce-
dure in an artificial neural network. In order to do so we should rather develop our
network semantics for artificial neural networks with weights, real-valued activation
functions, etc., which is another topic (but some results in this direction are sketched
in Leitgeb[6], section 7).

If we state our conception of normic beliefs formally, we get:

Definition 4.4. (Ascription of Normic Beliefs/Nonmonotonic Inference Dispositions)
Let N = 〈I,L,I〉 be an interpreted network of one of the types of def.4.1:
for ϕ⇒ ψ ∈ L⇒ we say that

N |= ϕ⇒ ψ

(ϕ⇒ ψ is true in N) iff for all s ∈ S: if AllBel(N, s, ϕ) then Bel(N, Cl(s), ψ).

Instead of saying that ϕ⇒ ψ is true in N, we might equivalently say that N has the
(normic) belief that normal ϕs are ψs, or that N is disposed to draw the nonmonotonic
inference from the total belief that ϕ is true to the belief that ψ is true. The potential
nonmonotonicity of such inferences is due to the potential nonmonotonicity of Cl for
an arbitrary inhibition network.

Our definiens has the following equivalent (re-)formulations:

Remark 4. N |= ϕ⇒ ψ iff Bel(N, Cl(I(ϕ)), ψ) iff I(ψ) ⊆ Cl(I(ϕ)).

A clause similar to the last one of remark 4 has been used by Gärdenfors[4], p.63,
in order to introduce nonmonotonic inferences to neural networks. The only minor
difference is that Gärdenfors does not interpret object languages (like L) by patterns,
but instead he talks about the patterns in the metalanguage without making use of
an object language at all.

Using def.4.4 we are able to associate theories of conditionals with interpreted
networks:
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Definition 4.5. (Conditional Theories Corresponding to Interpreted Inhibition Nets)
Let T H⇒(N) = {ϕ⇒ ψ |N � ϕ⇒ ψ }.
T H⇒(N) is the conditional theory corresponding to N.

T H⇒(N) is the total description of the set of normic beliefs of N, and also of
the set of nonmonotonic inferences N is disposed to draw; our calling T H⇒(N) a
conditional theory will be justified in the next section.

Example 4.6. Let I1 be as defined above, L1 is built from the propositional variables
b (“bird”), f (“flyer”), w (“wings”), p (“penguin”), and I1(b) = {bias, n1}, I1(f) =
{bias, n1, n2}, I1(w) = {bias, n1, n3}, I1(p) = {bias, n1, n4}, I1(¬ϕ) := {bias} ∪
N1 \ I1(ϕ), I1(ϕ ∧ ψ) := I1(ϕ) ∪ I1(ψ) for all ϕ, ψ ∈ L1. It is easy to see that N1 =
〈I1,L1,I1〉 is an interpreted inhibition network. Since I1 is an FHIN, N1 is cumulative-
ordered (and even preferential with N̄ = N). The definitions of Bel, AllBel, and of
satisfaction for conditionals entail that

N1 � {b⇒ f ∧ w, b ∧ f ⇒ w, b ∧ p⇒ ¬f ∧ w, b⇒ ¬p, b ∨ p⇒ f, . . . },
N1 � {b⇒ p, p⇒ f, f ⇒ p,� ⇒ b,� ⇒ f ∧ w, p⇒ ¬p, w ⇒ p, b ∧ p⇒ f, . . . }.
Therefore, e.g., if all that N1 believes is that there is a bird, then she infers that

there is something which is able to fly and which has got wings. But if all that N1

believes is that there is a penguin bird, then she infers that there is something which
is not able to fly but still has got wings.

Example 4.7. Let I2 be as defined above, L2 is built from the propositional variables
p and q, and: n1 ∈ I2(ϕ) iff p ∧ ¬q � ϕ or ¬p ∧ q � ϕ, n2 ∈ I2(ϕ) iff p ∧ q � ϕ or
p ∧ ¬q � ϕ, n3 ∈ I2(ϕ) iff p ∧ q � ϕ or ¬p ∧ q � ϕ, and always bias ∈ I2(ϕ)
(for ϕ ∈ L2). It follows that, e.g., I2(p) = {bias, n1, n3}, I2(q) = {bias, n1, n2},
I2(¬p) = {bias, n1, n2, n3}, I2(p ∨ q) = {bias}, I2(¬(p ↔ q)) = {bias, n2, n3}. One
can show that N2 = 〈I2,L2,I2〉 is a cumulative interpreted inhibition network. The
definitions of Bel, AllBel, and of satisfaction for conditionals entail that, e.g., N2 �
� ⇒ ¬(p↔ q), but N2 � q ⇒ ¬(p↔ q).

