
CASL

Erik Sandewall

Introduction to the Leonardo System
and Overview of Major Applications
Incomplete Manuscript – Work in Progress

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-004, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/004/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2008-10-06

1

1 Introduction

The Leonardo computation system (1) is an experimental system, in the
sense of explorative design, where we study the possibility of an alternative
overall organization of standard computer system software: programming
language system, operating system, user interfaces, and several others. The
topic is a large one, and in other articles we have described the Leonordo
approach from the point of view of first principles. The present report is an
introduction to the use of the actually implemented software system.

The most basic design in Leonardo is its representation language which is
called LDX, for the ’Leonardo Data eXpression’ language. This is a textual
representation of structured information which is used in three major ways:

• It is used for publication purposes in articles and, first of all, in a
textbook in Knowledge Representation that is being written (2). A
preliminary version of this textbook has been used for an advanced
undergraduate course and a graduate course at Linköping University.

• It is used as the primary representation language in the Common
Knowledge Library (3) which is an open-source resource for facts and
knowledge that presently contains close to 70.000 entities each with
a number of attributes.

• It is used for all programs and most of the data (4) in the Leonardo
software system. The implementation of the system itself is orga-
nized using LDX, and various application systems that are based on
Leonardo also represent their information in LDX.

Before proceeding here, the reader should read Chapter 2 in Part I of the
above mentioned textbook (5). Chapter 1 and Chapter 3 are also recom-
mended reading before the present report.

Sections 2 and 3 here will introduce general aspects of the Leonardo system;
Section 4 and onwards will introduce the major application services that
have been implemented on the Leonardo platform.

This report is logically followed by three other reports:

• The Leonardo Kernel and Platform

• The CommonLisp Implementation of Leonardo

• The Leonardo Facility for Management of Information Resources

The first two describe the technical aspects of the Leonardo system; the
last one describes the use of the system for the management of the Com-
mon Knowledge Library (6) which is a website providing open access to a
relatively large repository of fact and knowledge modules.

1The name has occasionally been written as Leonordo.
2Erik Sandewall: Introduction to Knowledge Representation. Available in the

’Research reports’ menu item at: http://piex.publ.kth.se/reports/
3http://piex.publ.kth.se/ckl/
4with the obvious exception of special-format data, such as (multi)media files.
5The direct link to Part I is: http://piex.publ.kth.se/reports/krf/001/
6http://piex.publ.kth.se/ckl/

2

The application descriptions in the present report contain examples of runs;
these examples have been obtained from runs of the actual system. Some of
the output has been removed from the original text in these runs in order to
avoid irrelevant detail and improve legibility, but otherwise no editing has
been made.

2 From KRE to LDX

Chapter 2 of the textbook “Introduction to Knowledge Representation”
defines the syntax for Knowledge Representation Expressions, or KRE. This
notation forms the basis for the Leonardo Data Expression language, LDX,
but there are some minor differences because of the needs of the computer
implementation. The present section will describe these differences.

Attribute Names

Instead of the attribute has-attributes as used in the textbook, one should
use the attribute attributes in LDX.

For completeness, the full picture is as follows: each type can have both
an attributes attribute and a has-attributes attribute. The contents of
the latter is a subset of the contents of the former. We use attributes for
specifying what attributes are to be preserved when contents are written
to files in the operation of the Leonardo system. We use has-attributes
in the Common Knowledge Library for specifying which of the attribute
values are going to be published on the website; the other attributes are for
internal purposes in the system.

Substitution of Special Characters in KRE

One of the goals in the design of the KRE notation was that it should be
possible to use it both in textbooks and articles, and in a computer imple-
mentation. This is why it is expressed using fixed-width or “typewriter”
font, and almost exclusively using characters in the Latin-1 character set.
However, KRE contains a few minor exceptions to this principle. In par-
ticular, the brackets for maplets are written as e.g. [·color red]· in KRE.
The corresponding LDX notation is [: color red].

Alternative Delimiter for Strings

KRE makes a distinction between symbols and strings, and specifies that
strings are enclosed in double quotes. This convention is used in LDX as
well, but there is a special problem if one wishes to use a string containing a
double-quote character inside it. This is handled using an escape character
in most other representation systems, but in LDX we have chosen another
method. There is an alternative manifestation of strings as

[? this is the string?]

