KRF

Knowledge Representation Framework Project
Department of Computer and Information Science, Linkoping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

Erik Sandewall

Resume of a Course on Artificial Intelligence
and Lisp

This series contains technical reports and tutorial texts from the project on
the Knowledge Representation Framework (KRF).

The present report, PM-krf-020, can persistently be accessed as follows:

Project Memo URL: http:/www.ida.liu.se/ext/caisor/pm-archive/krf/020/
AIP (Article Index Page): http:/aip.name/se/Sandewall.Erik.-/2010/019/
Date of manuscript: 2010-12-07

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite: http:/www.ida.liu.se/ext/krf/
AIP naming scheme: http:/aip.name/info/
The author: http:/www.ida.liu.se/~erisa/

http://www.ida.liu.se/ext/caisor/pm-archive/krf/020/�
http://aip.name/se/Sandewall.Erik.-/2010/019/�
http://www.ida.liu.se/ext/krf/�
http://aip.name/info/�
http://www.ida.liu.se/=xxxxx�

This lecture note contains material that was presented towards the end
of the course on Artificial Intelligence and Lisp (TDDC65) at Linkoping
university in the autumn semester of 2010, and that is not otherwise covered
in the lecture notes for the course. This includes:

e An overview of topics in the field of artificial intelligence, in order to
provide a fuller view of what the field contains, including topics that
have not been covered in the course. This was presented in Lecture
13.

e A description of the concluding lab exercise, called lab 5b.

e A brief introduction of the topic of satisfiability solver methods, which
was also presented in Lecture 13.

Please take notice also of the following materials that are found in the
course webpage, lecture materials for Lecture 13, slides number 2 to 11
in the e-slide sequence (= ’powerpoints’) for “Knowledge Acquisition and
Ontologies.” These slides illustrate some general issues in contemporary
knowledge acquisition, in particular, the requirement to handle very large
volumes of simple facts as well as more complex information, and the prob-
lem of insufficient formal quality in available knowledge sources. We have
not converted these slides to lecture note format since they are purely illus-
trative, and more easily read in their present form.

Please notice as well the lecture-note materials about ontologies. This oc-
curs as the final chapter in Compendium IIT for this course, i.e. the one
with the subtitle “Intelligent Autonomous Agents.”

Chapter 1

Overview of Topics in
Artificial Intelligence

Different people may have more or less different opinions about what are
the subareas of Artificial Intelligence, and about which of these subareas are
the most important ones or the most basic ones. The following represents
my point of view, which I believe can safely be said to represent a strong
majority opinion.

1.1 A list of sub-areas

As a starting point for the discussion I shall take the list of research areas
in the call for papers of the 2011 AAAI conference (Association for the
Advancement of Artificial Intelligence). It goes as follows.

Agent-based and multiagent systems

Cognitive modeling and human interaction
Commonsense reasoning

Computer vision

Constraint satisfaction, search, and optimization
Evolutionary computation

Game playing and interactive entertainment
Information retrieval, integration, and extraction
Knowledge acquisition and ontologies

Knowledge representation and reasoning

Machine learning and data mining

Model-based systems

Natural Language Processing

Planning and Scheduling

Probabilistic Reasoning

Robotics

Web and information systems

QQWwreEaarFr QO Qm = Q>

The list of topics for the International Joint Conference on Artificial Intelli-
gence (IJCAI) is similar. - In this list I have marked the various areas with
the letters A, B, and C, with the following meanings. The A and B groups
include work with a similar methodology, based on core computer science

(algorithms, etc), the use of formal logic, and applying these tools to the
qualitative modelling of phenomena in the real world and reasoning based
on the information in such models, as well as to the design of autonomous
software agents that can make use of those models and that can perform
the said type of reasoning.

The difference between the A and B groups is that the A-listed topics tend
to be more basic, so that one should study them first before proceeding to
the B-listed topic. [}] This borderline is not strict but it can serve as a
guide.

The C-listed topics are by and large interdisciplinary, in the sense that each
of them has strong connections to some other scientific discipline besides
artificial intelligence, and in most cases outside computer science. The field
of robotics contains a lot of work in mechanical engineering and in control
engineering, for example; the field of natural language processing as seen
from A.I integrates seamlessly with work in computational linguistics and
with the cognitive sciences in general, and so forth.

The cases of evolutionary computation and machine learning should also
be mentioned separately. The actual literature that goes by the name of
machine learning has a large component that makes heavy use of probability
theory. This work is only remotely connected to the work in the A and
B categories above. There are also some niche areas, such as case-based
learning and inductive logic programming, that is well connected to the A
and B categories, but these areas seem to be marginal in the contemporary
research literature on machine learning.

With respect to evolutionary computation, there is a range of work that is
represented at one end by the approach of ’artificial life’, where one tries to
develop computational life-forms using a simulated evolution process, and
at the other end by work on generate-and-test techniques (i.e. systematic
search techniques) that are applied to moderately complex objects that
have a dynamic interpretation, for example simple scripts in a specialized
language, or decision trees. In the former case the methodology is remote
from what we have in the A and B listed areas; in the latter case there is a
quite close connection.

This discussion implies that there is coherent point of view about artificial
intelligence where, with simplification, the A listed areas are considered as
the basic ones, the B listed areas are also included but are best studied in
a second step, and where the C listed areas integrate work that is close to
the A and B areas, with work that has an entirely different character.

