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Abstract

We illustrate an approach to uncertain knowledge based on lower
conditional probability bounds. Our results and algorithms ex-
ploit a concept of generalized coherence (g-coherence), which is
a generalization of de Finetti’s coherence principle and is equiva-
lent to the ”avoiding uniform loss” property for lower and upper
probabilities(a la Walley). By our algorithms, given a g-coherent
assessment, we can also correct it obtaining the associated co-
herent assessment (in the sense of Walley and Williams). Our
algorithms work with a reduced set of variables and a reduced
set of constraints. Such reduced sets are computed by suitably
exploiting the additive structure of the random gains. In this pa-
per, we study in detail imprecise assessments defined on families
of three conditional events. We give some necessary and suffi-
cient conditions and, then, we generalize some of the theoretical
results obtained. We also exploit such results by proposing two
algorithms which provide new strategies for reducing the number
of constraints and for deciding g-coherence. Finally, we illustrate
our approach by giving some examples.

Keywords: uncertain knowledge, probabilistic reasoning un-
der coherence, lower conditional probability bounds, g-coherence
checking, not relevant gains, basic sets, algorithms, computa-
tional aspects, reduced sets of variables, reduced sets of linear
constraints.
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1 Introduction

The probabilistic treatment of uncertainty by means of precise or impre-
cise probability assessments is well known. When the family of conditional
events has no particular structure a suitable methodology is that based on
de Finetti’s coherence principle, or generalizations of it. It has been shown
([4]) that probabilistic reasoning under coherence is a proper generalization
of system P, and that it is closely related to reasoning in probabilistic logic.
We adopt the notion of coherence introduced in [11], renamed g-coherence
(i.e. generalized coherence) in [1], and we can see that the notion given
in [20] (see also [21]) is stronger than it. Actually, it can be shown that
the notion of g-coherence is equivalent to the property of ”avoiding uniform
loss” given in [20]. As well known, probabilistic reasoning can be developed
by local approaches based on local inference rules and global ones using
linear optimization techniques (see, e.g., [17], [18]). The global incomplete-
ness of the local approach has been extensively analyzed in [17], where it is
shown that local probabilistic deduction is very limited in its field of appli-
cation. The global approach to probabilistic reasoning has an exponential
complexity. In particular, concerning probabilistic reasoning under coher-
ence, in [3] it has been shown that the problems of deciding g-coherence
and entailment (under g-coherence) are, respectively, NP-complete and co-
NP-complete. Exploiting an idea given in [9] (see also [10]), an approach
to the checking of coherence of conditional probability assessments allowing
to split the problem into suitable sub-problems has been proposed in [7],
[8]. An efficient procedure to propagate conditional probability bounds for
families of conjunctive conditional events has been proposed in [16]. It can
be shown ([3]) that the procedure proposed in [16] can be characterized in
terms of random gains. In this paper we illustrate some results obtained in
[5], [6]. The aim in such papers was that of diminishing the computational
difficulties in the algorithms used for the checking of (generalized) coherence
and propagation of imprecise conditional probability assessments ([1], [11],
[12]). We describe an iterative procedure by means of which we can reduce
the number of unknowns in the linear systems used in our algorithms. In
particular, concerning the case of lower probability bounds, we illustrate
an algorithm based on a mixed approach which allows to reduce the set
of variables and/or the set of linear constraints. As remarked in [1], our
algorithms can be also exploited for the checking of coherence (in the sense
of Walley and Williams) and for producing (using the ”least committal”
correction connected with the principle of natural extension given in [20])
the coherent upper and lower probabilities. In this paper, we study in detail
imprecise assessments defined on families of three conditional events. We
make a minute analysis of many cases which can occur when the set of con-
stituents is determined. We obtain some necessary and sufficient conditions
and we generalize some theoretical results. Then, we exploit such results
by proposing two algorithms which provide new strategies for reducing the
number of constraints and for deciding g-coherence. Finally, we illustrate
our approach by giving some examples. The remaining part of the paper is
organized as follows. In Section 2 we give some preliminary concepts and
results. Based on the notions of ”not-relevant” gain and of ”basic set”, we
show how to compute a reduced set of variables. We also describe an algo-
rithm for reducing the number of linear constraints. In Section 3 we make
a minute analysis of lower probability bounds defined on families of three
conditional events. We obtain necessary and sufficient conditions for the
g-coherence of the given imprecise assessment. In Section 4 we generalizes
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some of the theoretical results obtained in Section 3. In Section 5, we pro-
pose two algorithms which provide new strategies for reducing the number
of constraints and for deciding g-coherence. In Section 6, we illustrate our
methods by examining some examples. Finally, in Section 7 we give some
conclusions and an outlook on further developments of this work.

2 Some preliminary concepts and results

For each integer n, we define Jn = {1, . . . , n}. We denote by Fn a family of
n conditional events {E1|H1, . . . , En|Hn} and by An a vector (α1, . . . , αn)
of lower bounds on Fn.

Definition 1 The vector of probability lower bounds An is g-coherent iff
there exists a coherent assessment {P (Ei|Hi), i ∈ Jn} on Fn such that
P (Ei|Hi) ≥ αi.

Remark 1 We observe that, for every E|H, such that ∅ ⊂ EH ⊂ H, and
for every α ∈ [0, 1], the assessment P (E|H) ≥ α is g-coherent.

Of course, in the definition above we can assume αi > 0, for each i ∈
Jn. More in general, given an arbitrary family of conditional events F =
{Ej |Hj}j∈J and a set of lower bounds A defined on F , we have

Definition 2 The set of probability lower bounds A defined on the family
F is g-coherent iff, for every n and for every sub-family Fn ⊆ F , the vector
of lower bounds An defined on Fn is g-coherent.

We remark that, as shown by Definitions 1 and 2, the notion of g-coherence
is based on that of coherence given for the case of precise assessments by de
Finetti.
Given the pair (Fn,An), we denote by C1, . . . , Cm the constituents con-
tained in Hn =

∨

j∈Jn
Hj . For each constituent Cr, r ∈ Jm, we introduce a

vector Vr = (vr1, . . . , vrn), where for each i ∈ Jn it is respectively vri = 1,
or vri = 0, or vri = αi, according to whether Cr ⊆ EiHi, or Cr ⊆ Ec

i Hi, or
Cr ⊆ Hc

i . We denote by Gn the random gain
∑

j∈Jn
sjHj(Ej − αj), sj ≥

0, j ∈ Jn, and by

gh =
∑

j∈Jn

sj(vhj − αj) =
∑

j:Ch⊆Hj

sj(vhj − αj) (1)

the value of Gn|Hn associated with Ch. We denote by (Sn) the following
system in the unknowns λr’s.

(Sn)
m

∑

r=1

λrvri ≥ αi, i ∈ Jn;
m

∑

r=1

λr = 1; λr ≥ 0, r ∈ Jm. (2)

Then, as shown in [11], the set of lower bounds A defined on F is g-coherent
iff, for every n and for every sub-family Fn ⊆ F , the system (2) is solvable.
Moreover, based on a suitable alternative theorem, it can be shown ([1])
that the solvability of system (2) is equivalent to the following condition

Max Gn|Hn ≥ 0. (3)

Then, exploiting the notion of random gain as usually made by other authors
(see e.g. [20], [21]), the concept of g-coherence can be defined in the following
alternative way.
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Definition 3 A set of lower bounds A defined on a family of conditional
events F is g-coherent iff ∀ n,∀ Fn ⊆ F and ∀ sj ≥ 0, j ∈ Jn, it is
Max Gn|Hn ≥ 0.

Now, we recall some definitions and theoretical conditions given in [2].

Definition 4 Let G = {gj}j∈Jm be the set of possible values of the random
gain Gn|Hn. Then, a value gr ∈ G is said ”not relevant for the checking of
condition (3)”, or in short ”not relevant”, if there exists a set Tr ⊆ Jm \{r}
such that:

Max {gj}j∈Tr < 0 =⇒ gr < 0 . (4)

Definition 5 A set GΓ = {gr}r∈Γ, with Γ ⊂ Jm, is said not relevant if,
∀r ∈ Γ, there exists a set Tr ⊆ Jm \ Γ such that (4) is satisfied.

Given r ∈ Jm and a set Tr ⊆ Jm\{r}, let us consider the following condition

gr ≤
∑

j∈Tr

ajgj ; aj > 0 , ∀j ∈ Tr ; (5)

Based on Definition 4, it can be shown that, if for the gain gr the above
condition is satisfied, then gr is not relevant. Exploiting in general the con-
dition (5) we can reduce the number of variables. In particular, concerning
the case of conjunctive events, we can improve the procedure given in [16].
We observe that Max Gn|Hn = Max {gj}j∈Jm . Then, the following
theorem illustrates the basic idea to reduce the number of unknowns ([2],
[5]).

Theorem 1 Let T be a strict subset of the set Jm such that for every r /∈ T
there exists Tr ⊆ T satisfying the condition (5). Then:

Max {gj}j∈Jm ≥ 0 ⇐⇒ Max {gj}j∈T ≥ 0 .

