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Abstract

In recent years, new efficient experimental techniques, especially

in the area of DNA sequencing, have led to a tremendous growth

in available biological data. Many large sequence databases

are already publicly available on the internet, and information

is added at a spectacular rate. The extensive human genome

project is only one of the many sources of this information.

It is widely recognized that the mere gathering of data is not

sufficient and that its biological interpretation is of the utmost

importance. Unfortunately, the development of methods for in-

terpreting the data is not keeping up with the tempo with which

the data is accumulated.

It is clear that many types of questions can only be asked by

a computational analysis, and computer science has become an

integral part of the research involving biological sequences (of

DNA, RNA, or proteins). The research area combining biology

and computer science is known as bioinformatics. Conventional

computer methods and algorithms have been applied quite suc-

cessfully in this area, but the often enormous amounts of data

to be analyzed and the complexity of biological systems leave

many interesting problems beyond the reach of conventional ap-

proaches.

The challenging computational problems of bioinformatics

provide interesting opportunities for applying methods from the

field of artificial intelligence. In this paper, the emphasis is on

discussing how methods from the field of uncertainty in AI can be

relevant for some challenging problems of bioinformatics. Some

necessary background information on molecular genetics in gen-

eral and the human genome project in particular is provided at

the beginning of the paper.
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1 Introduction

In recent years, new efficient experimental techniques have led to a tremen-
dous growth in available biological data. The most obvious sources are the
large genome projects and numerous other research efforts contributing to
DNA sequencing, which can roughly be described as the process of determin-
ing the linear order of the (four) different types of nucleotides within (part
of) a DNA-molecule. Many large sequence databases are already publicly
available on the internet, and information is added at a spectacular rate.
But also in other, related areas much data is accumulated. For example, it
has recently become possible to measure the (relative) activity of thousands
of genes at once, using microarrays (sometimes called DNA chips).

It is widely recognized that the mere gathering of data is not sufficient
and that the (biological) interpretation of this data is of the utmost impor-
tance. Unfortunately, the development of methods for interpreting the data
is not keeping up with the tempo with which the data is accumulated. It
is clear that many types of questions can only be asked by a computational
analysis, and computer science has become an integral part of the research
involving biological sequences (of DNA, RNA, or proteins). Some examples
of activities for which the computer proves to be an essential tool are

• predicting the locations of genes within large DNA sequences

• comparing a newly sequenced piece of DNA with the known sequences
in the databases

• grouping together genes which show similar activity (or expression)
patterns when measured under several experimental conditions using
microarrays.

The research area combining biology and computer science is known un-
der many names including bioinformatics, computational biology, biocom-
puting, and biomolecular informatics. Conventional computer methods and
algorithms have been applied quite successfully in this area, but the often
enormous amounts of data to be analyzed and the complexity of biological
systems leave many interesting problems beyond the reach of conventional
approaches.

The challenging computational problems of bioinformatics provide in-
teresting opportunities for applying methods from the field of artificial in-
telligence. See, for example, [3] for an overview of the machine learning
approach to bioinformatics. Many problems seem to require the proper
translation of biological expertise into heuristics which can make the algo-
rithms more efficient and their results more interesting from a biological
point of view.

In this paper, the emphasis is on discussing how methods from the
field of uncertainty in AI can be relevant for some challenging problems of
bioinformatics. Much of the information bioinformatics has to deal with
is uncertain for several reasons. For example, when sequencing (part of)
a DNA-molecule, not all nucleotides are identified with a high degree of
certainty, comparing new sequences with existing sequences typically does
not result in perfect, but only in partial matches, and the measurements
of activity of genes (using microarrays or similar tools) is often not very
reliable.

The rest of this paper is built up as follows. In the next two sections
we will provide a little background information on molecular genetics in
general and the human genome project in particular. In section 4, we will
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briefly discuss some challenging problems for bioinformatics, and indicate
in general terms a few areas where the work on uncertainty in AI might
be relevant. In section 5 we try to be more concrete and we zoom in on
microarrays, a particular promising and powerful data gathering method,
and discuss how Bayesian networks can be employed when analyzing the
thus obtained data.

It is not our intention to give a complete overview of the challenges for
bioinformatics or to mention all possible applications to bioinformatics of
methods and techniques from (uncertainty in) AI, but rather to give an
impression of the possibilities.