Specifically, the C listed areas can be characterized in terms of three major
groups, as follows

1One may ask why ’search’ and ’optimization’ are not listed in the most basic
category, since these are mathematical techniques that are widely used in A.I.
The answer is that from an A.I. point of view it is natural to first study the A
listed topics in order to understand what the field is about, and then to proceed
to the relatively more technical details of the algorithms being used. From a
mathematical mindset one may prefer the reverse ordering.

Bridge Areas

Most of the topics in the C category have the character of a bridge that
combines Artificial Intelligence with one or more other disciplines. They
form three natural groups, as follows.

Bridge to Robotics
This includes the following ones of the topics listed above:

A Agent-based and multiagent systems

C Computer vision

A Knowledge representation and reasoning
C Robotics

Bridge to Human-Machine Interaction
This includes:

Agent-based and multiagent systems
Cognitive modeling and human interaction
Commonsense reasoning

Game playing and interactive entertainment
Knowledge representation and reasoning
Natural Language Processing

Q= Q= Q>

Bridge to Large Knowledgebases and their Use
This includes:

C Information retrieval, integration, and extraction
B Knowledge acquisition and ontologies

A Knowledge representation and reasoning

C Web and information systems

1.2 Alternative Views of Artificial Intelligence

Our view of what Artificial Intelligence is about was described in the memo
"The Goals of Artificial Intelligence Research. A Brief Introduction” which
is part of the course literature. This memo begins with a discussion of
concrete examples of the use of intelligence in small children and in adults,
and takes it from there to an identification of what are the major problems
and issues in A.I. This results in a view of A.I. where agent intelligence is
emphasized, that is, one is concerned with the design of software systems
that are able to act intelligently in some naturally occurring environment.
This is the classical view of Artificial Intelligence, and it was expressed, for
example, in the proposal for the design of an ’advice taker’ by one of the
field’s pioneers, John McCarthy at Stanford University.

1.2.1 Systems with Specialized Intelligence

This classical view may be contrasted with approaches that work towards
the design of quite specialized varieties of intelligence. One example of this
is the work on programs that play specific games, for example chess-playing
programs. These are sometimes seen as examples of artificial intelligence,

in the sense that intelligence is considered as essential for being able to
play chess well by humans. Today there exist advanced programs that play
chess extremely well and that are able to match even the world’s best human
chess players. These programs are quite advanced and shall by no means
be thought of as mere brute-force search programs. However, there are few
connections between the techniques that are used in these programs and
techniques that are of use A.IL. in general: chess-playing program techniques
are not used for A.L. in general, and vice versa, except for a few basic
principles such as the importance of combinatorial search.

Another example of specialized intelligence is for automatic translation of
natural language. It was previously thought that general-purpose artificial
intelligence would be required for good-quality language translation, since
in order for a person to translate a text he or she must understand its con-
tents. However, at the present stage of development it turns out that better
translation results are obtained using specialized, ’stupid’ translation pro-
grams that use statistical methods and large databases of known translation
patterns, and knowledge-based language translation systems are not able to
compete with them at present. This is another example of a specialized task
that seemingly requires general-purpose intelligence in humans, and where
a specialized approach has been more successful so far in computers.

Given these observations one may wonder whether the most promising long-
term strategy for intelligence in computers will be to build a number of
specialized ’intelligences’, like the ones just described, and to integrate them
gradually. Some researchers have argued this position, sometimes under the
name of the ’'big switch’ theory of intelligence. Time will tell, but it is fair
to assume that the ’agent intelligence’ approach that has been used for
the present course will at least be one of the participating ’intelligences’.
Whether it will just be one out of several, or whether it will also be the
cohesive force that makes it possible to integrate the others, or whether
it will eventually be the universal principle that includes the others, this
remains to be seen.

1.2.2 Alternative Computational Infrastructures

The topics in the A and B categories of the topic list above are based on
conventional computational technology: algorithms, datastructures, pro-
gramming languages, software architectures, and the use of formal logic.
This technology has been developed for, and is adapted to the use of the
von Neumann computer design with a small number of processors that work
with almost entirely passive memories.

This computational infrastructure is of course very different from the struc-
ture of the human brain with its extremely large number of concurrently
active brain cells. Some branches of research propose that this is a serious
handicap, and that a better strategy for the development of machine intelli-
gence is to build computational systems that are more similar to the neural
or neural-based system in people and in animals. This is the approach of
neural computation.

A somewhat related view questions the precedence of the knowledge-based
techniques in the A category above, and propose that it is better to first
implement the counterparts of more elementary human behavior, including

sensorimotoric behavior and other stimulus-response behavior. The pro-
posal is that intelligence of the kinds discussed above — agent intelligence,
chess-playing and language-translation capabilities, and so on — are based
on these simpler behaviors and that they emerge from them, i.e. they are
evolved from them. These simpler behaviors can then conceivably be im-
plemented either using neural networks or other alternative hardware archi-
tectures, or using conventional programming-language technology.

Approaches using alternative computational infrastructures have produced
good results concerning the implementation of lower-level behavior, below
the level that is normally called ’intelligence’. However, their usefulness for
the construction of agent-level intelligence or specialized intelligence of the
kinds discussed above has not been demonstrated and there is no concrete
indication that it will ever be a viable approach.

