
CASL

Erik Sandewall

The Leonardo Representation Language
Part I: Entity Descriptions

Core Design, Version 0.2

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-001, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/001/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2007-01-22

1

Abstract

The Leonardo representation language is a textual representation of infor-
mation structures based on entities that have attributes and properties. At-
tributes are structured objects formed using composition of sets, sequences,
records, and a few other constructs. Properties are textual objects that
can be used to harbor whatever representation language is needed by an
application. A distinguishing feature of this language is that entities can
be composite objects, and are not restricted to be atomic symbols. The
representation language is used for a wide range of purposes, ranging from
low-level operational needs in the Leonardo system, to ontologies and other
knowledge representation tasks. The present report defines the core part of
the Leonardo representation language.

Note on Methodology

Along with the work on the Leonardo system, its languages and applications,
we have also reflected on the choice of research methodology for projects
such as this, that is, projects where a relatively complex system design is
developed through several iterations of system development, and where the
design itself is the primary outcome of the project. A concurrent report(1)
describes our view of methodology and its implications for the structure of
system documentation and of publications that is needed in order to pursue
and to communicate the research.

The documentation for Leonardo is a collection of interrelated documents
that follow the approach that is proposed in those methodology reports. In
particular, the purpose of the present report is to define the central part
of Leonardo’s representation language. A discussion and analysis of vari-
ous choices in its design, and a comparison with other, more or less related
work is to be made in a separate report. Likewise, it is intended to have an-
other separate report for various “features” of the representation language
that have a marginal character from a structural point of view. The imple-
mentation status of software supporting the representation language is of
course changing over time, and is indicated on the webpage for the present
report(2).

Examples of use

The Leonardo Representation Language is designed to be used in text files
that can be relatively large, and that should be suitable both for a human
reader and for computer processing. Some examples of such files are ref-
erenced from the webpage of the Leonardo project (3). In order to make
full use of these examples, it is recommended to also study the report on
the Leonardo Computation System (4) which describes the larger context
within which the representation language is used.

1http://www.ida.liu.se/ext/caisor/pm-archive/morador/001/
2http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/001/
3http://www.ida.liu.se/ext/leonardo/
4http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/002/

2

1 Introduction

This section provides an introduction to the Leonardo representation lan-
guage and its use in the Leonardo system, as well as to the character of the
system and to the overall goal of the project where the language and the
system are developed.

1.1 The Representation Language

The Leonardo representation language allows the user to express informa-
tion that is associated with entities. The following is a very simple example
of an entity-description in Leonardo, for an entity called acm:

-- acm

[: type organization]
[: sections {sigplan sigact sigsim}]
[: fullname "Association for Computing Machinery"]

@Headline
The First Society in Computing

@Autodescription
Founded in 1947, ACM is a major force in advancing
the skills of information technology professionals
and students worldwide. Today, our 80,000 members
and the public turn to ACM for the industry’s leading
Portal to Computing Literature, authoritative
publications and pioneering conferences, providing
leadership for the 21st century.

In this example, whose textual contents are from the ACM website, the
type, sections, and fullname elements are called attribute assignments,
and the Autodescription and Headline elements are called property as-
signments. Properties can be used for storing plain text, like in this exam-
ple, but they can also be used for storing definitions e.g. in a programming
language or a grammar language.

Information structures that are similar to this simple example have been
developed and used for a long time and in several branches of computer
science. The following are some additional properties that are specific to
the Leonardo representation language:

• Attribute values can be formed recursively by composition using set
formation ({ ... }), sequence formation (< ... >), and several
other, similar constructs. Our representation language stays close to
standard set-theory notation. The elements of these expressions can
be entities, strings, numbers, of formatted text.

• Entities may be expressed as single symbols, such as acm in the ex-
ample, but they can also be composite expressions. For example, the

3

information about the membership in acm by a particular person, de-
noted erik, could be expressed as shown below, where (membership:
erik acm) is a composite entity having three attributes. The values
of the latter two attributes are records, which is an additional con-
struct in the Leonardo language, besides sets, sequences, and forma-
tion of composite entities.

-- (membership: erik acm)

[: type membership-info]
[: annual-due [amount: USD 120]]
[: paid-until [date: 2006 09 30]]

Types are first-class citizens, so symbols such as membership-info and
organization in these examples are also entities that can be associated
with attributes and properties.

The Leonardo representation language is closely connected to several soft-
ware facilities of widely different character:

• It is the framework and the representation for all programs in the
Leonardo system, including both its own implementation and appli-
cations that are built on it;

• It is used for expressing an ontology that serves as the cohesive frame-
work for all information in the Leonardo system and its applications;

• The representation language contains a sublanguage for markup of
text; the Leonardo system contains subsystems for text formatting.

The close integration of these aspects of the system provides particular
power and simplicity, for example in the following ways:

• The text formatter can be used for generating typographic quality
presentations of all software in the system

• Expressions in the Leonardo evaluation language (“programming lan-
guage”) can be embedded in texts, and are evaluated by the formatter

• The ontology is available for program code on all levels, including for
the implementation of Leonardo itself

• Support software that operates on the Leonardo knowledge structure
(which is expressed using entities and their associated information)
can be used for all kinds of data, including programs

• Every piece of software in the system is an object in the system on-
tology, providing control information for the various general-purpose
service functions that operate on the knowledge structure.

For example, an entity-level version management system provides version
control services when several developers cooperate on a joint project based
on the Leonardo platform. The version management system is part of the
system core, and uses itself the Leonardo representation language for keep-
ing track of the administrative information it needs.

4

1.2 Language Architecture

One single notation can not serve all purposes, and like in many other
comprehensive systems we work with several sublanguages that can be em-
bedded inside each other, or interconnected in various ways. The global
structure of these languages is referred to as the language architecture.

