
CASL

Erik Sandewall

Recent Work and Current State of
Applications and Ontology in Leonardo
January, 2007

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-003, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/003/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2007-01-29

1

Introduction

The Leonardo Computation System project (1) includes work on a novel
software architecture and on languages for markup and for knowledge rep-
resentation, but it also includes a number of experimental applications. The
purpose of these is not primarily to provide services for a user community,
but (1) to obtain experience with how well the system kernel and platform
are suited as the basis for building applied systems, and (2) to obtain evi-
dence for or against the main research hypothesis in the Leonardo project,
to the effect that the entire system can be built with little or no duplication
of similar concepts and facilities. For these purposes it is sufficient if the
applications are in daily use by their own developer (for office applications)
or that they can be used for creating convincing and robust demonstrations
(for robotic applications). They do not need to have the polish, complete-
ness, documentation and reliability that is needed if the software is to serve
a user community.

The research methodology that has been adopted for the project calls for a
regular tracking of emerging designs and design changes, in order to docu-
ment as far as possible the original reasons for various aspects of the design.
This means, in particular, that the character and current state of the ex-
perimental applications is to be documented from time to time, in such a
way that the interested reader of later articles from the project shall be
able to go back to the underlying, detailed development and understand
these design choices and design changes. The same principle applies for the
kernel and platform, that is, the common parts of the system on which the
applications are built.

The present memo is one such periodic report, to be accompanied by more
detailed reports for some of the experimental applications. It will focus
on three particular aspects of the Leonardo system by the end of January,
2007:

• The list of knowledgeblocks representing the kernel and platform, and
those representing experimental applications, with a brief explanation
of the purpose of each of them and the level of completion and of use.

• An account of the present state of the Leonardo ontology, and of the
changes in the ontology since the previously documented design.

• An inventory of how some of the structuring methods that are offered
by Leonardo but not by other comparable systems, have actually been
used in the experimental applications.

The reason for focussing on these two aspects is that they represent the
two major structuring principles, or “backbones” organizing the Leonardo
system. The ontology contains entities for the types that are used in the ap-
plications. The focus on this information is therefore natural for an overview
report.

It should be clear from the above that the present document is not intended
as a research article, but as background material that can be cited and used
as reference in research articles. We also see a possible second use as course
material in a course about knowledge representation and ontologies, since

1http://www.ida.liu.se/ext/leonardo/

2

in particular the second part of the memo describes a process of organic
growth in an ontology, and since it discusses some nontrivial representation
problems.

The report describes a number of design faults in the ontological structure
of the system as it exists today. It is by intention that we first describe
the current system with those faults and then correct them; several of them
are going to be corrected just after the report has been completed. We do
not wish to first correct significant faults and then describe the polished
result, since that would fail both the development-tracking purpose and the
possible pedagogical purpose of this report.

However, a number of trivial faults were corrected in the course of preparing
and writing the present report, since they were considered irrelevant for the
intended purpose with the report.

The baseline for the present memo is the January, 2007 version of a previous
memo “The Leonardo Computation System” (2). It will be referred to here
as the baseline memo. Although the baseline memo was finished and posted
shortly before this one, its section concerning the ontology was actually
written in August, 2006 and is not up to date. The present memo describes
the current state of the ontology and discusses the reasons for the changes
between August, 2006 and January, 2007.

The Knowledgeblocks

The baseline memo identified the following knowledgeblocks as constituting
the kernel of the Leonardo system:

core-kb The most central part
chronos-kb Management of the calendarial time axis
config-kb Creation and modification of system

configurations
syshist-kb Version management for all information

in the system

This kernel is intended to be kept as constant as possible. The baseline
memo also identified the following knowledgeblocks as constituting the sys-
tem’s platform:

channels-kb Channels for message-passing between
Leonardo individuals

docu-kb Tools for autodocumentation
execeval-kb An executive for actions and plans

and for delegation of actions between
individuals

hacker-kb A framework for novice users for
getting started with the system

Notice that an “individual” in Leonardo is an instance of the system that is
represented persistently as a collection of files in the directory system of a
host computer, and that may contain its own copies of both programs and
data (to the extent that that distinction makes any sense).

2http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/002/

3

These knowledgeblocks are still there in the current system. channels-kb
and execeval-kb are in active use for experiment and demo purposes. The
two others, docu-kb and hacker-kb are used sparingly. The docu-kb facil-
ity has not yet reached the completeness where it can become the standard
autodocumentation tool for the system.

The following is a list of all other knowledgeblocks that are in the system
(3) at the time of writing, i.e. those that have not already been identified
as part of the platform.

proposition-kb Representation of formulas in first-
order logic in Leonardo

text-kb A text formatter for an in-house text
markup language, ADL

compound-kb Definitions of compounds (explained below)

debug-kb A small library of operations for
debugging support

import-kb Software tools for importing information
from foreign formats

crossix-kb A simple facility for generating overviews
and cross-index tables, in particular for
the ontology

madman-kb Management of documents and manuscripts
caisor-kb Bibliographic metadata as used by madman,

both for bibliographies (a la Bibtex) and
for the user’s own articles, reports, etc

caisorweb-kb Like caisor-kb but for webpage and websites
actors-kb Address information (email, etc.) for

persons, in particular those occurring
as authors in caisor bibliographies

pub-kb Domain information for publications, e.g.
names of journals and publishers

messaging-kb Email management

phpcore-kb Software support for development of PHP
programs

phpdata-kb Copies of entityfiles from actors-kb and
pub-kb that are processed using the
PHP implementation of a Leonardo subset

agent-kb Implementation of software agents based on
execeval-kb (which is part of the
platform)

upatrol-kb A test example for agent-kb, for simulated
intelligent UAV’s

3The phrase “the system” refers here and in the sequel to the set of knowledge-
blocks in the individual called lar-1, which is a kind of root individual. Other
individuals may have imported, or may share some of those knowledgeblocks, but
lar-1 is comprehensive, with the unimportant exception that larger volumes of
application data are sometimes only located in offspring individuals and not in
lar-1 itself.