1.3 Representation of subareas in the present
course

The contents of the present course can now be related to the structure of
the field that was shown above. The following topics, among those listed
above, are the ones that have been represented to some reasonable extent
in the present course.

Agent-based and multiagent systems

Commonsense reasoning

Constraint satisfaction, search, and optimization
Knowledge acquisition and ontologies

Knowledge representation and reasoning

A Planning and Scheduling

= W W e

A few additional areas have been touched upon very marginally, in partic-
ular:

C Cognitive modeling and human interaction
A Model-based systems
C Web and information systems

This means in summary that the present course has concentrated the topics
that are of basic importance, in particular for the design of agent intelli-
gence, but also arguably for artificial intelligence in general.

Chapter 2

A Simple Example of a
BDI Agent

The previous chapter described the structure of the field of Artificial In-
telligence in terms of its subareas, and emphasized the central character of
those aspects of the field that are relevant for agent intelligence. It also
confirmed that the selection of contents for the present course has placed
the most weight on exactly those aspects.

One of the first topics that was addressed during the course was the topic of
the overall software architectures for an intelligent agent, where in particular
we described the Belief-Desire-Intention (BDI) architecture and Hierarchical
Task Networks (HTN). At this point towards the end of the course there is
therefore a need to indicate how the various contents of the course can fit
into such an architecture. This is the topic of the present chapter.

We shall use the BDI architecture for this exercise since it is the more gen-
eral one and since it can be seen as a top-level framework within which it is
possible to accomodate a variety of A.I. methods, including an HTN subsys-
tem for current plans as well as specific methods for planning, scheduling,
decision-making, and so forth.

Lab materials have been developed for a lab 5b in this course, where the idea
is that the student will make test runs with an autonomous agent whose
behavior is defined using a simple version of the BDI system definitions.
This should be a concrete example of how different methods fit together.
The lab does not involve defining additional behaviors for this agent, but
merely making some simple changes in the microworld where it operates,
and then letting the agent run and see what happens.

The present chapter contains a comprehensive description of this lab, in-
cluding a description of the microworld where the agent operates, as well as
a description of typical scenarios in this microworld.

With respect to the course requirements, we notice that already the earlier
labs have required substantial work by the students, and therefore we have
decided to let the actual running of the lab be optional for those students
who wish to try it, but not making it obligatory. The careful reading of the
present chapter should instead be sufficient (and probably more efficient)
for understanding the whole.

2.1 World Model for the Zoo Microworld

Lab 5b operates in a microworld consisting of a simple zoo that is 'populated’
with animals, a warden and other personnel, a number of vehicles, and
physical structures that provide locations for, and resources for the people
and the animals in the zoo. The warden is the sole agent in the zoo, so there
are definitions for a number of actions that the warden can perform. The
warden is goal-oriented in the sense that he has some standing goals that
ought to be always satisfied, and also in the sense that events and conditions
in the microworld may lead the agent to adopt specific goals. These standing
goals are what is called ’desires’ in the BDI model, whereas the specific goals
and the instantiations of the desires are simply called ’goals’. Each goal in
this sense induces the agent to choose or to make a plan for achieving that
goal, and then to try to execute it.

This Zoo Microworld has been implemented in the Leonardo system and
based on the materials from labs 2b, 2c and 5a. The materials for decision
trees and causal nets in labs 3a and 3b have not been included in the actual
lab materials, but we know already how lab 3b is based on lab 2 materials.

The following structure is assumed for the Zoo Microworld.

2.1.1 Types and Classes

The Zoo Microworld contains entities of the following types:

animal
personnel
building
route
sprinkler
food
medicine
tool
vehicle
bag

The type route is used for roads and footpaths within the premises of the
Zoo. The type tool is used for scissors, spades, scales and the like. The
type building is used for stables, cages etc where the animals are kept, as
well as for the administration building, the restaurant and other buildings
for the personnel. (Visitors are not included in the Zoo model). The types
sprinkler and bag are used for specific purposes in some of the scenarios.

In addition the following types of entities are used for classification or char-
acterization of entities of the above types:

species
occupation
ailment

Each animal belongs to a particular species; each personnel has a particular
occupation; ailments include diseases, wounds and other problems that may
afflict animals and personnel.

Besides types, the model of the Zoo Microworld also contains a number
of classes. Each class pertains to one specific type, and has a number of
instances of that type as its members. For example, if chimpanzee is an
entity of type species, and Rollo and Lollo are specific animals whose
type is animal and whose in-species attribute is chimpanzee, then there
may be a class our-chimpanzees that pertains to the type animal and that
has Rollo and Lollo as its members. If Rollo and Lollo are the only
chimpanzees in the microworld then this class can also be written using the
following expression in Description Logic [[1]]

(those animal that in-species all {chimpanzeel})

2.1.2 Static Structure

The Zoo Microworld has a static structure that stays the same as time passes
in this simulated world, and a dynamic structure that changes due to spon-
taneous changes in the world and due to actions that are performed by the
warden. The static structure consists in turn of a conceptual structure and
a physical structure. The conceptual structure consists of analytical state-
ments such as “giraffes are hoofed animals” whereas the physical structure
consists of empirical statements such as “The chimpanzee court is located
along route-4.”