2 A Few Bits of Molecular Genetics

In this section, some background information on molecular genetics is pro-
vided. We will just highlight a few essential facts, which are relevant for
the rest of the paper. For a thorough treatment of molecular genetics the
interested reader is referred to for example [9] or [17]. It should be stressed
that this brief treatment of the field cannot do justice to its rich complexity.
It is often jokingly said that about the only rule without exceptions in biol-
ogy is that all rules have exceptions. We will usually try to avoid explicitly
mentioning these exceptions, without oversimplifying our account.

Genetic information is encoded in DNA-molecules, which essentially
are long chains of four different types of nucleotides. A nucleotide is a
molecule consisting of a base, a sugar (deoxiribose, in the case of DNA) and
a phosphate molecule. The four DNA-nucleotides are distinguished by their
bases, which are adenine (A), cytosine (C), guanine (G), and thymine (T),
respectively, and they are typically referred to by the first letter of their
bases. In DNA, these four nucleotides are linearly ordered in strands.

Actually, a DNA-molecule contains two (parallel) strands of nucleotides,
which are intertwined to form the well-known double helix shape (which
is then folded in a complex manner to fit in the cell nucleus). However,
the genetic information is already present in a single strand of the DNA-
molecules, since the two DNA-strands are complementary in the sense that
A in one strand is paired with T in the other strand and an analogous
pairing holds between G and C. Such complementary pairs are called base
pairs, and the length of a DNA sequence is often expressed in terms of the
number of base pairs.

Due to the complementarity of the two strands, a DNA-sequence can
be represented as a sequence of characters out of a four-letter alphabet.
For example, a DNA-molecule can be represented by something like the
following:

GTTCTGTCCTCCGCTGACAAAGCTAACATCAAAGCTACCTGGGACAAAAT...

The primary function of DNA is to store information, and this informa-
tion can become active through its transcription into RNA-molecules, which
are quite similar to DNA-molecules, except that RNA is single-stranded and
consists of the nucleotides A, C, G and U (uracil), where U in RNA essen-
tially plays the role of T in DNA. DNA nucleotides A, C, G, and T are
transcribed into their respective complementary RNA-nucleotides U, G, C,
and A.

Typically, only relative small parts of (large) DNA-molecules become
active in this sense. Therefore, RNA-molecules are usually much smaller
than DNA-molecules. RNA can contain from about fifty to thousands of
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A Ala Alanine M Met Methionine
C Cys Cysteine N Asn Asparagine
D Asp Aspartic acid P Pro Proline
E Glu Glutamic acid Q Gln Glutamine
F Phe Phenylalanine R Arg Arginine
G Gly Glycine S Ser Serine
H His Histidine T Thr Threonine
I Ile Isoleucine V Val Valine
K Lys Lysine W Trp Tryptophan
L Leu Leucine T Tyr Tyrosine

Table 1: The amino acids and their codes.

nucleotides, whereas DNA-molecules can be many millions nucleotides (or
base-pairs) long.

In cells with a nucleus (called eukaryotic cells) the process of transcrip-
tion from DNA to RNA is complicated by the fact that the transcribed DNA
region can contain subregions which do not get transcribed into RNA. The
subregions which are dismissed during transcription are called introns. The
DNA subgregions which actually do get transcribed into RNA are called
exons. (Some organism, such as bacteria, are or are composed of cells with-
out a nuleus or any other intracellular compartments. Such cells are called
prokaryotes and have a slightly different process of transcribing DNA into
RNA than eukaryotic cells. We will not go further into this.)

There are several kinds of RNA-molecules with different functions, but
the main function of RNA is the assembling of amino acids in linear chains,
thus forming proteins. Proteins can be represented as sequences composed
of an alphabet of 20 amino acids. There is a single character code for the
amino acids found in proteins, but also a three character code, where the
amino acids are roughly represented by the beginnings of their full names.
See Table 2 (The amino acids and their codes) for a list of the amino acids
and both their codes.

A sequence of three successive RNA nucleotides is called a codon and
can encode one of the 20 amino acids found in proteins or the signal to
stop translation of RNA into a protein. The so-called genetic code, relating
codons to their associated amino acid is summarized in Table 2 (The genetic
code).

