
KRF

Erik Sandewall

Description Logic and Defeasible Inheritance

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-018, can persistently be accessed as follows:

Project Memo URL: http://www.ida.liu.se/ext/caisor/pm-archive/krf/018/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2010/016/

Date of manuscript: 2010-11-01

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

http://www.ida.liu.se/ext/krf/�
http://aip.name/info/�


Chapter 1

Reasoning about Classes

Almost all applications of knowledge-based systems involve both objects
and classes, where each object can be a member of one or more classes. For
example, a particular automobile may be a member of the class of vehicles
that are owned by a particular person, the class of automobiles made by a
particular manufacturer, the class of automobiles having a particular color,
the class of automobiles not having passed obligatory annual testing, and
so forth.

Classes like these may be defined and used extensionally or intensionally.
In the extensional case the class is considered to be simply the set of all
its members. If one member is added then it is another set, and therefore
another class. In the intensional case, on the other hand, the class is consid-
ered to represent its definition, rather than its set of members. The class of
vehicles owned by a particular person has different sets of members at dif-
ferent points in time, but from the intensional point of view it is considered
as being the same class anyway.

In spite of this distinction, many of the properties of, and operations on
classes are essentially the same regardless of whether the extensional or the
intensional perspective applies. The conventional subset relation ⊆ on sets
is only used when the extensional view is intended. A similar symbol, v
is used when one does not care, so that both views may apply. Therefore,
statements that apply for v also apply for ⊆, but not vice versa. For
example the rule

A ⊆ B ∧B ⊆ A → A = B

does not generalize to v .

The v relation is referred to as subsumption and A v B is pronounced
A is subsumed by B (notice the order!) or B subsumes A. The union and
intersection operators t and u are defined similarly as counterparts of ∪
and ∩. On the other hand, the membership relation ε is used regardless of
whether the second argument is a set or an intensional class.

The need for an intensional view of classes arises for the same reasons as
for the use of features. An intensional class may have different sets of
members at different times, and in fact it may be considered simply as a
set-valued feature. Just like features they are also used for expressing modal

1



2

statements, such as “Lars does not know which of these cars are owned by
Karin.”

Most aspects of ordinary, elementary set theory is used for knowledge repre-
sentation as well. However, there is one use of classes that is important for
knowledge representation but that is not addressed in set theory, namely,
defeasible subsumption which means subsumption with exceptions. For ex-
ample, one will say that the class of mammals is defeasibly subsumed by
the class of land animals, since most mammals are land animals but there
are exceptions, in particular, whales. This will be the topic of one chapter
in this lecture note.

As an application uses both objects and classes, it is customary that there
are a number of relations between the objects, and that these relations
have counterparts on the class level. For example, if both persons and
countries are considered as “objects” and there is relation is-citizen-of
between persons and countries, one may consider a class EU-countries
of the countries that are members of the European Union, and the set of
persons that are citizens of some country in that set. Such a set may be
expressed as, in our notation,

(those person that is-citizen-of some EU-countries)

where the operator those has three proper arguments, namely person,
is-citizen-of, and EU-countries in this example, whereas the word
that is only for readability, and the word some distinguishes between a
few variants of the those operator.

Operators such as these are in principle redundant, since all that can be
expressed using them can also be expressed using predicate logic, the mem-
bership relation between objects and classes, and the relations between ob-
jects. However, class-level operators often allow more concise expression of
known facts, and they also make it possible to specify specific categories of
statements and of computation that can be performed efficiently. Notations
of this kind is also an important topic of the present note.



Chapter 2

Description Logic

Description Logic is an important branch of Knowledge Representation, and
it is widely used as a basis for the OWL representation format in the se-
mantic web development. It has a well established publication notation and
a computer-oriented counterpart in the semantic web context. The present
note will not use either of these, however, since the publication notation is
awful and the computer-oriented counterpart is not easily readable. Instead
we shall use a smooth extension of the CEL notation, and merely mention
the standard publication notation and terminology towards the end of the
chapter.