Some statements about class membership are clearly empirical, for example,
"Rollo is in the class of animals having brown fur.” For some other kinds
of class membership statements it is debatable whether they are conceptual
or empirical, for example “Rollo is a chimpanzee” or “Rollo is a male,” but
for simplicity we include all statements about classes and their members
among the empirical ones.

2.1.3 Dynamic Structure

The dynamic structure is represented using features that are assigned a value
at each point in time using the H predicate as usual. The most common
way of constructing features is using the the function, like in

(the fur-color of Rollo)

for example. The basic lab does not contain any other features and feature-
formers, but it is designed in such a way that more can be added if needed
for some extension of the basic lab.

2.1.4 Actions

Actions are written using the usual CEL notation. Most actions have a
parameter with the tag by that indicates the subject of the action, for ex-
ammple

[eat :obj banana-4 :by Rollo]

!This uses the CEL variant of the Description-Logic notation, with the addi-
tional proviso that the first argument of the those operation shall be a type and
not a class.

10

or
[pass-overhead :by airplane-4]

There are a few examples of actions that do not have a by parameter (“nat-
ural actions”), such as

[raining]

Actions that are performed by the warden of the Zoo (or the primary warden
if there are several of them) have the entity TheWarden as the value of the
by parameter. In this case the by parameter may be omitted.

It may be argued that natural actions and actions having an inanimate
subject (for example “the stone falls”) ought to be called events rather than
actions. However we stay with the term “action” since the term “events”
has another meaning in the BDI terminology, and since that meaning is also
widely used.

2.2 Motivational Structure

The warden is the primary actor in the Zoo Microworld and is represented
by the entity TheWarden in the implementation. The implementation repre-
sents the warden in the sense that at successive timepoints it decides what
actions the warden is going to perform in the world. The implementation
also simulates the execution of these actions. A more developed system
might use two separate computational processes, one for simulating the
world and one for simulating the warden’s cognitive state and decisions,
but in this case we combine these functions into one single computational
session. This also means that there is no difference between “knowledge”
and “belief” in this implementation: the conditions that hold in the simu-
lated world are also known to the warden agent.

2.2.1 Desires, Goals and Intentions

The motivational subsystem is the system that determines what actions
the agent is going to perform. It is organized as a simplified BDI model;
simplified in the sense that there is no distinction between facts and beliefs.

Desires are expressed as logic formulas typically using the predicate Hc which
means that they refer to the current timepoint in the execution of the sys-
tem, or to a specific, anticipated future timepoint. The following is an
example of a desire formula.

[Hc (the hunger of TheWarden) mnone]

This formula assumes that the entity for the warden has an attribute hunger
indicating his level of hungryness on a scale from 0 and up, and it expresses
that the warden desires not to be hungry. Here is an example of a more
general desire formula.

(all .p (imp [equal (get .p type) personnel]
[Hc (the hunger of .p) nonel]))

saying that for every entity .p of type personnel it is desired that this
entity shall not be hungry.

11

The purpose of the motivational subsystem is to try to arrange that the
desires are true as much as possible. It can do so by choosing actions that
the warden performs. These actions will have immediate effects in the world,
but they can also affect what actions are done by some of the animals.

As always in such systems there is an issue concerning whether the agent
(the warden, in our case) shall reconsider all desires at each point in time,
or whether it shall stick to a plan that it has chosen, and only verify the
desires sometimes. Different systems may address this question in different
ways. The Zoo Microworld system does it as follows. Desires are specified
on two levels, for high and medium urgency. When the agent recognizes
that a desire is violated then this constitutes a goal, and the agent may
choose a method for achieving the goal. A method is typically defined as a
sequence of actions that are to be performed by the agent, but it may also
have another character, for example, adding or modifying a method. Action
sequences that are used as methods for medium-urgency desires are called
scripts.

Each time an elementary action has been completed during the execution of
a script, the agent checks whether all the high-urgency desires are satisfied.
If one is not, then the execution of the script is interrupted, a method for
the violated high-urgency desire is applied, and then the agent returns to
the interrupted script.

High-urgency desires also have methods, but such methods are usually not
defined as action sequences. In some cases they may be like rapid stimulus-
response behaviors in people; in other cases they may have a cognitive
definition, such as making a change in the agent’s current plan.

Medium-urgency desires are not checked between successive steps in a script,
but only when a script has been completed. At such a point all the desire
violations are identified and a feasible subset of them is identified. The
desires in that subset are called goals. In this case there are three things
that distinguish the set of goals from the set of desires: (1) goals only
contain those desires that are not presently satisfied; a desire that is already
satisfied does not go into the goals; (2) goals are usually instantiated desires,
i.e. some of the variables in the desire have been replaced by constants; (3)
some candidate goals may be omitted from the goal set if this is necessary
in order to be able to make a plan.

For example, if one of the desires is “all the animals shall be healthy” and at
a particular time two of the animals are not well, namely Lollo and Granny
then this will contribute two goals to the goal set: Lollo shall be healthy and
Granny shall be healthy. At another time if all the animals are well, then
the goal set will not contain any goal with respect to animal health.

The term “high urgency” shall not be taken as meaning that high urgency
desires are very important; it only means that they may be attended to
during the execution of a script towards some other goal. For example, if
the simulated warden walks from one place to another in the Zoo and he
notices a piece of litter along the path, then he may stop by to pick it up
and put it in the nearest waste basket. Doing so is presumably not more
important than other duties, but the fact that it can be done in the middle
of another activity qualifies it as “high urgency.”

