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Abstract

Inductive Logic Programming (ILP) has been applied to learn rules which characterise protein
folds. Several representations for the background set have been explored and the results have been
interpreted in their biological context. In this paper, we present new results obtained with a back-
ground set containing information about protein topology. The new rules are more descriptive than
the previous ones, i.e. where previous rules represented local motifs, often associated with func-
tional regions, the new rules represent more complete descriptions, often similar to the descriptions
found in SCOP. Cross-validation experiments were conducted for the 20 most populated folds. The
overall cross-validated accuracy was found to be 75.1 ± 1.6 % for the more limited background
knowledge, and 82.1 ± 1.4 % whith additional information.

1 Introduction

Proteins play essential roles in almost all bio-
logical processes. Their wide range of activi-
ties arises from the variety of three-dimensional
structures they can adopt. Therefore, under-
standing protein structure is one of the major
challenges of molecular biology. Despite more
than three decades of research, the goal of pre-
dicting the three-dimensional structure of a pro-
tein from the knowledge of sequence information
alone remains elusive. However the explosion of
sequence data is now putting tremendous pres-
sure for progress to be made.

The number of known three-dimensional
structures, determined through X-ray crystallog-
raphy and Nuclear Magnetic Resonance experi-
ments, is also increasing rapidly. There are now
approximately 10,000 protein structures in the
public repository. To ease understanding classi-

fication schemes have recently been developed.
One example is SCOP (Structural Classification
of Proteins) [3]. The schemes are hierarchical,
proteins which are known to have evolved from a
common ancestry are grouped together into fam-
ilies, and super-families. The next level puts to-
gether proteins that share the same fold, i.e. the
same core secondary structure elements and the
same interconnections. In this case, the similar-
ity may be the result of convergence towards a
stable architecture. At this level, the proteins
have quite dissimilar sequences which makes it
impossible for sequence comparison methods to
detect the relationship. In this work the SCOP
classification scheme is the starting point for a
machine learning experiment which aim to relate
structural principles to the concept of folds.
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2 Protein 3D structure

The three-dimensional structure of proteins is
highly complex. In general, three levels of ab-
straction are distinguished: primary, secondary
and tertiary structure. Proteins are long chains
of amino acids. There are 20 naturally occurring
amino acids, each with different chemical prop-
erties. The amino acids are linked by a covalent
bond to form chains, typically 100 to 500 amino
acids long, and referred to as primary struc-
ture or sequence. A particular sequence folds
into a specific compact three-dimensional or ter-
tiary structure. The two predominant meth-
ods to structure determination are X-ray crys-
tallography and NMR spectroscopy. Those tech-
niques require sophisticated equipments and be-
cause of technological limitations, the sequences
of amino acids are routinely determined in large
quantities whilst the determination of the three-
dimensional structure remains difficult. Early on
it was predicted that segments of the primary se-
quence would adopt local regular structures [9],
the two main types are the α-helices and the β-
strands, while the intervening regions are called
loops or coils, collectively those elements are re-
ferred to as the secondary structure.

Identifying rules which explain the observed
folds remains a challenge and often involves man-
ual intervention of experts [3, 2, 8]. For several
folds, these signatures are reported in the liter-
ature, generally after extensive study. A few ex-
perts are familiar with many of these rules and
the knowledge is certainly not formalised, with
a common language, in a form suitable for auto-
mated testing as new structures are determined.
Also, automated methods can identify features
that are missed by manual examination.

3 Approach

The objective of this work is to automate the
discovery of structural rules. Inductive Logic
Programming (ILP) is a logic-based approach to
machine learning. ILP is particularly well suited
to study problems encountered in molecular bi-
ology. First, protein structures are the result
of complex interactions between sub-structures
(secondary structures) and the ability to learn

relations might prove to be a key feature. Sec-
ond, ILP systems can make use of problem-
specific background knowledge taking advantage
of the vast amount of knowledge that has been
accumulated. Third, ILP uses a common rep-
resentation for the examples, the background
knowledge and the hypotheses, and therefore
provides a good integration for the development
of applications together with the machine learn-
ing experiments. Finally, the hypotheses can be
made readable, by straightforward translation to
natural languages, and integrated to the cycles
of scientific debates. In complex domains, such
as the structure determination, it is unlikely that
a breakthrough will come from a single machine
learning experiment, the ability of ILP to make
the rules readable is therefore an important ad-
vantage to assist the process of scientific discov-
ery.