For example, the codon UCG encodes the amino acid serin. Notice that
the genetic code shows some redundancy in the sense that different codons
can encode the same amino acid. Actually, only Methionine and Tryptophan
have single codons associated with them. Especially in the third position of
a codon much redundancy occurs. For example, UCU, UCC, UCA, and UCG all
encode serin. It follows that not all DNA mutations result in the production
of a different protein, even if the mutation occurs in a region which gets
transcribed into RNA and then translated. It is generally believed that the
genetic code has evolved in a way to (more or less) mimimize the effect of
mutations in the DNA. See, for example, [6].

In principle, a single RNA-sequence can give rise to different transla-
tions, depending on where the translation area, called the reading frame,
starts. For example, the sequence “UUAUAGC” encodes “leucine stop” if trans-
lation starts at the first position (UUA→ leucine, UAG→ stop), but it encodes
“tyrosine serin” if translation starts at the second position (UAU→ tyrosine,
AGC → serin).
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SECOND POSITION
U C A G

U Phe Ser Tyr Cys U
F U Phe Ser Tyr Cys C T
I U Leu Ser stop stop A H
R U Leu Ser stop Trp G I
S C Leu Pro His Arg U R
T C Leu Pro His Arg C D

C Leu Pro Gln Arg A
P C Leu Pro Gln Arg G P
O A Ile Thr Asn Ser U O
S A Ile Thr Asn Ser C S
I A Ile Thr Lys Arg A I
T A Met/start Thr Lys Arg G T
I G Val Ala Asp Gly U I
O G Val Ala Asp Gly C O
N G Val Ala Glu Gly A N

G Val Ala Glu Gly G

Table 2: The genetic code.

In most organisms, the reading frames for different proteins do not over-
lap, but in some viruses the possibility of overlapping reading frames is used
heavily to compactify the genetic information. The start of the reading
frame is usually encoded by the start codon AUG, which encodes the amino
acid methionine after the translation has started. This does not mean that
every occurrence of the DNA version of this start codon (ATG) indicates the
start of a region which can be transcribed into RNA. There is much more
structure in the transcription process, including the presence of so-called
promoter regions almost immediately preceding transcribed regions, and
much of this structure is still unknown.

The main function of a protein is that of a catalyst and it is the com-
plex threedimensional form in which a protein folds which determines which
specific chemical reactions a protein is able to facilitate or accelerate. There-
fore, in addition to knowing the amino acid sequence of a protein it is often
important to have insight in its threedimensional structure. Proteins are
quite essential to living organism since they play a role in virtually every
process in living cells.

A gene can roughly be defined as a functional piece of DNA, which
is first transcribed into RNA and then typically is encoded (translated)
into a protein. Usually, the introns, the noncoding subregions, of a gene
are considered to be part of the gene, and some people are also inclined the
include the promoter region as part of the gene. But in some databases only
the transcribed RNA-molecule (without introns and promoter) is stored.

Even though all cells in a multicellular organism contain the same DNA-
information and genes (leaving aside a few exceptional cases), they can
behave quite differently because in different cells different genes can be
expressed, i.e., active in the sense of being transcribed into RNA and trans-
lated into proteins, at different levels. This cellular differentiation is used
by multicellular organisms to form various tissues and organs.

Also, in a single cell the expression levels of genes can vary to respond
in a flexible manner to varying environmental conditions. Some diseases
may be caused by the presence of one or several mutated genes, but many
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malfunctions, such as some forms of cancer, can be explained in terms of ex-
traordinary (either too low or too high) expression levels of some (otherwise
normal) genes in particular cells. Thus, not only the presence or absence of
a gene in DNA is relevant, its activity (or expression level) does also play a
crucial role.

We end this short introduction to molecular genetics by mentioning that
the so-called central dogma of information flow in biology states that infor-
mation can only flow in the direction from DNA to RNA to protein. This
nicely summarizes the relation between the central concepts in molecular
biology.

3 The Human Genome Project

The total genetic information of an organism is called a genome. For sev-
eral organisms, including yeast (Saccharomyces cerevisiae), the genome is
now fully known, in the sense that the exact nucleotide sequence has been
determined. The yeast genome is the first completely sequenced eukaryotic
genome and consists of about 12 million base pairs.