General beliefs are thus not represented in the network by patterns of activity but
by the topology of the network. Such a way of coding is again a distributed kind of
representation, since it is not a single node or a single connection which represents a
normic belief but rather the whole network.

The role of interpreted inhibition networks within a possible architecture for “low-
level” cognitive agents is treated extensively in Leitgeb[7].

5. The Representation Theorems

Interpreted inhibition nets may be shown to have nice logical properties. We can prove
(i) soundness results: the sets T H⇒(N) of conditionals corresponding to interpreted
inhibition networks of a certain class of nets are closed under the rules of well-known
systems of nonmonotonic reasoning, (ii) completeness results: for every set T H⇒ of
conditionals closed under the rules of such a well-known system of nonmonotonic
reasoning, there is an interpreted inhibition net N of a certain class of nets, s.t.,
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T H⇒(N) = T H⇒. If we take soundness and completeness together we can formulate
and prove corresponding representation theorems.

In order to state this more clearly, we need the notion of a conditional theory
extending a deductive closed theory T H of factual formulas in L, where the condi-
tional theory conforms to the rules of the systems C, CL, P, CM, or M studied by
KLM[5]. Note that where KLM refer to nonmonotonic inference relations |∼ (see also
Makinson[11]), we rather refer to sets of conditionals in the spirit of conditional logic:

Definition 5.1. (Conditional Theories)
Let T H ⊆ L be a deductively closed theory:

1. A conditional C-theory extending T H is a set T H⇒ ⊆ L⇒ with the property
that for all α ∈ L it holds that α⇒ α ∈ T H⇒ (Reflexivity),

and which is closed under the following rules:

1.
T H  α↔ β, α⇒ γ

β ⇒ γ
(Left Equivalence)

2.
γ ⇒ α, T H  α→ β

γ ⇒ β
(Right Weakening)

3.
α ∧ β ⇒ γ, α⇒ β

α⇒ γ
(Cautious Cut)

4.
α⇒ β, α⇒ γ
α ∧ β ⇒ γ

(Cautious Monotonicity)

We refer to the axiom scheme and the rules above as the system C (see [5],
pp.176-180). The rules are to be read in the following way:

e.g., by Cut, if α ∧ β ⇒ γ ∈ T H⇒ and α⇒ β ∈ T H⇒, then α⇒ γ ∈ T H⇒.

2. A conditional C-theory T H⇒ is consistent iff � ⇒ ⊥ /∈ T H⇒.

3. A conditional CL-theory T H⇒ extending T H is a conditional C-theory extend-
ing T H, which is closed under the following rule:

α0 ⇒ α1, α1 ⇒ α2, . . . , αj−1 ⇒ αj , αj ⇒ α0

αr ⇒ αr′
(Loop)

(r, r′ are arbitrary members of {0, . . . , j})
We refer to C+Loop as the system CL (see [5], pp.187).

4. A conditional P-theory T H⇒ extending T H is a conditional CL-theory extend-
ing T H, which is closed under the following rule:

α⇒ γ, β ⇒ γ
α ∨ β ⇒ γ

(Or)

We refer to CL+Or as the system P (see [5], pp.189-190).
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5. A conditional CM-theory T H⇒ extending T H is a conditional C-theory extend-
ing T H, which is closed under the following rule:

T H  α→ β, β ⇒ γ
α⇒ γ

(Monotonicity)

We refer to C+Monotonicity as the system CM (see [5], pp.200-201).

6. A conditional M-theory T H⇒ extending T H is a conditional C-theory extending
T H, which is closed under the following rule:

α⇒ β
¬β ⇒ ¬α (Contraposition)

We refer to C+Contraposition as the system M (see [5], p.202).

(In each case for arbitrary α, β, γ, α0, α1,. . . , αj ∈ L).

Now we can show the following representation results:

Theorem 5.2. (Representation)
Let T H ⊆ L be a theory:

1. T H⇒ ⊆ L⇒ is a consistent conditional C-theory extending T H iff there is a
cumulative interpreted inhibition network N = 〈I,L, I〉, s.t.
T HI = {ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and T H⇒ = T H⇒(N).