3

here and for the rest of this section, please read ? as the paragraph character;
I have not found out how to represent it in Latex, which is equivalent to the
standard manifestation,

"this is the string"

Notice that there must be at least one space after the beginning [? and
that the (first) space is not part of the string. If there are additional space
characters there then they are part of the string. Of course the string is
not allowed to contain any occurrence of the two characters [and ? in
direct succession. (If these two characters to appear in sequence in the
textual representation of the string then they should denote the beginning
of a substring, but this is not supported by the implementation at present).

In this way one can represent strings containing a " inside them. The
standard Leonardo printing function checks every string that it is supposed
to write, and if there is a " inside the string it produces the manifestation
of the string in [? format, otherwise in " format. (It does not check for
[? or ?] inside the string). Notice in particular that since \ is not an
escape character in this notation, any occurrence of this character inside
the manifestation of a string both in " and in [? format, just represents
itself.

One of the reasons for not using the common practice with \ as the escape
character is that I want to be able to write Latex coded text in strings, and
then e.g. ä has to be written as

{\"a}

which would have to be coded as

{\\\"a}

if the standard convention for escape character were used, which is not very
convenient. Moreover, the long-term plan is to represent a range of different
formatting conventions using notation such as

[?html this is text?]

and similarly for xml, unicode, and a number of others. The present [?
convention can then be understood as a special case of the general notation.

Representational Conventions for Entityfiles

In brief: each entityfile consists of a sequence of entity descriptions, and
each entity description contains the entity being described, a number of
attribute-value assignments for the entity, and a number of property-value
assignments. The attribute-value assignments are like in KRE; the proper-
ties assign “long strings” to the entity in question. Properties can be used
for storing e.g. function definitions, or comments.

In the textual manifestation of the entityfile, entities are separated by a line
consisting entirely of dashes or equal signs. The last entity is followed by
a line consisting entirely of o (small letter o) characters. Usually entities
are separated by a line of dashes; equality signs are used between sections
within an entityfile. More about sections below.

4

Within each entity description, the separating line of dashes or equality
signs is followed by a header line consisting of exactly two dashes, exactly
one space, and then the entity which may be a symbol or the expression for a
composite entity. It is followed by a blank line, and then the attribute-value
pairs.

The property assignments follow after the attribute-value pairs. Each prop-
erty begins with a line where the first character is the commercial at im-
mediately followed by the property-tag. like in the following example. The
following lines are interpreted as text and constitute the property value, up
to the next property-tag line or the end of the entity description.

Here is an example:

--
-- hamlet-quotation

[: type famous-quotation]

@English-phrase
To be or not to be, that is the question.

@Swedish-phrase
Att vara eller inte vara, det aer fraagan.

--

One particular kind of property is the blank-tag property which is used for
an S-expression containing CommonLisp code that is executed when the
entityfile is read. A blank-tag property must precede all other properties,
i.e. it must immediately follow the attribute-value assignments (although
one or more separating blank lines are permitted). The first line of a blank-
tag property must have a left parenthesis in its first position; all following
lines must either be emtpy, or have a space in the first position.

3 General Leonardo LazyDog

This section contains LazyDog information (7).

Checking the installation

Usually the Leonardo system is installed by copying certain directories to
the host where you want to run it, and then checking the following:

1. There shall be an Allegro CommonLisp system on the machine.

2. The directory structure for the Leonardo individual has a structure
like the following:

7The Swedish word lathund literally means lazy dog, but the word is commonly
used to designate a brief manual containing the essential instructions for perform-
ing a task or operating a device. We use the English word with the same meaning
in this report.

5

|-- Leonardo-Residence
|---|--- Leonardo-individual
|---|--- Residmap

...

Both the Leonardo residence and the Leonardo individual may be
named freely, but the name of the individual is chosen when it is
generated and can not be changed afterwards since the name is hard-
wired into certain places in the individual. The Residmap directory
must always be called Residmap; it contains certain files that come
into play when there are several individuals in the residence and they
send messages to each other. - Unless otherwise noted, all paths men-
tioned from here on are given relative to the individual, e.g. relative
to Leonardo-individual above.