2.1 Basic Description Logic - ALC
Description Logic is applicable in situations where the following constructs
are provided:

• A number of objects

• A number of classes having objects as members

• A number of binary relations between objects

• A membership relation ε between objects and classes

Each binary relation is represented by a unique symbol – the relation symbol
– and a set of pairs of objects specifying those argument combinations where
the relation holds. This set of pairs may be called the contents of the
relation. The information about the contents for each of the relation symbols
plus the membership relation constitute the fact base of the application.

If this is given, the description logic allows one to construct class expressions
and to make subsumption statements involving class expressions. Subsump-
tion statements are always of the form A v B where A and B are class
expressions.

In basic CEL notation the subsumption statement is of course written as
[v A B] but we allow to omit the surrounding square brackets and to
use infix notation, for convenience of reading.

3



4

There is a variety of ways of writing class expressions, providing different
expressivity, and in order to be able to refer to these, each variety has a name
consisting of combination of capital letters in “calligraphic” font. The basic
variety of description logic is characterized as ALC. It allows the following
operators for forming class expressions, in CEL notation:

• A tB for the class that is defined has having the members of A and
the members of B as members

• AuB for the class that is defined as having as members those objects
that are members of both A and B

• (comp A) for the complement class of A, that is, the class defined as
having as members all objects that are not members of A

• (those-that r some B) , for the class having as members all ob-
jects x such that [r x y] holds for some y that is a member of
B

• (those-that r all B) , for the class having as members all objects
x such that [r x y] holds for all y that are members of B

In addition there are symbols ⊥ and > for the empty class and the class of
all objects. [1] The basic notation for the first two expressions is of course
(t A B) and (u A B) respectively.

Rather than using the operator those-that it is sometimes more convenient
to use the operator those as in the following example

(those person that is-citizen-of some EU-country)

This operator is defined in terms of the more basic operator those-that
since

(those A that r some B) = A u (those-that r some B)

and similarly for all instead of some. However, if more than one relation
is involved then the basic operator may be more convenient, as in

person u (those-that is-citizen-of some EU-country) u
(those-that married-to some

(those person that is-citizen-of some asian-country))

The operator name those-that is a bit lengthy and will therefore sometimes
be abbreviated as tho.

2.2 Fact Base, Terminology Base, and
Inference

A knowledgebase for description logic is customarily organized in two parts:
a fact base consisting of the contents of the participating relations, includ-
ing the membership relation, and a terminology base consisting of positive

1It is in fact a bit counterintuitive that Description Logic admits a single
symbol for the empty class, while at the same time insisting that its “concepts”
or “classes” are not merely sets, but also have an intensional aspect. There ought
to be a large number of concepts, or classes, whose member sets are empty.



5

literals for v [2] but allowing composite class expressions in both their ar-
guments, as well as positive and negative literals for the equality relation.
The following are the major operations that one may wish to perform in
such a knowledgebase:

• Instance checking: Determine whether a formula that is of the form
[x ε C] can be inferred from the knowledgebase

• Relation checking: Determine whether a formula of the form [r x y]
can be inferred from the knowledgebase

• Subsumption checking: Determine whether a formula that is of the
form [v A B] can be inferred from the knowledgebase

• Checking consistency of terminology base: Determine whether the
contents of the terminology base implies inconsistency.

In all these cases it is assumed that variable-free expressions are provided
for x, C, etc. in the respective queries.

It is easy to implement these operations for small to medium sized know-
ledgebases, but some applications require performing them on extremely
large knowledgebases and then the problem is nontrivial. There has been a
lot of research on the problem of how to perform it efficiently, and on criteria
for when it can and when it can not be done with acceptable computational
complexity.

2.3 Extensions to Basic Description Logic

A number of extensions have been defined for description logic without
changing its basic semantics in terms of objects, classes, a membership
relation, and object-level relations. This includes the following additional
ways of forming class exprssions.

• An operator rev on relations so that for every relation r, (rev r) is
the same relation but with the arguments in the reverse order.

• An extension to the those-that operator whereby one can write
[those-that r at least n B]

designating the set of those x for which there exist at least n different
y such that [r x y] .

• A similar extension using “at most” instead of “at least.”

• The possibility to specify some relations as being transitive.

The first extension is characterized by the code letter I; the second and
third one by the code letter Q in addition to the base combination ALC.
The extension of ALC to allow transitive relations is characterized as S.

