
Linköping Electronic Articles in
Computer and Information Science

Vol. 3(2001): nr 7

Linköping University Electronic Press
Linköping, Sweden

http://www.ep.liu.se/ea/cis/2001/007/

Managing Context in a
Conversational Agent

Claude Sammut

School of Computer Science and Engineering
University of New South Wales

Sydney, Australia

Published on October 15, 2001 by
Linköping University Electronic Press

581 83 Linköping, Sweden

Linköping Electronic Articles in
Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c©2001 Claude Sammut
Typeset by the author using LATEX

Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linköping Electronic Articles in

Computer and Information Science, Vol. 3(2001): nr 7.
http://www.ep.liu.se/ea/cis/2001/007/. October 15, 2001.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linköping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

This paper describes a conversational agent, called “ProBot”,

that uses a novel structure for handling context. The ProBot

is implemented as a rule-based system embedded in a Prolog

interpreter. The rules consist of patterns and responses, where

each pattern matches a user’s input sentence and the response is

an output sentence. Both patterns and responses may have at-

tached Prolog expressions that act as constraints in the patterns

and can invoke some action when used in the response. The main

contributions of this work are in the use of hierarchies of contexts

to handle unexpected inputs. The ProBot is also interesting in

its link to an underlying engine capable of implementing deeper

reasoning, which is usually not present in conversational agents

based on shallow parsing.

1

1 Introduction

Traditional methods for Natural Language Processing [1] have failed to de-
liver the expected performance required in a Conversational Agent. This
is mainly due to the fact the speakers rarely use grammatically complete
and correct sentences in conversation. Furthermore, speakers make signif-
icant assumptions about the background knowledge of the listener. Thus,
pragmatic knowledge about the context of the conversation turns out to be
a much more important factor in understanding an utterance than tradi-
tional linguistic analysis. For this reason, the majority of conversational
systems being implemented favour shallow parsing techniques. The chal-
lenge for such systems is in managing information about the context of the
conversation.

The main premise underlying the use of shallow parsing techniques in
conversational agents is that much of human conversation requires little
thinking. Many conversations are alike or, at least, have many elements in
common. Thus, skill in general chat can be built from a large library of
rehearsed responses. Chat agents usually rely on scripts containing sets of
rules that consist of patterns and associated responses. Robust conversa-
tional agents, i.e. those that are able to deal with a wide variety of inputs,
generally have many rules, each of which deals with some variant of an input
pattern.

Writing scripts shares many of the same difficulties encountered in
knowledge engineering for expert systems. At present, building robust
scripts is hard work. New rules are created by hand, possibly with lim-
ited automated assistance. When a new rule is added to a large script, it
is often difficult to predict how it will interact with existing rules. As in
expert systems, it is useful to segregate rules into “contexts” that limit the
scope of the rule.

As well as minimising unwanted side effects of new rules, contexts also
assist in producing an appropriate response to the user’s input. For exam-
ple. the user inputs a sentence that includes the word “Mars”. If the context
of the conversation is Solar System then the possible responses will be lim-
ited to those about the fourth planet from the sun, rather than about the
mythological god. If the context of the conversation is about Alan Turing,
then it is most likely that pronouns such as “he” or “his” refer to Turing.
Thus anaphoric references can often be handled very easily.

There is a variety of mechanisms for representing and managing context
in a conversational agent. In this paper, we describe some of those mecha-
nisms and the approach taken in our system called the “ProBot”, which is
a scripting engine embedded in a Prolog interpreter. We also describe the
history behind the design of the context mechanism and discuss aspects of
script writing that have implications for future work.

2 Representing Context

A common approach to dialogue management is to represent the flow of
the dialogue as a graph[4]. This is well suited to simple dialgues such as
telephone directory assistance where the information being exchanged is
well defined. The user is prompted and as each question is answered, the
dialogue manager traverses one edge in a graph to take the system to a new
state.

Unfortunately, graph-based methods for keeping track of the current
context are inflexible and are incapable of dealing with unexpected inputs

2

from the user. To avoid this problem, Thompson and Bliss [8], have devel-
oped a frame-based system in which the nodes of the graph are replaced by
frames. Since each frame can contain a program, the choice of the nest state
can be determined dynamically and is not fixed as in a graph-based system.
This is clearly more flexible but is still oriented towards short dialogues in
which the range of inputs and outputs is limited, such as the telephone help
desk. It is difficult to extending scripts to be able to cope with unexpected
inputs on a variety of topics.