Based on the previous result and on suitable alternative theorems, the solv-
ability of (Sn) is equivalent to the solvability of a system (STn ) which has a
reduced number of unknowns. We denote respectively by ΛT = (λr; r ∈ T )
and ST the vector of unknowns and the set of solutions of the system (STn ).
Moreover, we define the linear function ΦTj (ΛT ) =

∑

r:Cr⊆Hj
λr. Then, we

denote by IT0 the (strict) subset of Jn defined as

IT0 = {j ∈ Jn : Mj = MaxΛT ∈ST ΦTj (ΛT ) = 0}

and by (FT0 ,AT0 ) the pair associated with IT0 . The computation of a set T
(called a basic set) is carried out by an iterative algorithm which checks the
inequalities gr ≤ gh, or gr ≤ gh + gk. Based on (1), we have the following
relations

gr ≤ gh ⇐⇒ Vr ≤ Vh ;
gr ≤ gh + gk ⇐⇒ An ≤ Vh + Vk − Vr . (6)

In the algorithm below the subsets of Jm are ordered and we denote by mT

(resp. MT ) the minimum (resp. maximum) of T and by s(r) the element
which follows r in the given ordering.

Algorithm 1 Let be given the triplet (Jn,Fn,An).

1. Expand the expression
∧

j∈Jn

(

EjHj ∨ Ec
jHj ∨Hc

j

)

. Then, deter-
mine the set {Ch}h∈Jm of constituents contained in Hn and the cor-
responding set of vectors {Vh}h∈Jm .
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2. For each subscript r ∈ Jm, eliminate the vector Vr if the condition
Vr ≤ Vj is satisfied for a subscript j 6= r. Denote by {Vj}j∈T0 , where
T0 ⊆ Jm, the set of remaining vectors.

3. Set T1 = T c
1 = ∅ and r = mT0 .

4. If r ∈ T1, then go to Step 6. Otherwise, go to Step 5.

5. If a subset {h, k} ⊆ T0 \ (T c
1 ∪ {r}) is found such that the inequality

An ≤ Vh + Vk − Vr holds, then replace respectively T c
1 by T c

1 ∪ {r}
and T1 by T1 ∪ {h, k}. Otherwise, replace T1 by T1 ∪ {r}.

6. If r = MT0 , go to Step 7. Otherwise, replace r by s(r) and go to
Step 4.

7. If T1 ⊂ T0, then introduce two sets T2, T c
2 and replace (T0, T1, T c

1 ) by
(T1, T2, T c

2 ). Then, go to Step 3. Otherwise, T = T1 and the proce-
dure ends.

The algorithm stops when, for some i, one has Ti−1 = Ti. Then, the output
T = Ti is obtained.

In [2] the following theorem has been proved.

Theorem 2 The imprecise assessment An on Fn is g-coherent if and only
if the following conditions are satisfied:

1. the system (STn ) is solvable;

2. if IT0 6= ∅, then AT0 is g-coherent.

We now describe a procedure which allows to reduce the family Fn on which
to construct the system (STn ).

Given the set V = {V1, . . . , Vm}, we define

W = {Vr ∈ V : vri 6= 0,∀ i ∈ Jn} (7)

and, for each Vr ∈ W, the set

Nr = {i ∈ Jn : Cr ⊆ Hc
i } . (8)

Then, we define

Vk = {Vr ∈ W : |Nr| = k}, k = 0, 1, . . . , n− 1 . (9)

One has

Theorem 3 Assume that W is not empty. Then:
1. the system (Sn) is solvable;
2. given any Vh ∈ W, if the sub-vector ANh associated with Nh is g-coherent,
then An is g-coherent.

Theorem 4 Assume that W is not empty and let Vh, Vk two vectors in W.
If the sub-vector ANh∩Nk associated with Nh ∩Nk is g-coherent, then An is
g-coherent.

We observe that, if An is g-coherent, then for each Nh ⊂ Jn the assessment
ANh on FNh is g-coherent. Then, Theorems 3 and 4 can be re-formulated
in the following more expressive way.
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Theorem 5 Assume that W is not empty. Then:
1. the system (Sn) is solvable;
2. An is g-coherent iff, for each given Vh ∈ W, the sub-vector ANh associ-
ated with Nh is g-coherent.

Theorem 6 Assume that |W| ≥ 2. Then:
1. the system (Sn) is solvable;
2. An is g-coherent iff, for each pair of vectors Vh, Vk in W, the sub-vector
ANh∩Nk associated with Nh ∩Nk is g-coherent.

Theorem 6 can be generalized, in an obvious way, to any given subset
{Vh1 , . . . , Vht} ⊆ W .

Given as input the pair (F ,A) = (Fn,An) the following procedure, called
SubFV(), returns a suitable pair (F ,A) = SubFV(Fn,An).

Algorithm 2 SubFV (F ,A)

1. Set k = 0.

2. Determine Vk.

3. If Vk 6= ∅ and k = 0, return (∅, ∅).
If Vk = ∅ and k < n− 1, then set k = k + 1 and go to Step 2.
If Vk 6= ∅, given any Vr ∈ Vk, let (FNr ,ANr ) be the pair associated
with Nr. Then, set (F ,A) = (FNr ,ANr ) and go to Step 1.
If Vk = ∅ and k = n− 1, return (F ,A).

3 Checking of g-coherence: the case n = 3

In this section, with the aim of better illustrating the previous results, we
will examine with great details the case n = 3. Let A = (α1, α2, α3) be a
vector of lower bounds on a family F = {E1|H1, E2|H2, E3|H3}. To avoid
the analysis of trivial cases, we assume

∅ ⊂ EiHi ⊂ Hi , i = 1, 2, 3.

Remark 2 In what follows, as it will be specified, to avoid the analysis of
particular cases, we will also assume

αi < 1 , i = 1, 2, 3.

We observe that, as αi < 1, given a given vector Vr, if vri = 1, then
Cr ⊆ EiHi.

As n = 3, the set of vectors V = {V1, . . . , Vm}, where m ≤ 26, is a subset of
the set

{(1, 1, 1), (1, 1, α3), (1, α2, 1), (α1, 1, 1), . . . , (α1, 0, 0), (0, α2, 0), (0, 0, α3), (0, 0, 0)} .

We represent V in the following way

V = V0 ∪ V1 ∪ V2 ∪ U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6 ,
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where

V0 ⊆ {(1, 1, 1)} , V1 ⊆ {(1, 1, α3), (1, α2, 1), (α1, 1, 1)} ,

V2 ⊆ {(1, α2, α3), (α1, 1, α3), (α1, α2, 1)} , U1 ⊆ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} ,

U2 ⊆ {(1, α2, 0), (1, 0, α3), (α1, 1, 0), (0, 1, α3), (α1, 0, 1), (0, α2, 1), } ,

U3 ⊆ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} , U4 ⊆ {(α1, α2, 0), (α1, 0, α3), (0, α2, α3)} ,

U5 ⊆ {(α1, 0, 0), (0, α2, 0), (0, 0, α3)} , U6 ⊆ {(0, 0, 0)} .

Based on Theorem 3, we have the following results.

Theorem 7 If |V0| = 1, then A is g-coherent.

Proof. In this case V0 = {V1}, where V1 = (1, 1, 1). Then, by Theorem 3,
(S3) is solvable and N1 = ∅, and hence A is g-coherent.

Theorem 8 If V0 = ∅ and |V1| ≥ 1, then A is g-coherent.

Proof. In this case, there exists a vector V1, with V1 = (1, 1, α3), or V1 =
(1, α2, 1), or V1 = (α1, 1, 1), such that V1 ∈ V1. Then, by Theorem 3, (S3)
is solvable. Moreover, |N1| = 1 and, of course, the assessment AN1 on FN1

is g-coherent, hence A is g-coherent.

Theorem 9 If V0 = V1 = ∅ and |V2| ≥ 2, then A is g-coherent.

Proof. In this case, there exist two vectors V1, V2, with

V1 = (1, α2, α3) , V2 = (α1, 1, α3) ,

or
V1 = (1, α2, α3) , V2 = (α1, α2, 1) ,

or
V1 = (α1, 1, α3) , V2 = (α1, α2, 1) ,

such that {V1, V2} ⊆ V2. Then, |N1| = |N2| = 2 and N1 ∩N2 = 1, so that
the assessment AN1∩N2 on FN1∩N2 is g-coherent. Hence, by Theorem 4, A
is g-coherent

Theorem 10 If V0 = V1 = ∅, |V2| = 1, with V2 = {(1, α2, α3)}, and
the quasi-conjunction of the conditional events in the family F2 = {E2|H2,
E3|H3} is verifiable, then A is g-coherent. The same conclusion holds if
V2 = (α1, 1, α3) and F2 = {E1|H1, E3|H3}, or V2 = (α1, α2, 1) and F2 =
{E1|H1, E2|H2}.

Proof. We only examine the case V2 = {V1} = {(1, α2, α3)} because the
reasoning is similar in the other cases. It is N1 = {2, 3}. Then, by Theorem
3, (S3) is solvable, so that g-coherence of A amounts to g-coherence of the
assessment A2 = (α2, α3) on F2 = {E2|H2, E3|H3}. The quasi-conjunction
of E2|H2, E3|H3 is the conditional event (E2H2∨Hc

2)∧ (E3H3∨Hc
3) | (H2∨

H3), which is verifiable iff E2H2E3H3∨E2H2Hc
3 ∨Hc

2E3H3 6= ∅. Therefore,
denoting by U the intersection of the set of vectors relative to the pair
(F2,A2) with the set {(1, 1), (1, α3), (α2, 1)}, one has U 6= ∅. Then, we can
apply Theorem 7 or Theorem 8 to the pair (F2,A2) obtaining that A2 is
g-coherent, so that A is g-coherent too.
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Remark 3 We observe that, concerning the previous result, if the quasi
conjunction of E2|H2, E3|H3 is not verifiable, then g-coherence of A requires
that some numerical conditions be satisfied by α1, α2, α3.