Based on the sequenced yeast genome, one predicted the existence of
more than 6200 yeast genes, many of which were previously unknown. The
possibility to systematically search for genes is one of the main scientific
contribution of genome projects. The next logical step is to try to find out
the function of these genes, which is still ongoing research even in the case
of the yeast genes.

Sequencing long DNA-molecules is not a trivial exercise. By laboratory
experiments, one can determine the nucleotide sequence of a copy (or clone)
of a relatively short piece of DNA. Luckily, this process can be automated
using robotic workstations. The problem of fitting together the obtained
small sequences in the proper order (as they appear on the long DNA-
molecule) is then still a huge problem which would be nearly impossible to
attack without the computer. See also section 4.1.

At this time, the description of the human genome (consisting of about
3 billion base pairs) is not quite finished, but it is expected to be completed
soon. (The size of the human genome is impressive when compared to
that of yeast, but there exist a single-celled micro-organism, called Amoebe
dubia, with a genome which is about 200 times bigger than the human
genome.) In February 2001, two competing human genome projects almost
simultaneously published a working draft of the human genome. A special
issue of Nature (Feb. 15, 2001) includes the description and some analysis of
the sequence generated by the publicly sponsored Human Genome Project
[12], while Science (Feb. 16, 2001) [18] contains the draft sequence reported
by a private company called Celera Genomics.

The working drafts of the human genome are incomplete, since the
description of the nucleotide sequence still contain several gaps, leaving
about 10 percent of the human genome uncovered. Some chromosomes are
better covered than others. For example, (the relatively small) chromosome
22, containing about 24 million nucleotides, has been sequenced already in
1999 up to 11 small gaps.

Moreover, the human genome projects are not only intended to produce
the nucleotide sequence of human DNA, but also to discover all human
genes and their location on the human chromosomes. This goal is much
further away from completion, as witnessed by the following facts: The two
competing genome projects do not predict exactly the same set of genes, but
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different sets which show little overlap among the newly predicted genes,
and they disagree for many of the common genes on the assigned location.

One preliminary conclusion the two projects more or less share is that
based on the drafts the existence of about 30 thousand human genes in
total can be predicted. This number is considerably lower than some pre-
vious predictions (which could be as high as 100 thousand), and this fact
was mentioned often in popular media reporting on the publication of the
drafts to support the suggestion that humans might not be as complex as
previously believed.

In fact, the mere number of genes is probably not a good indicator of the
complexity of an organism. Moreover, the prediction of roughly 30 thousand
as the number of human genes based on the genome drafts of 2001 is not
the final word on this issue. For example, in [10] it is argued that a careful
comparison of the two sets of predicted genes reveals that the total number
of human genes is likely to be much higher than the predicted 30 thousand.

In addition to sequencing the human genome, mapping the human
genes and investigate their functions, it is also a goal of the human genome
project(s) to chart the (main) variations in the DNA among human beings.
Two randomly picked human beings share at least 99.9 percent of their
DNA. Some of the 0.1 percent (3 million nucleotides) variation between
two individuals have no apparent affect, but some have great influence on
appearance, vulnerability to disease, response to medication, etc.

It should be stressed that having a complete description of the human
genome does not mean that the human genetic information is then also
completely understood. In fact, it can be argued that then the real work
still has to be done. For example, knowing the exact sequence of a gene
does not imply that one can determine the function of that gene, or even
the 3d-structure of the protein encoded by the gene.

Still, the human genome project is generating a wealth of interesting
genetic data, such as the description of many previously unknown genes
and insight into the relative locations of different genes (which is important
since, for example, often genes located close to each other are expressed
simultaneously and have the same or related functions).

4 Some Challenges for Bioinformatics

In this section we briefly mention a few challenging problems in the field
of bioinformatics. We certainly do not pretend to give a complete list of
challenges, but those we do mention are important illustrative examples.
We also briefly point out the possible relevance of formalisms, methods and
techniques from (uncertainty in) AI. One particular challenging problem,
namely the analysis of data from microarray experiments is treated sepa-
rately in the next section.

4.1 Sequence alignment

If one has sequenced some DNA or protein fragment and wants to know
whether this sequence is new or it has been discovered and described be-
fore, then one can search the sequences in the (public) databases. It makes
little sense to try to find an exact match for the newly found sequence, since
usually it is determined rather arbitrary where to start and end sequencing
a piece of DNA, some errors might have occured during sequencing, etc.
Moreover, it makes sense from a biological point of view to look for similar
sequences, since these are likely to be biologically related. Similar sequences
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might have similar functions, or they can indicate a close evolutionary kin-
ship.