3. There must also be a directory called C:/Leohost containing a few
files describing the host at hand, for example, where certain standard
programs are located (text editor, Latex system if applicable, and
so on). This directory typically comes as a part of the “installation
package” and the user must move or copy it to the right place and
edit its few files manually to tell Leonardo where the programs in
question are located on the host at hand.

4. Check the contents of the file called

Process/main/Defblock/minileo.bat

This is the file for invoking a basic version of the Leonardo system.
Check that the second line contains a correct path to the Allegro
interpreter, and edit it otherwise

As an alternative to storing the Leonardo residence on the hard disk of the
computer where it is to run, it is also possible to keep it on a detachable
memory such as a USB memory stick. In this way it is possible to activate it
alternatingly on several different hosts. The only requirement is that each
of the hosts has an Allegro CommonLisp system installed, and that the
LeoHost directory is present and correctly configured on each of those hosts.
Moreover, if the CommonLisp system is located differently in the different
hosts then one will have to have several variants of the minileo.bat file in
order to accomodate the different hosts.

System philosophy

Each Leonardo individual is supposed to be self-contained. Apart from
operational context information (Residmap and Leohost directories) it is
supposed to contain all its information inside itself. The way to work
with it is to invoke a ’run’ (also called ’activation’) of the individual, usu-
ally by clicking the minileo.bat or some other, similar .bat file in the
Process/main/Defblock/ directory, and then alternate between giving com-
mands to that run, and doing text editing on Leonardo files (files with the
extension .leo) within the individual. In particular, typical operations are:

1. To issue commands that change the contents of the datastructures
in the run, and then to request the run to re-write Leonardo files in
the individual so that the new contentes of the datastructures are
preserved

6

2. Text-editing some of the Leonardo files and then issuing a command
to the Leonardo run to re-load those text files, thereby importing the
new contents into the datastructure.

It follows that if one does a ’write’ of such a file and then a ’load’ without
having edited the file in-between, then there will not be any change in
the information in the run (except for obtaining a new timestamp for the
’latest-written’ information of the file).

Command loop

Clicking the .bat file starts the run and leaves it in standard Lisp input
mode. It is recommended to use the Leonardo command-line format. It is
started by typing

(lix)

to the Lisp interpreter. In command mode, you can choose to type in a
command (which must be a Lisp symbol), followed by its argument(s), or
type in a non-atomic S-expression which is then sent to standard eval.

To return from the command loop to Lisp, type the command lisp

The lix command loop catches errors that occur during the execution of a
command, and reports failure. This is convenient in many cases but it also
loses information about the character of the error. If one wishes to obtain
an error break and be able to track what has happened one can either go
back to the Lisp mode, or invoke the special command that disables the
catching of errors.

Caveats: Not all errors are caught by the error-catch facility. If an error
occurs when files are open for reading or writing, then it is up to the def-
initions of the individual commands to close those files correctly. Some of
the commands in the system fail to do this.

Methods for defining commands, see below.

Basic commands relating to entityfiles

The term ’entityfile’ below is the same as ’Leonardo file’ above.

loadfil foo
Loads (or re-loads) the entityfile called foo

writefil foo
Writes the entityfile called foo

updfil foo
Does loadfil followed by writefil

curfil foo
Makes foo the current file

loadf
Loads the current file

writef
Writes the current file

updf
Does loadf followed by writef

7

setk fie-kb
Sets fie-kb to be the current knowledgebase. (Cf below)

crefil foo
Creates a new file entityfile called foo, and makes it a
member of the current knowledgebase

loadk fie-kb
Loads the knowledgebase fie-kb. This consists of:
1) Load the file called fie-kb
2) Do the loadk operation (recursively) on those knowledgebases

that are specified to be required by fie-kb, if they have not
already been loaded

3) Do the loadfil operation on those entityfiles in fie-kb that
are specified to be ’mustload’ files.

The requires and mustload information is specified in the file
called fie-kb.

crek fum-kb
Creates a new knowledgebase called fum-kb, but does not complete
the operation

crekk
Complete the preceding crek operation. A new directory is created
for the knowledgebase, called Fum, and the entityfiles that are
created for that knowledgebase are placed in that new directory.
Thus knowledgebases should always have names that end with -kb.
(Between the two commands one can do other things that e.g.
obtain another directory name, but this is special-purpose).