)

The term “low urgency” is reserved for desires that are only attended to if
the agent does not have anything else to do, but such desires are not used

12

in the Zoo Microworld.

The selected goal set will correspond to intentions and plans for achieving
the goals in that set. If there is only one goal in the set then the current
intentions consists of the current plan and the current goal, i.e. what the
agent intends to do and what it intends to achieve with that. If there are
several goals then there may be several separate plans, for example one for
each goal, and the term “intentions” refers to the aggregate of these plans,
the relations between them, and the goals that they are supposed to achieve.

The distinction between plan and intentions is more salient if more than
one agent is involved, or if causality is involved, so that the intentions may
include those results that are indirect effects of performing the plan.

2.2.2 Method Checking

Each time a medium-urgency goal is identified, the system will look for
methods that are associated with that goal, using a method generator. The
answers from the method generator are however not definite; they shall
be understood as suggestions that work often, but not always. Therefore,
before one of these plans is adopted by the system, it is an advantage if the
method kan first be checked using a process that predicts the effects of using
the method (usually, executing a script) in the situation at hand. Checking
by prediction is not a necessary facility, since it is certainly possible to have
agents that go ahead and use proposed methods without first checking them
by prediction, but doing prediction can add robustness to the system and
help avoiding the use of methods that turn out not to have the intended
results in a particular situation.

One way of doing such a prediction is using a simulator, but in the current
system it is done by logical deduction. Each verb is associated with effect
rules that specify the effects on the state of the world when the action is
performed.

If the method proposes several methods then the system must choose be-
tween them. Without prediction, it may use a priority level that is associ-
ated with the desire, or with the method. With prediction, it may predict
the outcomes using each of the methods, evaluate the merits of each of the
outcomes, and make its choice accordingly.

If the method generator is not able to propose any method at all then the
system simply decides to remove that goal from the goal set — it becomes
an example of a desire that can not be satisfied. (Some systems, such as
those using the SOAR architecture, will then consider the task of finding
an adequate plan as a meta-level problem and address it using the same
techniques as for object-level problem solving). Similarly, if the action gen-
erator produces one or more methods but none of them passes the check
by prediction, then again the present system gives up the goal. Some other
systems go into a mode where they try to modify some of the proposed
methods so that they will achieve the selected goal.

13

2.2.3 Reportoire of actions and verbs

We distinguish between actions that are performed by Zoo personnel (and
therefore by people) and actions that are performed by animals. The fol-
lowing is a catalog of verbs that may be appropriate in the Zoo Microworld.
Each scenario in the world uses its own subset of these verbs.

Verbs for actions by personnel without dealing with animals: The following
are operations done to the physical premises of animals

go to a location

enter/leave a building

pick up/ put down an object, e.g. a bag
take out/put back an object in a bag
open up/fold down an umbrella

Verbs for actions by personnel done to the physical premises of animals:

open/close door (e.g. door of a cage)
clean up

wash floor

turn on/ turn off light

Verbs for actions by personnel, with an animal as the object:

pick up/put down an animal
cause animal to do (some of the above)
assist animal in doing (some of the above)

move

wash

delice (= remove lice from)

wrap in sheets (for warmth)

separate (two or more animals, in case of fight)

take body temperature

clean wound

cut nails/claws

inoculate (= vaccinate)
chain

give name

take picture of

kill

Verbs for actions by animals:

eat

drink

bark/ cackle/ ...

sleep

bathe

swim

point at

give birth

breastfeed

begin or end doing some of the above (including wake up, fall asleep)

14

2.3 The Rainy Day Scenario

The structure shown above is a general framework within which a number
of scenarios can be defined. Each scenario uses its own subset of the general
framework and adds some minor components of its own. For the purpose
of lab 5b we use the Rainy Day Scenario which is defined as follows. It
involves a single personnel, called TheWarden that can move around the
physical premises of the Zoo. As he does so he may get wet, either because
it starts raining, or because he passes a point where a lawn sprinkler is
operating. His desire is not to get wet, or at least to minimize his level of
wetness - quickly passing by a sprinkler may not be too bad, in particular
if it is a sunny day so he will get dry quickly. A few other phenomena are
also defined in this scenario in order to add some complexity.

2.3.1 Physical Structure

In the Rainy Day Scenario the Zoo Microworld contains a rectangular road
network. There are roads in the east-west direction called paths and in
the north-south direction called trails. Each path and trail has an integer
number between 1 and 6. Each intersection between path and trail is a
crossing and is described in the obvious cartesian way as (trailnr, pathnr),
so that the first component represents the x axis.

Each crossing is a roadpoint. In addition there are roadpoints halfway
between the crossings but on the paths and trails, for example (3+, 2) and
(3, 24), but not (3+,2+) since that would not be on a road. These are all
the roadpoints there are. The following diagram of roadpoints illustrates
this structure:

[I

-~ 3,4 - 3+,4 —— 4,4 —- 4+,4 —- etc
I I

-- 3,3+ 4,3+
I I

-- 3,3 -- 3+,3 —- 4,3 -- 4+,3 - etc
I I

It follows that when the warden is at a crossing he has four possible moves,
namely north, south, east and west, and each of these will take him to a
roadpoint that is not a crossing. Non-crossing roadpoints only allow two
possible moves, in the obvious way.