In addition, there are also proposed extensions that assume a generalized
semantics, for example by introducing actions and changes in time, or by
introducing defeasible inheritance besides the strict inheritance represented
by v.

2That is, using the v predicate without negation on it.



6

2.4 Expressivity

Description logic has limited expressivity on purpose; this is the key to its
good computational complexity properties, i.e. its performance properties
even in worst-case situations. The following are a few examples of what can
be expressed and what can not be expressed. We assume an application
containing the following classes:

• persons

• books

• languages

• countries

We also assume the following relations:

• owns between persons and books

• written-in between books and languages

• knows between persons and languages

• lives-in between persons and countries

• has-language between countries and languages

The set of persons that own at least one book that is written in Icelandic
language can then be written as follows.

(those persons that owns some
(those books that written-in some {icelandic}) )

In the subexpression on the second line it does not matter if one puts all
or some since what follows is a class of one single member. In the following
examples we shall omit some or all in such cases.

The set of persons that own a book in a language that they do not know:
this set can not be expressed in description logic as defined here. (There
are however extensions where it can be expressed, but then complexity
properties are lost).

However, consider instead the statement “John owns a book that is writ-
ten in a language that he does not know.” This statement can in fact be
expressed, by successively defining the following classes:

1. Books that are owned by John:

(those books that (rev owns) {john})

2. Those languages that books owned by John are written in:

(those languages that (rev written-in) some
(those books that (rev owns) {john}) )

3. Those languages that John knows:

(those languages that (rev knows) {john})



7

4. Those languages that John does not know:

(languages u
(comp (those languages that (rev knows) {john})) )

Actually the following shorter expression can be used instead:

(languages u (comp (those-that (rev knows) {john})))

The problem is then solved if we can state that the classes in item 2 and
item 4 have a common member. This can be written as

A u B /= ⊥

for expressing that the intersection of the two classes A and B is not the
empty class.

2.5 Published Literature on Description Logic

The literature on Description Logic has developed its own notation and
terminology. The following is a dictionary of terms in description logic,
with translations:

• role = relation

• concept = class

• individual = object

• concept assertion = positive literal using ε

• role assertion = positive literal using one of the relations

• general concept inclusion = positive literal using v, i.e. subsumption
statement

• A-box = fact base (A for ’assertion’)

• T-box = terminology base

The OWL terminology uses “class” and “object,” but uses the term “prop-
erty” instead of relation.

The publication notation for description logic uses the following conventions.
The v predicate is used like above. Membership is written as x : C for x ε C,
and relation literals for objects are written as (x, y) : r for [r x y] .

For term expressions, the t and u functions are used like here. The com-
plement class is written as ¬B for (compl B) . The reverse operator on
relations is written as an exponent dash, so (rev r) is r−. The those-that
operator is written as follows:

• ∃ r.B for (those-that r some B)

• ∀ r.B for (those-that r all B)

• ≤ n r.B for (those-that r at most n B)



8

This is a quite compact notation that is maybe convenient when one is
studying the theoretical properties of the notation, but it has the disadvan-
tages of not going so well with the conventional use of the quantifiers, and
of not being very natural when concrete examples are to be written out. It
is for these reasons that we have used the CLE notation here.

The Description Logic Website [3] provides a wealth of further information
about description logics, including a list of description logic reasoners.

3http://dl.kr.org/

http://dl.kr.org/�


Chapter 3

Defeasible Inheritance

Defeasible Inheritance addresses the problem when there is a certain num-
ber of exceptions to the subsumption relation between classes. This prob-
lem has been extensively studied for a long time in Artificial Intelligence
research. The present chapter will describe the standard view of this topic,
some examples from the classical reportoire of “difficult cases,” but also a
recent development in this area that brings much additional clarity to the
topic. This recent development will be used as frame of reference for the
presentation.

3.1 Basic Approach to Defeasible Inheritance

3.1.1 Semantic Assumptions

As basic framework we uses classes of objects and the subsumption relation
v from the treatment of Description Logic. Objects and membership are not
used, and it is assumed that classes have a reasonable number of members.
(This will be modified later on). Three additional predicates are introduced:

• [sub .c .d .m] expresses that the class .c is defeasibly subsumed
by the class .d i.e. there may be some exceptions

• [dj .c .d] expresses that the classes .c and .d are disjoint i.e.
they have no common member; no exceptions allowed

• [nsub .c .d .e] is used for declaring an exception to the transi-
tivity of sub. This will be explained below.