2. T H⇒ ⊆ L⇒ is a consistent conditional CL-theory extending T H iff there is
a cumulative-ordered interpreted inhibition network N = 〈I,L, I〉, s.t. T HI =
{ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and T H⇒ = T H⇒(N).

3. T H⇒ ⊆ L⇒ is a consistent conditional P-theory extending T H iff there is a
preferential partially interpreted antitone inhibition network N =

〈
I,L, I, N̄

〉
,

s.t. T HI = {ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and T H⇒ = T H⇒(N).

4. T H⇒ ⊆ L⇒ is a consistent conditional CM-theory extending T H iff there is
a simple cumulative interpreted inhibition network N = 〈I,L, I〉, s.t. T HI =
{ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and T H⇒ = T H⇒(N).

5. T H⇒ ⊆ L⇒ is a consistent conditional M-theory extending T H iff there is a
simple preferential partially interpreted inhibition network N =

〈
I,L, I, N̄

〉
,

s.t. T HI = {ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and T H⇒ = T H⇒(N).

Claim 3 of theorem 5.2 together with corollary 3.8 implies the following soundness
theorem for P with respect to preferential partially interpreted odd networks:

Corollary 5.3. If there is a preferential partially interpreted odd inhibition network
N =

〈
I,L, I, N̄

〉
, s.t. T HI = {ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and T H⇒ = T H⇒(N),

then T H⇒ ⊆ L⇒ is a consistent conditional P-theory extending T H.
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We will not prove every single claim contained in theorem 5.2, but we will rather
concentrate on the more central ones, i.e., on completeness for C and for P. The
proofs of soundness for both systems will only be sketched, since they are very similar
to the soundness proof for CL in Leitgeb[6] (recall that claim 2 has been proved in
Leitgeb[6]). Claims 4 and 5 follow easily from the other claims and are relatively
trivial.

5.1. Proving Representation for C

Soundness, i.e., the right-to-left direction of 1 in theorem 5.2, is proved in nearly the
same way as it has been proved for CL in [6] – use remark 1, lemma 2.7, item 1 of
definition 4.1, definitions 4.2, 4.3, 4.4, and remark 4.

So let us turn to completeness:

Lemma 5.4. (Completeness for C)
Let T H ⊆ L be a theory:
for every consistent conditional C-theory T H⇒ ⊆ L⇒ extending T H there is a

cumulative interpreted inhibition network N = 〈I,L, I〉, s.t.

• T HI = {ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and

• T H⇒ = T H⇒(N), i.e. for every α⇒ β ∈ L⇒:

α⇒ β ∈ T H⇒ iff N � α⇒ β.

Proof:

First we construct a network analogously as in the proof of lemma 5.6 of Leitgeb[6]
(pp.186f), i.e.:

by theorem 3.25 by KLM[5], which is proved on pp.184-185, for every T H⇒ as
above there is a finite cumulative model Mc =

〈
S̄, l,≺

〉
(based on the set of worlds

satisfying T H), s.t. α ⇒ β ∈ T H⇒ iff Mc � α ⇒ β, i.e. all states minimal with
respect to ≺, which make α true, also make β true. We use Mc to construct the
intended input-determined interpreted network N. We take ‘s̄’ with or without index
to range over states in the sense of preferential models, and ‘s’, as usual, to range
over net states.

Let N = {bias} ∪ S̄. Let E = {〈bias, s̄〉 |s̄ is not minimal according to ≺} ∪
{〈s̄, s̄′〉 |s̄ ≺ s̄′ }. For every s̄ ∈ S̄ let Ls̄ =

{
s̄′ ∈ S̄ |s̄′ ≺ s̄

}
; say, Ls̄ = {s̄1, . . . , s̄rs

}.
Now we define Is̄ = {〈bias, 〈s̄1, s̄〉〉 , 〈s̄1, 〈s̄2, s̄〉〉 , . . . , 〈s̄rs−1, 〈s̄rs

, s̄〉〉 , 〈s̄rs
, 〈bias, s̄〉〉}.

If s̄ is minimal in ≺, then let Is̄ = ∅. Let I =
⋃

s̄∈S̄ Is̄. Obviously, I ⊆ N × E. Since
I is finite (because S̄ is), I is a finite inhibition net.