The implementation of this scenario contains a simple route planner that
will construct a sequence of moves that will take the warden from his present
position to a given new position. The route plan is a sequence where the
elements are north, south, east, or west.

2.3.2 Dynamical Structure

The warden may move from one roadpoint to an adjacent one. While doing
so he may or may not carry a particular bag, called TheBag. There are
actions whereby he puts the bag on the ground beside him, or picks it up.

15

If he has picked up the bag then it comes with him as he moves to a new
roadpoint, but if it is on the ground then it stays there.

The dramatical component of this microworld is obtained by situations
where the warden can get wet, namely, if it is raining, or if he passes by
a roadpoint where a grass sprinkler is running. Raining is a feature of the
Nature object, so it may start and stop raining at specific timepoints. The
sprinklers do not change, so at some roadpoints there is a sprinkler and it
runs all the time.

One more artifact is included in the scenario, namely an umbrella that may
be either in the bag, or held in the warden’s hand. If the warden gets in
the way of a sprinkler or of rain then he will get wet, except if he has taken
out his umbrella. The warden does not like to get wet, so he may choose to
take out his umbrella when rain occurs or he gets in the way of sprinkling.

However, to complicate matters, in order to take out the umbrella from
the bag, he must first put down the bag on the ground, then take out the
umbrella, and then pick up the bag again if he wishes to continue carrying it.
While performing these operations he will get increasingly wet. Therefore,
if he is already in the way of a sprinkler, it is best to continue walking
through it and not stop to take out the umbrella. If it is raining then the
reverse is true, unless the agent is already soaked.

Another way for the warden to avoid getting wet is to go inside a building.
However, then he must be at, or go to a roadpoint where there is a building.
Well inside a building he may wait a while so as to become dry again.

Being wet is not an absolute concept, therefore; the warden’s wetness is
defined on a scale from 0 to 6, where 0 means entirely dry. Each timestep
where the warden is exposed to rain or sprinkling his wetness increases by 2;
every timestep where it is not raining or he is inside a building the wetness
decreases by 1, all within the interval from 0 to 6. For these purposes, a
timestep is when the warden moves from one roadpoint to the next, or when
he puts down the bag, picks up the bag, gets out the umbrella, or puts it
back. Moreover there is a 'wait’ action where nothing happens except that
the warden’s wetness changes according to the rules.

For the purpose of this scenario only one desire is considered, namely the
desire to be dry, or at least not too wet. In the formal sense, the warden
distinguishes between 'dry’ (level 0), 'soaked’ (level 6) and 'wet’ (intermedi-
ate levels), and he has two desires: not to be soaked (highest priority) and
not to be wet (lower priority, but still a desire). The reason for defining
the desires in this way is that he will anyway become somewhat wet when
he reacts, for example by putting down the bag in order to take out the
umbrella, or when he walks to a nearby building.

2.3.3 Implementing the Motivational Subsystem

In this section we shall describe the formal definitions that are needed in or-
der to implement the motivational structure described above. The purpose
of this section is not to be like a software documentation, but merely to give
the reader an idea of the size, complexity and character of the definitions
that are needed.

16

The following are the definitions of the warden’s desires and their associated
methods:

-- desire-1

type bdi-desirel

has-urgency medium]

has-methods <open-umbrella dry-in—building>]
: latest-rearchived nill

@Desidef
[-Hc (the howmuch-wet of TheWarden) 6]

type bdi-desirel

has-urgency medium]

has-methods <open-umbrella dry-in-building>]
: latest-rearchived nil]

@Desidef
[Hc (the howmuch-wet of TheWarden) 0]

—-- open-umbrella

[: type goalmethod]
[: has-priority 6]
[: latest-rearchived nil]

O@Requires
(and [Hc (the open-umbrella of TheWarden) no]
[Hc (the carries-bag of TheWarden) TheBag])

@Method
[soact [putdown :b TheBag] [takeout] [pickup :b TheBag]]

©Comment

This method for avoiding wetness is for the warden to put down the bag,
take out the umbrella, and pick up the bag again. It requires that the
warden carries the bag and that he has not already taken out the
umbrella.

-- dry-in-building

[: type goalmethod]
[: has-priority 6]
[: latest-rearchived nil]

ORequires
(and [Hc (the is-inside of TheWarden) no]

17

[-attrib-is (get TheWarden location) has-building nil])

@Method
[soact [go-in] [wait-until-dry] [go-out]]

@Comment
This method is for the warden to go into a building and wait there
until he gets dry. It requires for him to be beside a building.

The following attributes have been used here:

howmuch-wet number indicating the wetness of the warden

open-umbrella indicates whether the warden has opened up his umbrella

carries-bag indicates whether the warden carries the designated bag

is-inside indicates whether the warden is inside a building

location indicates the location of the warden as a composite
entity, e.g. (crossing: 2 3)

In these definitions there are two desires, called desire-1 and desire-2
which represent the two levels of desire for the warden not to get wet. Each
of these is specified by a logical expression for the desire, in the Desidef
property, and by a sequence of methods that may be applicable. Each
method is specified by a Requires formula that tells when the method is
applicable, and a Method formula containing a script for what actions to
perform in order to use the method.