4

tdda23-kb Material for course TDDA 23 on Lisp and AI
in Linkoeping

devel-kb A knowledgeblock containing "homeless"
entityfiles that arise in the course of
ad-hoc implementation of various services

vtest-kb Some arbitrary test examples

The entities that are defined in an individual always include the name for
the individual itself. This self-naming entity has an attribute that is called
has-knowledgeblocks, containing the set of names for the knowledgeblocks
that are included in that individual. The list of knowledgeblocks shown
above is taken from that attribute for the entity for lar-1.

The first six of these knowledgeblocks might be considered for inclusion in
the platform, according to their topics. However, proposition-kb is in a
too early state of development for that to happen yet; when it becomes
more complete it will be natural to include it in the platform. On the other
hand, text-kb is in a stable state since several years (it was written before
Leonardo and was ported into the present Leonardo system) but it is due
to be replaced by an implementation of a new markup language. Its place
in the platform is therefore questionable.

The knowledgeblock compound-kb contains a facility for systematic defi-
nition, naming, and location of a group of entityfiles. The need for this
arose in the context of administrating research articles and manuscripts in
madman-kb, where these documents are characterized by the name of the
series (for example, caisor reports), year, and serial number within the
year. Each document is associated with relatively much information, in-
cluding structured data for each of several versions of a document as well
as full-text data, for example for the abstract. Each document is therefore
represented as several Leonardo entities, in particular, one for each of its
versions. Most of the operations involving these entities are done on one
document at a time, namely, when the document is edited and formatted.
For these reasons it is natural to have a separate file, in the sense of the OS
file system, for the information pertaining to each one of the documents,
rather than one single file for all of them. This is at odds with the view
of entityfiles in the core of Leonardo where each entityfile has a mnemonic
name and there is an index that specifies the location for each entityfile.
The compound-kb knowledgeblock provides a systematic way of handling a
group of entityfiles that are defined by a combination of several names, for
example, by name of series, year, and serial number.

In principle, this is a general-purpose facility that ought to qualify for the
platform. However, other applications have introduced other, more or less
ad-hoc conventions for organizing entityfiles and knowledgeblocks. The in-
tention is to make a retrospective on these various arrangements and to
look for generally applicable solutions. Meanwhile the compound-kb facility
is not included in the platform.

The three following knowledgeblocks (debug-kb, import-kb, crossix-kb)
change too rapidly to be considered as platform facilities. They are actu-
ally collections of practical tools that are programmed or reprogrammed just
when they are needed. It is therefore not reasonable to include them in a
“platform”, but one might consider introducing the term of a “workbench”

5

for material that is presently the instrument and/or the object of active
work. Some of the previously mentioned blocks, such as proposition-kb
would also fit on or in a workbench.

The following knowledgeblocks in the list, from madman-kb and onwards,
do have the character of applications. In some cases there is clear sep-
aration between a knowledgeblock for a general facility (madman-kb) and
knowledgeblocks containing information in a particular usage (caisor-kb,
caisorweb-kb). In other situations, and in particular as long as the appli-
cation remains small, general and application-specific information may be
kept together in one single knowledgeblock (compound-kb, for example).

Some figures: These knowledgeblocks comprise altogether around 190 enti-
tyfiles and 3.250 entities. Loading all of them from their textual represen-
tation in LDX takes around 30 seconds on a conventional laptop, but this
is really only done for the purpose of cross-indexing or other cataloging; in
daily use only a small part of the entityfiles are needed, so that the loading
process is faster. The operation of loading the core Leonardo system takes
place before the library of entityfiles is loaded, and it takes two or three
seconds.

Character of use: madman-kb and its user data in caisor-kb, caisorweb-kb,
and actors-kb is in daily use by the present author for preparing docu-
ments, such as the present one, as well as for amending the caisor website
(http://www.ida.liu.se/ext/caisor/) which also contains the Leonardo
website as a substructure. In addition, actors-kb also contains a contacts
register (containing addresses, phone numbers, etc) whose contents have
recently been imported from the register in a Palm-Pilot; this is just begin-
ning to be used. (The contact entities are not included in the entity-count
above). The email management in messaging-kb is in a half-way stage of
implementation: it can download email message headers from a mail server
and organize their information in terms of entities, but the implementation
of email sending and of a GUI remains to be done.

The PHP implementation and PHP support were done in order to gain expe-
rience with how well PHP is suited for Leonardo data structures, and vice
versa. They contain a web-based GUI for access to bibliographic meta-
data and domain data which works correctly but which is not in actual
use. The conclusion from the experiment was that it would be better to use
Python for this purpose. (An implementation of LDX parsing and printing
in Python exists as well; it is not a complete system and it is therefore not
in actual use).

The tdda23-kb knowledgebase for the undergraduate course contains ser-
vices for capturing session logs; it is in regular use each time the course is
given. The agent-oriented knowledgeblocks, finally, which include agent-kb
and upatrol-kb as well as their basis in the platform knowledgeblock
execeval-kb, are used for tests and demonstration but do not yet con-
stitute an application. They represent the first steps towards porting the
WITAS Robotic Dialog Environment (RDE) into Leonardo.

In general, both the kernel, the platform, and the experimental applica-
tions in Leonardo have a workbench-oriented character. They are designed
for hands-on work on collections of information, where pointwise editing
alternates with wholesale operations across small or large sets of entities,
as opposed to, for example, search and retrieval in large knowledgebases.