We have

Theorem 11 If V0 = V1 = ∅, V2 = {(1, α2, α3)} and the quasi-conjunction
of the conditional events in the family F2 = {E2|H2, E3|H3} is not verifi-
able, then A is g-coherent iff α2 + α3 ≤ 1.

Proof. Let us define V1 = (1, α2, α3). Then, by Theorem 3, (S3) is solvable
and N1 = {2, 3}, so that we need to examine the pair (F2,A2). By the
hypotheses it follows that the set of vectors relative to (F2,A2) contains
the set {(1, 0), (0, 1)}. Then, it is easy to verify that A2 (and hence A) is
g-coherent iff α2 + α3 ≤ 1.

Remark 4 We observe that, under similar hypotheses, Theorem 11 can
also be proved, obtaining similar results, in the following cases

1. V2 = {(α1, 1, α3)} , F2 = {E1|H1, E3|H3} ;

2. V2 = {(α1, α2, 1)} , F2 = {E1|H1, E2|H2} .

We remark that, if V0 = V1 = V2 = ∅, then we need to check the solvability
of the system (S3), or of the system (ST3 ) exploiting a basic set T . Some
results are given below.

Theorem 12 If V0 = V1 = V2 = ∅ and α1 + α2 + α3 > 2, then A is not
g-coherent.

Proof. We observe that

V = U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6 .

Moreover, the system (S3) is solvable iff there exists a vector Λ = (λ1, . . . , λm)
such that

m
∑

h=1

λhVh ≥ A ,
m

∑

h=1

λh = 1 , λh ≥ 0 , ∀h .

Then, defining

V ∗
1 = (1, 1, 0) , V ∗

2 = (1, 0, 1) , V ∗
3 = (0, 1, 1) ,

for each Vr ∈ V it is Vr ≤ V ∗
1 , or Vr ≤ V ∗

2 , or Vr ≤ V ∗
3 . Then, based on any

solution (λ1, . . . , λm) of (S3) we would obtain

V ∗ = (v∗1 , v∗2 , v∗3) = λ∗1V
∗
1 + λ∗2V

∗
2 + λ∗3V

∗
3 ≥ A , (10)

where

λ∗1 =
∑

r:Vr≤V ∗1

λr , λ∗2 =
∑

r:Vr 6≤V ∗1 ,Vr≤V ∗2 ,

λr , λ∗3 =
∑

r:Vr 6≤V ∗1 ,Vr 6≤V ∗2 ,Vr≤V ∗3

λr ,

and with v∗1 + v∗2 + v∗3 = 2. The proof follows by observing that, if the
condition (10) were satisfied, then it would be α1 + α2 + α3 ≤ 2, which is
a contradiction.

Theorem 13 If V0 = V1 = V2 = ∅, |U1| = 3, αi < 1∀ i then one has:
a) there exists a basic set T , with |T | = 3;
b) A is g-coherent iff α1 + α2 + α3 ≤ 2.
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Proof. a) We represent U1 as the set {V1, V2, V3}, with

V1 = (0, 1, 1) , V2 = (1, 0, 1) , V3 = (1, 1, 0) .

For each r > 3 there exists h ∈ {1, 2, 3} such that Vr ≤ Vh and hence gr is
not relevant. Then, T = {1, 2, 3} is a basic set.
b.1) If α1 + α2 + α3 > 2, then by Theorem 12 it follows that A is not
g-coherent.
b.2) Let us assume that α1 + α2 + α3 ≤ 2. If α1 + α2 ≤ 1, then

V ∗ = (α1, 1− α1, 1) ≥ (α1, α2, 1) ≥ A ,

and
V ∗ = (1− α1)V1 + α1V2 .

Therefore, the vector (λ1, λ2, λ3) = (1−α1, α1, 0) is a solution of the system
(ST3 ). Moreover, it is IT0 = ∅, and hence A is g-coherent.
If α1 + α2 > 1, then the segment (α1, α2, z), 0 ≤ z ≤ 1, intersects the
triangle V1V2V3 in the point V ∗ = (α1, α2, 2− α1 − α2) ≥ A. Moreover,

V ∗ = λ1V1 + λ2V2 + λ3V3 ,

with
λ1 = 1− α1 , λ2 = 1− α2 , λ3 = α1 + α2 − 1 .

Then, the vector (λ1, λ2, λ3) is a solution of the system (ST3 ), with IT0 = ∅,
and hence A is g-coherent.

Theorem 14 If V0 = V1 = V2 = ∅, U1 = {V1, V2} = {(1, 1, 0), (1, 0, 1)},
{V3, V4} = {(0, 1, α3), (0, α2, 1)} ⊆ U2 , αi < 1∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, or α2 + α3 ≤ 1, or α1 + α3 ≤ 1, then there exists a basic
set T , with |T | ≤ 3, and A is g-coherent;
c) if α1 + α2 > 1, α2 + α3 > 1, α1 + α3 > 1, then there exists a basic set T ,
with |T | ≤ 3, and A is g-coherent iff

α1α2 + α3 ≤ 1 or α1α3 + α2 ≤ 1.

Proof. a) By the hypotheses, it follows that for each Vr ∈ V , with r > 4,
there exists h ∈ {1, 2, 3, 4} such that Vr ≤ Vh, therefore gr is not relevant.
We observe that the gains associated with the vectors V1, V2, V3, V4 are re-
spectively

g1 = s1(1− α1) + s2(1− α2)− s3α3 ,

g2 = s1(1− α1)− s2α2 + s3(1− α3) ,

g3 = −s1α1 + s2(1− α2) ,

g4 = −s1α1 + s3(1− α3) .

In order to study the g-coherence of A we need to consider the equations
of the planes containing the triangles V1V2V3, V1V2V4, V1V3V4 and V2V3V4.
These equations are, respectively,

α3x + y + z = 1 + α3 ,

α2x + y + z = 1 + α2 ,

α3(1− α2)x + (1− α3)y + (1− α2)z = 1− α2α3 ,

α2(1− α3)x + (1− α3)y + (1− α2)z = 1− α2α3 .
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The intersection points of the segment (x, α2, α3), 0 ≤ x ≤ 1, with
the planes containing the triangles V1V2V3 and V1V2V4, are respectively
V ∗

x = ( 1−α2
α3

, α2, α3) and V ∗∗
x = ( 1−α3

α2
, α2, α3), with

V ∗
x ≥ A ⇐⇒ α1α3 + α2 ≤ 1 ;

V ∗∗
x ≥ A ⇐⇒ α1α2 + α3 ≤ 1 .

The intersection point of the segment (α1, y, α2), 0 ≤ y ≤ 1, with the plane
containing the triangle V1V3V4 is V ∗

y = (α1, 1 − α3 − α1α3 + α1α2α3, α3),
with

V ∗
y ≥ A ⇐⇒ α1α3 + α3 ≤ 1 .

The intersection point of the segment (α1, α2, z), 0 ≤ z ≤ 1, with the
plane containing the triangle V2V3V4 is

V ∗
z = (α1, α2,

1−α2−α1α2(1−α3)
1−α2

) ≥ A , ∀ α3 ∈ [0, 1] .

b.1) If α1 + α2 ≤ 1, then

∀λ ∈ (
α2

1− α2
,
1− α1

α1
) , ∀ a ≥ Max { 1− α1

1− (1 + λ)α1
,

1− α2

λ− (1 + λ)α2
} ,

one has
ag2 + λag3 ≥ g1 .

Therefore g1 is not relevant and T = {2, 3, 4} is a basic set. Moreover,

V ∗
z = λ2V2 + λ3V3 + λ4V4 ,

with
λ2 = α1 , λ3 =

α1α2

1− α2
, λ4 =

1− α1 − α2

1− α2
.

We recall that αi > 0, i = 1, 2, 3, so that λi ≥ 0, i = 2, 3, 4. Then, the vector
(λ2, λ3, λ4) is a solution of the system (ST3 ), with |IT0 | ≤ 1, and hence A is
g-coherent.
b.2) If α2 + α3 ≤ 1, then there exist suitable positive quantities a, λ, b, δ
such that

ag1 + λag2 ≥ g3 , bg1 + δbg2 ≥ g4 ,

therefore g3 and g4 are not relevant and T = {1, 2} is a basic set. Moreover,
V ∗ = (1, α2, 1− α2) ≥ (1, α2, α3) ≥ A and one has

V ∗ = λ1V1 + λ2V2 ,

with
λ1 = α2 , λ2 = 1− α2 .

Then, the vector (λ1, λ2) is a solution of the system (ST3 ), with IT0 = ∅, and
hence A is g-coherent.
b.3) If α1 + α3 ≤ 1, then α1α3 + α3 ≤ 1 and hence V ∗

y ≥ A. Moreover,
there exist suitable positive quantities a, λ such that

ag1 + λag4 ≥ g2 ,

therefore g2 is not relevant and T = {1, 3, 4} is a basic set. We have

V ∗
y = λ1V1 + λ3V3 + λ4V4 ,
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with

λ1 = α1 , λ3 =
1− (α1 + α3)

1− α3
, λ4 =

α1α3

1− α3
.