Takett and Benson [6] allow the script writer to attach priorities to
rules. Some high priority rules will always be checked. These can be used
to detect changes in topic or provide default rules, in case no other rule
matches the user’s input. Rule prioritisation can be taken even further,
as in Virtual Personalities Inc’s1 scripting language, in which all scripting
rules are assigned an activation level. A side effect of a rule firing is that it
can excite or inhibit the firing of other rules, thus implementing a spreading
activation model.

Unfortunately, tuning activation levels is a trial-and-error process. As
we shall see in the next section, the ProBot attempts to combine the
strengths of a flexible graph-based approach with mechanisms for explic-
itly dealing with unexpected changes of topic and unmatched inputs. The
ProBot also differs from previous systems in that it is embedded within a
Prolog interpreter, which serves as a deductive database for the conversa-
tional agent.

3 The ProBot

The “ProBot” is implemented as a rule-based system embedded in a Prolog
interpreter2. The rules consist of patterns and responses, where each pattern
matches a user’s input sentence and the response is an output sentence.
Both patterns and responses may have attached Prolog expressions that act
as constraints in the patterns and can invoke some action when used in the
response.

3.1 Contexts

Rules are grouped into sets, called contexts. There is always a “current”
context. This is the set of rules that is considered most applicable to the
current state of the conversation. A user’s input is processed by attempting
to match the sentence with the pattern in each rule. The first match causes
the corresponding rule’s response to be invoked. In addition to outputting
an appropriate response, the rule can also invoke a Prolog program. One
such program switches the current context. We can represent the course of
a conversation as a traversal of a graph in which each node is a context.
The rules of the current context are used to carry on the conversation for
some period, a transition to a new context corresponds to the traversal of
an arc from one node in the graph to another.

While this scheme works well for a highly structured conversation, it fails
to take into account sentences that either change the topic of the conversa-
tion or those that contain expressions that the rules of the current context
are not able to handle. To avoid these problems, we introduce ”filters” and

1http://www.vperson.com
2The chat engine is implemented as a component of the author’s Prolog inter-

preter, called, iProlog.

3

”backups”. A filter is a set of rules that is prepended to the current context.
That is, the filter rules are examined for a match before any of the rules
in the current context. Typically, filter rules contain keywords that assist
the system in guessing that a user is changing the topic of the conversation.
When a filter rule matches, the usual response is to switch the current con-
text. Backup rules are appended to the current context. Their function is
to catch user inputs that do not match any rules in the current context.
Usually backup rules produce responses that temporise, provoking the user
into providing further input that may be recognised by the system.

3.2 Scripting Rules

An example best explains how ProBot rules work. At present, the Museum
of Applied Arts and Sciences in Sydney, also called the “Powerhouse Mu-
seum”, is running a demonstration in which a conversational agent acts as a
guide to their “Cyberworlds” exhibition. The demonstration, created by C.
Sammut and D. Michie, working on behalf of the Human Computer Learn-
ing Foundation (HCLF), covers such topics as the nature of computers and
their history, including information on Alan Turing and Charles Babbage
(see D. Michie in this volume: “The return of the imitation game”). The
present implementation uses the Infobot chat engine [2], which was devel-
oped by the HCLF and now forms the core of a commercial version Infochat
now available from Convagent Ltd., Manchester, UK.

In the examples below, we show how a functionally similar set of scripts
can be implemented using the ProBot. The only element that the Infobot
and the Probot have in common is that the Probot uses the Infobot’s re-
sponse expressions, described below. The top level scripts are shown in
Figure 1.

Scripting rules are of the form pattern ==> response. Pattern ex-
pressions may contain ’*’, indicating that zero or more words may match.
’˜’ within a word indicates that zero or more characters may be matched.
Alternatives are given by constructs of the form:

{alternative1 | alternative2 | ... }

Patterns can also contain non-terminal symbols, i.e., references to other
pattern expressions. This enables the script writer to create abbreviations
for common expressions such as lists of alternatives for the various ways
in which the user can enter affirmative and negative answers. Since the
definitions of non-terminal symbols may be recursive, pattern expressions
are equivalent in expressive power to BNF notation.