Let us say that one wants to compare the sequence TACGATGCTAC with
the following sequences:

CTTACGCATGCTAC
TGCTACGAGCTAGT
TGCGATGCTACCGT
TAGTACGTTGCTAC

One reasonably good match, or alignment, is given by the sesond se-
quence in the following way:

TACGATGCTAC
TGCTACGA GCTAGT

This match is perfect, except for a single deletion of “T” and a muta-
tion of “C” to ”G”. To measure the goodness of fit of an alignment and
find the best alignments one needs to assign weights to the different pos-
sible mutations between nucleotides, and to the deletions and insertions of
nucleotides, and then determine how much is minimally required to align
the two sequences. The more appropriate the specification of the weights of
the different mutations, insertions and deletions is from a biological point of
view, the more likely it is that the best alignments are biologically interest-
ing. Sophisticated alignment methods take into account that the different
possible mutations are not all equally likely or crucial (since due to the
redundancy in the genetic code they need not affect the translation).

Several so-called alignment tools, typically based on dynamic program-
ming, are available. More information on existing alignment methods can,
amongst others, be found in [7] or [6].

Perhaps the best known alignment tool is the BLAST (Basic Local
Alignment Search Tool) package of [1], which is being improved until to-
day. Although the alignment tools of today can still be improved, perhaps
the most useful contribution of AI could be the development of intelligent
interfaces for using such tools. There are different versions of BLAST for
different tasks (comparing either a nucleotide or amino acid query sequence
against either a nucleotide or protein sequence database), and one can set
different parameters, such as the length of gaps to be discounted (in or-
der to eliminate the effect of introns in genes). As these alignments tools
get more complex, the need will increase for intelligent interfaces, setting
appropriate default values for parameters, and providing guidance to users
when changing these default values to better fit their specific applications.

An interesting area where there is still room for improving alignment
tools is taking account of the uncertainty in the sequences to be aligned.
When a sequence is experimentally determined usually not all elements
in the sequence are determined with equal certainty, and in the process of
aligning multiple partly overlapping sequences one has to propose a so-called
consensus sequence which smooths out the misalignments in the previously
aligned fragments.

These types of uncertainty have not remained unnoticed. There is even
an extended alphabet for referring to disjuntions of nucleotides. For exam-
ple, “M” denotes “A or C”, “V” denotes “A or C or G”, etc. Sometimes
probability distributions are used to represent the certainty of a particular
nucleotide being present at a particular location in a sequence. However,
these representations are not fully exploited in the present alignment tools.
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It might also be interesting to develop and exploit a notion of “fuzzy align-
ment”. There has been some, but not much, work using fuzzy techniques
in this area. See [14].

Perhaps the main challenge related to sequence alignment is the align-
ment of more than two sequences. The efficiency of the dynamic program-
ming approaches breaks down in this case. Multiple alignment is an impor-
tant issue, especially for the problem of sequencing large DNA-molecules
(as in the genome projects), where one usually experimentally obtains rel-
atively short and partly overlapping subsequences which then have to be
pieced together similar to completing a giant puzzle.

Solving this puzzle is not only difficult because the pieces are not known
with complete certainty, but also facts like the existence of regions with
many repeating sequences in the human genome complicate matters. For
example, it is difficult to determine which of the following three sequences
should be made out of the pieces CAGC, GCAT, ATAT, and ATCG:

CAGCATATATATCG
CAGCATATATCG
CAGCATATCG

Simply choosing the minimal sequence incorporating all small sequences
may be biologically incorrect. As is often the case in bioinformatics, in
multiple alignment there is a need for improving brute force methods by
applying smart algorithms which employ general biological knowledge and
possibly specific information about the small sequences, for example the
lenght of the overlap between these sequences, or the average number of
small sequences covering a single position.

4.2 Gene prediction

Not all of the DNA information appears to have a clear function like encod-
ing proteins. In fact, it is estimated that about 90 percent of the human
genome is noncoding, and this type of DNA is usually called “junk DNA”.
(Some people object to this name since of course it is perfectly possible that
this kind of DNA does have a function, although perhaps less obvious than
the genes.)