6

The emphasis on applications for doing things has consequences for the type
structure or ontology, as we shall see in the next section: the design of the
actually occurring ontology in the system has been influenced not only by
the intrinsic character of objects in the application domains, but also by
pragmatic needs in the operations for doing things to information sets. The
question whether this is desirable, undesirable, or just a matter of fact will
be saved for later discussions.

The Ontology

Although the experimental applications have a fairly varied pattern of us-
age, most of them have anyway arrived so far that they provide relevant
contributions to the evolution of the Leonardo ontology. This is our second
topic.

In ontology development there is a balance between comprehensive and
demand-driven approaches. In the comprehensive approach one tries to
create a systematic ontology once and for all, often with a strong compo-
nent of philosophical considerations. In the demand-driven approach one
starts with a simple kernel ontology, and one then proceeds using appli-
cations each of which is allowed to contribute extensions to the ontology
at hand. In Leonardo we use the latter approach. The reasons for this is
that (1) comprehensive ontologies tend to be large and complex; (2) many
practical applications do not need very large ontologies; (3) it is doubtful
whether a previously designed ontology, even a really large one, will actually
serve the needs of an additional application anyway. At the same time we
admit of course that there are also arguments in favor of the comprehensive
approach, and the present activity should be seen simply as an experiment
with using the demand-driven approach for ontology development.

The baseline report contains a description of the original ontology as it was
perceived in August, 2006, with around 35 entities in the ontology kernel.
Almost six months later the ontology kernel has grown to 60 entities, and
the total number of entities in the ontology of lar-1 is nearly 200. This is
still of course a small number compared to comprehensive approaches.

Appendix 1 contains a structured list of the types in this total ontology,
organized hierarchically according to the subsumption relation. The list
contains two groups, where the first group consists of types that are sub-
sumed by the type metatype, and the second (main) group consists of types
that are instances of the metatypes in the first group. The relation between
type membership and subsumption is explained in the baseline memo, and
has not changed. In the large group, the knowledgeblock where the type is
defined is indicated in square brackets. All the metatypes in the first group
are in core-kb.

The Metatype Level

Although the top-level structure is largely unchanged compared to the base-
line, there has been one change which may have a certain interest as an
example problem. The metatype group looks as follows at present:

metatype [core-kb]
|--toptype [core-kb]

7

|--thingtype [core-kb]
|--qualitytype [core-kb]
|--spacetime-type [core-kb]
|--descriptor-type [core-kb]
|--aggregate-type [core-kb]

The graphics means that the entity metatype subsumes all of toptype,
thingtype, and so forth. This structure is like in the baseline memo, except
that the type aggregate-type has been added. This occurred because in
several of the applications there arose the need to set up lists of entities:
lists of persons on a mailing-list, lists of topics that are addressed in a
report, and so on. It was convenient to let each list have a name of its
own, and to attach various attributes to it besides the sequence of elements
in the list. This concept is generic since lists can contain tangible objects,
intangible objects, dates, places, and so on, and we ended up making a
separate metatype for them.

The Type Level

Proceeding then to the next layer down, in general there is one most general
type for each metatype. The most general type in the metatype qualitytype
is quality. All those types that are subsumed by quality, for example
color, also have the type qualitytype. Each most general type is the root
of a tree, all nodes in which have the same type. There are two exceptions
to this:

• For the metatype spacetime-type there are two most general types,
namely spatial-entity and temporal-entity. This was already in
the baseline report.

• With a change relative to the baseline report, all most general types
in the sense just described are subsumed by yet another type, called
entity. The type of entity is metatype, which then subsumes types
such as thingtype, qualitytype, and so forth. This is shown in
figure 1, which can be compared to figure 1 in the baseline report.

The introduction of entity in this role does not have any consequences
for the modelling of various applications, but it simplified algorithms for
analyzing and checking the entire ontology structure. This was evident
when we used the routines in crossix-kb for cleaning up and checking the
ontology that had evolved gradually.

The structure for the plain type (not metatype) level consists of subtrees
whose roots are as follows: thing, quality, spatial-entity, temporal-
entity, leoslot, and aggregate-entity. We shall address them in turn,
although we save thing until last since it is by far the largest group.

8

9

The Ontological Substructure under quality

This contains

|--quality [core-kb]
|--|--color [core-kb]

This group was introduced in the initial ontology design and from general,
abstract considerations. The entity color was put into the ontology in
order to have an instance and an example there, but until now there has
not been any use at all of this structure in the applications.

Does this mean that this substructure is unnecessary, or does it mean that
we have not yet arrived to the point in the applications where it will
be needed? A priori one would expect instances of quality to occur as
attribute-values and as arguments to predicates such as Holds. As long as
these attribute-values are just tokens there is no particular need to classify
them by type, but the need does arise in at least two contexts: (a) when
structure specifications are introduced for attribute values; compare the dis-
cussion of this topic in section 4 of the LDX representation language report
(4); (b) if attributes need to be assigned to these properties, for example
(in a robotic context) recognition criteria for a particular quality. The first
of these will certainly arise; the second one is also likely to occur. It is
therefore natural to retain this structure in the ontology.

The Ontological Substructure under spatial-entity

This contains

|--spatial-entity [core-kb]
|--|--city [actors-kb]
|--|--country [actors-kb]
|--|--addressable-location [actors-kb]
|--|--|--workplace [actors-kb]
|--|--|--residence [actors-kb]
|--|--|--summerhouse [actors-kb]

The types city and country were introduced in actors-kb since address
information for persons and for organizations (publishers, for example) con-
tain these elements, and it was felt natural to structure it as entities and
not merely represent this information as dumb strings.