Then, the vector (λ1, λ3, λ4) is a solution of the system (ST3 ), with |IT0 | ≤ 1,
and hence A is g-coherent.
Therefore, under the condition

α1 + α2 ≤ 1 , or α2 + α3 ≤ 1 , or α1 + α3 ≤ 1 ,

A is g-coherent.
c) Let us assume that α1 + α2 > 1, α2 + α3 > 1, α1 + α3 > 1.
c.1) If α1α3 + α2 ≤ 1, then V ∗

x ≥ A. Moreover, there exist suitable positive
quantities a, λ such that

ag2 + λag3 ≥ g4 ,

therefore g4 is not relevant and T = {1, 2, 3} is a basic set. We have
V ∗

x = λ1V1 + λ2V2 + λ3V3, with

λ1 =
(1− α2)(1− α3)

α3
, λ2 = 1− α2 , λ3 =

α2 + α3 − 1
α3

.

Then, the vector (λ1, λ2, λ3) is a solution of the system (ST3 ), with IT0 = ∅,
and hence A is g-coherent.
c.2) If α1α2 +α3 ≤ 1, then V ∗∗

x ≥ A. Moreover, there exist suitable positive
quantities a, λ such that

ag1 + λag4 ≥ g3 ,

therefore g3 is not relevant and T = {1, 2, 4} is a basic set. We have
V ∗∗

x = λ1V1 + λ2V2 + λ4V4, with

λ1 = 1− α3 , λ2 =
(1− α2)(1− α3)

α2
, λ4 =

α2 + α3 − 1
α2

.

Then, the vector (λ1, λ2, λ4) is a solution of the system (ST3 ), with IT0 = ∅,
and hence A is g-coherent.
3. If α1α2 + α3 > 1 and α1α3 + α2 > 1, then the condition

λ1V1 + λ2V2 + λ3V3 + λ4V4 ≥ A

is not satisfiable, that is (ST3 ) is not solvable.
In conclusion, under the hypothesis α1 +α2 > 1, α2 +α3 > 1, α1 +α3 > 1,
A is g-coherent iff α1α2 + α3 ≤ 1 or α1α3 + α2 ≤ 1.

Remark 5 We observe that, under similar hypotheses, Theorem 14 can
also be proved, obtaining similar results, in the following cases

U1 = {V1, V2} = {(1, 1, 0), (0, 1, 1)}, {V3, V4} = {(1, 0, α3), (α1, 0, 1)} ⊆ U2

U1 = {V1, V2} = {(1, 0, 1), (0, 1, 1)}, {V3, V4} = {(1, α2, 0), (α1, 1, 0)} ⊆ U2.

Theorem 15 If V0 = V1 = V2 = ∅, U1 = {V1, V2} = {(1, 1, 0), (1, 0, 1)}, V3 =
(0, 1, α3) ∈ U2, (0, α2, 1) /∈ U2, αi < 1 ∀ i, then one has:
a) for every r > 3, the gain gr is not relevant;
b) if α2 + α3 ≤ 1, then there exists a basic set T , with |T | = 2, and A is
g-coherent;
c) if α2 + α3 > 1, then A is g-coherent iff α1α3 + α2 ≤ 1.
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Proof. a) By the hypotheses, it follows that for each Vr ∈ V , with r > 3,
there exists h ∈ {1, 2, 3} such that Vr ≤ Vh, therefore gr is not relevant.
b) If α2 + α3 ≤ 1, then

V ∗ = (1, α2, 1− α2) ≥ (1, α2, α3) ≥ A .

Moreover, there exist suitable positive quantities a, λ such that

ag1 + λag2 ≥ g3 ,

therefore g3 is not relevant and T = {1, 2} is a basic set. We have
V ∗ = α2V1 + (1 − α2)V2. Then, the vector (α2, 1 − α2) is a solution of
the system (ST3 ), with IT0 = ∅, and hence A is g-coherent.
c) Let us assume that α2 + α3 > 1 , α1α3 + α2 ≤ 1. We recall that the
equation of the plane containing the triangle V1V2V3 is α3x+y+z = 1+α3.
Then, the segment (x, α2, α3), 0 ≤ x ≤ 1, intersects the triangle V1V2V3 in
the point V ∗

x = ( 1−α2
α3

, α2, α3) and one has V ∗
x ≥ A . Moreover,

V ∗
x = λ1V1 + λ2V2 + λ3V3,

with

λ1 =
(1− α1)(1− α3)

α3
, λ2 = 1− α2 , λ3 =

α2 + α3 − 1
α3

.

Then, the vector (λ1, λ2, λ3) is a solution of the system (ST3 ), with IT0 = ∅,
and hence A is g-coherent.
We observe that, if α1α3 + α2 > 1, then the condition

λ1V1 + λ2V2 + λ3V3 ≥ A

is not satisfiable, that is (ST3 ) is not solvable. Therefore, under the hypoth-
esis α2 + α3 > 1, A is g-coherent iff α1α3 + α2 ≤ 1.

Remark 6 We observe that, under similar hypotheses, Theorem 15 can
also be proved, obtaining similar results, in the following cases

U1 = {V1, V2} = {(1, 1, 0), (1, 0, 1)}, V3 = (0, α2, 1) ∈ U2, V4 = (0, 1, α3) /∈ U2

U1 = {V1, V2} = {(1, 1, 0), (0, 1, 1)}, V3 = (1, 0, α3) ∈ U2, V4 = (α1, 0, 1) /∈ U2

U1 = {V1, V2} = {(1, 1, 0), (0, 1, 1)}, V3 = (α1, 0, 1) ∈ U2, V4 = (1, 0, α3) /∈ U2

U1 = {V1, V2} = {(1, 0, 1), (0, 1, 1)}, V3 = (1, α2, 0) ∈ U2, V4 = (α1, 1, 0) /∈ U2

U1 = {V1, V2} = {(1, 0, 1), (0, 1, 1)}, V3 = (1, α2, 0) ∈ U2, V4 = (α1, 1, 0) /∈ U2.

Theorem 16 If V0 = V1 = V2 = ∅, U1 = {V1} = {(1, 1, 0)}, {V2, V3, V4, V5} =
{(α1, 0, 1), (0, α2, 1), (1, 0, α3), (0, 1, α3)} ⊆ U2, αi < 1 ∀ i, then one has:
a) for every r > 5, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, then there exists a basic set T , with |T | = 3. Moreover,
A is g-coherent.
c) if α1 + α2 > 1, then there exists a basic set T , with |T | = 3, and A is
g-coherent iff

α3 ≤ Max {α1 + α2 − 2α1α2

α1 + α2 − α1α2
, 1− α1 + α1α3 − α1α2α3 , 1− α1α3} .
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Proof. a) By the hypotheses, it follows that for each Vr ∈ V , with r > 5,
there exists h ∈ {1, . . . , 5} such that Vr ≤ Vh, therefore gr is not relevant.
b) Let us assume α1 + α2 ≤ 1. Then, the segment (α1, α2, z), 0 ≤ z ≤
1, intersects the plane containing the triangle V2V4V5 in the point V ∗ =
(α1, α2, z∗), with z∗ = 1−α1−α2+α2α3

1−α1
≤ α3. Then V ∗ ≤ A. Moreover, for a

suitable non negative vector (λ2, λ4, λ5), with λ2 + λ4 + λ5 = 1, it is

V ∗ = λ2V2 + λ4V4 + λ5V5 .

Then, T = {2, 4, 5} is a basic set. Moreover, the vector (λ2, λ4, λ5) is a
solution of the system (ST3 ), with IT0 = ∅, and hence A is g-coherent.
We observe that by the same reasoning it could be shown that T = {3, 4, 5}
is a basic set too.
c) Let us assume that α1 + α2 > 1. Then, concerning the point (α1, α2, z∗)
belonging to the triangle V1V4V5, one has

z∗ = α3(2− α1 − α2) < α3 ,

so that we don’t need to consider such triangle. Then, it is enough to
consider the equations of the planes containing the triangles

V1V2V3 , V1V3V4 , V1V2V5 ,

which are respectively

α2x + α1y + (α1 + α2 − α1α2)z = α1 + α2 ,

(1− α3 + α2α3)x + α3y + z = 1 + α2α3 ,

α3(1− α2)x + (1− α3)y + (1− α2)z = 1− α2α3 .

The intersection points of the segment (α1, α2, z), 0 ≤ z ≤ 1, with the
planes above, are respectively

V ∗
1 = (α1, α2, z1) , V ∗

2 = (α1, α2, z2) , V ∗
3 = (α1, α2, z3) ,

with

z1 =
α1 + α2 − 2α1α2

α1 + α2 − α1α2
, z2 = 1− α1 + α1α3 − α1α2α3 , z3 = 1− α1α3 .

Then, if the condition α3 ≤ Max {z1, z2, z3} is satisfied, there exists a
subscript h ∈ {1, 2, 3} such that V ∗

h ≥ A. Moreover, V ∗
h belongs to one of

the above triangles, say Vi1Vi2Vi3 . Then, for a suitable non negative vector
(λi1 , λi2 , λi3), with λi1 + λi2 + λi3 = 1, it is

V ∗
h = λi1Vi1 + λi2Vi2 + λi3Vi3 .