The third argument .m of the sub predicate will be used for a doubt index
that will be introduced later on, and for the beginning discussion we shall
omit this third argument.

An inheritance network consists of a set of positive literals using these predi-
cates. The completion of such an inheritance network is obtained by adding
more literals that are obtained as conclusions from the given ones. For
example, if [sub horses mammals] and [mammals land-animals] are
in the given network, then [sub horses land-animals] should be in its
extension.

9



10

There are some positive and some negative requirements on network exten-
sions. Positive requirements specify conclusions that must be drawn, for
example (tentatively):

(imp (and [sub .c .d][sub .d .e]) [sub .c .e])

Negative requirements specify situations that must not be present there, for
example through the following requirement on the extension:

(not (and [sub .c .d][sub .c .e][dj .d .e]))

It is assumed that all given classes have a non-empty set of members. This
assumption is necessary for the above restriction to be applicable.

Finally, (imp [v .c .d] [sub .c .d] )

If there are not any exceptions to the subsumption then all of this is very
simple. It is the possibility of exceptions that complicate the matter.

3.1.2 On-Path Preclusion

Two basic kinds of structures are at the heart of the matter. One is the
issue of preclusion. Consider the following inheritance network.

GA dj WA
E sub GA
RE sub E
RE sub WA
C sub RE

In this structure, the use of transitivity for sub obtains both that [C sub
GA] and [C sub WA] but this is a contradiction since we also have [GA
dj WA]

The acronyms in this example are derived from the classical toy example
for illustrating this structure, where E stands for the class of elephants, GA
and WA stand for gray animals and white animals, respectively, RE stands
for royal elephants which are supposed to be white as an exception to or-
dinary elephants that are gray, and C stands for a particular royal elephant
(“Clyde”) or a group of specific royal elephants.

Intuitively, it seems that we should prefer the conclusion [C sub WA] over
the conclusion [C sub GA] since it is based on more specific information.
The information about RA precludes the chain of links from C to GA to take
effect.

Exceptions like in this toy example are very common in class structures
that arise in practical applications, and it is necessary to have some way of
handling them and living with them. Here we shall first describe a recently
developed approach, and later on proceed to other proposed approaches.

In order to deal with exceptions we modify the transitivity axioms for sub
so that it is as follows:

(imp (and [sub .c .d] [sub .d .e] [-nsub .c .d .e])
[sub .c .e] )



11

The contradiction can then be avoided by adding the following literals to
the inheritance network:

[nsub RE E GA]
[nsub C E GA]

Both of these are needed in order to suppress the conclusions that other-
wise lead to a contradiction. The first one is needed since other wise one
obtains that royal elephants are both gray and white, and the second one
is needed since otherwise one obtains [C sub E] and from there [C sub
GA] . However, it turns out that the following restriction can be imposed:

(imp (and [nsub .d .e .g] [sub .c .d]) [nsub .c .e .g])

If this rule is added to the set of general restrictions on extensions of in-
heritance networks then it is sufficient to only have one nsub literal in our
example network, namely

[nsub RE E GA]

and the rest will follow by inference.

3.1.3 Directly Contradictory Subsumptions –
the Nixon Diamond

The following small example exemplifies the other major type of complica-
tion.

P dj AP
Q sub P
R sub AP
N sub Q
N sub R

This example also obtains two contradictory conclusions, like the previous
one, namely [N sub P] and [N sub AP] but here the two paths are en-
tirely symmetric. The example is usually called the “Nixon Diamond” since
it referred to U.S. president Richard Nixon who was a quaker, but also a re-
publican, and quakers were known to be pacifists whereas republicans were
assumed to be “anti-pacifists” – remote from any pacifist position. [1]

In the previous example it was also fairly obvious how to insert the nsub
literal, merely given the structure of the network and without knowing the
meaning of its nodes, but here this is not possible due to the symmetry. One
can see two possibilities, therefore: either use additional information from
the application so as to obtain the right choice of nsub literal, or introduce
two nsub literals, namely

[nsub N R AP]
[nsub N Q P]

so that neither conclusion is possible. If one does not know which is the
case then this is of course the reasonable thing to do.