The type for addressable-location is an abstraction of the three types
that it subsumes. This was introduced for the contacts register, where it
was desired to introduce entities for each one of several “addresses” that a
person or a family may have, and where each “address” can have attributes
for street address, landline telephone number, instructions for getting there,
etc. There is a slightly philosophical question whether the “summerhouse”,
for example, ought to be considered as a tangible object namely the building,
or whether it ought to be considered as a kind of geographical object. In
this representation we take the latter position.

4http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/001/

10

The Ontological Substructure under temporal-entity

This contains

|--temporal-entity [core-kb]
|--|--date [core-kb]
|--|--|--date-details [core-kb]
|--|--leoyear [core-kb]
|--|--memorypoint [core-kb]
|--|--milestone [agent-kb]
|--|--bucyear [caisor-kb]
|--|--caisoryear [caisor-kb]

The type bucyear has members for each year during the last few decades;
each such entity is used for keeping track of articles and reports that have
been published during a particular year. The type caisoryear is similar.
The instances of milestone are entities that represent points to be achieved
during the execution of a plan. The other types are used for internal pur-
poses in the Leonardo system itself, in particular for the version manager
and for managing session logs.

The concept of a date is actually represented both using records and using
entities. The record representation is as e.g. [date: 2006 11 21] with the
obvious meaning. It is used in attribute-values but does not allow attaching
any information to the date in question, and for that purpose one must use
entities.

The ontology contains two entities called date and date-details, for the
following reasons. The date-details type is application specific and an
instance of this type carries a particular kind of information about a par-
ticular date. The date type was introduced because it was felt that there
should be some ontological entity for the very concept of a calendarial date,
but is is only used as a subsumer for date-details at this point and does
not have any instances of its own.

Instances of date-details are usually composite entities formed like in
(date-details: 2006-10-01). Every such entity is a catalog containing
entities of the type chronicle that occurred during that day. A chronicle
may simply be one activation, or “run” of a Leonardo individual. It consists
of a sequence of event entities, for representing events that have occurred
during the activation. These events may be grouped using episode entities.
An episode names a set of events within a chronicle that one may wish to
refer to for some particular reason, for example, because they demonstrate a
capability of a human-computer dialog system, or because they demonstrate
the presence of a bug.

Each date-details entity obtains its own entityfile, containing itself and its
chronicles and episodes. In that respect it could be considered as subsumed
by entityfile.

The chronicles in an entity such as (date-details: 2006-10-01) obtain
names such as Chronicle-2006-10-01-002 which are generated automati-
cally using a numbering scheme. In retrospect it might have been better to
consider them as composite entities as well, for example
(chronicle: (date-details: 2006-10-01) 2).

11

The type chronicle is subsumed by activity and therefore by event and
by thing in the ontology. This structure is disjoint from temporal-entity
which subsumes date and date-details. This may have to be reconsidered
at some point.

The representation for years is analogous in the sense that there are several
year-types at this point, but for them there is no common, generic concept,
and only three different “year” concepts that are specialized for particular
purposes. Instances of the bucyear and caisoryear types are used for lists
of publications during specific years, in the madman-kb application. Two
different types were introduced because one is used for the direct informa-
tion about publications during specific years, and the other one is used for
automatically computed attributes that are used for converting between in-
ternally and externally used names for the same publication. Instances of
leoyear, on the other hand, are only used in the context of version manage-
ment, for keeping track of the successive numbering of “synchronization”
timepoints within the year.

At present the instances of bucyear are formed as a symbol like |2006|,
the instances of leoyear are formed like year-2006, and the instances
of caisoryear are formed like in (caisoryear: 2006). In retrospect it
would be better to use composite entities in all cases, to merge bucyear
and caisoryear into one type, and to introduce a generic type for years in
general.

The Ontological Substructure under leoslot

This contains

|--leoslot [core-kb]
|--|--leoprofile [core-kb]

The original idea was that names for attributes and other constructs that are
used for technical reasons in Leonardo knowledgeblocks should be declared
as instances of leoslot or types that it subsumes. In practice this has not
happened except for a few odd cases; the present system has not given any
good reasons for making such a declaration. It will be needed however,
when structure specifications are introduced for attribute values (compare
above).

This group has obvious overlap with, and borderline issues with the groups
of both computation-entity and model-entity. One may consider the
possibility of treating this as another group under the umbrella of the type
of intangible-entity, instead of a top-level structure of its own.

The Ontological Substructure under aggregate-entity

This contains

|--aggregate-entity [core-kb]
|--|--ef-list [actors-kb]
|--|--personlist [actors-kb]
|--|--topiclist [caisor-kb]
|--|--propogroup [proposition-kb]

12

These represent types for lists of entityfiles, lists of persons, lists of topics (of
research articles, for example), and lists of proposition-groups, respectively.
Proposition-groups are used for lists of propositions in logic.

These four groups had been introduced ad hoc as the need arose in different
applications, and the introduction of a common structure for them was done
as an afterthought. This group was not present in the baseline report, as
has already been explained.

In retrospect one would be tempted to introduce a symbolic function listof:
that has a type as an argument and a type as a value, so that one could write
(listof: entityfile) instead of the symbol ef-list. Notice, however,
that the instances of the types mentioned above do not merely represent
sequences of things; they may also carry other information in particular
with respect to intended use. For example, each mailing-list may carry in-
formation about who manages it, about whether it is open or closed, on
which server it operates, and so on. In such a case, the type for mail-
inglists should be subsumed by (listof: entityfile), and therefore also
by aggregate-entity, but it should not be (listof: entityfile).