Response expressions, which are directly derived from the Infobot [2],
contain two different types of alternative constructs. Alternatives sur-
rounded by braces (“{“, “}”) indicate that any element may be chosen
at random for output to the user. Alternatives surrounded by brackets (“[“,
“]”) are chosen in sequence. Thus, if the same rule fires more than once,
the first alternative is chosen on the first firing, the second element on the
second firing, and so on. The sequence repeats when the last alternative is
output. These constructs may be nested. Thus, response expression can be
created so that the user rarely sees the same response twice even when the
same rule is fired frequently.

Expressions preceded by a ’#’, whether they are in the pattern or the
response, are passed to Prolog for evaluation. In the pattern, they may
be used as conditional expressions to guard firing of the rule. In the re-
sponse, they may be used to perform some action, such as changing the

4

museum ::
#new topic(museum, museum topics, eliza)
init ==>
[

Welcome to the Powerhouse Museum and our exhibition
on the Universal Machine. We can talk about lots of
things, including Alan Turing and his ideas on
Artificial Intelligence.

|
We have a great exhibit on Charles Babbage and
computers in general.

|
We can talk about other things, like Robotics and
Machine Learning.

]

museum topics ::
{* comput~ * | * universal *} ==>
[

#goto(universal, [init])
]

{* control * | * information * | * processing *} ==>
[

#goto(control, [init])
]

{* communications * | * media *} ==>
[

#goto(media, [init])
]

{* AI * | * artificial intelligence *} ==>
[

#goto(ai, [init])
]

{* alan * | * turing *} ==>
[

#goto(turing, [init])
]

{* charles * | * babbage *} ==>
[

#goto(babbage, [init])
]

{* robot~ * | * learn~ *} ==>
[

#goto(stumpy, [init])
]

Figure 1: Top level of scripts that cover some of the topics of the
Infobot scripts written for the Powerhouse Museum

5

current context. For example, #goto(context name, initial pattern)
causes the system to switch to the named context and tries to find a rule
that matches the given initial pattern.

Rules are grouped into contexts of the form: context name :: rule set.
There is always one context designated as the current context. Thus, we
may have a particular context that deals with material on Alan Turing (see
Figure 2). The current context should contain all the rules necessary for
handling a particular state of the conversation. For example, the context,
turing preamble, handles the introduction to the material on Alan Tur-
ing. Once the user indicates that he or she wishes to known more about
Turing, the context is switched to turing test.

We can think of a single context as a node in a graph, where each node
represents a particular state of the conversation. As the conversation shifts,
the agent can invoke a change of context. A common case where this occurs
is when the agent is seeking information from the user. Once a particular
piece of information has been obtained, the agent moves on to a new state
in which the next piece of information is sought. For example, the agent
may wish to learn the user’s name, age, etc. We say that the set of contexts
that are related form a topic. Thus the Turing rules form a topic.

3.3 Filters and Backups

Traversing a graph in the fashion described above is appropriate for a highly
structured conversation. But natural conversation often jumps between
topics. For example, the user may become bored with Alan Turing and
would prefer to find out about the museum’s exhibition on robotics. Thus,
the agent must have the flexibility to recognise expressions that are out
of context and attempt to switch to a more appropriate one. We adopt
the convention that when a new topic is entered, the script declares the
topic name and also provides the names of two special contexts: the filter
and the backup (Figure 3). The filter contains sets of rules that are always
checked before any of the rules in the current context and the backup rules
are checked if the none of the rules in the current context match the in-
put. Figure 4 shows a transcript of a session with the museum scripts and
illustrates how topics can be changed. In this case, the filter is effectively a
jump table that associates topics with particular keywords.

It will often be the case that the script writer cannot anticipate all the
possible inputs that a user may give. In such cases, we want the script to
recognise a failure to match and prompt the user with some response that
will keep him or her engaged and hopefully some further input will get the
scripts back on track. The function of the “backup” context is to give a
non-committal response that will keep the conversation going.