One of the sublanguages in Leonardo has a primary status, namely the
Leonardo Data Expression Language, LDX, which is used for the attribute
sections of entity descriptions. There is a number of associated languages
which can be used in attribute values of the kinds that were shown in the
examples above, or in subexpressions inside attribute values. The conven-
tions for how to “wrap” expressions in associated languages will be specified
in Section 5. HTML, XML, and LaTeX markup notations are associated
languages in this sense. It is intended that the Leonardo system shall pro-
vide parsed representations of those embedded expressions, at least as an
option, and not merely represent them as plain text.

Other languages, for which wrapping conventions and structured represen-
tations have not been defined, will be referred to as foreign languages. They
can be used freely in properties of entities, similar to the Autodescription
property in our first example above, but the Leonardo system does not
provide any support for them.

Some of the associated languages may be reciprocally associated with LDX,
in the sense that not only can LDX expressions contain expressions in those
languages, but they can also contain expressions in LDX, even recursively,
and such multi-language aggregates are supported by the Leonardo imple-
mentation. The structure consisting of LDX and its reciprocally associated
languages is referred to as the Leonardo Representation Language, LRL.
Reciprocally associated languages have particular requirements since a rea-
sonable implementation of Leonardo will have to treat all of them as well as
LDX in an integrated way. Foreign languages, and languages that are not
reciprocally associated can much more easily be treated as separate imple-
mentations. For these reasons it is natural to refer to LRL is the language of
the main Leonardo system. LDX and the reciprocally associated languages
are called the sublanguages of LRL.

To explain the concept of reciprocally associated languages we quote the
example of Latex which has general Latex language and the reciprocally
associated language for markup of mathematical formulas. Each of them
can embed expressions in the other one, recursively.

For all associated languages, even if they are not reciprocally associated,
the Leonardo system must be able to transport variable bindings inwards
through their wrapping for the purpose of substitution.

The implementation of Leonardo at the time of writing does not actually
give full support for any sublanguage besides LRX, since the others are still
in the stage of language design. We are working on two such languages,
namely ST for structured text and IF for informatic formulas, including
expressions in logic. ST can be compared with Latex and with the textual-
markup aspect of XML. IF is used for representing formulas in logic, for
database queries, and a few similar purposes. IF actually contains LDX as
a subset so no wrapping is needed for embedding an LDX expression in IF,
but full IF inside LDX needs to be explicitly wrapped. This will be further

5

described in Section 5.

1.3 The Leonardo System

Although LDX can be parsed and used in any computational context, our
emphasis is on the use of LDX in a Leonardo system which is an environment
for the development and use of Leonardo based applications. The main
activity in the Leonardo system is to execute actions. In this respect it
differs from other incremental computing systems, such as in Lisp, Prolog,
or Perl, where the main activity is to evaluate expressions. The emphasis
on the execution of actions means that the use of agendas and plans is
built into the basic system design, as well as facilities for remembering and
referring to past actions.

Each implementation of Leonardo will of course be made in a host language.
The host language of the present major implementation is CommonLisp,
but the definition of LDX is intended to be neutral with respect to the
choice of host programming language. Partial implementations have been
made for PHP and Python in order to obtain some experience of language
independence.

Although implementations in e.g. Java and Perl would also be of interest,
our longer-range goal is to implement Leonardo on a much more elemen-
tary platform, so that many services that are traditionally provided by op-
erating systems and database systems shall be performed within Leonardo
itself. Leonardo has been designed with that goal in mind. A very minimal,
Scheme-like language would be an appropriate basis for Leonardo.

1.4 Implementing Applications on the Leonardo
Platform

Applications on a given software platform typically require the implemen-
tor to define both data structures and procedures. For applications built
on Leonardo, both declarations of data structures and actual data contents
are expressed in LDX to the largest possible extent. Procedures are written
as Leonardo entities, with the full text of the procedure as one of the prop-
erties of the entity naming the procedure. Information that is intermediate
between ‘declarative’ and ‘procedural’, such as grammar rules or robotic
behavior rules, can also be stored using the properties of entities.

Documentation of the various aspects of an implementation are naturally
integrated with the implementation, using additional properties. It is in-
tended that utilities in the Leonardo system shall allow documentation to
be generated by composition of documentation properties of all entities in
a given structure, using the built-in text formatting services.

1.5 The Goal of Software System Consolidation

The development of the Leonardo representation language as well as the
Leonardo system is part of a broad research effort whose overall goal is to
identify a consolidated software architecture, that is, an architecture that
eliminates the considerable conceptual redundancy that is characteristic of

6

contemporary software systems. The redundancy that we have in mind is
the one where similar constructs are used in programming languages, op-
erating systems, database systems, text formatters, www servers, webpage
scripting languages such as Javascript, modelling systems such as UML,
knowledge representation languages, and so on.

We believe that it should be possible to design the total system in such a way
that the same concepts and constructs are used for all the facilities that are
today offered by separate software systems such as those mentioned, with
considerable gains in cost of development, ease of learning and of use, and
cross-utilization of services. We propose to use the term consolidation for
this review and revision of contemporary software technology, and for which
Leonardo is the experimental vehicle.

2 Data Expressions

The initial example showed how the description of entities has an attribute
part using structured expressions and a property part allowing for free text.
We begin by defining the representation that is used in the attribute part.
Expressions there are called data expressions. The definitions in this section
are recursive, so by necessity some definitions use terms that are defined
later on in the section.

2.1 Entities and Argument Lists

Data expressions are formed recursively from a small number of element
types, namely symbols, strings, and numbers, and from wrapped expressions
in associated languages, for example for marked-up text.