The aggregate-entity type should be open for other kinds of aggregates,
besides lists of things. In fact, an ontology would be a good example of an
aggregate-entity, with its type structure and subsumption structure.

The Ontological Substructure under thing

This substructure consists of exactly 100 entities in the ontology at the time
of writing, which means that it occupies more than half of the total set of
entities. We refer to the full list in the appendix and do not include the
entire list here, but only some excerpts.

Consider first the following substructure, containing three groups that be-
long under intangible-entity:

|--|--|--|--cognition-entity [core-kb]
|--|--|--|--|--method [execeval-kb]
|--|--|--|--communication-entity [core-kb]
|--|--|--|--|--output-phrase [execeval-kb]
|--|--|--|--|--leomail-object [messaging-kb]
|--|--|--|--convention-entity [core-kb]
|--|--|--|--|--language [actors-kb]

Among these, cognition-entity and communication-entity appeared
in the baseline ontology, but convention-ontology was introduced be-
cause there was a concrete need to have a type for language with in-
stances such as english, french, chinese, etc. representing those re-
spective languages, which can be used e.g. for specifying the language in
which a particular document is written. None of the previous major kinds
of intangible-entity seemed to be able to subsume language appropri-
ately, which is why convention-entity was introduced, with a hope that
it could also be used for other kinds of behavior patterns.

The type called method is used in execeval-kb for a method that can be
used for achieving a particular goal, in the sense of goal-directed behavior.

It is clear that these structures are very sparse, in the sense that there are so

13

many other kinds of cognition entities and communication entities besides
the occasional ones shown above.

The baseline design included a general type for abstract-entity, which
was intended to subsume concepts such as triangle (representing the tri-
angular shape, not the music instrument). Since then an additional group
was added for model-entity so the table looks as follows:

|--|--|--|--model-entity [core-kb]
|--|--|--|--|--grammar-item [core-kb]
|--|--|--|--|--predicate [proposition-kb]
|--|--|--|--abstract-entity [core-kb]

The idea was that a model-entity would be a concept that is introduced
in order to be used in “models” of the world or of an application, if the con-
struct does not already fit naturally into some other part of the structure.
Philosophically there seems to be some difference between abstract-entity
and model-entity but the borderline is not sharp and this part of the de-
sign may need to be revised again.

The current ontology contains a quite large section led by info-entity
which is a new one that did not appear in the baseline. It was introduced
in order to accomodate bibliographic items representing books, journal ar-
ticles, technical reports, and so forth. There may be a philosophical issue
concerning the attempted distinction between communication-entity for
such things as letters and emails and, on the other hand, info-entity for
items without an explicit addressee. There are obvious borderline cases:
what about an announcement in an airport public address system that be-
gins with “attention all passengers” but continues with information about
a particular departure? In spite of the overlap we hypothesize that the
distinction is a useful one in practice.

Comparing the groups subsumed by intangible-entity in the baseline
report and here, three groups have been added, namely cognition-entity,
model-entity, and info-entity, and none has been removed.

With respect to the groups subsumed by tangible-entity, the following
structure contains certain interesting problems:

|--|--|--|--person-name [actors-kb]
|--|--|--|--|--contact-name [actors-kb]
|--|--|--|--|--authors [compound-kb]
|--|--|--|--|--email-alias [messaging-kb]
|--|--|--|--|--author [pub-kb]
|--|--|--|--|--author-here [pub-kb]

Here, a person-name is intended as an entity that has attributes specifying
the email address, cellphone number, and maybe also street address and
home phone number for a particular person. (Alternatively, the person may
have an attribute specifying an entity for his/her family, which in turn has
an attribute for the home(s) that the family uses, and these again may
be associated with street address etc). Now, should this type be called
person or something like person-name? The philosophical reason for this
possibly strange question is that usually when we represent physical objects
of various kinds in the system, we represent properties that are intrinsic to
them, but things such as name and email address are attributes that have
been attached to the person in question. If it is considered worthwhile to

14

make this distinction, then things such as bodyweight, place of birth, and
references to parents and children ought to be attributes for the person,
whereas given name, family name, and email address are attributes for the
person-name, or whatever we wish to call this façade of the actual person.

Another representation problem: some people have more than one email
address, and each of these may have to be associated with information about
when and for what it is to be used, for example. This means that there is a
need for several entities in such cases. However, introducing one entity for
each email address of every person may be to overdo it, since for most people
the system only needs to list a single email address, which can then be an
attribute of the person’s entity in the system. The solution that was chosen
in actors-kb was to introduce a separate entity, of type email-alias, for
each email address besides the first one for a given person. Each instance of
person-name and of email-alias can have an email attribute, containing
the actual email address as a string. There is an optional attribute that
assigns an entity of type email-alias to an entity of type person-name.
This is a workable practical solution, but what kind of thing is the email-
alias for a particular person? Are aliases in general a type, subsuming alias
types for email addresses, for the car driven by a particular person, and so
forth? Or, is an email-alias merely a variant of the type for person-name
but with a more restricted set of attributes?

The types for author, author-here, and authors are all used for biblio-
graphic metadata, and are different types for the same kinds of things. They
refer to a person that is an author, not to “the author” of a particular ar-
ticle, so if the same person has written several works it is still one single
entity for the purpose of these types. (Notice also the overlap with the
type of person-name in the contacts register). The type author-here is
subsumed by author and is used for those persons that have at some time
been a co-author of the user of the system at hand, in which case additional
information may have to be represented. The type called authors is used
for a single author (not for a group of authors, as the name might suggest),
and was introduced as bibliographic metadata were imported from two dif-
ferent sources, both of which sometimes contributed information about the
same author. It was convenient to have two distinct entities for the same
author, one for each source, for the work on importing, adjusting, and cor-
recting the information from the two sources. Once information has been
imported, one should be able to use the facilities in the system to merge the
information to a more reasonable representation.