Notes of caution

If an entity has attributes then there must be a value for the type attribute,
and the value must in turn be a symbol that has an attributes attribute,
since this is what determines what attributes will be written to the entityfile
under the writefil or similar operation.

If an entity does not have any of these then it will be suppressed when the
file is written. Therefore, it may happen that you prepare an entityfile by
text editing, do a loadfil, a writefil, look at the file, and find that what
you just typed in has vanished. This may be either because you forgot to
assign values to type attributes, or because the value you assigned does not
in turn have an attributes attribute. The thing to do in such a situation
is to type in the missing attributes into the run, e.g. using something along
the lines of

(setf (get ’myentity ’type) ’mytype)

or

(setf (get ’mytype ’attributes) ’(seq& (attrib-1 attrib-2)))

where the seq& construct is the Lisp representation of the Leonardo se-
quence construct.

The updfil command should be used with some caution: if the load op-
eration fails then the following write operation will be done anyway, which
may lead to loss of data. If in doubt about the contents of the file, do a
loadf operation first and then a writef operation if the loadf went right.

8

Editing Attribute Values

There are in principle three ways of changing the values of attributes:

• Edit the text file for the entityfile containing the entity in question,
and re-load it.

• Use lix commands for assigning values to attributes.

• Use the edo command which invokes a text editor and pre-loads it
with the LDX representation for the particular entity whose attribute
is going to be changed. Edit the attribute(s) and exit the editor; the
Leonardo system will read back the amended entity description.

If the first or the third method is used then one must of course remember to
re-write the entityfile containing the entity before the session ends, otherwise
the edit will be lost. In particular, the edo operation does not save the
entityfile automatically.

The edo method is particularly convenient when one the entity is in a very
large entityfile which it may take a lot of time to reload. The commands
pertaining to this are as follows:

curo foo
Sets the entity foo to be the current ’object’ (should have
been called cure for current entity)

edo
Invokes the user’s preferred text editor on a temporary file
consisting of a preamble and then the entity-description
(attributes, etc) for the current object. The user can edit
this file, save the file, and kill the instance of the
editor, which returns control to the Leonardo runs where
the auxiliary file is read back, resulting in update
accordingly of the current object’s attributes, properties,
and/or definition.

Definitions

The blank property or ’definition’ part of entities should be executable Lisp
S-expressions. They will often be a defun expression, a setf or setq ex-
pression, or the like. In addition there is the option of expressions of the
form

(leodef function-name command-name (arg1 arg2 ...) form)

which has essentially the effect of doing both of the following:

1. (defun function-name (arg1 arg2 ...) form)

2. Defining command-name as a command that takes the indicated argu-
ments and executes the form

If function-name or command-name is nil then the respective variant is
suppressed. The arguments given to form are supposed to be Leonardo
represented things and in command mode the arguments are to be written
in Leonardo representation. Thus if I do

9

(leodef fun foo (a) (...))

and type the command

foo <red green>

then this has the same effect as evaluating

(fun ’(seq& (red green)))

this argument being the internal representation of 〈red green〉.
Moreover, the body in leodef definitions is sent through a special macro
expander that is implemented within Leonardo (not the standard Common-
Lisp macro expander). There are macros that provide a reasonable notation
for construction of, and access to Leonardo constructs. I set them up and
tried to be consistent about using them but more recently I have been sloppy
and done cadr-type operations directly on the low level Lisp representation
of the Leonardo constructs, unfortunately. (Will have to clean this up).

The .leos files

The command writefil and similar ones write two versions of an entityfile:
a .leo version which is the one you usually work with, and a .leos version
in the cl subdirectory of the knowledgebase directory where the .leo file
lives. The .leos file is a plain lisp file so it can be loaded with the lisp
function load without any preconditions. In principle this has the same
effect as loading the .leo file, except the .leos file loads much faster, but
there are a few small but significant differences:

1. When function definitions (defun, leodef, etc) are read in .leo for-
mat, the system loads the entire definition as a string, stores it with
the entity in question, and also eval’s it. This is necessary in order to
be able to write the definition to the file in the writefil operation.
However, loading the .leos definition does not store the definition as
a string in that way, it merely executes it. Therefore, if one loads an
entityfile in its .leos version and then does a writefil without first
doing a loadfil, then all the definitions are lost, in both the .leo
and the .leos file.