A string is written enclosed by double quotes, for example "This is a
string". It must not contain a double quote and not any non-printing
character other than space and newline. In particular, tab characters are
not allowed. There is also no escape character, for example for including a
double quote within a string. For such purposes one can use one of the text
markup languages that are associated with LRL. A string always means the
sequence of characters between the double quote characters: "There are
38 characters in this string".

A number is written as a positive or negative integer in the obvious way, or
as a decimal number e.g. as 3.14159 for π. Other kinds of numbers, such
as fractions, are expressed using records which will be defined below.

An untyped symbol is written as a sequence of characters in the standard,
8-bit ascii alphabet, not containing any of the following: the double quote,
whitespace characters, control characters, other non-printing characters, or
the following bracket characters which are reserved for the formation of
composite expressions:

() [] { } < >

Also, a full stop (.) can not be used as the first character of a symbol, since
this is how variables are formed in the informatic formula languages (see
section 5.2). Finally, a sequence of characters that can be interpreted as a
number can not be used as a symbol.

7

Additional restrictions on the choice of characters within symbols may occur
in a particular implementation. A sequence of characters between ascii 32
and 127 that conforms to the above restrictions must always be allowed,
however.

A typed symbol consists of an untyped symbol, a left square bracket, an
entity, and a right square bracket. It is intended that the entity within
brackets shall indicate what type is intended for the symbol. For example,
one may write china[material] and china[country] to distinguish the
two major meanings of the English-language word “china”.

An argument list of arity n, where n is a non-negative integer, is a sequence
of exactly n data expressions, separated if necessary (5) by at least one
whitespace character (space, tab, or new line) between successive elements.
A tag is a symbol whose first characer is the colon (:). A parameter is a tag
followed by a data expression, with at least one whitespace between them.
An extended argument list of arity n consists of an argument list of arity n,
optionally followed by at least one whitespace and one or more parameters
using different tags, again separated by one or more whitespace.

Some symbols are used as composers. The status of a symbol in that respect
is represented in type describing information states, which will be introduced
in section 4. By convention, entity composers are written as symbols whose
last character is a colon (:). Each composer is either an entity composer or
a record composer.

A composite entity consists abstractly of an entity composer and an extended
argument list whose arity is the arity that the entity composer has according
to the describing information state. Specific entity composers may impose
restrictions on their argument lists, for example, that a particular argument
must be a symbol, or must be a number. In the concrete syntax, a composite
entity is written as a left parenthesis, an entity composer, whitespace (except
if the argument list is empty), the extended argument list, and a right
parenthesis.

An entity is either an untyped symbol, a typed symbol, or a composite
entity.

2.2 Composite Expressions in LDX

There are also several other kinds of composite expressions in LDX, besides
composite entities, namely records, sequences, sets, and mappings.

A record is similar to a composite entity, but it is formed using a record
composer rather than an entity composer, and in its concrete manifestation
it is enclosed in square brackets rather than parentheses.

The main difference between composite entities and records is motivated
by implementation and is analogous to the difference between symbols and
strings. In the internal representation of data expressions in an implemen-
tation there should be a unique data object representing a composite entity
with a given composer and a given extended argument list, but there can
be several instances of a record with given elements. Composite entities
can have attributes and properties assigned to them, but records can not.

5See section 2.3 for the whitespace requirements.

8

Examples of the use of records have been shown above, although the records
in those examples did not have any parameters.

A form is composed of a formant and an extended argument list, where
the formant is an entity and its status as a formant is specified in the
describing information state. The concrete manifestation of a form encloses
the formant and the argument list by round parentheses. Forms play a
special role for the evaluation of data expressions, described below.

A sequence and a set is defined as usual in set theory. The LDX language
allows one to define sequences and sets by enumerating all the elements. The
concrete representations of sequences and sets use angle brackets (6) and
curly brackets, respectively, to enclose the representations for the elements,
separated by whitespace. Commas are not used between the elements.

A mapping is a set of maplets each of which is a twotuple consisting of an
entity and a corresponding value. The current implementation considers
maplets as records of two elements with : as the record composer, for
example

[: age 46]

It is foreseen that future implementations may wish to view maplets as a
type in its own right, separately from records, while however retaining the
same syntax.

The value of a data expression is defined as follows. If an expression is not
a form and does not contain any form as a subexpression, then it evaluates
to itself. The value of a form is obtained using an evaluation rule that is
associated with the form’s formant. Expressions that contain forms but are
not themselves forms evaluate to a structure of the same kind as themselves,
but where each element has been replaced by its value, recursively.

For example, if father: is an entity composer and father is a formant
that is associated with an evaluation rule mapping the entity for a person
to the entity for that person’s father, and if lars represents the father of
per then the data expressions to the left in the following table evaluate to
the data expressions to the right:

(father: per) => (father: per)
(father per) => lars
(father: (father per)) => (father: lars)
(father (father: per)) is a type violation
<(father: per) (father: maria)> evaluates to itself
<(father: per) (father per)> => <(father: per) lars>

It is intended that an expression such as (father: per) shall be used to
represent the concept of Per’s father, and that it can be used for example as
a component when expressing “Gunnar knows who is Per’s father”. That is
why an expression such as (father (father: per)) does not make sense.

The evaluation rules for formants may be partial, so that for some argu-
ment lists they do not provide any value. In such cases the form remains
unevaluated, in the style of partial evaluation. For example, if the father of
per is unknown to the evaluator, then the data expression (father per)
evaluates to itself.

6The less-than and greater-than characters are used as angle brackets, in order
to stay within the 8-bit ASCII character set.

9

A data expression is either of a string, a number, an entity, a record, a form,
a set, or a sequence.