This example illustrates the dynamic character of types in a system like
Leonardo, and is interesting in combination with the case of multiple repre-
sentations of the concept of a year which was mentioned above. In general,
type distinctions arise not only because of distinctions in the knowledge
that is being represented, but also because of pragmatic needs when work-
ing with the information, and because of rapid design decisions when facing
a particular application needs. Import of information from external know-
ledge sources sometimes requires active manipulation, and types may need
to be introduced ad hoc in order to facilitate that work. At the same time,
one of the major reasons for having a systemwide ontology in the first place
is to be able to relate information that is obtained from different sources.
It is therefore a major requirement on a system of this kind that it shall
support the homogenization process where information that has arrived or
been set up in the form of different types can be transformed and integrated,

15

so that it obtains a common type.

Some items in the structure can be considered as “noise” and should be
eliminated at the earliest occasion, in particular the dual occurrence of some
type names in both capital and small letters. This is a legacy problem, due
to migration of some data from an earlier implementation in an upper-case-
only variant of Lisp. Some other items are obviously incorrect, such as the
inclusion of goal and goal-instance as subsumees of the same subsumer.
This does not hurt for the moment but will have to be straightened out.

Structures of Particular Interest

Symbolic functions

One of the characteristic facilities in the Leonardo Data Expression language
(LDX) is the possibility to form composite entities using symbolic functions.
The following is an inventory of how this facility has actually been used
in the Leonardo system as it exists at the time of writing this report. We
present the symbolic functions in groups according to the knowledgeblocks
where they are defined.

location: [core-kb]

An entity (location ef) where ef is the name of an entityfile, is used for
carrying information about the location of that entityfile in the directory
structure.

caisoryear: [caisor-kb]
date-details: [chronos-kb]

These symbolic functions were described in the section on temporal entities,
above.

indiv-loc: [config-kb]
indiv-pode: [config-kb]

An entity such as (indiv-loc: lar-001) has an attribute specifying the
current physical location of the Leonardo individual lar-001, for example
on a hard-disk unit of a particular computer host, or on a particular de-
tachable USB memory. An entity such as (indiv-pode: lar-001) contains
port descriptions (therefore pode) for that same Leonardo individual. These
have the type indiv-loc-descr and indiv-port-descr, respectively. En-
tities in these types are maintained in a global place so that they can be
shared between several individuals.

b: [execeval-kb]
i: [execeval-kb]
episode: [execeval-kb]
simulation: [execeval-kb]
fea: [execeval-kb]

If a is an entity representing an action and t is a timepoint, then the entity
(b: a t) represents an instance of that action starting at timepoint t. The
function i: is similar to b: but refers only to the initiation of the action
instance, that is, the activity where it is checked whether it is well-defined
and executable.

16

The function episode: is used for setting up multiple episodes within a
given chronicle, in the way that was discussed in the section on temporal
entities, above.

The functions simulation: and fea: are explained by the following exam-
ple. Suppose you wish to simulate cars that are moving in a road system.
The entity (simulation: car) can represent the type of simulated cars,
as distinct from real cars. One of its attributes is featuremap which may
have the following value, in an overly simple example,

{[: velocity 0] [: road 1] [: roadpos 2]}

meaning that the “features” or “state variables” velocity, road (for the
identifier of the road that the car is presently driving along), and roadpos
(for the position along that road) should be in positions with index 0, 1, and
2, respectively in a vector representing the car in the simulation. Let car24
be one instance of (simulation: car). Then (fea: roadpos car24) is an
entity representing the road position of car24; it may contain information
e.g. about how often that state variable is to be updated.

remex: [execeval-kb]
achieve: [execeval-kb]
adogoal: [execeval-kb]
ev: [execeval-kb]
get: [execeval-kb]
query: [execeval-kb]
ask: [execeval-kb]
ans: [execeval-kb]
plask: [execeval-kb]
goto: [execeval-kb]
go-shopping: [execeval-kb]

The symbolic functions in this group are action verbs which are used for
forming actions that can occur as arguments of b:. The remex: operator
has a particular meaning: If i is a Leonardo individual and a is an action,
then (remex: i a) is the action in the present individual where it delegates
to the individual i to perform action a.

If g is a description of a goal, that is, a condition in the world, then
(achieve: g) represents the action of doing what it requires to achieve
that goal. The action (adogoal: g) represents the action of adopting the
goal, that is, of deciding to try to achieve it.

The verb ev: stands for “evaluate”: if f is a form then (ev: f) is the
action of evaluating the form and producing its value.

The other action verbs have simple operative definitions and are used for
testing purposes. The action verbs ask: and ans: are used for the actions
where one Leonardo individual asks a question to another one, and the
latter one answers.

fly-to: [upatrol-kb]
mount: [upatrol-kb]
unmount: [upatrol-kb]

Composite entities formed using these symbolic functions represent actions
in the beginnings of the UAV simulator for the RDE system (Robotic Di-
alog Environment). The mount and unmount actions refer to attaching an

17

instrument to the simulated UAV and for detaching it from the UAV.

workplace: [actors-kb]
residence: [actors-kb]
summerhouse: [actors-kb]

If f is an entity representing a family, then (residence: f) represents the
place where this family lives. This entity has attributes for street address,
phone number, etc. The entity (summerhouse: f) is analogous. If p is a
person then (workplace: p) represents the place of work for that person,
again with attributes for address, phone number for the main telephone
exchange, etc.

docversion: [caisor-kb]
version: [madman-kb]

If d is an entity representing an article or report and n is a positive integer,
then (version: d n) represents version number n of the article. The dif-
ference between docversion: and version: is trivial and these two should
be unified.