2. A few files, such as Core/bootfuns.leo, contain properties with the
property-name Exec-leos. These are merely properties from the
.leo point of view, but they are placed as evaluable in .leos files.
They are used for definitions that are to be run at an early stage
during the system startup process, where .leos files are loaded and
not .leo files. In this way one can safely work with these definitions,
if one wishes to change them, by just loading and writing .leo files in
the standard fashion, and they take effect during startup when .leos
files are loaded.

Notice also that the loadk operation for knowledgebases loads files in .leos
format.

10

4 Document Preparation and Management

The first practical use of the Leonardo system by the present author was for
administrating the collection of articles and reports, including both those
that had been written before and those that were in the manuscript stage.
The application in question is called Madman, for Management of Articles,
Documents, Manuscripts And Notes.

Processing of Documents

Each document (including articles, etc) that is managed is assumed to have
its own directory in the file system. Each document is also represented
by its own entity in the sense of Leonardo. The way I use this myself is
that document entities are formed like e.g. (doc 2008 pm-003) referring
to manuscript number 3 during 2008. The symbolic function doc (which
actually has another name in reality) is implemented so that it computes
the directory of the document in question and assigns it as an attribute of
this composite entity.

The entity for the document has attributes for the obvious metadata, such
as author, title, and so forth. The files in the document’s directory use a
set of systematic naming conventions. For those documents being prepared
using Latex, which is the case for most of them, there are a few standard
files such as:

paper.tex
descr.tex
body.tex

Here, body.tex contains the bulk of the contents of the article, and descr.tex
contains the metadata but in Latex format. In principle it should be pos-
sible to generate descr.tex automatically from the metadata in LDX, but
this has not been implemented yet. The file paper.tex is a top-level file
that imports the relevant macro definition files as well as descr.tex and
body.tex.

In most cases I prepare the manuscript using my own markup language
which I find more convenient than the standard Latex notation. Therefore,
the real source file is body.aml, and the following commands are used in
sequence for the preparation of a document in Latex:

gal Use body.aml to generate body.tex
lam Run Latex on paper.tex
dpdf Generate the pdf file from the Latex output

Alternatively, it is possible to use body.tex as the source file and to hand-
edit it directly. In this case the gal command is not used.

There are also a number of other commands, including:

galp Do gal, lam, and dpdf in succession
dps Generate a postscript file from the Latex output
bim Run bibtex
asy Run the Asymptote program (more below)

11

These commands are defined without an explicit argument. They operate
on the ‘current document’ which is set by a command such as

curdoc (doc 2008 pm-003)

There are also commands for registering a resource in a catalog or other
group, etc.

It is often desired to format the same document using several different style
files. In principle this shall only affect the paper.tex file and not the
contents of the body files. One may either edit paper.tex or set up several
alternative files that are like paper.tex but with different contents with
respect to paper style. In the latter case one has to change the top-level
name away from the default which is paper, using for example

curtop ecai-paper

References

The user’s catalog of metadata for articles that he will sometimes wish to
cite can be maintained either as Bibtex files in the standard way, or as LDX
entities in which case the Bibtex information is generated for each article.

Figures

The user can of course handle figures the way he likes within Latex. How-
ever, we have also implemented a facility that is particularly useful for the
kind of “boxes and arrows” diagrams that often occur in the kinds of arti-
cles we write. In this facility, each diagram is represented as an LDX entity
with a property for a high-level description of a diagram. For example, the
following is the definition of a diagram for the Nixon diamond:

-- nixonfig

[: type asyfigure]
[: caption "The Nixon Diamond"]
[: vsize 140]
[: nullvalued {def latest-rearchived}]

@Asy-script
((-20 caption)
(Nixon box1 0 10)
(Republican box1 70 50)
(Quaker box1 -70 50)
(Pacifist box1 -70 90)
(NonPacifist box1 70 90)
(t horiz-neg Pacifist NonPacifist)
(t vert Republican NonPacifist)
(t vert Quaker Pacifist)
(t vert Nixon Republican)
(t vert Nixon Quaker)

)

12

The Asy-script property specifies for example that there shall be a box
containing the word Quaker in position (-70, 50). It also specifies that there
shall be a vertical arrow from the box labelled Quaker to the box labelled
Pacifist, and that there shall be a field in vertical position -20 containing
the figure’s caption as specified in the caption attribute.