2.3 Special Cases for Brackets and Whitespace

Data expressions are formed using elementary constructs that are composed
using whitespace characters and the four types of bracket characters. In
addition we need a few rules for special cases which are actually due to the
multiple use of some characters.

A left square bracket is usually followed by a symbol or a form, or (in
the IF language which is a superset of LDX) by a variable. The character
immediately following the left square bracket can therefore be a left round
parenthesis, a full stop (.), or a non-bracket character. These possibilities
do not allow the left bracket to be followed by, for example, a less-than
character or a curly bracket.

However, a complication arises in IF where atomic propositions are written
as records, with the record composer as the predicate. For example, “Lars
is older than John” may be written as [older lars john], and “a equals
b” is written as [= a b]. It is therefore natural to write “a is less than
b” as [< a b]. Similar expressions apply for “greater than”, “less than
or equal” (<=), and “greater than or equal” (>=). In brief, if a less-than
or greater-than character appears immediately after a left square bracket,
then it is considered as an ordinary, symbol-forming character and not as
a bracket character. This convention is introduced already in LDX in or-
der to anticipate the forthcoming generalization to the Informatic Formula
languages.

The complete rule for the character sequence [< actually contains one more
variety, which will be specified in section 5.3.

Due to the great use of bracketing symbols and the relatively small number
of actual bracket characters, we anticipate that at some point, at least in IF
languages, it will be necessary to introduce composite brackets, for example
as in

[* ... *]

The following rule is made to avoid ambiguity due to the use of forthcom-
ing composite brackets. Whitespace is always required for separating two
syntactic elements each of which is either a symbol or a number. It is
also required between a left bracket character and a symbol except in the
following cases:

1. If the character immediately following the left bracket is a letter or a
digit (the normal case) or a stop character (.)

2. If the bracket character in question is a left square bracket and the
character immediately following it is a colon, the equality sign, or a
less-than or greater-than character.

For example, one must write

< *abc* *def* >

for a sequence of two elements where the first one is *abc*, since

10

<*abc* *def*>

becomes ambiguous if <* is defined as a composite bracket. – An analogous
rule applies before a right bracket character.

The inclusion of the colon character in the second item of this rule is because
of the syntax for maplet expressions, where a single colon is considered as a
symbol and a record composer. It follows, unfortunately, that a number of
constructs that could otherwise have been nice-looking composite brackets
will not be usable in that way, for example the following ones:

[: ... :]
[.]

3 Entity descriptions

Entity descriptions were introduced by the example already in section 1.
They are the basic building-block of the Leonardo representation language,
making it possible to assign attributes and properties to entities, and to store
algorithms, axioms, documentary text, and other information pertaining to
those entities.

An entity description is a textual object consisting of three parts: a heading,
an attribute part, and a property part. The heading identifies the particular
entity to which attributes and properties are to be assigned. This entity
is called the head of the entity description. The syntax of the heading has
been designed with ease of reading in mind, so that the separation between
successive entity descriptions shall stand out clearly.

The syntax of the attribute part is fully defined by the Leonardo Data
Expression Language, LDX, together with its associated languages. The
syntax of the property part, on the other hand, consists of a few general
conventions that are very simple, and that are complemented by the detailed
syntax of the particular language for each kind of property, which can be
either an associated language or a foreign one, for example, a programming
language, or a variety of logic.

3.1 The Heading

The heading of an entity-description consists of three lines, and can be
formed in a few different ways. Usually it consists of one line consisting only
of dash signs, one line consisting of two dashes and a space, followed by an
entity which is the head of the entity description, and finally a blank line.
The purpose of the entity description is to assign attributes and properties
to the head.

The first line of the heading must contain at least five dashes, but usually
one puts so many that they fill the line.

In an alternative case(7), the second line of the heading looks like in the
following example:

== waypoint-12 (waypoint: [geo-coordinate: 42645 678 25])

7Not yet implemented at the time of writing this report.

11

In this case there is a composite entity that is formed using the entity com-
poser waypoint:, and that takes a record as its single argument. This record
presumably specifies a particular geographical position using its x, y, and z
coordinates. However, it may be inconvenient to write out this composite
entity repeatedly as a subexpression in other expressions, and the heading
therefore specifies that the symbol waypoint-12 can be used as a synonym
for that composite entity. The other parts of the entity description assign
attributes and properties to this expression, as usual. This representational
facility is referred to as the naming of composite entities.

There is yet another syntax variant for headings, but one which is purely
cosmetic, namely that the first heading line may be a sequence of equality
signs instead of dashes. This has no semantic significance, and is used for
separating groups of entities graphically in a printout representation.

3.2 The Attribute Part

The attribute part of an entity description consists of a sequence of maplets,
written according to the following conventions:

1. Each maplet begins on a new line and starts in the first character
position of that line.

2. If a maplet extends over several lines, then each of those lines besides
the first one must begin with one or more whitespace characters (space
or tab characters).

3.3 The Property Part

The property part of an entity description, finally, consists of an optional
number of property assignments, with an optional number of blank lines
before and after each assignment. Each property assignment consists of a
property line, followed by an optional number of content lines. The property
line consists of a stop character which is usually the @ character, followed
by a symbol that tags the property. Each one of the content lines consists
of arbitrary printing characters or space and tab characters in the standard
8-bit ascii character set, except that the first character in a content line must
not be the stop character.

It is recommended to have at least one blank line before the first property
assignment, between property assignments, and after the last one. These
blank lines are not considered part of the respective property values.

A property can not contain empty lines, but it can contain lines consisting
entirely of whitespace. Empty content lines in an entity description that is
input to the Leonardo system are ignored. (This rule applies in the present
implementation but it has turned out to be inconvenient, and it may change
in the future).