3.1 Machine learning algorithm

Inductive Logic Programming is concerned with
the induction of hypotheses from examples and
background knowledge [7]. In this work, we use
Progol which is being developed by the second
author [6]. As mentioned above, a restricted
subset of first-order logic is used as a com-
mon representation for the examples, the back-
ground knowledge and also the generated hy-
potheses. In the case of the protein folds prob-
lem, a (positive) example represents the fact that
the domain d1hlb belongs to the Globin fold
by fold(’Globin-like’, d1hlb ). The back-
ground knowledge contains information such as
the relationships between secondary structures
and the presence of a proline. The algorithm
then constructs a hypothesis which explains this
example in terms of the background knowledge,
the following rule was generated for the Globin-
like fold,

fold(’Globin-like’, X) :-
adjacent(X, _, B, 1, h, h),
has_pro(B).

which is interpreted as “domain X belongs to the
Globin fold if its first helix is followed by another
one that contains a proline”.

More specifically, the background knowl-
edge for those experiments contains informa-
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tion about the secondary structure, calculated
with Promotif [4] from experimental three-
dimensional structures. For each secondary
structure we calculate the average hydrophobic-
ity, the hydrophobic moment and the number of
amino acids. The presence of a proline is also
noted. For each inter-secondary structure region
we calculate the number of amino acids. The
background knowledge contains global informa-
tion as well: the total number of strands and he-
lices and the total number of amino acids. Here
we also add information about protein topology,
such as the packing of helices, the relative direc-
tion of β-strands and the types of β-sheets.

4 Results and discussion

In a previous work, we have compared two dif-
ferent representations of the background knowl-
edge [10]. The first contained only predicates
which encode global characteristics of protein
folds, specifically, the total number of residues
and the total number of secondary structures of
both types, helices and strands. For the second,
new predicates were added which introduce rela-
tionships between secondary structure elements
and their properties. The results showed that
it is possible to construct good classifiers with a
background knowledge which is essentially lim-
ited to attribute-values. However, higher accu-
racy figures were obtained with the relational
representation. Furthermore, in the case of the
relational dataset some of rules can be related to
results published in the relevant scientific liter-
ature. One such example is that of the Globin
fold.

Rule 1 (Globin fold) Helix A at position 1 is
followed by helix B. B contains a proline residue.

fold(’Globin-like’, X) :-
adjacent(X, A, B, 1, h, h),
has_pro(B).

A distinctive feature of this fold is the presence
of a conserved proline residue in helix B, which
causes a sharp bend in the main chain. This ob-
servation has been reported previously by Bash-
ford et al. [1] and has rediscovered here.

One of the main limitations of this appli-
cation concerns the representation. Secondary

structure positions are counted from the N-
terminal end of the structure and do not take
into account the possibility of insertions. We
have developed a new representation that 1) se-
quentially numbers the secondary structures for
the C-terminal as well as N-terminal and 2) in-
cludes additional information about the topology
of the sheets and the packing the helices. Pre-
liminary runs show that Progol can now learn
descriptions such as the following:

fold(A,’SH3-like barrel’) :-
number_strands(4=<A=<7),
sheet(A,B,anti),
has_n_strands(B,5),
strand(A,C,B,1),
strand(A,D,B,-1),
antiparallel(C,D).

which allows for insertion into the sheet since
the relation antiparallel(C,D) is between the
first and the last strand. Cross-validation experi-
ments were conducted for the 20 most populated
folds. The overall cross-validated accuracy was
found to be 75.1 ± 1.6 % for the more limited
background knowledge, and 82.1 ± 1.4 % whith
additional information. The expected accuracy
of a random presiction is 50 %.

In terms of biology, the new rules are more
descriptive than the previous ones. Prior rules
represented local motifs, often associated with
functional regions, the new rules represent more
complete descriptions similar to comments often
found in SCOP classification itself.

Those experiments show that ILP can be
used effectively to learn rules in complex do-
mains such as protein structure. The rules pro-
duced in the context of the relational learning
experiments, were found to be more informative,
as judged by our knowledge of protein structure,
than those generated in the context of attribute-
value experiments. The rules can be explained in
terms of structural and/or functional concepts,
such active site and binding location. When in-
formation about the topology is added the rules
are often more descriptives, similar to those de-
scriptions found in SCOP.

Inductive Logic Programming has allowed us
to explore several representations and to effec-
tively to learn rules in a complex domain such
as structural biology.
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Lavrac, editors, Inductive Logic Program-
ing and Knowledge Discovery in Databases.
1999. forthcoming book.

[7] S. Muggleton and L. De Raedt. Inductive
logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–
679, 1994.

[8] C. A. Orengo, D. T. Jones, and J. M. Thorn-
ton. Protein superfamilies and domain su-
perfolds. Nature, 372(6507):631–4, 1994.

[9] L. Pauling, R. B. Corey, and H. R.
Branson. The structure of proteins:
Two hydrogen-bonded helical con-
figurations of the polypeptide chain.
Proc. Natl. Acad. Sci. USA, 37:205–210,
1951.

[10] M. Turcotte, S.H. Muggleton, and M.J.E.
Sternberg. Application of inductive logic
programming to derive protein three-
dimensional folds signatures. Machine
Learning, in press.

4