The command

asy nixonfig

converts this script to Asymptote notation, invokes the Asymptote program
on it, and displays the result. As a result the figure can be included in the
manuscript, e.g. using a command in the .adl sourcefile.

It should be clear from this brief description and from the example that
the document-support facility is command-oriented and procedural rather
than graphical. This has its pros and cons: the immediate convenience of
a graphical, wysiwyg interface can be balanced against the ease of adding
higher-level facilities in a command-oriented approach. In our case the latter
aspect is more important, in particular because in the long term we want
to consider the document-processing commands as actions that can be used
in a context of planning, plan execution and high-level autonomy.

5 Management of the CKL Knowledgebase

The Common Knowledge Library (CKL) (8) is a service offering open access
to a library of almost 70.000 entities, most of them in the areas of world
geography and in scientific publication (journals, publishers, etc). The man-
agement and gradual extension of the CKL requires support services of the
following kinds, which have been implemented based on the Leonardo plat-
form:

• Import of information from existing sources (web pages, databases,
etc)

• Checking and correction of sources in a combination of automatic and
manual operations

• Management of IPR information concerning acquired information and
CKL contents

• Generation of presentation versions of information files

These services are further described in a separate memo, The Leonardo
Facility for Management of Information Resources. One of the significant
aspects of this facility is that it provides a context for introducing an ontol-
ogy for common-sense and other real-world information.

6 Communicating Individuals

The following example demonstrates the use of multiple Leonardo individu-
als that communicate by passing messages to each other. It also illustrates
the representation of on-going events as well as past events using LDX.

8http://piex.publ.kth.se/ckl/

13

The Example

Consider the following method description in LDX notation:

--
-- method4

[: type method]
[: plan {[intend: t1 t2 (remex: lar-001-004 (query: whatyourbid))]

[intend: t1 t3 (query: whatbid)]
[intend: t4 t5 (query: whatproposal)]}]

[: time-constraints {[afterall: {t2 t3} t4]}]
--

This is a plan, i.e. a kind of high-level procedure, for performing the action
query: three times with three different arguments. The time when the
first two occurrences are to start is called t1; the third occurrence starts
at a time t4 which is defined as being when the first two occurrences have
ended. The time when the first mentioned occurrence ends is called t2, and
similarly for t3. The method consists of a set of intended actions, and set
of time constraints between them.

This plan is supposed to be executed in a particular agent (called lar-001-003
in our specific run of the plan) but the first mentioned action is to be remote
executed (therefore remex:) in another agent called lar-001-004.

The representation that is used for expressing the plan is general-purpose
in the sense that it is used for both procedures and data, as well as for
information with an intermediate status such as the ’plan’ above. It is
organized in terms of entities each of which has a number of attributes. In
our example, there is an entity called method4 with three attributes type,
plan, and time-constraints. All entities must have a type attribute, and
the value of this attribute determines what other attributes may be present.

The example is a straightforward use of the LDX notation. Notice that
(query: whatbid) is a composite entity that has a type and attributes,
just like the atomic entity method4.

Consider now an interactive session where this plan is put to use. There are
two open command-line windows on the computer screen or screens, one
for each of the two Leonardo individuals lar-001-003 and lar-001-004
which may be located on the same computer or on two different ones. The
interactions on lar-001-003 go as follows, after the obvious startup of the
system:

066-> adg (achieve: demo example A)

067-> selmeth method4

Each interaction is numbered; user input consists of a command often fol-
lowed by an argument. The adg command requests the system to adopt
a particular goal which is characterized by the command’s argument. In
the full system this should lead to a process for obtaining a plan, either by
planning from first principles or by retrieving a plan from an archive. In
our demo we have shortcut this by the second command, selmeth, which
simply instructs the most recently introduced goal which plan to use. The

14

plan starts to execute when the user enters the command seg, for ’start
execute goal’:

068-> seg
> (adogoal: 66 (achieve: a b c))