Normally, @ is used as a stop character throughout entity descriptions. Spe-
cial notation is foreseen for choosing another stop character, for the case
where one needs to represent properties where some of the content lines
begin with @.

12

4 Meta Level Information about Entities

4.1 Types of Meta Level Information

The two previous sections specified the syntax for expressing the descrip-
tions of individual entities. Several kinds of meta level information is also
required:

• Catalog information specifying how entity descriptions are grouped
together into larger aggregates and where those aggregates are stored
in the computer system at hand.

• Taxonomic information whereby a type is assigned to each entity and
a hierarchical structure of type subsumption is defined.

• Type extent information, which specifies what attributes are appro-
priate to use for each type.

• Arity information for composers and formants.

• Structure specification for attribute values, specifying what structures
are permitted for attribute values.

• Global structure specification, specifying restrictions on the permissi-
ble structures in a knowledge base as a whole.

The structure specifications for attribute values may request, for example,
that the value of the has-children: attribute of an entity of type person
or its subtypes shall be a set of entities each of which has the type person or
one of its subtypes. The global structure specification, on the other hand,
may for example specify that the sequence formed by following successive
has-children: links from one person to the next, is not allowed to contain
any cycles.

In Leonardo the catalog, taxonomic, type extent, and arity information is
considered as one group, and structure specification for attribute values
and for the global structure is considered as a second group. We refer
to the first group as “catalog and type specification” (CAT) and to the
second group as “structure specification”. The term “syntax” is used for
the conventions that were described in the previous sections, so CAT and
structure specifications are not considered to be part of the syntax.

The reason for the separation between CAT specification and structure spec-
ification is that CAT can be conveniently expressed in LDX itself, whereas
structure specification requires the use of the informatic formula language,
IF, which is a superset of LDX. CAT information is important for the func-
tioning of the most basic parts of the Leonardo system and is therefore built
into its core. Structure specification, on the other hand, does not have the
same central importance and can be considered as an add-on facility.

4.2 Entityfiles

Entities are grouped together for management purposes, forming entityfiles.
All information that defines a Leonardo system, and all other information
that it needs to retain persistently, is represented using entityfiles. Each
entityfile has a name, which is again an entity. The name of the entityfile

13

has an attribute called contents whose value is a sequence of the entities
that are members of the entityfile in question. By convention, the name
of the entityfile is always the first element in that sequence, so that the
entityfile contains the description of itself.

The term “entityfile” is used for two reasons. It really refers to a “file”
in the original sense of a sequence, but in the present implementations
most entityfiles are represented as files in the sense of the operating system,
containing a sequence of entity descriptions in textual form.

Although the discussion of design alternatives is a topic for another report,
we shall anyway make a brief digression of that kind here. The use of a single
operating-system file for the entity descriptions in a sequence of entities,
represented using the LDX language, is not the only possible approach.
Another possibility is to have a separate OS file for each entity-description.
This is convenient for cases like entities representing books and articles in
a library, if one usually only addresses a small number of those at the same
time, but it becomes inconvenient if one needs a large number of entity-
descriptions in memory at the same time for the purpose of search.

The concrete work with building a number of applied systems using the
Leonardo system as a platform has led to several additional structures for
the persistent storage of entity descriptions. These solutions are based on
pragmatic considerations, such as the desire to have files of reasonable size,
as well as considerations that are due to the conceptual structure and the
common-sense naming conventions that apply in each application. Our plan
is to make a retrospective on the implementations that have actually evolved
in several such applications, and to use it as a base for a solution that is
both general-purpose and well-adapted to actual needs.

4.3 Information States

The concept of information state is introduced as an auxiliary concept for
the definitions concerning types and arity, and is derived from the definition
of entity descriptions. We first define an entity-state corresponding to a
particular entity description as an alternative representation of its attribute
part. It is a maplet of the form

[: e {[= a1 v1][= a2 v2] ... [= an vn]}]

where e is the entity in the header of the entity description, and the sub-
sequent maplets are those that occur in its attribute part. For example,
the entity-state of the entity description for acm, in the example at the
beginning of this report, is as follows:

[: acm {
[: type organization]
[: sections {sigplan sigact sigsim}]
[: fullname "Association for Computing Machinery"] }]

An information state is a set of entity-states, and it is therefore a mapping.
For a given entityfile F, the corresponding information state is the set of the
entity-states corresponding to the entity descriptions in F.

If M is a mapping (in the sense of LDX) containing a maplet of the form
[: a v] then M(a) is interpreted as v. Furthermore, if S is an information

14

state then S(a, c) is defined as S(a)(c). For example, if F is an entity-
file containing the entity description for acm shown above, and if S is the
information state corresponding to F, then S(acm,type) = organization.

4.4 Type Membership and Type Extent Information

Type membership information and type extent information for entityfiles is
defined in terms of the corresponding information states, as follows.

An information state S is said to be typed iff S(e,type) is defined for every
maplet [: e m] in S.

An entity t is said to be a type in an information state D iff D(t,type)
equals leotype or an entity that is a subtype of leotype according to D.
The definition of the expression “subtype according to” will follow below.
Its definition and the definitions given here are recursively interdependent.

An information state D is said to be type describing iff it satisfies the fol-
lowing conditions:

1. It is typed.

2. For every entity t that is a type in D, D(t,attributes) is defined
and its value is a set or sequence of entities.

3. For every entity t that is a type in D, if D(t,subsumed-by) is defined,
then its value is an entity that is again a type in D.

An information state S is said to conform to a type describing information
state D iff it is typed and the following conditions apply for each entity-state
[: e m] in S:

1. S(e,type) is a type according to D.

2. For every maplet [: a v] that is a member of m, a is a member of
the set D(S(e,type),attributes)

An entityfile F is said to conform to a type describing information state D
iff its corresponding information state conforms to D.