We define for ϕ ∈ L: I(ϕ) = {bias} ∪ {s̄ |s̄ does not make ϕ true}. It is easy to
see that I is an interpretation mapping as demanded by 1 of definition 4.1. In order
to show that N = 〈I,L, I〉 is a cumulative interpreted inhibition network, it remains
to prove that Cl({bias}) � N and that there is a closure for all representational
states. In fact we will now show more: there is a closure Cl(I(α)) for all α ∈ L,
and Cl(I(α))(s̄) = 0 iff s̄ is a minimal α-state according to Mc. From that it follows
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that Mc � α ⇒ β iff N � α ⇒ β, which entails the intended completeness claim:
α⇒ β ∈ T H⇒ iff N � α⇒ β.

The proof method we apply is not identical to the one used in the proof of lemma
5.6 of [6], but it might also be applied there. Let α ∈ L, let s be a parameter-setting
of I.

For all s̄ ∈ I(α) we have that FI(α)(s)(s̄) = 1 and also that s̄ does not make α true
in Mc and is thus no minimal α-state according to Mc. The same holds for F i

I(α)(s)
where i � 1.

So we can concentrate on the case where s̄ /∈ I(α):
by the def. of Fs∗ we know that FI(α)(s)(s̄) = 0 iff
I(α)(n) = 0, and ¬∃n1 ∈ N (s(n1) = 1, n1 E n,¬∃n2 ∈ N (s(n2) = 1, n2 I 〈n1, n〉))

iff, since s̄ /∈ I(α) by assumption,
¬∃n1 ∈ N (s(n1) = 1, n1 E n,¬∃n2 ∈ N (s(n2) = 1, n2 I 〈n1, n〉)).
Now we distinguish between two subcases:

1. s̄ is a minimal α-state according to Mc:

thus all states in Mc which are below s̄ (if there are any) are no α-states. By the
def. of I it follows that I(α) ⊇ Ls̄ =

{
s̄′ ∈ S̄ |s̄′ ≺ s̄

}
, and so for all s̄′ ∈ Ls̄, i � 1

we have F i
I(α)(s)(s̄

′) = 1 from the above. But then every excitatory connection

to s̄ is inhibited in F i
I(α)(s) for all i � 2 by the def. of I. Since s̄ /∈ I(α) this

implies: F i
I(α)(s)(s̄) = 0 for all i � 2.

2. s̄ is no minimal α-state according to Mc:

in this case there is a s̄j ∈ Ls̄ s.t. s̄j is a minimal α-state according to Mc (this
is by the smoothness of Mc). But we have just shown that F i

I(α)(s)(s̄j) = 0 for
all i � 2. So there is an uninhibited excitatory connection to s̄ for all i � 2 by
the def. of E, and we have: F i

I(α)(s)(s̄) = 1 for all i � 2.

Summing up we have proved that for all s̄ ∈ S̄: F i
I(α)(s)(s̄) = 0 (for all i � 2) iff

s̄ is a minimal α-state according to Mc. But since this holds for all net parameter-
settings s ∈ S we have: there is a closure Cl(I(α)) for all α ∈ L, and Cl(I(α))(s̄) = 0
iff s̄ is a minimal α-state according to Mc. So we are done. �

5.2. Proving Representation for P

Soundness for P follows from soundness for C and the following lemma:

Lemma 5.5. Let N =
〈
I,L, I, N̄

〉
be a preferential partially interpreted antitone

(or odd) inhibition network; let α, β, γ ∈ L: then N satisfies

Or: if N � α⇒ γ, N � β ⇒ γ, then N � α ∨ β ⇒ γ.

Proof:

By assumptions and remark 4, I(γ) ⊆ Cl(I(α)) and I(γ) ⊆ Cl(I(β)); thus I(γ) ⊆
Cl(I(α)) ∩ Cl(I(β)), and since
Cl(I(α))∩Cl(I(β)) ⊆ Cl(I(α)∩ I(β)) by lemma 3.6 (or 3.3), and Cl(I(α)∩ I(β)) =
Cl(I(α ∨ β)) by 3 of definition 4.1, we are finished again by remark 4. �
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Finally, we prove completeness for P:

Lemma 5.6. (Completeness for P)
Let T H ⊆ L be a theory:
for every consistent conditional P-theory T H⇒ ⊆ L⇒ extending T H there is a

preferential partially interpreted antitone inhibition network N =
〈
I,L, I, N̄

〉
, s.t.

• T HI = {ϕ ∈ L |I(ϕ) = {bias}} ⊇ T H, and

• T H⇒ = T H⇒(N), i.e. for every α⇒ β ∈ L⇒:

α⇒ β ∈ T H⇒ iff N � α⇒ β.