Then, T = {i1, i2, i3} is a basic set. Moreover, the vector (λi1 , λi2 , λi3) is a
solution of the system (ST3 ), with IT0 = ∅, and hence A is g-coherent.
We observe that, if α3 > Max {z1, z2, z3}, then the system (ST3 ) is not
solvable and hence A is not g-coherent.
In conclusion, under the hypothesis α1 + α2 > 1, A is g-coherent iff α3 ≤
Max {z1, z2, z3}.

Remark 7 We observe that, under similar hypotheses, Theorem 16 can
also be proved, obtaining similar results, in the following cases

V1 = (1, 0, 1) , {V2, V3, V4, V5} = {(1, α2, 0), (α1, 1, 0), (0, 1, α3), (0, α2, 1)} ;

V1 = (0, 1, 1) , {V2, V3, V4, V5} = {(1, α2, 0), (1, 0, α3), (α1, 1, 0), (α1, 0, 1)} .
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Theorem 17 If V0 = V1 = V2 = U1 = ∅, U2 = {V1, V2, V3, V4, V5, V6} =
{(1, α2, 0), (1, 0, α3), (α1, 1, 0), (0, 1, α3), (α1, 0, 1), (0, α2, 1))}, αi < 1∀ i, then
one has:
a) for every r > 6, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, or α1 + α3 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic
set T , with |T | = 2, and A is g-coherent.
c) if α1 + α2 > 1, α1 + α3 > 1, α2 + α3 > 1, then A is not g-coherent.

Proof. a) By the hypotheses, it follows that for each Vr ∈ V , with r > 6,
there exists h ∈ {1, . . . , 6} such that Vr ≤ Vh, therefore gr is not relevant.
b.1) Let us assume α1 + α2 ≤ 1. Then, defining V ∗ = α1V2 + (1 − α1)V4,
we have

V ∗ = (α1, 1− α1, α3) ≥ A .

Then, T = {2, 4} is a basic set. Moreover, (α1, 1 − α1) is a solution of the
system (ST3 ), with IT0 = ∅, and hence A is g-coherent.
b.2) Let us assume α1 + α3 ≤ 1. Then, defining V ∗ = α1V1 + (1 − α1)V6,
we have

V ∗ = (α1, α2, 1− α1) ≥ A .

Then, T = {1, 6} is a basic set. Moreover, (α1, 1 − α1) is a solution of the
system (ST3 ), with IT0 = ∅, and hence A is g-coherent.

b.3) Let us assume α2 +α3 ≤ 1. Then, defining V ∗ = α2V3 +(1−α2)V5,
we have

V ∗ = (α1, α2, 1− α2) ≥ A .

Then, T = {3, 5} is a basic set. Moreover, (α2, 1 − α2) is a solution of the
system (ST3 ), with IT0 = ∅, and hence A is g-coherent.
c) Let us assume that α1+α2 > 1, α1+α3 > 1, α2+α3 > 1. As an example,
let us consider the intersection points, (α1, α2, z∗) and (α1, α2, z∗∗), of the
segment (α1, α2, z) , 0 ≤ z ≤ 1, with the triangles V1V4V5 and V2V3V6,
respectively. It can be verified that

z∗ =
1− α1 − α2 + α1α2 + α2α3 − α1α2α3

1− α1 + α1α2
,

z∗∗ =
1− α1 − α2 + α1α2 + α1α3 − α1α2α3

1− α2 + α1α2
.

Moreover, each one of the following conditions

z∗ ≥ α3 , z∗∗ ≥ α3

is satisfied iff the following condition holds

α3 ≤
1− α1 − α2 + α1α2

1− α1 − α2 + 2α1α2
. (11)

By hypothesis it is α1+α3 > 1, α2+α3 > 1. Therefore, if (11) were satisfied,
it should be

α1 + 1−α1−α2+α1α2
1−α1−α2+2α1α2

> 1 ,

α2 + 1−α1−α2+α1α2
1−α1−α2+2α1α2

> 1 .

The inequalities above are satisfied iff α2 < 1
2 and α1 < 1

2 , respectively.
Then, it should be α1 + α2 < 1, which contradicts the hypothesis.
By a similar reasoning, it can be verified that for each {i, j, k} ⊆ {1, . . . , 6},
if the segment (α1, α2, z) , 0 ≤ z ≤ 1, intersects the triangle ViVjVk in a
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point V ∗ = (α1, α2, z∗), then one has z∗ < α3.
Therefore, as α1 + α2 > 1, it follows

z∗ < α3 , z∗∗ < α3 .

Then, the system (ST3 ) is not solvable and hence A is not g-coherent.

By a similar reasoning the following results can be proved.

Theorem 18 If V0 = V1 = V2 = U1 = ∅, U2 = {V1, V2, V3, V4} =
{(1, α2, 0), (α1, 1, 0), (α1, 0, 1), (0, α2, 1))}, αi < 1 ∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α3 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic set T , with
|T | = 2, and A is g-coherent.
c) if α1 + α3 > 1, α2 + α3 > 1, then A is not g-coherent.

Theorem 19 If V0 = V1 = V2 = U1 = ∅, U2 = {V1, V2, V3, V4} =
{(1, 0, α3), (0, 1, α3), (α1, 1, 0), (α1, 0, 1))}, αi < 1 ∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, or α2 + α3 ≤ 1, then there exists a basic set T , with
|T | = 2, and A is g-coherent.
c) if α1 + α2 > 1, α2 + α3 > 1, then A is not g-coherent.

Theorem 20 If V0 = V1 = V2 = U1 = ∅, U2 = {V1, V2, V3, V4} =
{(1, 0, α3), (0, 1, α3), (1, α2, 0), (0, α2, 1))}, αi < 1∀ i, then one has:
a) for every r > 4, the gain gr is not relevant;
b) if α1 + α2 ≤ 1, or α1 + α3 ≤ 1, then there exists a basic set T , with
|T | = 2, and A is g-coherent.
c) if α1 + α2 > 1, α1 + α3 > 1, then A is not g-coherent.

Theorem 21 If V0 = V1 = V2 = U1 = U2 = ∅, U3 = {V1, V2, V3} =
{(1, 0, 0), (0, 1, 0), (0, 0, 1))}, αi < 1 ∀ i, then one has:
a) if α1 + α2 ≤ 1, α1 + α3 ≤ 1, α2 + α3 ≤ 1, then T = {1, 2, 3} is a basic
set;
b) A is g-coherent iff α1 + α2 + α3 ≤ 1.

Proof. a) We first show that the gains associated with the vectors V4 =
(α1, α2, 0), V5 = (α1, 0, α3), V6 = (0, α2, α3) are not relevant. As α1 + α2 ≤
1, it follows that, for every pair (a, b), with

a > 0 , b > 0 , a + b ≤ 1 ,
α2

1− α2
a ≤ b ≤ 1− α1

α1
a ,

it is g4 ≤ ag1 + bg2, therefore g4 is not relevant.
As α1 + α3 ≤ 1, it follows that, for every pair (a, b), with

a > 0 , b > 0 , a + b ≤ 1 ,
α3

1− α3
a ≤ b ≤ 1− α1

α1
a ,

it is g5 ≤ ag1 + bg3, therefore g5 is not relevant.
As α2 + α3 ≤ 1, it follows that, for every pair (a, b), with

a > 0 , b > 0 , a + b ≤ 1 ,
α3

1− α3
a ≤ b ≤ 1− α2

α2
a ,

it is g6 ≤ ag2 + bg3, therefore g6 is not relevant.
For r > 6 there exists h ∈ {1, 2, 3} such that Vr ≤ Vh, so that gr is not
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relevant. Therefore T = {1, 2, 3} is a basic set.
b) If α1 + α2 + α3 ≤ 1, then the segment (α1, α2, z), 0 ≤ z ≤ 1, intersects
the triangle V1V2V3 in the point

V ∗ = (α1, α2, z∗) = (α1, α2, 1−α1−α2) = α1V1+α2V2+(1−α1−α2)V3 ≥ A .

Then, the vector (α1, α2, 1−α1−α2) is a solution of the system (ST3 ), with
IT0 = ∅, and hence A is g-coherent.
If α1 + α2 + α3 > 1, then A > V ∗ and the system (ST3 ) is not solvable.
Hence A is not g-coherent.

Remark 8 We observe that, given a vector of lower bounds A = (α1, α2)
on the family F = {E1|H1, E2|H2}, it is

V ⊆ {(1, 1), (1, α2), (α1, 1), (1, 0), (0, 1), (α1, 0), (0, α2), (0, 0)} .

Then, assuming

∅ 6= EiHi 6= Hi , 0 < αi < 1 , i = 1, 2 ,

the following assertions can be easily proved:
(i) if {(1, 1), (1, α2), (α1, 1)} ∩ V 6= ∅, then A is g-coherent;
(ii) if {(1, 1), (1, α2), (α1, 1)} ∩ V = ∅, then {(1, 0), (0, 1)} ⊆ V and A is
g-coherent iff α1 + α2 ≤ 1.

4 Some general results

In this section we generalize some of the results given in the previous one.