In principle it is possible to let each entityfile F rely on another entityfile C
for its CAT specifications, so that the CAT-level correctness of F is defined
as conformity with the information state corresponding to C. In practice,
however, one should think of the total information structure in an activation
of the Leonardo system (that is, an executing instance of the software) as
a type describing information state. This information state is constructed
and maintained by “loading” a number of entityfiles in the course of a
computational session, and each time that an entityfile is loaded it has to
conform to the current information state in the activation, or otherwise some
corrective action is taken. Reciprocally, the entityfiles that the activation
is able to produce to files, or as outgoing messages, shall be expected to
conform to its current information state.

One of the advantages of this language design is that we do not need to
introduce a separate data description language; the meta-information is
represented in LDX itself. For example, one can impose the requirement on
the current information state in a Leonardo activation that at each point in

15

time (except in the midst of certain transitions) it shall be type describing
and it shall conform to itself.

4.5 Type hierarchy

If D is a type describing information state and t and t’ are types in D, then
t is said to be a subtype of t’ according to D iff either t = t’ or there is
a sequence t0 = t, t1, ..., tk−1, tk = t′ such that ti+1 = D(ti, subsumed-by)
for all applicable i. This is the definition that was needed in the previous
section in order to close the definition recursion.

4.6 Catalogs

Catalog information is important in the Leonardo system, and is organized
as follows, in the present implementation. We already mentioned that each
entityfile is represented by an entity that serves to name the entityfile. Let
f be such an entity. The symbol location: is an entity composer which
is used so that (location: f) is an entity having an attribute filepath
whose value is a string representing the path, in the sense of the OS file
system, for the file containing the textual representation of the entity de-
scriptions for the entities in f.

One may wonder why this attribute is not assigned to f itself. The reason is
that the entity description for f is within the file itself, so it is not available
at the point where the Leonardo software wishes to load the contents of
that entityfile. The entity descriptions for entities of the form (location:
f) are kept in separate catalog entityfiles.

5 Wrapping of Associated Languages

In the interest of simplicity it is desirable to have a uniform wrapping con-
vention for all associated languages in LRL. The present section specifies
the wrapping convention and gives an overview of the major associated
languages.

5.1 General Wrapping Convention in LRL

LRL uses a convention where each associated language obtains an entity
serving as its name, for example xml or tex (8), and where an expression in
the associated language html, for example, is written in wrapped form as

[§html ... §]
The character sequences [§ and §] are allowed within the wrapped objects
provided that they are used recursively to embed and wrap subordinate
objects, for example for embedding HTML within Latex. They are not
allowed to occur in other ways. For any other purpose, occurrences of these

8We use tex for Latex and TeX for plain TeX code.

16

pairs of characters should be split up using whitespace or rewritten in some
way which may be specific to the associated language at hand.

This convention was chosen since the § character is rarely used, and in those
cases where it is used it is often expressed by a coding convention anyway.
The cases where a wrapped expression absolutely needs to contain the char-
acter sequence [§ or §] for its own purpose seem to be rare, therefore.

5.2 Sublanguages for Informatic Formulas

The formal languages that are used in computer science differ in several ways
from those used e.g. in mathematics. The names of functions, variables, etc
in mathematics tend to consist of single characters, possibly with subscripts
or superscripts, and the number of such symbols is fairly limited in any
given context. The formalisms in computer science, including programming
languages, markup languages, and so on, use large numbers of symbols
which therefore have to be represented by ‘identifiers’, i.e. sequences of
characters. We shall refer to this kind of formulas as informatic formulas.

Several kinds of informatic formulas are needed in the Leonardo Repre-
sentation Language, in particular for the evaluation language, for scripting
languages, and for varieties of logic that are used for declarative purposes.
LDX itself does not meet the needs of these, in particular since it does not
have a variable construct. The evaluation language is used for expressions
that can be evaluated in specific situations, for example when a webpage
is displayed on the screen, or when a document is formatted, or when an
action is executed. Scripting languages are special-purpose languages that
are designed for a specific range of use and that are often closely tied to a
particular software.

Leonardo uses parenthesized expressions in the Lisp tradition for its eval-
uation language, and it is recommended to use such expressions for other
informatic formula languages as well. This means that expressions in an
informatic formula language consist of elements that are symbols, strings,
numbers, or wrapped expressions in other sublanguages, and these elements
are composed recursively using expressions of the form

(operation argument argument ... argument)

The evaluation sublanguage is denoted by the symbol eval, so that a
wrapped expression in the evaluation sublanguage can be written as

[§eval (function arg arg ... arg)§]
The evaluation language and the representation of predicate logic as an
LRL informatic language use the same notation for variables, namely, as an
identifier beginning with (.), the period character. The binding of variables
is to be retained through a wrapper. For example, if an expression in the
evaluation language binds a variable .x and contains a wrapped expression
in a markup language, then it shall be possible to use .x (suitably wrapped,
typically as [§eval .x§]) inside the markup expression, for the purpose of
substitution.

17

5.3 Markup of Text

The markup languages for structured text are important examples of asso-
ciated languages. The syntactic convention for wrapping allows for several
markup languages to be used, including Latex, HTML, and XML (with
some restrictions). In addition there is an ”in-house” markup language,
called ST (for ”Structured Text”) which has the particular advantage of
being reciprocally associated, so that it can in turn embed expressions in
LDX and in the evaluation language.

Conversion between these markup languages is supported, in particular from
ST to Latex and HTML. The use of multiple markup languages may seem
like a violation of our main goal with respect to consolidation of software
technology, namely, to eliminate notational and conceptual redundancy. In-
deed, in an ideal system we would like to only use ST since it is reciprocal.
However, we also wish to be able to use Leonardo for a range of experi-
mental applications, and then it is necessary to support languages such as
XML, HTML, and Latex.