caisordoc: [madman-kb]
lectnote: [madman-kb]
lecturenote: [compound-kb series-compound]
witas: [madman-kb]
aijd: [madman-kb]
epos: [madman-kb]
epress: [madman-kb]
casl: [madman-kb]
cais: [compound-kb]
etaicontr: [compound-kb]
racnote: [compound-kb]
epcis: [compound-kb]
pury: [compound-kb]

The symbolic functions in this group are used for forming document entities.
For example, (casl: 2006 4) represents report number 4 during 2006 from
the CASL research group. The entity (pury: 1998 114) represents an
article in the publication register of our department, viz. article registered
as number 114 during year 1998, and so forth. In a few cases there are
accidental duplications, with two functions that denote the same thing, in
particular caisordoc: and cais:.

email-alias: [messaging-kb]

If p represents a person for which two different email addresses need to be
represented, then (email-alias: p) is an entity representing the person’s
“second” email address. It has an attribute for the email address itself as
a string, and optional other information describing the use of this email
address.

18

Concluding Remarks

Ontological Issues

We have already touched on the fact that Leonardo system design is ori-
ented towards workbench-type or “hands-on” type applications. We also
observed that one consequence of this is that the type structure that has
evolved during fairly direct implementation of a number of applications as
they were needed, is influenced not only by the conceptual structure of the
objects in the application domains, but also by the pragmatic and opera-
tional requirements in each application and facility.

Furthermore, the type structure or ontological structure in our case is first
of all a way of structuring a number of applications, and for this purpose it
does not necessarily have to be very comprehensive. It suffices if it provides
a reasonable “top level ontology” where contributions from different appli-
cations can be inserted as they emerge. This is again different from systems
for information retrieval in large knowledgebases that require large ontolo-
gies, and where the pragmatic and operational aspects can be expected to
be much better separated from the ontology.

However, it is still important, even in our type of applications, that the
ontology is capable of scaling up. The one described here includes about
200 types; the methodology and the system should be capable of managing
ten times that, and preferably fifty times that. Our present system will
continue to be extended under the assumption that it is capable of such
growth.

A second, important use of the ontology is for the retroactive analysis and
cleaning up of a number of applications using overlapping information cate-
gories, after they have first been implemented. The discussion in the present
report is one example of such a retroactive analysis. This requires software
tools that harvest the collection of all the knowledgeblocks in a Leonardo
system, in order to obtain systematic lists of types, of symbolic functions,
and so forth. The crossix-kb knowledgeblock in Leonardo provides such
a facility and was used for preparation of the present report.

The integration of truly ontological considerations with pragmatic ones is
natural in the development stage, but in a longer perspective this distinc-
tion ought to be made more explicit. It is easy to think of formal devices
for doing this. The case of the representation of years, which occurs in
the temporal-entity structure, suggests that one might use a symbolic
function aspect: with a convention whereby year is the type for years per
se, (aspect: year chronos-kb) is the type for the aspect of years that is
used by the knowledgebase chronos-kb, and so on. There are also other
designs that come to mind. This must be addressed in a systematic manner
in due time, but first we must obtain reliable and well documented informa-
tion about what the actual needs are, and which pragmatic and operational
considerations must be taken into account.

Methodological Issues

This report has described a system that was allowed to develop fairly freely
during a period of half a year. This has resulted in the organic identification

19

of a number of specific problems each of which has obtained a solution along
the way, so the process has helped focus the design of the architecture and
the ontology on relevant issues. However, it has also resulted in a number
of design faults that must now be reviewed and corrected, and the present
candid report has identified several of them.

One may consider whether it would have been better to start with a larger
and more thought-out ontology, in particular one that is available in the
literature, and whether that would have helped us avoid the kinds of faults
that were reported here. For such an analysis one needs to assess the fol-
lowing questions:

1. Would an existing ontology have provided good solutions for the prob-
lems mentioned here?

2. How much work is involved in learning to use a large, previously
published ontology?

3. How much work is required to correct the faults in the existing system,
including both the resulting changes to the program “code” and the
update of the existing data sets?

4. Have there been any losses in the development work until now due to
the ad hoc nature of some of the design decisions?

We do not have any ready answers to these questions. The first one is a well
defined question that could be the topic of a separate study. Question 2
might be the topic of another investigation, and Question 3 can be answered
by just doing the job, which needs to be done anyway. For Question 4 the
answer will be more speculative. We expect that forthcoming project memos
will address some of these questions.

20

Appendix 1

The following is a listing of all the types in the present lar-1 individual,
which contains 193 entityfiles and 3253 entities excluding a few large collec-
tions of uniformly structured entities. The listing is hierarchically ordered
for subsumption in the obvious way, so that at the beginning of the second
group, entity subsumes thing which in turn subsumes individual-entity,
and so forth. Entities that are aligned directly under each other are there-
fore directly subsumed by the same subsumer.