Theorem 22 If V0 = V1 = · · · = Vn−1 = ∅ and α1 + · · · + αn > n − 1,
then An is not g-coherent.

Proof. We consider the sets Nr, r = 0, 1, . . . , n−1, defined in (8). Moreover,
with each Vr ∈ V we associate the set

Mr = {i ∈ Jn : vri = 0} . (12)

Then, we define the sets

Uh,k = {Vr ∈ V : |Nr| = h , |Mr| = k}, h = 0, . . . , n− 1
k = 1, . . . , n . (13)

We observe that, if the sets Uh,0 were defined, then it would be Vh = Uh,0.
By the hypotheses, we have

V =
⋃

h,k

Uh,k

We recall that, the system (Sn) is solvable iff there exists a vector Λ =
(λ1, . . . , λm) such that

m
∑

h=1

λhVh ≥ An ,
m

∑

h=1

λh = 1 , λh ≥ 0 , ∀h .

Let us define

V ∗
1 = (0, 1, . . . , 1) , V ∗

2 = (1, 0, 1, . . . , 1) , . . . , V ∗
n = (1, . . . , 1, 0) .
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We observe that for every non negative vector (λ∗1, . . . , λ
∗
n), with

∑

i λ∗i = 1,
for the vector

V ∗ = (v∗1 , . . . , v∗n) = λ∗1V
∗
1 + · · ·+ λ∗nV ∗

n

it is
∑

i v∗i = n− 1. Therefore V∗ ≥ An implies
∑

i αi ≤ n− 1. Then, as for
each Vr ∈ V there exists h ∈ Jn such that Vr ≤ V ∗

h , based on any solution
(λ1, . . . , λm) of (Sn), we would obtain

λ∗1V
∗
1 + · · ·+ λ∗nV ∗

n ≥ An , (14)

with
λ∗1 =

∑

r∈J∗1

λr , · · · , λ∗n =
∑

r∈J∗n

λr ,

where J∗1 = {r : Vr ≤ V ∗
1 } and, for each t = 2, . . . , n,

J∗t = {r : Vr 6≤ V ∗
1 , . . . , Vr 6≤ V ∗

t−1, Vr ≤ V ∗
t } .

The proof follows by observing that, if the condition (14) were satisfied,
then it would be α1 + · · ·+ αn ≤ n− 1, which is a contradiction.

Theorem 23 If V0 = · · · = Vn−1 = ∅, |U0,1| = n, αi < 1 ∀ i, then one has:
a) there exists a basic set T , with |T | = n;
b) An is g-coherent iff α1 + · · ·+ αn ≤ n− 1.

Proof. a) We represent U0,1 as the set {V1, . . . , Vn}, with

V1 = (0, 1, . . . , 1) , V2 = (1, 0, 1, . . . , 1) , . . . , Vn = (1, . . . , 1, 0) .

As V0 = · · · = Vn−1 = ∅, for each Vr ∈ V , with r > n, there exists a
subscript i such that vri = 0. Then, there exists h ∈ Jn such that Vr ≤ Vh

and hence gr ≤ gh, so that gr is not relevant. Then, T = Jn = {1, 2, . . . , n}
is a basic set.
b.1) If α1 + · · ·+ αn > n− 1, then by Theorem 22 it follows that A is not
g-coherent.
b.2) Let us assume that α1 + · · ·+ αn−1 > n− 1. Then, it is

αn ≤ n− 1−
n−1
∑

i=1

αi .

Moreover, assuming that α1 + · · · + αn−1 > n − 2, let us consider the
(positive) quantities

λi = 1− αi , i ∈ Jn−1 ; λn = 1−
∑

i∈Jn−1

λi =
∑

i∈Jn−1

αi − (n− 2) .

Given the vector V ∗ = (v∗1 , . . . , v∗n) defined as

V ∗ = λ1V1 + · · ·+ λnVn ,

we have

v∗i =
∑

j∈Jn\{i} λj = 1− λi = αi , i ∈ Jn−1 ,

v∗n =
∑

j∈Jn−1
λj = 1− λn = n− 1−

∑

∈Jn−1
αi ≥ αn.
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Therefore V ∗ ≥ An. Then, the vector (λ1, . . . , λn) is a solution of the
system (STn ), with IT0 = ∅, and hence An is g-coherent.
b.2) Let us assume that α1 + · · ·+αn−1 ≤ n− 2. Then, denote by k ∈ Jn−2

the minimum integer such that the following conditions (i) and (ii) hold:
(i) α1 + · · ·+ αk > k − 1 ;
(ii) α1 + · · ·+ αk+1 ≤ k .
Moreover, consider the (positive) quantities

λi = 1− αi , i ∈ Jk , λk+1 =
∑

i∈Jk

αi − (k − 1) .

We observe that λ1 + · · ·+ λk+1 = 1. Moreover, considering the vector

V ∗ = (v∗1 , . . . , v∗n) = λ1V1 + · · ·+ λk+1Vk+1 ,

it can be verified that

v∗i =
∑

j∈Jk+1\{i} λj = 1− λi = αi , i ∈ Jk+1 ,

v∗i = 1 , k + 1 < i ≤ n .

Then, it is V ∗ ≥ An and the vector (λ1, . . . , λk+1, 0, . . . , 0) is a solution of
the system (STn ), with IT0 = ∅. Therefore, An is g-coherent.
We denote by Z the set defined as

Z = {(h, k) : h + k = n− 1 , h > 0} ∪ {(h, k) : h + k < n− 1}

Theorem 24 If V0 = · · · = Vn−1 = ∅, Uh,k = ∅ for each (h, k) ∈ Z, and
α1 + · · ·+ αn > 1, then An is not g-coherent.

Proof. By the hypotheses, one has

V = U0,n−1 ∪ (
n−1
⋃

h=0

Uh,n−h) .

Given a nonnegative vector Λ = (λ1, . . . , λm), with
∑

r∈Jm
λr = 1, let us

consider the vector

V ∗ = (v∗1 , . . . , v∗n) =
∑

r∈Jm

λrVr .

One has

V ∗ =
∑

r:Vr∈U0,n−1

λrVr +
∑

r:Vr /∈U0,n−1

λrVr = V ∗
1 + V ∗

2 ,

where
V ∗

1 = (v∗11, . . . , v
∗
1n) =

∑

r:Vr∈U0,n−1
λrVr ,

V ∗
2 = (v∗21, . . . , v

∗
2n) =

∑

r:Vr /∈U0,n−1
λrVr .

Let us consider the quantity δ =
∑

r:Vr∈U0,n−1
λr. We observe that for each

Vr ∈ Uh,n−h, 0 ≤ h ≤ n−1, it is Vr ≤ A and hence V ∗
2 ≤ A. Then, if δ = 0,

one has
V ∗ = V ∗

2 ≤ A .

Therefore, doesn’t exist a nonnegative vector Λ, with
∑

r∈Jm
λr = 1 and

δ = 0, such that
λ1V1 + · · ·+ λmVm ≥ A .
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Then, under the condition δ = 0, the system (STn ) is not solvable and hence
An is not g-coherent.
If δ > 0, then

V ∗ = V ∗
1 + V ∗

2 = δV 1 + V ∗
2 ,

where
V 1 = (v11, . . . , v1n) =

∑

r:Vr∈U0,n−1
λrVr ,

λr = λr
δ , ∀ r : Vr ∈ U0,n−1 .

Notice that
v2i ≤ (1− δ)αi , ∀ i ∈ Jn .

Moreover,
∑

i∈Jn

v1i = 1 <
∑

i∈Jn

αi ,

and hence there exists a subscript h such that v1h < αh. Then,

v∗h = δv1h + v2h < δαh + (1− δ)αh = αh ,

therefore V ∗ =
∑

r∈Jm
λrVr 6≥ A. Then, under the condition δ > 0,

the system (STn ) is still not solvable. In conclusion, under the hypothe-
sis α1 + · · ·+ αn > 1, the system (STn ) is not solvable and hence An is not
g-coherent.

Theorem 25 If V0 = · · · = Vn−1 = ∅, Uh,k = ∅, for each pair (h, k) ∈ Z,
|U0,n−1| = n, αi < 1∀ i, then one has:
a) if, for every j ∈ Jn, it is

∑

i∈Jn\{j} αi ≤ 1, then T = Jn is a basic set;
b) An is g-coherent iff α1 + · · ·+ αn ≤ 1.

Proof. a) Let us assume that, for every j ∈ Jn, it is
∑

i∈Jn\{j} αi ≤ 1.
Moreover, define

U0,n−1 = {V1, . . . , Vn} ,

where
V1 = (1, 0, . . . , 0) , . . . , Vn = (0, . . . , 0, 1) .

We observe that for each Vr ∈ Uh,n−h, with 0 ≤ h ≤ n− 1, it is

vri = αi , i ∈ Nr , vri = 0 , i ∈ Mr = Jn \Nr , Nr ⊂ Jn , Mr 6= ∅ ,

and hence
Vr =

∑

i∈Nr

αiVi .

Then,
Vr −A =

∑

i∈Nr

αi(Vi −A) + (
∑

i∈Nr

αi − 1)A .