Proof:

By theorem 5.18 of KLM[5], which is proved on pp.193-196, for every T H⇒ as
above there is a finite preferential model Mp =

〈
S̄, l,≺

〉
(based on the set of worlds

satisfying T H), s.t. α ⇒ β ∈ T H⇒ iff Mp � α ⇒ β, i.e. all states minimal with
respect to ≺, which make α true, also make β true. We use Mp again to construct
the intended partially interpreted network N.

For every s̄ ∈ S̄ let Ls̄ =
{
s̄′ ∈ S̄ |s̄′ ≺ s̄

}
; say, Ls̄ = {s̄1, . . . , s̄rs

}. Furthermore,
let

∧
Ls̄ be a conjunction subnetwork for the nodes s̄1, . . . , s̄rs ; i.e., there is a node

s̄1 ∧ . . . ∧ s̄rs , the activity of which matches the Boolean conjunction of the activity
states of s̄1, . . . , s̄rs

(that one can construct such a network by means of an inhibition
net is proved in Leitgeb[6], theorem 3.8, on p.173). If s̄ is minimal in ≺, then let

∧
Ls̄

be the empty subnet. Now we define:
let N = {bias} joined with the set of nodes of the conjunction subnetwork

∧
Ls̄

for each s̄ ∈ S̄.
Let E = {〈bias, s̄〉 |s̄ is not minimal according to ≺}, joined with the set of exci-

tatory connections within the conjunction subnetworks
∧
Ls̄ for each s̄ ∈ S̄.

Moreover, for non-minimal s̄ ∈ S̄, and Ls̄ = {s̄1, . . . , s̄rs},
let Is̄ = {〈s̄1 ∧ . . . ∧ s̄rs , 〈bias, s̄〉〉}. If s̄ is minimal in ≺, then let Is̄ = ∅. Let I =⋃

s̄∈S̄ Is̄ joined with the inhibitory connections within each conjunction subnetwork.
Obviously, I ⊆ N × E.

Let I = 〈N,E, I, bias〉. Since I does not contain any cycles, and since I is finite
(because S̄ is), I is an FHIN.

Let N̄ = {bias} ∪ S̄. As a consequence of our def. of I, our def. of N̄ , we see that
N̄ is antitone in I. This follows because for all s̄ ∈ N̄ , for all s2 ∈ ℘(N̄ \ {s̄}): if
Cl(s2)(s̄) = 1 then s̄ has to be excited by the bias node via 〈bias, s̄〉; but this is only
possible if Cl(s2)(s̄1 ∧ . . . ∧ s̄rs

) = 0 (for Ls̄ = {s̄1, . . . , s̄rs
}). Thus there has to be

a node within Ls̄, which is not active in Cl(s2). Now, for all s1 s.t. s1 ⊆ s2, it also
holds that there is a node within Ls̄ which is not active in Cl(s1), because if every
node in Ls̄ were active in Cl(s1), there would be a node s̄∗ ∈ Ls̄, s.t. s̄∗ /∈ Cl(s2),
but s̄∗ ∈ Cl(s1). s̄∗ cannot be a member of layer 0, because s1 ⊆ s2. Thus s̄∗ has
to be excited in Cl(s1) by the bias node via 〈bias, s̄∗〉; but this is only possible if
Cl(s1)(s̄∗1 ∧ . . . ∧ s̄∗rs∗

) = 0 (where Ls̄∗ =
{
s̄∗1, . . . , s̄

∗
rs∗

}
). Therefore, there has to

be a node s̄∗i within Ls̄∗ which is not active in Cl(s1). But s̄∗i is also a member of

23



Ls̄, which contradicts our assumption that every node in Ls̄ is active in Cl(s1). So
we have that there is also a node within Ls̄ which is not active in Cl(s1). Thus,
Cl(s1)(s̄1 ∧ . . . ∧ s̄rs) = 0, therefore Cl(s1)(s̄) = 1. So, N̄ is antitone in I.