metatype
|--toptype
|--thingtype
|--qualitytype
|--spacetime-type
|--descriptor-type
|--aggregate-type

entity [core-kb]
|--thing [core-kb]
|--|--individual-entity [core-kb]
|--|--|--intangible-entity [core-kb]
|--|--|--|--computation-entity [core-kb]
|--|--|--|--|--globvar [core-kb]
|--|--|--|--|--indivattr [core-kb]
|--|--|--|--|--leo-individual [core-kb]
|--|--|--|--|--location [core-kb]
|--|--|--|--|--os-command [core-kb]
|--|--|--|--|--computer-host [config-kb]
|--|--|--|--|--data-carrier [config-kb]
|--|--|--|--|--indiv-loc-descr [config-kb]
|--|--|--|--|--indiv-port-descr [config-kb]
|--|--|--|--|--agent [agent-kb]
|--|--|--|--|--stringmapping [messaging-kb]
|--|--|--|--|--phpage [phpcore-kb]
|--|--|--|--cognition-entity [core-kb]
|--|--|--|--|--method [execeval-kb]
|--|--|--|--communication-entity [core-kb]
|--|--|--|--|--output-phrase [execeval-kb]
|--|--|--|--|--leomail-object [messaging-kb]
|--|--|--|--convention-entity [core-kb]
|--|--|--|--|--language [actors-kb]
|--|--|--|--leo-entity [core-kb]
|--|--|--|--|--bundle [core-kb]
|--|--|--|--|--entityfile [core-kb]
|--|--|--|--|--|--kb-index [core-kb]
|--|--|--|--|--|--startup-file [core-kb]
|--|--|--|--|--|--simulation-base [execeval-kb]
|--|--|--|--|--section [core-kb]
|--|--|--|--|--leo-residence [config-kb]
|--|--|--|--|--leochannel [config-kb]
|--|--|--|--info-entity [core-kb]
|--|--|--|--|--infosite [caisor-kb]
|--|--|--|--|--hypernote [caisor-kb]

21

|--|--|--|--|--WEBNOTE [caisor-kb]
|--|--|--|--|--webnote [caisorweb-kb]
|--|--|--|--|--etai-submission [compound-kb]
|--|--|--|--|--document [compound-kb]
|--|--|--|--|--|--docresource [caisor-kb]
|--|--|--|--|--|--docversion [caisor-kb]
|--|--|--|--|--|--projmemo [caisor-kb]
|--|--|--|--|--|--projmemo-version [caisor-kb]
|--|--|--|--|--|--projreport [caisor-kb]
|--|--|--|--|--publication [pub-kb]
|--|--|--|--|--|--acamemo [caisor-kb]
|--|--|--|--|--|--acamemo-version [caisor-kb]
|--|--|--|--|--|--ep-purwork [compound-kb]
|--|--|--|--|--|--ep-racnote [compound-kb]
|--|--|--|--|--|--ep-article [compound-kb]
|--|--|--|--|--|--book [pub-kb]
|--|--|--|--|--|--|--BOOK [pub-kb]
|--|--|--|--|--|--collection [pub-kb]
|--|--|--|--|--|--incollection [pub-kb]
|--|--|--|--|--|--|--INCOLLECTION [pub-kb]
|--|--|--|--|--|--inconference [pub-kb]
|--|--|--|--|--|--|--INCONFERENCE [pub-kb]
|--|--|--|--|--|--injournal [pub-kb]
|--|--|--|--|--|--|--INJOURNAL [pub-kb]
|--|--|--|--|--|--invit-abstract [pub-kb]
|--|--|--|--|--|--|--INVIT-ABSTRACT [pub-kb]
|--|--|--|--|--|--report [pub-kb]
|--|--|--|--|--|--|--REPORT [pub-kb]
|--|--|--|--|--|--PUBLICATION [pub-kb]
|--|--|--|--model-entity [core-kb]
|--|--|--|--|--grammar-item [core-kb]
|--|--|--|--|--predicate [proposition-kb]
|--|--|--|--abstract-entity [core-kb]
|--|--|--tangible-entity [core-kb]
|--|--|--|--building [core-kb]
|--|--|--|--person-name [actors-kb]
|--|--|--|--|--contact-name [actors-kb]
|--|--|--|--|--authors [compound-kb]
|--|--|--|--|--email-alias [messaging-kb]
|--|--|--|--|--author [pub-kb]
|--|--|--|--|--author-here [pub-kb]
|--|--|--social-entity [core-kb]
|--|--|--|--enterprise [config-kb]
|--|--|--|--|--enterprise-name [actors-kb]
|--|--|--|--|--confseries [pub-kb]
|--|--|--|--|--|--CONFSERIES [pub-kb]
|--|--|--|--|--journal [pub-kb]
|--|--|--|--|--|--JOURNAL [pub-kb]
|--|--|--|--|--publisher [pub-kb]
|--|--|--|--|--|--PUBLISHER [pub-kb]
|--|--|--|--family [actors-kb]
|--|--|--simultype [execeval-kb]
|--|--event [core-kb]
|--|--|--leosession [core-kb]

22

|--|--|--activity [core-kb]
|--|--|--|--chronicle [core-kb]
|--|--|--actionverb [execeval-kb]
|--|--|--action [execeval-kb]
|--|--|--|--archivepoint [core-kb]
|--|--|--action-instance [execeval-kb]
|--|--|--goal [execeval-kb]
|--|--|--goal-instance [execeval-kb]
|--|--|--conference [pub-kb]
|--|--compound [compound-kb]
|--quality [core-kb]
|--|--color [core-kb]
|--spatial-entity [core-kb]
|--|--city [actors-kb]
|--|--country [actors-kb]
|--|--addressable-location [actors-kb]
|--|--|--workplace [actors-kb]
|--|--|--residence [actors-kb]
|--|--|--summerhouse [actors-kb]
|--temporal-entity [core-kb]
|--|--date [core-kb]
|--|--|--date-details [core-kb]
|--|--leoyear [core-kb]
|--|--memorypoint [core-kb]
|--|--milestone [agent-kb]
|--|--bucyear [caisor-kb]
|--|--caisoryear [caisor-kb]
|--leoslot [core-kb]
|--|--leoprofile [core-kb]
|--aggregate-entity [core-kb]
|--|--ef-list [actors-kb]
|--|--personlist [actors-kb]
|--|--topiclist [caisor-kb]
|--|--propogroup [proposition-kb]