Filters and backups can be pushed onto a stack. In our museum ex-
ample, at the start, we push onto the stack of backup contexts a set of
“Eliza” rules. This is a close copy of Weizenbaum’s original chat program
[7]. It is used here to illustrate a “last resort”. When all else fails, string the
user along with questions. On entry to the Turing topic another context is
pushed onto the backup stack. This is intended to handle user inputs like,
“Let’s talk about something else”. The response associated with this rule
includes an action to pop the filter and backup stacks and to return to the
previous topic.

6

turing ::

#new topic(turing, [], turing backup)

init ==> [Alan Turing is my hero!]

{ * why * | * really * | * weird * | * strange *}==>
#goto(turing preamble, [init])

turing preamble ::

init ==>

[

As early as the mid-1930’s Alan Turing had the

underlying mathematical idea on which the computers

of today’s are based. He was also one of the

founders of what we know call Artificial Intelligence

or AI. He invented a test for intelligence. Shall I

describe it?

]

<aff> ==> [#goto(turing test, [init])]

<neg> ==>

[

Well, I think Alan Turing was an interesting person,

but we can move on.

#pop topic([init])

]

turing test ::

init ==>

[

Turing was the first to put up a testable

definition of Artifcial Intelligence. He

phrased it as an "imitation game", and it

has come to be known as the Turing Test.

]

{
* describe * | * what is it * | * what * test | * tell *

} ==>

[

Turing’s "imitation game" was designed for detecting

the presence of intelligent thought processes in

computer systems. It has become known as "The Turing

Test". The candidate program is interrogated alongside

a human. Both are remotely connected to a human

examiner. If the latter can’t score better than

seventy per cent correct in spotting which is the

computer and which is the human, then the machine has

demonstrated its possession of some degree of

intelligence. The same paper, which appeared in 1950,

contained an extraordinary proposal. This "child

machine" project was overlooked, and remains so to

this day.

]

{ * proposal * | * what * it * | * what * that *

| * what * was * | * what * did * | * child * machine *

| * what * project *

} ==>

[

The proposal considers how precisely are we to

design and build a machine with human-type

and human-level intelligence. His recipe was first,

to develop a system that can learn from experience

from instruction and from imitation. Then spend as

long as it takes to train it and educate it to

human standards.

]

turing backup ::

* something {else | different} * ==> #pop topic([init])

Figure 2: ProBot scripts that contain material on Alan Turing.

7

Context 1

Context 3

Context 4

Backup Stack

Filter Stack

Context 2

current context

Figure 3: Topic structure

Welcome to the Powerhouse Museum and our exhibition on the Universal
Machine. We can talk about lot’s of things, including Alan Turing and
his ideas on Artificial Intelligence.

Who is Alan Turing?

Alan Turing is my hero!

Why?

As early as the mid-1930’s Alan Turing had the underlying mathematical
idea on which the computers of today’s are based. He was also one of
the founders of what we know call Artificial Intelligence or AI. He
invented a test for intelligence. Shall I describe it?

Yes, please.

Turing was the first to put up a testable definition of Artifcial
Intelligence. He phrased it as an “imitation game”, and it has come to
be known as the Turing Test.

Let’s talk about robots, instead.

Have you seen Stumpy, the six-legged robot, learning to walk?

no.

You should go see it. It’s fun. It’s a insect-like robot that learns
how to walk. Do you want to know how it learns?

sure.

Figure 4: Transcript of session with ProBot scripts. User inputs are
in italics.

8

My name is * ==>

[

Nice to meet you, ^1. #(add ^1 to name of conversant)

]

What is my name ==>

[

Your name is ^(name of conversant).

]

Figure 5: Using Prolog to store simple facts.

3.4 The Database

The chat engine, as described so far, provides facilities for writing quite
complex scripts, but all the knowledge of the agent is contained entirely
within the scripting rules. Since the ProBot is embedded within a Prolog
interpreter, it is easy to extend the capabilities of the chat agent by using
Prolog as a deductive database for storing information about the user and
about the conversation. A few simple examples illustrate this facility (Figure
5).

When a wild card (’*’) or non-terminal expression matches some user
input, the matching sequence of words is mapped to a numbered variable,
ˆn, which corresponds to the nth occurrence of a ’*’ or non-terminal ex-
pression. Numbered variables can be used in the response, either to emit
a sentence containing words from the user’s input or their values can be
used in a Prolog expression. The first rule in Figure 5 uses the numbered
variable for both purposes.