Using the syntax for wrapping of associated languages, LDX provides a
“shell” within which one can have a choice between several alternative
markup languages. The Leonardo Representation Language considers ex-
pressions in these as text objects for which there are the following represen-
tational varieties initially.

[§ect ... §] for escape-coded text
[§tex {...} §] for latex coded text
[§html <tag> ... </tag>§] for an html expression
[§xml <tag> ... </tag>§] for an xml expression
[§st <style ... >§] for an expression in ST

Here, ‘escape-coded text’ means plain text which has been augmented with
a simple coding convention for special characters, but without any other
formatting facilities. Escape-coded text is a subset of ST.

Although HTML, Latex etc are not reciprocally associated with LDX and
we do not support embedding of LDX code in them, at least the syntax
allows reciprocal embedding between the various markup languages for text,
so that Latex code can be embedded inside HTML code for example.

For notational convenience, and specifically for those cases where markup
expressions appear directly inside LDX expressions, we also define the fol-
lowing concise formats.

["..."] for escape-coded text
[{...}] for latex coded text
[<style ...>] for an expression in ST

The full representation using [§ and §] is necessary when expressions in
different text languages are nested inside each other, whereas the concise
variants are sufficient when text-markup expressions occur as attribute val-
ues in LDX.

This abbreviation for an expression in ST is somewhat at odds with the nota-
tion for expressing a less-than relationship as a record, which was described
in section 2.3. The full rule for the very special case of a left square bracket
character, immediately followed by a less-than character, must therefore be

18

as follows: If the right square bracket character that follows and matches
the left square bracket at hand is immediately preceded by a greater-than
sign, then the entire sequence

[< ... >]

is considered as an abbreviation for

[§st < ... >§]

and otherwise the less-than character in question is considered as an or-
dinary, symbol-forming character and not as a bracket character.

For text objects that are stored as files the formatting convention is obtained
from the file extension.

5.4 Outline of the ST Formatting Language

The ST markup conventions provide a counterpart of the core Latex func-
tionality but with a cleaner integration of formulas, as well as the core of
HTML functionality. We do not address all of an XML counterpart here
since the data-structuring aspects of XML are taken care of by LDX.

ST builds on the AML markup language that was developed and imple-
mented by the present author in an earlier project. The revision of the
language design and the implemention are still in progress, so the following
is only an outline. The full specification of ST is intended to follow later.

Every ST object has the form

<[sr: ...] co1 co2 ... con>

where each subexpression coi can be either plain text, a new ST object,
or a wrapped expression in another LRL associated language, and sr: is
a record type for a format record, a particular kind of record that specifies
some aspect of the structure or appearance of the text. The following is a
simple example:

<[style: :emphasize t :font ariel] emphasized text
in ariel font>

In particular, simple formatting operations such as specifying emphasized
or boldface style are viewed as abbreviations of format records. Thus in the
ST object

<e this phrase will be typeset in italic font>

the initial e is interpreted as an abbreviation for

[style: :emphasize t]

which is a simple format record that specifies emphasized font, thereby
overriding the style that is inherited from superior level objects.

The following is an example of a nested ST object using one format record
for specifying a www link to the Leonardo website, and inside it a format
record abbreviation specifying emphasized (italic) text. HTML-like conven-
tions are used:

19

<[weblink: "http://www.ida.liu.se/ext/leonardo/"
:target "sepwin"] The <e Leonardo> system.>

An additional convention is introduced purely for convenience when reading
the marked-up text, so that the examples above can be written equivalently
as follows:

<style/ emphasized text in ariel font [:emphasize t :font ariel]>
<weblink/ The <e Leonardo> system.

["http://www.ida.liu.se/ext/leonardo/" :target "sepwin"]>

In this way the details of the markup appear after the text that they apply
to, rather than before it, which seems to be much easier to read.

5.5 Wrapping the LDX Language

Since ST is reciprocally associated with LDX, it must be possible to include
wrapped LDX expressions in it. This can be done using the general wrap-
ping convention, as in the following example

[§ldx <[amount: USD 2060][amount: RUR 14000]>§]
LDX expressions for sets and records can in fact be included in ST with-
out explicit wrapping, since ST reserves square and curly brackets for that
purpose.

6 Discussion of the LDX Language Design

A more general discussion of the design decisions in the LDX language is
the topic of a separate report. This is in line with the methodological policy
that was mentioned initially, and where we wish to distinguish between the
specification of a design and a discussion and analysis of the design, its evo-
lution, and its relation to other designs addressing similar goals. However,
although the present report is intended as a language specification, for the
most important aspects of the language, it may still be of interest to include
a brief discussion of some aspects of the language design.

6.1 Entityfiles

The term ‘file’ in ‘entityfile’ is chosen both for the original meaning of a
file as a ‘sequence’, and since each entityfile can obtain its textual represen-
tation as one file in the sense of the operating system. The latter aspect
is important in the present implementation of Leonardo that relies on a
conventional operating system, but it will be reconsidered in future imple-
mentations where the functionalities of files and file directories are handled
within Leonardo itself.

The textual form of entityfiles has a number of uses:

• As a presentation of the information structure for the user, to be read
both on the screen, and in printouts on paper;

20

• As a mechanism for persistent storage: the information in the current
Leonardo system is kept in entityfiles between runs;

• As a tool for large-scale editing operations: systematic changes in
many entity-descriptions at once can sometimes be done conveniently
using a text editor and the textual form of the entityfile;

• As a mechanism for modularization and for transfer of content be-
tween different instances of the Leonardo system, for example, for
different users.