Now we define for ϕ ∈ L: I(ϕ) = {bias}∪{s̄ |s̄ does not make ϕ true}. I is easy to
be shown an interpretation mapping satisfying the postulates of 3 in definition4.1, and
thus N =

〈
I,L, I, N̄

〉
is a preferential partially interpreted and antitone inhibition

network.
Now we show that Mp � α⇒ β iff N � α⇒ β, which again entails: α⇒ β ∈ T H⇒

iff N � α⇒ β.
Let α ∈ L. We will prove by induction that s̄ ∈ S̄ does not fire in the net state

Cl(I(α)) iff s̄ is a minimal α-state according to Mp. Let 〈N0, . . . , Nk〉 be the canonical
partition of I as it has been defined on p.167 of Leitgeb[6] (there we have shown that
every FHIN can be decomposed into layers, s.t., all connections starting from one
layer only lead to nodes of layers with higher index):

• Induction basis:

let s̄ ∈ N0 (s̄ �= bias since s̄ ∈ S̄);

Cl(I(α))(s̄) = 0 iff s̄ /∈ I(α) iff s̄ is an α-state. Moreover, every state s̄ in N0 is
minimal according to ≺ by def. of E and I.

• Induction step:

assume that for every s̄ ∈ N0 ∪ . . . ∪ Ni: Cl(I(α))(s̄) = 0 iff s̄ is a minimal
α-state. Now consider an arbitrary s̄ ∈ Ni+1:

Cl(I(α))(s̄) = 0 iff s̄ /∈ I(α) and ¬∃m ∈ Nj with j < i s.t.
(Cl(I(α))(m) = 1,m E s̄,¬∃m′ ∈ Nu with u < i (Cl(I(α))(m′) = 1,m′ I 〈m, s̄〉)).
But this is the case if and only if s̄ is a minimal α-state, for the following reasons:

first, s̄ /∈ I(α) iff s̄ is an α-state; at second, by def. of E and I, ¬∃m ∈ Nj s.t.

j < i and Cl(I(α))(m) = 1,m E s̄,¬∃m′ ∈ Nu with u < i s.t.

(Cl(I(α))(m′) = 1,m′ I 〈m, s̄〉) iff

∀s̄′ ∈ Ls̄ it holds that Cl(I(α))(s̄′) = 1 iff

(by induction hypothesis) ∀s̄′ ∈ Ls̄ it holds that s̄′ is no minimal α-state. But s̄
is an α-state and ∀s̄′ ∈ Ls̄ (s̄′ is no minimal α-state) iff s̄ is a minimal α-state
(by the Smoothness Condition). Therefore, we have that Cl(I(α))(s̄) = 0 iff s̄
is a minimal α-state.

We know that Mp � α⇒ β iff all minimal α-states are β-states. But the latter is
the case, if and only if for all s̄ ∈ S̄: if Cl(I(α))(s̄) = 0 then s̄ /∈ I(β), or equivalently,
for all s̄ ∈ S̄: if s̄ ∈ I(β) then Cl(I(α))(s̄) = 1. So, Mp � α⇒ β iff N � α⇒ β. �

Remark 5. Note that the class of networks, which are constructed in the course of
the proof of lemma, is actually a proper subclass of the class of all antitone networks
(as may be shown by constructing counterexamples).
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We have seen that the systems of KLM are not just sound and complete with
respect to the normal states semantics employed by KLM, and, in the case of P, to
a probability semantics (see Pearl[12]) or a possibilistic semantics (see Dubois and
Prade[3]), but also with respect to the network semantics that we have developed
above for interpreted inhibition networks and which is based on the concept of dis-
tributed representation in networks. Interpreted inhibition networks may be viewed as
cognizers which draw nonmonotonic inferences in correspondence to correct systems
of nonmonotonic reasoning. Moreover, for every conditional theory conforming to the
rules of one of the systems above, there is an interpreted inhibition networks which
reasons precisely according to the given theory.

One could also study further semantical notions like validity, or logical implication,
for which corresponding soundness and completeness results can be shown, but we
omit this for the sake of brevity (but see Leitgeb[6] where we have done this for the
system CL, and Leitgeb[7] where we have also done this for the other systems).

6. A Preliminary Comparison: Inhibition Nets and Logic Pro-
grams

Now we turn to the connections and/or differences between inhibition nets and logic
programs. We will use the terminology of Lifschitz[10]: apart from the usual definitions
of (basic, normal, hierarchical) programs, closure under a program, the consequence
operator Cn, the reduct ΠX of program Π relative to sets X of literals, answer sets,
etc., we use the immediate consequence operator TΠ, s.t., for a basic program Π and a
consistent X, TΠ(X) = {Head |Head← Body ∈ Π, Body ⊆ X }. It is easy to see that
Cn(Π) is the least fixed point of TΠ, and Cn(Π) may be computed “bottom up” by
Cn(Π) =

⋃
n�0 T

n
Π(∅). For the historical origin of these definitions see [10], section 6.