Recalling (1) and defining the linear function

f(z1, . . . , zn) =
n

∑

i=1

sizi , si ≥ 0 , ∀ i ∈ Jn ,

for every r ∈ Jm we have

gr = f(Vr −An) .
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Then, observing that

∑

i∈Nr

αi − 1 ≤ 0 , f(A) =
n

∑

i=1

siαi ≥ 0 ,

one has

gr = f(Vr −A) =
∑

i∈Nr
αif(Vi −A) + (

∑

i∈Nr
αi − 1)f(A) ≤

≤
∑

i∈Nr
αif(Vi −A) =

∑

i∈Nr
αigi .

Then, gr is not relevant and hence T = Jn is a basic set.
b.1) If α1 + · · · + αn > 1, then by Theorem 24 it follows that A is not
g-coherent.
b.2) Let us assume α1 + · · · + αn ≤ 1. Then, αn ≤ 1 −

∑n−1
i=1 αi. The

segment
(α1, . . . , αn−1, z) , 0 ≤ z ≤ 1 ,

intersects the hyperplane α1 + · · · + αn ≤ 1 in the point V ∗ = (α1, . . . ,
αn−1, z∗), with z∗ = 1−

∑n−1
i=1 αi ≥ αn and hence V ∗ ≥ A. Moreover,

V ∗ = α1V1 + · · ·+ αn−1Vn−1 + (1−
n−1
∑

i=1

αi)Vn .

Then, the vector (α1, . . . , αn−1, 1 −
∑n−1

i=1 αi) is a solution of the system
(STn ), with |IT0 | ≤ 1 and hence An is g-coherent.

5 Deciding g-coherence

We denote respectively by Λ = (λ1, . . . , λm) and S the vector of unknowns
and the set of solutions of the system (Sn). Moreover, given a subset S′ ⊆ S,
for each j ∈ Jn we consider the linear function

Φj(Λ) = Φj(λ1, . . . , λm) =
∑

r:Cr⊆Hj

λr .

Then, we denote by I ′0 be the set defined as

I ′0 = {j ∈ Jn : MaxΛ∈S′Φj(Λ) = 0} (15)

and by (F ′0,A′0) the pair associated with I ′0. Then, the following result has
been proved in [2].

Theorem 26 Given S′ ⊆ S, the imprecise assessment An on Fn is
g-coherent if and only if the following conditions are satisfied:

1. the system (Sn) is solvable ;

2. if I ′0 6= ∅, then A′0 is g-coherent.

Given the set of constituents C = {Ch , h ∈ Jm} and a subset Γ ⊂ Jn, let
us consider the subset JΓ ⊆ Jm defined as

JΓ = {r ∈ Jm : Cr ⊆ Hc
j ,∀ j /∈ Γ} . (16)

We observe that |JΓ| ≤ 3|Γ|−1. We denote by VΓ ⊆ V the subset of vectors
associated with JΓ and by IΓ

0 the set obtained by (15), with S′ = SΓ. Notice
that Jn \Γ ⊆ IΓ

0 . Moreover, we denote by (FΓ
0 ,AΓ

0 ) the pair associated with
Γ. Then, consider the subset SΓ ⊆ S defined as

SΓ = {Λ ∈ S : λr = 0, ∀ r /∈ JΓ} .

Then, we have
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Theorem 27 Let us assume that JΓ 6= ∅ , SΓ 6= ∅. Then, we have:
(i)if IΓ

0 = ∅, then An is g-coherent;
(ii) if IΓ

0 6= ∅, then An is g-coherent iff AΓ
0 is g-coherent.

Proof. We observe that, if SΓ 6= ∅, then the system (Sn) is solvable.
(i) if IΓ

0 = ∅ , then the g-coherence of An amounts to solvability of (Sn).
(ii) if IΓ

0 6= ∅ andAΓ
0 is g-coherent, then applying Theorem 26, with I ′0 = IΓ

0 ,
one has that An is g-coherent. Of course, if An is g-coherent, then AΓ

0 is
g-coherent.

Based on Theorem 27 and on the results of the previous section, we could
search for a subset JΓ 6= ∅, with |Γ| ≤ 3. We denote by (S) the starting
system associated with a pair (F ,A), and by (SΓ) the system obtained by
(S), with the added constraints

λr = 0 , ∀ r /∈ JΓ .

Of course, the set of solutions of (SΓ) is SΓ. We denote by K = {Γh , h =
1, . . . , M}, where M is a suitable integer, the class of subsets Γ, with |Γ| ≤ 3,
such that JΓ 6= ∅. Given as input the pair (F ,A) = (Fn,An) the following
procedure, called SubFK(), improves the procedure SubFV() by using the
class K and returns a new pair (F ,A) = SubFK(Fn,An).

Algorithm 3 SubFK(F ,A)

1. Set (F ,A)= SubFV(F ,A).

2. If (F ,A)=(∅, ∅), then go to step 6
else determine the class K.

3. If K = ∅, then go to step 6
else set h = 1.

4. Construct the system (SΓh).

5. If (SΓh) is solvable, then compute the set (IΓh
0 ). Set (F ,A) =

(FΓh
0 ,AΓh

0 ) and go to Step 1.
If (SΓh) is not solvable and h < M , then set h = h+1 and go to Step
4.
If (SΓh) is not solvable and h = M , then go to step 6.

6. return (F ,A).

Based on Theorem 2 and on the previous results, the checking of g-
coherence can be made by the algorithm below.

Algorithm 4 CheckgC(F ,A).

1. Set (F ,A) = SubFK(F ,A).

2. If (F ,A) = (∅, ∅) return (true).

3. Determine a subset T satisfying, for all r /∈ T , the condition (5), with
Tr ⊆ T .

4. Construct the system (ST ).
If the system (ST ) is not solvable then return (false).

5. Compute the set IT0 .
If IT0 6= ∅ then set (F ,A) = (FT0 ,AT0 ) and go to step 1,
else return (true).
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6 Some examples

We illustrate the results of previous sections by examining some examples.

Example 1 Given the family

K3 = {B|A, C|AB, D|C},

let us consider the vector of upper bounds

B3 = (0.2, 0.2, 0.2)

on K3. We observe that it is equivalent to consider the vector of lower
bounds

A3 = (0.8, 0.8, 0.8)

on
F3 = {Bc|A, Cc|AB, Dc|C} .

The constituents contained in H3 = A ∨ C are respectively

C1 = ABcCDc , C2 = ABcCc , C3 = AcCDc , C4 = ABcCD ,

C5 = ABCc , C6 = ABCDc , C7 = AcCD , C8 = ABCD .

The associated vectors are:

V1 = (1, 0.8, 1) , V2 = (1, 0.8, 0.8) , V3 = (0.8, 0.8, 1) , V4 = (1, 0.8, 0) ,

V5 = (0, 1, 0.8) , V6 = (0, 0, 1) , V7 = (0.8, 0.8, 0) , V8 = (0, 0, 0) .

In our case, it is

V = V0 ∪ V1 ∪ V2 ∪ U2 ∪ U3 ∪ U4 ∪ U6 ,

with
V0 = ∅ , V1 = {V1} , V2 = {V2, V3} ,

U2 = {V4, V5} , U3 = {V6} , U4 = {V7} , U6 = {V8} .

Then, by Theorem 8, A3 is g-coherent.We observe that, as |V2| = 2, the
same conclusion would also follow by Theorem 6.

Example 2 Let be given the interval-valued assessment

([
1
5
,
1
4
], [

1
10

,
1
5
], [

1
10

,
1
4
])

on the family
{B|AC, C|(A ∨B), D|(B ∨ C)} .

It is equivalent to consider the vector of lower bounds

A6 = (
1
5
,

1
10

,
1
10

,
3
4
,
4
5
,
3
4
)

on

F6 = {B|AC, C|(A ∨B), D|(B ∨ C), Bc|AC, Cc|(A ∨B), Dc|(B ∨ C)} .
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The constituents contained in H6 = A ∨B ∨ C are

C1 = ABCD , C2 = ABCDc , C3 = BCcD , C4 = BCcDc ,

C5 = ABcCD , C6 = ABcCDc , C7 = ABcCc , C8 = AcBCD ,

C9 = AcBCDc , C10 = AcBcCD , C11 = AcBcCDc .

The associated vectors are:

V1 = (1, 1, 1, 0, 0, 0) , V2 = (1, 1, 0, 0, 0, 1) , V3 = ( 1
5 , 0, 1, 3

4 , 1, 0) ,

V4 = ( 1
5 , 0, 0, 3

4 , 1, 1) , V5 = (0, 1, 1, 1, 0, 0) , V6 = (0, 1, 0, 1, 0, 1) ,

V7 = ( 1
5 , 0, 1

10 , 3
4 , 1, 3

4 ) , V8 = ( 1
5 , 1, 1, 3

4 , 0, 0) , V9 = ( 1
5 , 1, 0, 3

4 , 0, 1) ,

V10 = ( 1
5 , 1

10 , 1, 3
4 , 4

5 , 0) , V11 = ( 1
5 , 1

10 , 0, 3
4 , 4

5 , 1) .

Notice that, for every h = 0, 1, . . . , 5, it is Vh = ∅. Moreover,

V = U0,3 ∪ U2,2 ∪ U4,1 ,

with

U0,3 = {V1, V2, V5, V6} , U2,2 = {V3, V4, V8, V9} , U4,1 = {V7, V10, V11} .