It is a challenging problem to efficiently find (or predict) in a long DNA-
sequence the coding regions (or genes). To tackle this problem one of course
needs to make use of the available biological information, This informa-
tion is typically of a heuristic nature such as the following. In the human
genome one has observed that around the start regions of many (but not all)
genes one can find so-called CpG islands, i.e., regions with a relatively high
frequency of the occurrence of the sequence CG (often written as CpG to
distinguish it from a C-G pair where the two nucleotides appear in comple-
mentary DNA-strands). See, for example, [7] for an application of Markov
chains to this problem of gene prediction.

As mentioned before, the RNA transcript of a gene is often not obtained
by continuous transcription of the gene, but it involves so-called RNA splic-
ing where some unwanted (noncoding) subregions of the gene, called introns,
are dismissed and the transcripts of the remaining coding subregions (exons)
are then joined together. Finding the exon/intron boundaries (splice junc-
tions) of genes is perhaps an even more challenging problem than finding
the genes.

Within a gene, exons can be quite sparsely distributed. Cases are known
of exons with a total length of a few thousand nucleotides which are spread
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out over a gene which is more than a million nucleotides long. Also here,
the main challenge is to extract informative heuristics out of the relevant
biological knowledge, such as the following. It is known that introns almost
always start with GT and end with AG, but these sequences frequently occur
without indicating the start or the end of an intron.

As witnessed by the fact that the two human genome projects predict
quite different sets of genes, predicting human genes is still a nontrivial
problem. But even imperfect predictions can be quite useful. Typically,
results from bioinformatics (obtained in what is called the “dry lab”) need
experimental verification (in what is called the “wet lab”), but as long as
computer predictions can sufficiently focus biological experiments such that
the chance of success is sufficiently high, then bioinformatics is worth the
effort.

It should be mentioned that the problem of gene prediction will remain
important even after the completion of the human gene project, since for
many types of experiments humans cannot be used and one has to use
other (more or less genetically related) organisms (such as mice), for which
the genome might not always be known. (In fact, the mouse genome is
comparable in size to the human genome.) More generally, one can say that
improving the prediction of coding regions is an important step towards
the real understanding of genetic information. Perhaps machine learning
approaches will be able to infer from known coding regions of sequences
what are the (main) characteristics of coding regions, thereby providing
valuable biological insights.

4.3 Protein structure prediction

As mentioned before, the function of a protein is determined by its 3d-
structure, which is typically quite complex. One can envision that in the
future proteins will be classified by their 3d-structures which in turn will be
associated with different (types of) functions. Unfortunately, for many (in
fact, most) proteins the 3d-structure is presently unknown.

Although the three-dimensional structure of a protein is determined by
its amino acid sequence, it can presently not be accurately predicted from
this sequence. This prediction problem is much harder than the gene pre-
diction problem, and much less heuristic information is available to exploit.
Therefore, in this case, the machine learning approaches which might help
to obtain the necessary information, can perhaps be relatively more impor-
tant. Oherwise, similar remarks apply to this problem as in the cans of the
gene prediction problem.

4.4 Distributed data sources

The number of (often huge) biological database is quite impressive, and the
available information grows at an enormous rate. To get an impression of
the amount of data, one can for example have a look at [3], where several
(more than 100) of the most important of these databases are listed: 22
under the heading “Databases over databases”, 17 “Major public sequence
databases”, and 65 “Specialized databases”.

Sometimes, these databases store complementary information and are
connected through hyperlinks. For example, after finding a gene in GEN-
BANK you can follow a link to find information on its associated protein
in SWISSPROT. However, it also happens that the same kind of service



10

(say gene finding) is available from different sites which can use different
implementations, often giving different results.

The task of manually extracting all (or most) relevant information is
quite tedious and in some cases (when one wants information about many
sequences) almost impossible. This problem is likely to get much worse in
the future, since the available information keeps growing.

The automatic extraction of information from distributed, partly com-
plementary, partly conflicting, data sources is an important research area for
AI. Although this problem is relevant for many applications (for example,
weather prediction, where information from different satellite instruments
have to be combined), improving data mining from distributed biological
databases seems especially interesting since it clearly addresses a need and
the possible benefits are quite substantial. See [2].