The Prolog expression “add ˆ1 to name of conversant”, stores the name
of the user in a frame system implemented in iProlog. The second rule
shows how information can be retrieved from a frame and inserted into the
output stream. In general, any Prolog program can be invoked by a response
expression. If it is preceded by a ’#’ then the Prolog program works by side
effect, such as asserting something into Prolog’s database. If it is preceded
by a ’ˆ’ then the expression is evaluated and the result is interpolated into
the output string.

When Prolog expressions appear in the pattern of a rule, they are eval-
uated as predicates. If the Prolog predicate fails then the pattern match
also fails.

4 Managing Contexts

Our original approach to handling contexts in the Infobot [2] used a spread-
ing activation model . In this model, each rule is assigned a base activation
level, a number between 0 and 1. After a rule fires, the activation level is
decreased and over time, it gradually returns to its original level. The acti-
vation level is used to resolve conflicts when two or more rules have patterns
that match the user’s input. Thus, a rule with a higher activation level are
more likely to be chosen than a rule with a lower activation level. When a
rule fires, it may “promote” or “demote” other rules by raising or lowering
their activation levels. So in the museum example, if we find that the user
is interested in Alan Turing, we would promote all the rules associated with
Turing.

9

The use of activation levels and the numerical ranking of rule priorities
places a large burden on the script writer. As the number of rules in the
script grows, it becomes difficult to remember the rankings, so the addition
of new rules becomes problematic as unexpected interactions between rules
can occur. There are several ways of tying to minimise this problem. An
intelligent editor may assist by keeping track of rule priorities and presenting
them to the script writer. The system may also maintain a set of test cases
for verifying the new rule [6]. The latter method, from NativeMinds Inc,
does not use activation levels, but “priority” and “default” rules similar to
the filters and backups described here.

In the activation level model it is more common to promote and de-
mote sets of rules, rather than individual rules. So in addition to avoiding
the problems of ranking rules, we also wish to have a convenient way of
invoking sets of rules. For these reasons, we found it useful, in the ProBot,
to separate the rules into the small groups that we call contexts. Explicit
transitions between contexts allows the script writer to create goal-directed
behaviour in the conversational agent, while the addition of filters and back-
ups gives the agent flexibility in handling unexpected inputs or changes of
topic. Filters and backups are crucial since, without them, the user could
become trapped within a topic and have no way of escaping unless a rule
in that topic makes an explicit change of context. A related method is de-
scribed by Thompson and Bliss [8], in which they manage spoken dialogues
by organising rules in a frame structure.

In the museum example of Figure 1, we have adopted a particular dis-
cipline of a “dispatcher”. That is, we have a jump table that matches
keywords with topics. This is used as a filter, but is also useful when a
topic has run its course and the agent must look for new things to talk
about. In this case, we “pop” the current topic off the stack and return to
the dispatcher, which prompts the user for some new input that will give
the agent a clue about where to go next.

Note that in Figure 1, the “init” rule has a sequential response expres-
sion. The first time the rule is invoked, on entry into the top level context,
the system issues a greeting. The next time we re-enter the topic and invoke
the “init” rule, the second element of the sequence is chosen and the user
receives a prompt to try a new topic. This process is repeated for all the
elements in the sequence.

5 Evaluation

Evaluating a conversational agent is not a simple task. In other areas,
such as Machine Learning, libraries of test data can be used to put the
program through its paces. However, conversational agents are interactive
systems, thus, the only method for evaluating their performance is through
extensive trials with human subjects. Needless to say, this is time consuming
and difficult. At present, no such tests have been done using the ProBot.
However, some experiments, by Hayes-Michie [3], have been carried out with
the Infobot. We briefly describe these experiments to give an indication of
the methodologies that can be used. We do not suggest the that results
obtained for the Infobot in any way give a measure of performance of the
ProBot. However, it is intended that similar experiments will be run with
the ProBot. We gratefully acknowledge the contribution of Jean Hayes-
Michie in what follows.