Let us consider the subset (of J6) Γ = {3, 6} and the associated subset (of
J11) JΓ = {10, 11}. We observe that, in our case, the subset SΓ associated
with JΓ is

SΓ = {Λ ∈ S : λr = 0, ∀ r < 10} ,

which is not empty iff α3 + α6 ≤ 1. As α3 + α6 = 1
10 + 3

4 = 17
20 , one has

SΓ 6= ∅. Moreover, IΓ
0 = I6 \ Γ = {1, 2, 4, 5}. Then, based on Theorem 27,

we consider the pair (FΓ
0 ,AΓ

0 ), with

FΓ
0 = F4 = {B|AC, C|(A ∨B), Bc|AC, Cc|(A ∨B)} ,

AΓ
0 = A4 = ( 1

5 , 1
10 , 3

4 , 4
5 ) .

Now, it is H4 = A ∨B and the constituents contained in it are

C1 = ABC , C2 = BCc , C3 = ABcC , C4 = AcBC , C5 = ABcCc .

The associated vectors are

V1 = (1, 1, 0, 0), V2 = V5 = (α1, 0, α4, 1), V3 = (0, 1, 1, 0), V4 = (α1, 1, α4, 0).

We have Γ = {2, 4} and JΓ = {2, 4, 5} . We observe that SΓ 6= ∅ iff α2+α4 ≤
1. As α2 + α4 = 1

10 + 4
5 = 9

10 , then SΓ 6= ∅. Moreover, IΓ
0 = J4 \ Γ = {1, 3}.

Finally, as α1 + α3 = 1
5 + 3

4 = 19
20 , the condition α1 + α3 ≤ 1 is satisfied and

hence the assessment AΓ
0 = ( 1

5 , 3
4 ) on FΓ

0 = {B|AC, Bc|AC} is g-coherent.
Then, the initial assessment A6 on F6 is g-coherent too.

Example 3 This example is inspired by another one, examined under a dif-
ferent perspective in [13], which is a modified version of an example given
in [19]. We consider a probabilistic knowledge base consisting of some con-
ditional assertions, which concern a given party having various attributes
(the party is great; the party is noisy; Linda and Steve are present; and so
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on). By the symbol A |∼ε B we denote the assessment P (B|A) ≥ α, where
α = 1− ε.
We start with the set {G, L,N, S}, which is a shorthand notation for the
set of (logically independent) events defined as:

(i) G = “The party will be great”,

(ii) L = “Linda goes to the party”,

(iii) S = “Steve goes to the party”,

(iv) N = “The party will be noisy”,

and with a probabilistic knowledge base which has the following rules and
ε−values:

L |∼0.05 G , L |∼0.6 ¬S , L ∧ S |∼0.1 ¬N ,

N |∼0.4 (L ∨ S) , N |∼0.3 G , Linda |∼0.4 ¬Noisy ∧ S .

With the above ε−values it is associated the vector of lower bounds

A6 = (α1, α2, α3, α4, α5, α6) = (0.95, 0.4, 0.9, 0.6, 0.7, 0.6) ,

defined on the family

F6 = {G|L, Sc|L, N c|LS, (L ∨ S)|N, G|N, N cS|L} .

We want to study the g-coherence of A5.
It is H5 = L ∨N . The constituents contained in H5 are:

C1 = LGSN, C2 = LGSN c, C3 = LGScN, C4 = LGScN c,

C5 = LGcSN, C6 = LGcSN c, C7 = LGcScN, C8 = LGcScN c,

C9 = LcGSN, C10 = LcGScN, C11 = LcGcSN, C12 = LcGcScN.

The associated vectors are:

V1 = (1, 0, 0, 1, 1, 0), V2 = (1, 0, 1, α4, α5, 1),
V3 = (1, 1, α3, 1, 1, 0), V4 = (1, 1, α3, α4, α5, 0),
V5 = (0, 0, 0, 1, 0, 0), V6 = (0, 0, 1, α4, α5, 1),
V7 = (0, 1, α3, 1, 0, 0), V8 = (0, 1, α3, α4, α5, 0),
V9 = (α1, α2, α3, 1, 1, α6), V10 = (α1, α2, α3, 0, 1, α6)
V11 = (α1, α2, α3, 1, 0, α6), V12 = (α1, α2, α3, 0, 0, α6).

We first observe that V4 = {V9}, with N9 = {1, 2, 3, 6}. Then, A6 is g-
coherent iff AN9 is g-coherent. We have

FN9 = F4 = {G|L, Sc|L, N c|LS, N cS|L} ,

AN9 = A4 = (0.95, 0.4, 0.9, 0.6) .

It is H4 = L and the constituents contained in it are:

C1 = LGSN, C2 = LGSN c, C3 = LGSc,

C4 = LGcSN, C5 = LGcSN c, C6 = LGcSc.
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The associated vectors are:

V1 = (1, 0, 0, 0), V2 = (1, 0, 1, 1), V3 = (1, 1, α3, 0),

V4 = (0, 0, 0, 0), V5 = (0, 0, 1, 1), V6 = (0, 1, α3, 0),

We can only consider the subset (of J4) Γ = {1, 2, 4} with the associated
subset (of J6) JΓ = {3, 6}. The system (SΓ), given below







































λ3 ≥ α1(λ3 + λ6) ,

λ3 + λ6 ≥ α2(λ3 + λ6) ,

0 ≥ α4(λ3 + λ6) ,

λ3 + λ6 = 1 , λ3 ≥ 0 , λ6 ≥ 0 ,

is not solvable. Then, to check the g-coherence of A4, we can determine a
basic set T by studying the associated system (ST4 ). We observe that

V2 > V1 ≥ V4 , V2 ≥ V5 , V3 ≥ V6 ,

hence g1, g4, g5, g6 are not relevant and T = {2, 3} is a basic set. We obtain
the following system (ST4 )























































λ2 + λ3 ≥ α1(λ2 + λ3) ,

λ3 ≥ α2(λ2 + λ3) ,

λ2 ≥ α3λ2 ,

λ2 ≥ α4(λ2 + λ3) ,

λ2 + λ3 = 1 , λ2 ≥ 0 , λ3 ≥ 0 ,

that is

1 ≥ α1 , λ3 ≥ α2 , 1 ≥ α3 , λ2 ≥ α4 , λ2 + λ3 = 1 , λ2 ≥ 0 , λ3 ≥ 0 .

The vector Λ = (λ2, λ3) = (0.6, 0.4) is the unique solution of (ST4 ). More-
over, IT0 = ∅, therefore A4 is g-coherent and the initial assessment A6 is
g-coherent too.

7 Conclusions

Exploiting some results and algorithms given in [1], [5], [6], we illustrated
a probabilistic approach to uncertain reasoning, based on lower conditional
probability bounds. Within our approach, the checking of g-coherence can
be worked out with a reduced set of variables and a reduced set of linear
constraints. To achieve such reduction, in each iteration our procedure de-
termines a basic set of variables T , by eliminating a subset of ”not-relevant”
gains. Moreover, using a suitable partition of the set of vectors {V1, . . . , Vm}
associated with the set of constituents {C1, . . . , Cm}, our algorithms can also
reduce the number of linear constraints. In the paper, we have studied in
detail imprecise assessments defined on families of three conditional events.
We obtained some necessary and sufficient conditions of g-coherence and we
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also generalized some theoretical results. Exploiting such results, we pro-
posed two algorithms which provide new strategies for reducing the number
of constraints and for deciding g-coherence. We illustrated our procedures
by examining some examples. Our approach could be combined with that
ones given in [7], [8], where some logical conditions are studied with the
aim of splitting the problem into suitable sub-problems, or [14], [15], where
efficient techniques based on ”column generation methods” are exploited, or
[3], [4], where it is shown that probabilistic reasoning under coherence can
be based on a combination of reasoning in probabilistic logic and default
reasoning techniques. We notice that the computation in each iteration of
the basic set T may be time consuming. Then, an important topic of future
research is to investigate the efficiency of the presented techniques (through
theoretical exploration or through experimental results). This further work
should allow us to improve our methods obtaining more efficient algorithms.
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Models and algorithms for probabilistic and Bayesian logic. Proc. of
IJCAI-95, (1995) 1862-1868

[15] Jaumard, B.; Hansen, P.; and de Aragão, M. P.: Column generation
methods for probabilistic logic. ORSA J. Comput. 3, (1991) 135-147

[16] Lukasiewicz T.: Efficient Global Probabilistic Deduction from Tax-
onomic and Probabilistic Knowledge-Bases over Conjunctive Events.
Proc. of the 6th International Conference on Information and Knowledge
Management, ACM Press, (1997) 75-82

[17] Lukasiewicz, T.: Local probabilistic deduction from taxonomic and
probabilistic knowledge-bases over conjunctive events. Intern. J. Approx.
Reason. 21, (1999) 23-61

[18] Lukasiewicz, T.: Probabilistic deduction with conditional constraints
over basic events. Journal of Artificial Intelligence Research 10, (1999)
199-241

[19] Parsons S., and Bourne R. A.: On proofs in System P. Intern. Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2), (2000)
203-233

[20] Walley P.: Statistical reasoning with imprecise probabilities, Chapman
and Hall, London, (1991)

[21] Williams P. M.: Notes on conditional previsions. Technical Report,
School of Mathematical and Physical Sciences, University of Sussex,
(1975)