Notice that the two properties of the methods are just the same as are used
for precondition-repair methods which were used in lab 2b and 2c. These
definitions are found in the entityfile motivdefs in the downloadable lab
materials for lab 5b.

This is basically what is needed in order to define such desires and methods
for achieving the instantiated goals. The following other things are also
needed:

e Definitions of the verbs that are used for performing actions and
achieving goals. These are in the entityfile lab5b-verbs.

e Definitions for the machinery for instantiating desires and adminis-
trating the resulting goals. This is in the entityfile motivsys and
requires around 250 lines of code in the present lab materials, which
means it can be done quite compactly.

e Definitions for how to do prediction of the results of proposed scripts.
This uses the techniques that were shown in lab 5a of this course, and
very little additional definitions are needed.

The following are the important points that can be seen in this simple
example and that we wish to illustrate with it:

e The simple desire-driven and goal-directed behavior can be imple-
mented using a very moderate amount of code, combined with a
straightforward use of standard first-order logic and of the formal-
ism for reasoning about actions.

e The behavior that results from the definitions in the example is quite
simple, but considerably more sophisticated behavior can be imple-

18

mented by adding more ’knowledge’ in the form of logic formulas, and
without the need for a lot of additional programming.

2.3.4 Episodes in the Rainy Day Scenario

The implementation of the Rainy Day Scenario contains definitions for el-
ementary move actions in the Zoo’s road network. It also contains a com-
posite goto verb that makes successive single moves from one roadpoint to
the next until it reaches the specified definition. This verb is defined in such
a way that at each step during the promenade it will check the medium-
urgency desires and see if they are satisfied; if not it introduces a goal to
achieve the desire, and selects a method for achieving the goal.

The test and demo of the BDI machinery is therefore best done in the
context of 'promenades’, that is, in the context of goto actions where the
warden passes by successive roadpoints, and where there will be occasions
for getting wet due to occasional rain or passing by sprinklers. Every such
promenade can constitute an episode just like we have used in earlier labs.

Consider now at first the case of doing this without prediction, which means
that the agent selects the most promising one, according to a numerical pri-
ority, among those methods that are found to be applicable. The agent exe-
cutes that method. However, since one may not be sure that the method has
the intended effect, the agent must re-evaluate the desire after the method
has been used in order to check. If the goal was achieved then all is fine,
but otherwise the agent will add this goal to its set of unachieved goals, and
proceed.

Several design decisions are possible at this point: one may choose to let
the agent re-execute the script one more time, or several more times, in the
hope that this will help. However, for actions such as ’take out the umbrella’
this obviously will not help, and in fact this method is not even defined as
applicable if the umbrella is already out.

Another possibility is to try another method, if the knowledgebase contains
several methods that are appropriate for the situation at hand.

The classical BDI approach would say that in this case the agent should
just drop the goal as being unachievable. In our implementation we arrange
instead to let the agent keep the unachieved goal on a separate list, so that
they are retried at later points. For example, the method of going inside
a building in order to dry out will be applicable if the agent passes by a
building during its continued walk.

However, this example also shows the importance of look-ahead. Given
the world model of the present scenario, suppose the simulated warden is
making his promenade and one step ahead there is a building where he can
get inside, and at that point it starts to rain in the simulated world. One
alternative is to take out the umbrella, but he will get more wet while doing
that; a better approach will be to just continue walking and to slip into the
building in the next step, and then either wait for the rain to stop, or take
out the umbrella while being inside the building. The systematic way of
getting that behavior is to arrange that when the agent notices a violation
of a desire, it shall check the currently available methods and foresee the
effects of using each of them, but it shall also check the foreseen effects of

19

continuing its base activity one or a few steps and maybe take remedial
action a little bit later.

In fact, an even more effective method is to arrange the agent so that it does
not merely check its present state for desire violation, but also, in each step
of its behavior, it anticipates a few steps ahead what is going to happen,
checks whether there is a desire violation in the predicted future, and reacts
to it. In this case, if the agent sees a sprinkler up its path, or sees the
indications that it is starting to rain, it will be able to perform the remedial
action of taking out the umbrella even before it starts to get wet. In lab
5a we showed how the reasoning system could predict effects in alternative,
immediate futures, and this is the technique that shall be used here.

Chapter 3

Computational Engines

The computational methods of Artificial Intelligence include a number of
‘engines’ which are essentially configurable algorithms. This means that
they perform a certain computation in a systematic way, but the way that
the computation is performed is subject to adaptations and adjustments
that are specific to the application at hand. The resolution method for
logical deduction, which has been presented earlier in the course, is one
example of such a computational engine. The present chapter contains an
introductory description of SAT solvers, which are also such engines, and
a very brief mention of a third engine. There are others, of course, but we
restrict the course contents to these.

3.1 Satisfiability Solvers

The Boolean Satisfiability Problem (SAT) is defined as follows in its basic
form.

Given: a set of propositional clauses

Question: does there exist an assignment of truthvalues to the proposition
symbols whereby all the clauses are true?

In other words, does there exist an assignment whereby at least one of the
literals in each clause is true?

There are two major engines for addressing the SAT problem: (1) The DPLL
Engine: search the space of truthvalue assignments in a systematic, depth-
first way, and (2) Stochastic Local Search: Pick one assignment randomly,
then change the value of one proposition symbol at a time. Each of these
have the character of computational engines.