Some subproblems of combining distributed data sources, such as ev-
idence combination and dealing with inconsistent information, have been
studied extensively in the field of uncertainty in AI. Also, since some of the
relevant information about the sequences can be found in the form of free
text in online literature, methods for text mining might be relevant.

4.5 Genetic networks

The cases where a particular high-level biological function can be associated
with (the expression of) a single gene are rare exceptions. Usually, such a
function is performed by a network (or pathway) of genes working together
and influencing (either positively or negatively) each others expression lev-
els.

It is important to get insight into these genetic networks in order to
really understand the associated biological functions and to be able to in-
fluence these functions, for example to cure diseases. Proper medication
should correct the effects of extraordinary (either too low or too high) con-
centration of proteins, which are closely related to the expression levels of
their associated genes. Ideally, medication should not have any side effects
and not disturb other processes than one it targets. In the remote future,
it might even be possible to use protein level understanding of diseases and
their possible cures to produce personalized medication which individually
minimizes side effects.

Experiments can be performed to provide pieces of information con-
cerning genetic networks. For example, one can look at consequences of
knocking out (i.e., making inactive) or overexpressing (i.e., making more
active than usual) a single gene. The results of these experiments can of-
ten only be stated in qualitative, or semi-quantitative, terms. (“If gene1 is
knocked out, then gene2 is expressed much more and gene3 slightly less”.)
These experimental results should then be combined with general back-
ground knowledge. (“Gene3 is probably not influenced directly by gene1”.)

In [19] a (purely qualitative) method of inferring genetic networks based
on abductive inference is discussed. In general, the problem of inferring
genetic networks is likely to benefit from methods for combining qualitative
and (semi-)quantitative information, which have been studied within the
field of uncertainty in AI.

5 Microarray Analysis

A particular promising and powerful data gathering method uses so-called
DNA microarrays (sometimes also called DNA chips). For details on this
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technique and its potential the reader is referred to [13]. There are sev-
eral variants of DNA microarrays, with different applications, but the most
widely used benefit of the technique of DNA microarrays is that it allows
one to simultaneously compare the expression levels of many genes (in some
cases, all the genes in a genome) under different conditions. For example,
one can compare a cancerous cell with a normal cell, or sample the temporal
evolution of expression levels of genes is a cell after it has received a certain
stimulus.

Microarray technology is still relatively new and under development.
Several authors warn that the results of microarrays are not always reliable
or useful. See [11] for a description of some of the dangers, and see [5] for
an argument that one needs a careful experimental design of microarray ex-
periments to ensure that these experiments will help accumulate knowledge
and not just enormous amounts of useless data. There is also a need for
standardizing the publication of microarray data. See [4].

A typical microarray experiment results in an image of (many) colored
dots, where each dot is associated with a particular gene and its color is
related to the expression level of that gene (in comparison to the expression
level in a reference cell). For example, a red dot means that the expression
level of the associated gene is relatively high and a green dot means that this
expression level is relatively low (and an intermediate color means something
“in between”).

Repeating the experiment under different experimental conditions or at
different times after some stimulus results for each gene in a list of (relative)
expression levels. It is then standard practice to cluster genes with similar
expression levels. The underlying idea is that co-regulated genes (i.e., genes
with similar expression levels) probably have related functions. Many clus-
tering techniques have been developed, but of course all require a wisely
chosen distance or similarity measure to identify similar expression levels.

Although these clustering techniques may be useful for finding co-regulated
genes, it is difficult to use them for the discovery of gene interactions (or
genetic networks). This problem is addressed using Bayesian networks in
[8]. Here some recent advances in the area of learning (partial) Bayesian
networks are used to infer Bayesian networks which are (most) likely to
represent gene interactions. The authors admit that learning Bayesian net-
works is difficult (and at the moment still infeasible) for the huge number
of genes for which microarrays can measure the expression levels. However,
they apply their method to a subset of 800 of the 6177 yeast genes for which
expression data is reported in [16].

It is interesting to note that the Bayesian networks approach of [8] is
not proposed as an alternative to clustering methods, but rather as a tool
which can complement more traditional clustering methods. The clustering
analysis of [16] is used to single out a subset of interesting genes (and an even
smaller subset of 250 genes in 8 clusters to perform some of the robustness
analysis). The fact that the Bayesian networks approach can induce some
structure (within clusters of genes) is interesting from a biological point
of view, although it remains to be studied how the induced (probabilistic)
structures relate to causal genetic networks.