1The diagram was also drawn a bit differently, which made it look like a rhom-
bus, that is, a “diamond” in the sense of American English.



12

3.1.4 Adding Exception Literals by Default

Suppose now that a very large inheritance network has been provided and
the persons using it have merely provided the subsumption literals, but not
the nsub literals that are necessary in order to characterize the exceptions
from the general subsumption statements. One can easily write a general-
purpose program that identifies whether the given network is inconsistent,
for example in the ways that was shown in our two examples. The question
is then: will it be necessary to go back to the users and ask them to modify
their networks, probably with additional nsub literals, so that they become
correct, or will it be possible to have an automatic way of repairing the
given inheritance network?

It has not yet been demonstrated conclusively if there exists such a repair
mechanism that works to satisfaction in all cases, but some things are any-
way known about this problem. Two types of methods are being proposed,
single-extension methods and multiple-extension methods. Single-extension
methods are those that generate one single extension, for example by adding
a number of nsub literals. Multiple-extension methods generate several ex-
tensions and take the intersection between them, that is, they accept those
inferred literals that are present in all the extensions obtained.

Single-extension methods are also called sceptical ones, and multiple-extensions
methods are also called credolous ones. The difference between these meth-
ods appears the most clearly for directly contradictory subsumptions, like
in the Nixon diamond. In a single-extension approach, because of the sym-
metry of the given network, there is no choice but to introduce nsub literals
for both or all of the paths in the network that cause a contradiction, for
example, the two literals shown in the previous subsection.

In multiple-extension approaches one may consider network repair rules that
obtain larger extensions. In the Nixon diamond example, one may have one
extension where [nsub N R AP] is added, and another extension where
[nsub N Q P] is added. The first extension will then contain [N sub P]
and the other extension will contain [N sub AP] but the intersection of
these extensions will contain neither of those.

Such a variant of the multiple-extension approach will therefore obtain the
natural conclusion in the particular case of the basic Nixon diamond. Un-
fortunately it may lead to problems, although this depends on exactly how
one defines the repair mechanism. Consider an extension of the basic Nixon
diamond example where one has added the following two literals:

P sub IM
AP sub IM

If one wishes to have a concrete interpretation of the classes involved, one
may read IM as “ideologically motivated.” In this case both extensions will
contain the inferred literal [N sub IM] and therefore it will be taken to be
a conclusion of the given inheritance network (or at least this is what strikes
the mind at first when you see the example). Such a conclusion, which is
obtained because it is present in each one of several extensions, although
different chains of inference were used in those extensions, is called a floating
conclusion.

The problem with floating conclusions in general is that they are not always
well motivated, and that is also the case in this example. The problem is



13

that there is no a priori reason why the objects in the class N should belong
to one or the other of the two classes P and AP. From a commonsense point
of view one can observe that there may be many intermediate positions
concerning the use of military force, between “pacifist” and “antipacifist.”
From a formal point of view, which is more solid, one must observe that it
has merely been stated that the two classes P and AP are disjoint, but they
have not been stated to be the complement of each other. Therefore there
is no support for obtaining [N sub IM] as a conclusion.

3.1.5 Minimal Extension with Respect to nsub

Let us return to the question that was posed above: is it possible to define
some method whereby missing nsub literals can be added automatically,
based on an analysis of a given inheritance network without such literals?
The best available candidate for such a method is arguably a multiple-
extension method based on minimization of the nsub predicate, that is,
based on obtaining one or more sets of argument combinations for nsub
which are as small as possible, obtaining the corresponding extensions of
the given inheritance network, and then making a combination of those ex-
tensions. In this case, “smallest possible” means that if any of the members
of that set is removed, then the resulting extension is contradictory. Also,
the “extensions” are defined as sets of literals that contain all the literals
in the given inheritance network, plus those literals that are necessary in
order to satisfy a set of given axioms.

In the specificity example, in particular, we showed that it is necessary to
add some nsub literal in order to avoid a contradiction, and it is sufficient to
add the literal [nsub RE E GA] and in the “Nixon” example it is necessary
and sufficient to add one of the two literals [nsub N R AP] and [nsub N
Q P] .