The syntax for entity-descriptions represents a compromise between the
needs of these different usages. For example, it is the presentation aspect
that motivates the choice of syntax for the attribute section of an entity-
description, otherwise we could have used entity-states directly.

In principle it is possible to implement a Leonardo system in such a way
that entity descriptions are stored in the system at all times, as a kind of
database. In practice, it is however convenient to set things up so that
entities have a dual representation: both as datastructures in the current
information state of the running software system, and a textual form using
the syntax for LDX and the other syntactic conventions that have been
introduced here.

6.2 The Treatment of Types

Section 4.1 introduced the distinction between the catalog and type spec-
ification (CAT) and the structure specification, where only the former is
part of the Leonardo kernel. This may seem strange from the perspective of
conventional programming languages, where a type system specifying the
admissible structure for objects in each type is often considered as funda-
mental to the language design. The two questions that may then be asked
concerning the design used here, are: (1) is there a useful use of the kernel
system that relies only on the CAT specification, and (2) are there problems
that arise in the subsequent addition of a facility for structure specifications,
in the sense of section 4.1, when they are not included in the core of the
system?

The first question can be answered in the affirmative based on the experi-
ence with the actual Leonardo system. What happens, of course, is that
one uses the programming style that is characteristic of interpretive pro-
gramming languages, and where checks for correct structure are performed
dynamically, for example on entry to a function or other computational
unit.

For the second question we do not have the same grounds for an affirmative
answer at this point. The problems that one may think about are those
relating to performance and those relating to safety and to the completeness
of the type checks. With respect to performance, it may be noted that
some “interpretive” programming languages, such as CommonLisp, report
performance in compiled mode that compares well with what is obtained in
conventional typed languages. The question of the completeness of the type
checks is one that we leave open for the time being; we do not consider it
to have the highest priority.

21

6.3 Locality of Names

We have described how software in Leonardo is organized as a set of entity
descriptions, where each entity has a name. This suggests that all entity-
names are globally defined during their use in a Leonardo system. On the
other hand, one of the major reasons for having a hierarchical structure in
a conventional, algorithmic programming language is to provide locality for
names. In another vein, OWL and other languages defined by the WWW
Consortium provide a mechanism where symbols are labelled with an iden-
tifier for the vocabulary where the symbol is defined. One may ask whether
important facilities such as these have been lost in the Leonardo approach.

We have already described one, partial solution to this problem, namely the
use of typed symbols which was introduced in section 2.1. In this respect,
please notice that the type indication in a typed symbol can be a composite
expression; it does not have to be a single, untyped symbol. This provides
considerable expressivity, as illustrated by the following example:

atlanta[(and city (located-in: georgia[state]))]
atlanta[journal]

Here, the city of Atlanta in the US state of Georgia is distinguished from
the Atlanta Magazine. Just characterizing the first Atlanta as a city will
not be sufficient if there is an Atlanta in some other state, and the use of
the typed identifier georgia[state] is useful (9) to distinguish from the
country of Georgia in the Caucasus.

The construct of composite entities provides an even more versatile facility
for dealing with multiple uses of a particular symbol. Suppose, for example,
that one wishes to distinguish between the hand of a person and the hand
of a clock as two different types. One may then decide to use an entity com-
poser as-part-of: whereby one can write (as-part-of: person hand)
and (as-part-of: clock hand) for these two kinds of hands. Both these
composite entities will then be declared as types and have attributes as-
signed to them accordingly.

Similarly, if two different ontologies ultimate-onto and universal-onto
have different definitions of the concept of ‘citizen’, then one can refer
to one or the other as (as-defined-by: ultimate-onto citizen) and
(as-defined-by: universal-onto citizen). If in addition there are dif-
ferent definitions of what ultimate-onto is then the first argument of
as-defined-by: can be another as-defined-by: expression.

It is our hypothesis that the existence of these very general constructs in
LDX make it unnecessary to introduce separate facilities for defining the
scope or the vocabulary that a symbol belongs to. Experience with con-
crete applications will serve to confirm or refute this hypothesis. Following
the principle of Ockham’s razor, we do not wish to introduce additional
constructs if it is not clear that they are needed.

9... although probably not indispensable, if one can assume that there is no
city called Atlanta in the country of Georgia

22

7 Directions for Continued Work

This report has specified the syntax for expressions in the Leonardo Data
Expression Language (LDX) which is the leading sublanguage of the Leonardo
Representation Language (LRL). It has also briefly outlined the structure
of some of its associated languages. Additional material is being prepared
in several forthcoming reports that proceed in the following directions:

• The representation of entityfiles and aggregates of such files, and their
use for version management, generation of documentation, and the
like.

• Static knowledge representation that uses entity descriptions as its
base, for example, the representation of taxonomies and part-whole
relationships.

• The representation of time, actions, and events, and its use for simu-
lation and cognitive robotics systems.

• The structure of the Leonardo executive, and how it uses entity-
descriptions as well as action/event structures as its operational data
structure.

• Implementation of LRX and of the basic layers of the Leonardo ex-
ecutive and evaluator in various computational environments.

• Applications of Leonardo, for example for the management of docu-
ments and websites.

• Discussion and analysis of the design decisions and the revisions of
them.

These reports will be posted on the Leonardo website (10), together with
updated versions of the present report. Some of the material will take the
form of HTML pages, and may not necessarily have the appearance of a
traditional report. Please use and cite that site for access to the latest
information about the system.

8 Acknowledgements

The work on Leonardo has been partly supported by the Knut and Alice
Wallenberg Foundation through the WITAS project, and by the INRIA
(France) for a stay as a guest researcher. This support is gratefully ac-
knowledged.

10http://www.ida.liu.se/ext/leonardo/