In Hayes-Michie’s pilot experiments, seven undergraduate psychology

10

students (four male and three female) were each asked to hold two seven-
minute conversations with the Infobot Museum Scripts. Transcripts of the
conversations were recorded and given to the subject for comment. The
subject was also asked to rate the amount of time in the conversations when
they could imagine that they were talking to a real person. They also rated
various aspects of the agent’s personality, on a five-point scale, for each of
eight qualities: aggressive, friendly, cheerful, amusing, intelligent, human,
confident, interesting. Averaging the results, the scores indicated that the
subjects found the Museum Guide to be reasonably intelligent and friendly,
but not very amusing and only moderately human-like. In particular, it was
not able to chat generally, but could give details of the Museum exhibits.

Note that an evaluation such as this is an indication of the quality of
the scripts. The quality of the scripting language and the underlying engine
can only be measured indirectly by the ease with which good scripts can
be constructed. To do so would require some measure of the script writer’s
productivity.

Another tool that is currently being used to evaluate the InfoBot is
that we record transcripts of all the conversations that are being held in
the Powerhouse Museum itself. We are able to obtain samples of these
conversations and examine them for mistakes. The result of this process is
usually to expand the patterns and responses in the scripts. We have only
recently begun logging the sessions at the Museum so this is an ongoing
process. As mentioned previously, we are currently only evaluating the
InfoBot, which is a more mature program. The ProBot will eventually be
subjected to similar procedures.

6 Discussion

Writing scripts is hard work. Even with intelligent editing and testing tools,
the script writer must try to anticipate the large variety of ways in which it is
possible to say the same thing. The script writer must also try to anticipate
the many ways in which conversations can diverge and find techniques for
either following the diversion or of bring the conversation back on track in
a subtle and friendly manner.

It is also a simple fact that, in many environments, conversational agents
must deal with hostile users. For example, the original scripts for the mu-
seum guide assumed a cooperative user who wished to learn more about the
exhibits. However, after installation, it was found that the majority of the
users were young children who amused themselves by finding ways of mak-
ing the guide say odd things. A revision of the scripts attempts to make the
scripts more robust. As this paper is being written, logs of conversations
with the museum guide are being recorded so that the scripts can be further
improved.

It is obviously desirable to have a conversational agent that resembles
Turing’s Child Machine [5]. That is, a program that is teachable and learns
from examples. The difficulty at the present stage of development of con-
versational agents is deciding what can, in practice, be learned. A fully
teachable system is, at present, out of the question. However, it may be
possible to isolate sub-problems, such as managing the priorities of rules,
generalising or specialising the patterns of the rules, or enriching the re-
sponses of rules. The task of learning is further complicated by the fact
that script writing is not simply about constructing pattern matching rules,
but most crucially, it is also about understanding the context of the conver-

11

sation.
In the present state of our project, we are still learning (for ourselves)

what are useful mechanisms for constructing conversational agents. In the
course of this investigation, we are also learning what will be useful for the
system itself to learn.

Acknowledgement

This work is the result of an ongoing collaboration with Donald Michie and
Jean Hayes-Michie. The design of the ProBot has benefitted greatly from
our joint experience in the design of HCLF’s (now Convagent Ltd’s) Infobot
and from the many discussions that we have had about scripting style.

References

[1] J. Allen. Natural Language Understanding. The Benjamin/Cummings
Publishing Company, Inc, 1995.

[2] D. Michie and C. Sammut. Infochat Scripter’s Manual. Technical report,
Convagent, Ltd, Manchester, UK, 2001.

[3] J. Hayes-Michie. Report on Pilot Experiment. Technical report, Uni-
versity of New South Wales, 10 May 2001.

[4] A. Rudnicky and W. Xu. An agenda-based dialog management archi-
tecture for spoken language systems. In Proceedings of ASRU, 1999.

[5] A.M. Turing. Computing Machinery and Intelligence. Mind,
59(236):433–460, October 1950.

[6] Walter A. Tackett and Scott S. Benson. System and method for auto-
matically verifying the performance of a virtual robot. United States
Patent No. 6,259,969, 2001.

[7] J. Weizenbaum. ELIZA - A Computer Program For the Study of Natural
Language Communication Between Man and Machine. Communications
of the ACM, 9(1):36–35, January 1966.

[8] William Thompson and Harry Bliss. A Declarative Framework for Build-
ing Computational Dialog Modules. In International Conference on
Spoken Language Processing, 2000.