The remaining problem – and the crucial problem for these methods – is
what kind of “combination” shall be used for those extensions. The sub
intersection method consists of just taking their intersection of these exten-
sions and using its contents of sub literals. This will run into the problem
with floating conclusions, but that is the only known problem with it. [2]

Another possibility is the nsub union method which consists of first taking
the union of all the nsub literals in all those extensions, add them to the
originally given inheritance network, and again obtain all the conclusions
using the given set of axioms. This is guaranteed to be a contradiction-free
network, and with respect to its contents of sub literals it will be a subset
of, or equal to the result from the first method. At this point there is not
sufficient information to say whether it loses some conclusions that it should
have been able to draw, and that are obtained using the first method.

Both of these methods obtain the intended results for the preemption exam-
ple with the elephants and for the simple “Nixon” problem. With respect
to the extended “Nixon” problem with the floating conclusion, the sub
intersection method obtains no conclusions, as intended, for the relations
between N on one hand and P and AP on the other, but it does obtain an
unintended floating conclusion.

2There are some additional details that have to be introduced for this method,
but which will be omitted here.



14

The nsub union method does not do any better on this example, given
the rules shown above. There will still be two extensions, the union of
their nsub contents consists of [nsub N R AP] and [nsub N Q P] , and
therefore there is no conclusion in the final extension with respect to the
relations between N on one hand and P and AP on the other. It would seem
then that the floating conclusion is not obtained. Unfortunately, however, it
is obtained through another path since one obtains both [R sub IM] and
[Q sub IM] , and from there one obtains [N sub IM]

3.1.6 Introducing the dsub Predicate

We now arrive at the final correction that must be made to the approach
in order to make it work right, at least as far as is known at present. The
problem with the floating conclusion for the nsub union method leads to
the solution. We introduce an auxiliary predicate dsub which stands for
“derived subsumption” and make the convention that the original predicate
sub will only be used for literals in the given inheritance network, and not
for inferred literals. The transitivity axiom is modified as follows:

(imp (and [dsub .c .d] [sub .d .e] [-nsub .c .d .e])
[dsub .c .e])

In addition there is the following axiom:

(imp [sub .d .e] [dsub .d .e] )

The effect of the first axiom is that it is only possible to use the transi-
tivity of subsumption in the “upward” direction, by gradually proceeding
one step up from the uppermost node in the chain, and it is not possible to
extend it in the “downward” direction.

With this modification the nsub union method avoids obtaining the (unin-
tended) floating conclusion. The sub intersection method will unfortunately
still suffer from obtaining that floating conclusion.

3.1.7 Summary of the Basic Approach

We have now gradually introduced the required constructs, in such a way
that our specific examples have provided the explanation for why various
constructs were necessary. Here is a summary of the conventions that have
been introduced in this section. The following predicates are used

• [sub .c .d .m] expresses a statement in the given inheritance net-
work that the class .c is defeasible subsumed by the class .d i.e. there
may be some exceptions. The last argument has not yet been put in
use

• [dsub .c .d .m] is similar to the previous predicate, but it is used
for inferred literals

• [dj .c .d] expresses that the classes .c and .d are disjoint i.e.
they have no common member; no exceptions allowed

• [nsub .c .d .e] is used for declaring an exception to the transi-
tivity of sub. This will be explained below.



15

The following axioms are used, with the exclusion of the third argument for
sub and dsub

(imp (and [dsub .c .d] [sub .d .e] [-nsub .c .d .e])
[dsub .c .e])

(not (and [dsub .c .d][dsub .c .e][dj .d .e]))

(imp (and [nsub .d .e .g] [sub .c .d]) [nsub .c .e .g])

(imp [v .d .e] [sub .d .e] )

(imp [sub .d .e] [dsub .d .e] )

The full specification actually contains a few more axioms, but they have a
technical nature and are not necessary here.

3.2 Additional Interesting Cases

The literature on defeasible inheritance contains a number of test scenarios
that are useful for the process of verifying that proposed methods do obtain
intended results. However, it must be understood that their value is only
as test cases: they can provide counterexamples to proposed methods, and
if there are no counterexamples then they can provide a certain, moderate
credibility for the method, but they can never be proofs of correctness. That
requires a systematic definition of, and use of a semantics for the predicates
that are involved.