069=>
----> What is your bid? 16200

070-> Continuing:
AI (b: 68 (query: whatbid)) completes:
Succeed, result: 16200

071-> Continuing:
Received outcome for action started at: 68

072=>
----> What is your proposal? 13000
073-> Continuing:
AI (b: 71 (query: whatproposal)) completes:
Succeed, result: 13000
Completed goal: (achieve: a b c) adopted at: 66

The following is what happens. When the user types in seg, the action
(query: whatbid) starts to execute in the individual at hand, which has
the effect of displaying the prompt What is your bid in the individual’s
user dialog. At the same time, the first action in the plan starts to exe-
cute remotely, in the other individual, where it displays the prompt What
else do you want to say? on its screen. The wordings of the prompts is
obtained because the arguments of query: are separately defined entities
that have the wording as an attribute. The following is the definition of the
entity whatbid:

--
-- whatbid

[: type output-phrase]
[: englishphrase "What is your bid?"]
[: swedishphrase "Vad r Ditt bud?"]
--

The user for the first individual answers the prompt with the value 16200,
which counts as interaction 069, and the system confirms completion of that
action in interaction 070. The first individual also receives the value from
completion of the action in the other individual, in interaction 071. The
top level executive listens to input both from the user and in channels from
other agents/individuals.

The completion of the first two actions allows lar-001-003 to start per-
forming the third action in the plan, leading to interaction 072, after which
the goal is reported as completed in interaction 073.

The information about what actions were performed, for what reason, and
with what results, is represented as LDX data structures and is therefore
available for inspection and for further processing. The command log, for
’list old goals’, displays the current information about the goal used above,

15

as follows:

076-> log
(adogoal: 66 (achieve: a b c))
Plan name: method4
Plan: {[intend: t1 t2 (remex: internal-ch-02 (query: whatelse))

:done t]
[intend: t1 t3 (query: whatbid) :done t]
[intend: t4 t5 (query: whatproposal) :done t] }

This is like above, except that each of the actions has been marked as
completed. The format of the logs is a slightly sugared variant of LDX. The
command loa, for ’list old actions’ displays the actions that were performed
in the first individual, as follows:

075-> loa
(b: 68 (query: whatbid))

Towards goal (adogoal: 66 (achieve: a b c))
State [result: 16200]
Subactions <(b: 69 (ask: whatbid))>
Outcome [result: 16200]
Endtime 71

(b: 68 (remex: lar-001-004 (query: whatelse)))
Towards goal (adogoal: 66 (achieve: a b c))
State [requested:]
Subactions <>
Outcome [result: 12900]
Endtime 72

(b: 69 (ask: whatbid))
Subaction-of (b: 68 (query: whatbid))
Outcome [result: 16200]
Endtime 70

(b: 71 (query: whatproposal))
Towards goal (adogoal: 66 (achieve: a b c))
State [result: 13000]
Subactions <(b: 72 (ask: whatproposal))>
Outcome [result: 13000]
Endtime 74

(b: 72 (ask: whatproposal))
Subaction-of (b: 71 (query: whatproposal))
Outcome [result: 13000]
Endtime 73

The functions adogoal: and b: are further examples of functions that
form composite entities. The function b: takes two arguments, namely
a timepoint and an action, and forms an entity for the action instance
that is/was invoked at the time given in the first argument. The function
adogoal: is similar but it forms a goal instance from a timepoint and a
goal, representing the particular goal instance that results when the goal is
adopted at a particular timepoint.

Actions are hierarchical, so actions can have subactions, or more precisly,
each action instance can have sub-action-instances. In our example, a
query: action invokes an ask: subaction that makes the prompt and re-
ceives the answer. If the answer is malformed then query: asks the user
again until a correctly formed answer is obtained.

16

Each action instance has a starting time and an ending time, and is execut-
ing between those times. The executive in a particular individual visits all
currently executing action instances cyclically and applies an update proce-
dure for each of them; the update procedure is determined by the ’verb’ or
operator in the expression for the action, for example query:. It is therefore
straightforward to define actions that map incoming sensor data to outgo-
ing actuator data in each cycle during their execution period. Our example
here does not illustrate this possibility.

When an action instance or goal instance terminates, it obtains an outcome
attribute and an endtime attribute. The latter is the timepoint of termi-
nation. The outcome attribute represents whether the action succeeded or
failed, using records beginning with result: and fail:, respectively. Re-
sult records can report a ’value’ that results from the action, as well as
ancillary information; fail records can report the character of, and possibly
the reasons for the failure. The outcome of an action is reported to the
superaction from which the current action was invoked, or the goal instance
invoking it, or the other agent invoking it in the case of remote execution,
or a combination of these.