In [15] some further limitations of the clustering methods for analyzing
gene expression levels are pointed out. For example, these methods mea-
sure similarities that exist over all of the measurements, while obscuring
relationships existing over only a subset of the data. Another example is
that other types of information, such as clinical data, cannot easily be com-
bined with the similarity measure of expression levels. The authors propose
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an alternative approach based on the language of probabilistic relational
models (which extend Bayesian networks to a relational setting).

6 Conclusion

Automatic information processing and computer analysis are essential to
handle and understand the huge amounts of biological data which is be-
coming available today. Bioinformatics is likely to be of crucial importance
for the next decades in both fundamental and applied biological and medical
research. Even with the increasing computing power of modern computers,
many tasks in bioinformatics are only feasible if one employs intelligent
algorithms which make use of biological expertise.

Since much of the biological data is uncertain, incomplete or otherwise
imperfect, and typically the relevant biological knowledge is of a heuristic
nature, it is clear that many problems in bioinformatics have several aspects
in common with problems studied in the field of uncertainty in AI.

We listed several of challenges for bioinformatics where formalisms, tech-
niques and methods from uncertainty in AI can be relevant. These chal-
lenges range from rather basic and tradional sequence alignment to the
analysis of recently developed microarray techniques.

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, Basic
local alignment search tool, Journal of Molecular Biology 207 (1990)
pp. 403–410.

[2] C. Andorf, D. Caragea, J. Reinosi-Castillo, A.Silvescu, V. Honavar,
and D. Dos, Ontology-driven information extraction and knowledge
acquisition from heterogeneous, distributed, autonomous biological
data sources, Proceedings of the IJCAI-2001 Workshop Knowledge Dis-
covery from Distributed, Heterogeneous, Dynamic, Autonomous Data
Sources, Seattle, Washington (2001) pp. 1–12.

[3] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Ap-
proach, MIT Press, Cambridge MA (1998).

[4] A. Brazma et al., Minimum information about a microarray experiment
(MIAME) - toward standards for microarray data, Nature Genetics 29
(2001) pp 365–371.

[5] G. A. Churchill and B. Oliver, Sex, flies and microarrays, Nature Ge-
netics 29 (2001) pp 355–356.

[6] P. Clote and R. Backofen, Computational Molecular Biology: An In-
troduction, Wiley, Chichester (2000).

[7] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cam-
bridge U.P. (1998).

[8] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using Bayesian
networks to analyze expression data, RECOMB 2000, Tokyo (2000)
pp. 127–135.

[9] A.J.F. Griffiths, J.H. Miller, D.T. Suzuki, R.C. Lewontin, W.M. Gel-
bart, An Introduction to Genetic Analysis (seventh edition), Freeman,
New York (1999).



13

[10] J.B. Hogenesch et al., A comparison of the Celera and Ensembl gene
sets reveals little overlap in novel genes. Cell 106 (2001) pp. 413–415.

[11] J. Knight, When the chips are down, Nature 410 (2001) pp. 860–861.

[12] E.S. Lander et al. (International Human Genome Consortium), Initial
sequencing and analysis of the human genome, Nature 409 (2001) pp.
860–921.

[13] B. Phimister (ed.), The Chipping Forecast, Nature Genetics Supple-
ment, vol 21, no. 1 (1999).

[14] K. Sadegh-Zadeh, Fuzzy genomes, Artificial Intelligence in Medicine
18 (2000) pp. 1–28.

[15] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller, Rich prob-
abilistic models for gene expression, Bioinformatics 1 (2001) pp. 1–10.

[16] P.T. Spellman et al., Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray
hybridization, Molecular Biology of the Cell 9 (1998) pp. 3273–3297.

[17] T. Strachan and A.P. Read, Human Molecular Genetics (2nd edition),
BIOS Scientific Publishers, Oxford (1999).

[18] J.C. Venter et al., The sequence of the human genome, Science 291
(2001) pp. 1304–1351

[19] B. Zupan, I. Bratko, J. Demsar, J.R. Beck, A. Kuspa and G. Shaulsky,
Abductive inference of genetic networks, AIME01: Biennial Confer-
ence of the European Society for Artificial Intelligence in Medicine,
Cascais, Portugal (2001).