3.1.1 The DPLL Engine

The DPLL Engine is based on a particular algorithm whose full name is the
the Davis-Putnam-Logemann-Loveland algorithm, after its inventors. It ob-
tains its strengths by the various plug-in methods that have been developed
for it, and it is use of these additional methods that give it the character of
a computational engine rather than just an algorithm.

20

21

The basic algorithm is as follows. Given a set A of clauses:

e Pick one of the proposition symbols in these clauses, e.g. p, and con-
struct one modification of A for each of the two truth-values. Obtain
A(p) by removing all clauses containing p and by removing -p in all
clauses where they occur. Similarly for A(-p).

e Repeat the same operation with another prop symbol, obtaining e.g.
A(p,-q), and proceed recursively obtaining a search tree.

e If a branch obtains a descendant of A containing both {a} and {-a}
for some literal a, then close that branch, i.e. do not expand the tree
further from that point. This is called a conflict.

e If you can find a branch where all the prop symbols have a value, then
you have found an assignment. If all branches become closed then no
assignment can exist whereby all clauses are true.

For an example of this algorithm, please see the e-slides ("powerpoint’) for
Lecture 13.

The crucial issue in executing this procedure is to decide which proposition
symbol to use next, during the search in a particular direction of the search
tree. The following are some major decision strategies, i.e. rules for how to
make this choice.

e Maximum Occurrence in clauses of Minimum Size (MOMS) as a good-
ness measure for selecting prop symbol.

e Dynamic Largest Individual Sum (DLIS): choose the literal occurring
the most frequently in the clauses at hand.

e Variable State Independent Decaying Sum (VSIDS): keep track of
the ’weight’ of each literal, allow it to ’'decay’ i.e. it is gradually
reduced over time, but if a literal is used for closing a branch then
it is "boosted’ (its value is increased) for use elsewhere in the search
tree.

There are also several other decision strategies, some of them fairly complex.
One interesting method is Clause Learning and Randomized Restart which
works as follows. The basic algorithm is modified so that if you arrive to
a conflict, then analyze the situation and identify what clauses contributed
to the conflict. Extract one or more additional “learned” clauses that are
added to the given ones. Also, identify the level in the search tree that one
has to return to. Proceed from there.

Then, from time to time you let the search process do a randomized restart,
i.e. it restarts the search process from the root of the search tree, but retains
the learned clauses. The purpose of these techniques is to let the process
“learn” more direct ways of arriving to the desired result in the sense of the
closing of a branch in the search tree.

In addition there are the following important implementation considerations

that contribute to keeping down the search.

e Do a (modified) depth-first search, not a breadth-first search of the
tree of possible assignments.

22

e Implement iteratively rather than using recursion.

e Literals in unit clauses are immediately set to true (as a preprocessing
step and during the computation), except if you have a conflict (in
which case close that branch).

e Proposition symbols that only occur positively in all the given clauses
are immediately set to true and those clauses are removed. Conversely
for those prop symbols that only occur negatively.

3.1.2 Statistical Local Search Techniques

The basic method in this approach to pick an initial assignment randomly,
and then to change the value of one proposition symbol at a time, in such
a way as to gradually approach a solution to the given SAT problem.

A number of techniques of this kind exist. We only consider one, called
GSAT (G for Greedy). The basic idea in GSAT is: Start with an randomly
chosen assignment. Calculate, for each proposition symbol, the increase
or decrease in the number of clauses that become true if the value of that
prop symbol is reversed. Pick the one that gives the best increase. Repeat
this process until a satisfying assignment has been found or a maximum
number (max-flips) has been reached. If max-flips has been reached, then
try another randomly chosen assignment. Repeat until success or until a
maximum number (max-tries) has been reached.

3.1.3 State of the Art for SAT Solvers

SAT solvers have been strikingly successful, both within Artificial Intelli-
gence and in other areas. In principle, they provide a method for combina-
torial reasoning and search which is able to handle very large sets of clauses.
In comparison with the use resolution theorem-proving, SAT solvers use a
more primitive representation, but they have the advantage of a number of
very efficient implementation techniques.

3.2 Constraint Programming

Constraint programming is an additional and important software technique
that exhibits some similarities with SAT solving, but also many differences.

In general, a constraint programming problem specifies:

e A set of “variables”

e A domain of possible values for each variable

e A set of constraints (“relations”) on these variables
An assignment of values to the variables that satisfies the restrictions is a
solution to the constraint programming problem.

This is similar to SAT solving in the sense that one searches for an assign-
ment of values to variables, but SAT solving is concerned with assignment
of truth-values whereas constraint programming can be applied to any kinds

23

of values, for example integers. Another difference is that constraint pro-
gramming requires the facilities of a programming language, so that it is
realized by extending a programming language with facilities for stating
and solving constraint programming problems. Logic programming was the
original host language for constraint programming. In this case we talk of
constraint logic programming.

A tight integration of constraint programming in its host language requires
that it should use as much as possible the data structures, declarations,
and operators on data that are provided by that language. Therefore, con-
straint programming is the most easily hosted by languages with an inter-
pretive character, e.g. functional programming languages (including Lisp
and Scheme) and even Java, besides logic programming languages. How-
ever, constraint programming packages do exist even for C++.

The Wikipedia article on Constraint Programming is a useful source of
examples and additional information.