We also need the notion of a direct consequence operator SΠ for programs with
negation as failure, and we introduce a new consequence operator Cn+:

Definition 6.1. Let Π be a finite normal program.
For every set X of literals, let SΠ(X) = TΠX (X), i.e.,

SΠ(X) = {Head |Head← Pos ∪ not(Neg) ∈ Π, Pos ⊆ X,Neg ∩X = ∅}.
For every finite normal program Π, let Cn+(Π) be defined iff there is a fixed point

X under SΠ, s.t. for all sets Y of literals there is an i ∈ N with Si
Π(Y ) = X; in the

latter case, let Cn+(Π) = X.

For basic Π we have SΠ(X) = TΠ(X), i.e., SΠ is an extension of TΠ to the case of
negation as failure. Moreover, for normal programs in general, X is closed under Π iff
SΠ(X) ⊆ X, and X is supported by Π iff X ⊆ SΠ(X); therefore, the fixed points of
SΠ are precisely the sets which are closed under Π and supported by Π. Since answer
sets are closed under Π, it also holds for all answer sets X that SΠ(X) ⊆ X. If Π
is normal and hierarchical, then Cn+(Π) is defined and Cn+(Π) = Cn(Π). In the
general case, Cn+ is defined iff there is a fixed point under SΠ which is the limit
of “bottom up” SΠ-iteration independently of what the initial set Y looks like, i.e.,
where the result only depends on Π.
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In [6], section 6, we have shown how to associate finite hierarchical inhibition
nets with finite normal hierarchical logic programs, and vice versa. We will gener-
alize these results now. If we are given an arbitrary finite inhibition net, we can
construct a “counterpart program”, s.t. excitatory connections are simulated by rules
with positive bodies and inhibitory connections are replaced by negation as failure.
Since inhibition nets always compute on input states, whereas logic programs do not
have inputs, the input states have to be transformed into bodyless rules:

Definition 6.2. Let I = 〈N,E, I, bias〉 be a finite inhibition net:
the program Π(I) associated with I is defined in the following way:

1. take N as the set P of propositional variables (but if there is no edge from bias
to some other node or edge, simply drop bias);

2. for each n ∈ N add all rules of the form n← n′, not n1, . . . , not nj , where

• n′ E n,

• for all i with 1 � i � j: ni I 〈n′, n〉,
• for all n′′ ∈ N : if n′′ I 〈n′, n〉 then ∃i with 1 � i � j s.t. n′′ = ni.

3. do not add any further rules.

Let s∗ ∈ S; the program Π(I, s∗) associated with the net I and the input s∗ is
defined as follows:

1. take N as the set P of propositional variables (but, again, if there is no edge
from bias to some other node or edge drop bias);

2. add all rules contained in Π(I);

3. add all bodyless rules with head n iff s∗(n) = 1;

4. do not add any further rules.

In [6], p.173, we have shown that every Boolean mapping may be computed by a
finite hierarchical inhibition net. In particular, one can always construct a conjunction
node n1 ∧ . . . ∧ ni of nodes n1, . . . , ni (if i = 1 then we regard n1 as a “conjunction”
node), s.t. the conjunction node fires in a stable state if and only if each of n1, . . . , ni

fires; for the construction one has to add a subnet of auxiliary inter-nodes. Let us
assume that the signal propagation through the auxiliary nodes takes just one step
of time. The next definition indicates how one may simulate any given finite normal
logic program by means of an inhibition net, s.t. conjunction nodes replace the positive
parts of rule bodies, and where inhibitory lines replace negation as failure. The input
associated with a program is essentially defined as the class of heads of its bodyless
rules:

Definition 6.3. Let Π be a finite normal program (allowing for negation as failure)
based on a set P of propositional variables:

the inhibition net I(Π) = 〈NΠ, EΠ, IΠ, biasΠ〉 associated with Π is given as follows:
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1. NΠ = P ∪ {biasΠ}∪ the set of auxiliary nodes needed for the construction of
conjunction nodes; biasΠ is some object not contained in P ,

2. for all n, n1, . . . , ni+j ∈ N : (n1 ∧ . . . ∧ ni) EΠ n iff there is a rule n← n1, . . . , ni,
not ni+1, . . . , not ni+j in Π,

3. for all n, n′, n1, . . . , ni, ni+2, . . . , ni+j ∈ N : n′ I 〈(n1 ∧ . . . ∧ ni) , n〉 iff there is
a rule n← n1, n2, . . . , ni, not n

′, not ni+2, . . . , not ni+j in Π.