Pursuit of a goal is straightforward if there is an appropriate plan and if all
the actions in the plan succeed. If some action fails, and unless a remedy for
the failure has already been defined in the plan, then replanning or resort to
the user must follow. Replanning has not been implemented in the current
system.

The examples of logs above have been slightly edited so as to remove output
that was irrelevant for the example. We have also edited the first argument
of the remex: operation so that it appears to refer to the individual where
the remote execution is performed. In the current system the first argument
shall be the name of the channel through which the communication takes
place, and where the target individual is at the other end. It is a trivial
modification of the software to change this if desired.

The present implementation is set up so that each individual only listens to
(at most) one channel and communicates with one other individual. Allow-
ing multiple channels is a small change which does not require any change
of the software structure.

7 Discussion

The command-line dialog with Leonardo is reminiscent of what one has in
the shell of an operating system and in an incremental programming lan-
guage in the Lisp/Perl/Python tradition. The use of actions and plans,
and the explicit representation of plans and their execution as data struc-
tures, is reminiscent of what one has in ’intelligent agent’ systems and in
knowledge-based systems in artificial intelligence. However, one can also
make comparisons in other directions, in particular with discrete-event sim-
ulation systems and with dialog management systems.

Consider, for example, the software for the robotic dialog environment
(RDE) that was developed in the WITAS project (references). The task
there was to develop at system for spoken dialog between a human operator
and an unmanned aerial vehicle (UAV), which in our case was a helicopter.

17

This required the use of a dialog engine, that is, a piece of generic soft-
ware that administrates a multi-threaded dialog and coordinating auxiliary
systems such as a speech analyzer, a speech generator, a complementary
graphic interface, and of course the communication with the actual UAV.
The project as such also required the development of an environment sim-
ulator that the dialog system could be tested against. Looking back at the
structure of the dialog manager and the simulator, it is clear that both of
them require exactly the facilities that the Leonardo system offers, in par-
ticular, the use of a knowledge-base for the models of the environment and
the dialog, the explicit representation of goals and actions, and the use of
interaction and of distributed computation.

Our main argument is not that our system can be used for just about ev-
erything, however; our argument is that so many different things are maybe
not needed. It is an argument about the overall structure of computer
software today, which we are used to thinking about in terms of operating
system, programming language, and many other kinds of software artifacts.
There are a number of designs that recur throughout these softwares: the
use of typed objects and the descriptions of types, the use of ’functions’ or
’procedures’ with their arguments, and so forth. These occur repeatedly in
operating system shells, in programming languages, in database systems,
in communication frameworks such as CORBA, in markup systems such as
LaTeX, in the specification of dynamic columns and fields for spreadsheet
systems, in ontologies as defined in OWL and in XML, in webpage specifica-
tion languages such as PHP and JavaScript (why should there be different
languages in the web server and the browser; both are used for producing
effects in the web browser), and so on ad nauseam.

This standard software architecture is very strongly entrenched due to the
gigantic investments that have been made both in software and in training
for it. It is also strongly entrenched on the academic side, where the field
of computer science is perceived as consisting of subfields for each one of
several of those types of artifacts. We have subcommunities for operating
systems, programming languages and systems, database systems, and so
forth. But this is also very costly: this baroque software architecture costs
a lot to maintain and extend, and training for it requires people to learn
about a lot of things that differ only trivially.

The working hypothesis of the Leonardo project is that it is possible to do
things in a better way, and to develop an architecture for the overall system
where these kinds of duplication do not occur. The LDX representation is
the system’s cornerstone. The kernel of the implemented system consists of
programs for conversion in both directions between the textual reprsenta-
tion and the data-structure representation of LDX, together with a minimal
command executive, a bootstrap system, a system for duplication and mo-
bility of individuals, and routines for administrating groups of entities on
several levels.

The facility for goal-directed execution that was shown in one of the exam-
ples is not properly part of the kernel, but it is built directly on the kernel
and it is expected that many applications will prefer to use its command
executive rather than the simple one that comes with the kernel.