3.2.1 Off-Path Preclusion

Consider the following extension of the “elephant” scenario:

GA dj WA
E sub GA
RE sub E
RE sub WA
C sub RE
C sub CE
CE sub E

The last two literals have been added. The reader is encouraged to draw a
diagram showing the connections between the classes. The structure in this
example is more complex since now there are two distinct paths from C to
GA , namely via CE and via RE, but both proceed through E. Should one or
should one not allow an extension containing [C sub GA] in this example,
which would make it similar to the “Nixon” example in the sense that no
conclusion is finally obtained concerning whether C is in WA or is in GA ?
This is called a situation with off-path preclusion. The principled analysis
of this situation is as follows. There are two possibilities with respect to
CE and RE . Either they have strongly overlapping contents, so that they
are almost equal with respect to contents, or not. In the former case, we
have no reasonable reason supporting [C sub GA] but in the latter case



16

the path via CE provides independent information so that the link from C
to GA is as likely as the one to WA.

Moreover, with respect to the formal inference, in the former case there
should be sub relations both ways between CE and RE ; in the opposite case
not. This is because we must assume that the given inheritance network
provides complete information about the subsumption links between classes,
except for those cases where these links can reasonably be inferred; it is only
the nsub literals that maybe should be inferred automatically.

Now, the structure of the given network is such that we will necessarily have
[nsub RE E GA] which means that in the former case we will also have
[nsub CE E GA] using one of the axioms. We will obtain [C sub E] but
not [C sub GA] because of the nsub literal, which is what is intended.

In the latter case, however, we will also obtain [nsub C E GA] and this
will preclude the subsumption chain via CE from being used, and in this
case this is an unintended effect.

The solution to this problem is to generalize the transitivity axiom for dsub
so that it looks as follows.

(imp (and [dsub .c .d] [sub .d .e] [sub .e .g]
[-nsub .c .d .e] [-nsub .d .e .g] )

[dsub .c .g])

The previously stated axiom transitivity axiom can be obtained as a special
case of this one. This takes care of one-step off-path preclusion as in this
example.

One can also construct structures with two-step off-path preclusion where
there is one more off-path class, similar to CE in this example, but one step
up along the subsumption chain from C to GA. This requires are further
more general axiom where there are four subsumption links instead of three.
However, it is very doubtful whether two-step or other multip-step off-path
preclusion structures exist in practice, so the axiom shown above is likely
to be sufficient for practical purposes, as far as we know today.

3.2.2 Choice of Breakpoint

Next, consider the following example

A sub B
B sub C
C sub D
D dj G
A sub G

Should we obtain [A dsub C] as a conclusion in this case?

There may be some intuitive arguments in favor of that conclusion, along the
line of “it has not been negated.” There may also be intuitive arguments in
the opposite direction, such as “if this were the case then [sub A D] would
follow, but we know that that is not the case, therefore no.”

The inference methods that were described in the previous section will not
obtain the conclusion [A dsub C] and this applies in fact for both the sub
intersection method and the nsub union method.



17

Here is one concrete example that agrees with the latter position.

CitizenOfGuyana sub LivesInLatinAmerica
LivesInLatinAmerica sub SpouseHispSpeaking
SpouseHispSpeaking sub HispanicSpeaking
HispanicSpeaking dj EnglishSpeaking
CitizenOfGuyana sub EnglishSpeaking

where HispanicSpeaking is the class of those having Spanish or Portuguese
as their first language, and SpouseHispSpeaking is the class of those per-
sons whose husband or wife has either of these as their first language. We
would not like to infer that most citizens of Guyana (which is an English-
speaking country) are married to Hispanic-speaking persons.

So what is the right answer? In order to have a reliable answer to that
question we need a formal definition of the semantics for the sub relation
as well as for the other ones used here. This is the topic of the next section.

3.2.3 Conclusion

Chapter 2 has introduced Description Logic, Chapter 3 has introduced De-
feasible Inheritance. It is a natural next step to combine these two, so that
defeasible inheritance can be applied to classes as described in description
logic. The basic idea is straightforward, but the technical details of how
this can be done correctly and efficiently is a topic of current research.