The input s∗(Π) associated with Π is defined as {biasΠ} joined with the set of all
propositional variables n s.t. n is contained in Π as a bodyless rule.

The following theorem expresses that the two definitions above are, in a sense,
sound and compatible:

Theorem 6.4. 1. Let I = 〈N,E, I, bias〉 be an FHIN, s∗ ∈ S, Π be a finite normal
hierarchical program:

1. Π(I) and Π(I, s∗) are finite normal hierarchical programs.

2. I(Π) is an FHIN, s∗(Π) is a state of I(Π).

3. Cn(Π(I, s∗)) = ClI(s∗).

4. ClI(Π)(s∗(Π)) \ [{biasΠ} ∪ the set of auxiliary nodes] = Cn(Π).

2. Let I = 〈N,E, I, bias〉 be a finite inhibition net, s∗, s ∈ S, Π be a finite normal
program:

1. Π(I) and Π(I, s∗) are finite normal programs.

2. I(Π) is a finite inhibition net, s∗(Π) is a state of I(Π).

3. SΠ(I,s∗)(s) = F I
s∗(s).

4. F
I(Π)
s∗(Π)(s) \ [{biasΠ} ∪ the set of auxiliary nodes] = SΠ(s).

5. If ClI(s∗) is defined, then:

Cn+(Π(I, s∗)) = ClI(s∗).

6. If Cn+(Π) is defined, then:

ClI(Π)(s∗(Π)) \ [{biasΠ} ∪ the set of auxiliary nodes] = Cn+(Π).

3. Let I = 〈N,E, I, bias〉 be a finite inhibition net without inhibitory connections,
Π be a finite basic normal program: results analogous to the ones in 1 hold.

The last theorem shows that there is a close connection between inhibition nets and
logic programs. Definitions and results involving the one family of mechanisms (e.g.
concerning antitonicity and preferentiality) may be translated into definitions results
for the other. The well-known translations between logic programming on the one
hand and default logic, autoepistemic logic, circumscription, and truth maintencance
systems on the other are thus also applicable to inhibition networks, although we do
not have space to elaborate on this more specifically (but see Leitgeb[6], section 6).
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But there is an essential difference between interpreted nets and logic programs
on the interpretative level, i.e. on the level where some kind of meaning is assigned to
entities like nodes, or to the processes acting upon these entities. The main idea used
in logic programming is (i) to assign meaning to the very entities (nodes ≈ proposi-
tional variables) which are used as the constituents of the local rules governing the
nonmonotonic inference process, and (ii) to assign meaning to the local rules them-
selves in some way. E.g., we might implement a logic program using the propositional
variables b, p, f and the single rule f ← b, not p. The entities having representational
function are the propositional variables b, p, f standing for birds, penguins, and fly-
ers respectively, and the local rule f ← b, not p by which birds are believed to be
flyers as long as they are not believed to be penguins. The propositional variables
which are subject to this local rule are thus also interpreted. On the other hand this
is not true for interpreted inhibition nets (compare our two examples at the end of
section 3): while the entities which represent are the patterns of activity, the enti-
ties subject to local activation rules are the nodes in a network. In particular, there
are no abnormality nodes but abnormality is represented in the network “implicitly”.
Edges are not interpreted at all in the case of inhibition nets, and generally it will
even be impossible to read any content into a single connection. Finally, note that in
logic programs propositional variables are used as nodes, whereas in interpreted net-
works propositional variables are interpreted as sets of nodes. We also do not make
use of “negative nodes” – corresponding to negative literals – because negation is
just defined on the level of patterns and not below. In this way, full-fledged KLM-
cumulative/loop-cumulative/preferential/cumulative monotonic/monotonic inference
relations |∼ may be associated with inhibition nets and thus also with logic programs,
where the relation holds between formulas of arbitrary propositional complexity and
not just between formulas involving (conjunctions of/disjunctions of) literals. Our
results from above complement Dix’s (see e.g. Brewka et al.[2], section 7.2) study of
a classification of logic programming semantics in terms of inference relations with
“strong principles”, but with the difference that we do not refer to the level nodes
but to the level of interpreted activation patterns. By this transition we are not just
able to prove soundness but even completeness theorems in the sense of KLM[5]. The
same results may be shown for logic programs if the network semantics that we have
introduced above for inhibition nets is adopted for logic programs.
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