
KRF

Erik Sandewall

Managing Information Aggregates
in the Knowledge Representation Framework

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-016, can persistently be accessed as follows:

Project Memo URL: http://www.ida.liu.se/ext/caisor/pm-archive/krf/016/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2010/010/

Date of manuscript: 2011-01-02

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

http://www.ida.liu.se/ext/caisor/pm-archive/krf/016/�
http://aip.name/se/Sandewall.Erik.-/2010/010/�
http://www.ida.liu.se/ext/krf/�
http://aip.name/info/�
http://www.ida.liu.se/=xxxxx�


Chapter 1

Command Files and
Representation Files

The Lisp language has a notion of properties whereby each combination of
two symbols, called the carrier and the property can be assigned a corre-
sponding value. The value can be an arbitrary S-expression. Properties
are used for storing information during a session so that it can be retrieved
and used later on during the same session. The Knowledge Representa-
tion Framework uses the same design, but distinguishes between attributes
and properties: the values of attributes can be arbitrary KR expressions,
whereas the values of properties in KRF must be strings. Usually they are
used for “long strings” consisting of several lines of text.

Property values and attribute values are retained as datastructures within
each session with a processor, but they will be lost when the session termi-
nates unless there are some special arrangements for saving their values and
for recovering them during later sessions. The methods for doing this were
already discussed in the KRF Overview report, but here we shall address the
same topic with more detail and in the context of an actual implementation.

The most straightforward way of preserving the values of attributes and
properties is using ordinary (text-formatted) files containing the textual
representation of these values. An alternative possibility is to preserve the
entire session using a memory dump. If the former choice is made then
again one possibility is to leave it to the user to implement routines that
construct appropriate property assignments at the beginning of a session,
and that save relevant parts of them at the end of a session. However, the
Interlisp system pioneered a method of generic save and reload where there
are general-purpose routines that save and reload property values. These
routines rely on catalogs that define what information is to be preserved on
what files. These catalogs are present within each session; they direct the
data saving process and they are also saved on the preserving files, so that
they can readily be obtained when those files are reloaded during a later
session. In short, the catalogs of the preserved information are themselves
part of the preserved information.

Any save and reload scheme makes it possible for the user, in principle at
least, to use two different methods for extending and modifying the infor-
mation in the system. It is possible to do such changes in interactions with

1



2

the system during a session, relying on the fact that the changes will be
preserved during the next save operation. It is also possible to text-edit
the saved files and to reload them into the session, even in the course of a
session, thereby overwriting the results of previous loads of the same file.
The practical convenience when using these methods depends of course on
the quality of the interaction during sessions with the system, and on the
readability and convenience of the textual representation.

The method of generic save and reload has been retained and developed
further in the Leonardo system, and it will be described and discussed in
the present chapter.

1.1 Command Files

The put command has three arguments - a carrier, a property and a value
- and can be used for assigning a value to a combination of a carrier symbol
and a property symbol. It works in the same way in Lisp and in Leonardo,
as follows in the Leonardo CLE loop:

put Bjorn has-children <Karin Sven>

and as follows in Lisp:

(put ’Bjorn ’has-children ’(Karin Sven))

The value can be accessed using the function get, as follows in the two
languages:

(get Bjorn has-children) => <Karin Sven>
(get ’Bjorn ’has-children) => (Karin Sven)

In the Leonardo case, the put command-verb and the get function can be
used both for attributes and for properties.

In the method of command files, property values are preserved using files
that contain a sequence of commands, including for example put commands.
The saving routine generates such files, and the reloading of the information
during a later session is done by reading successive commands from the file
and executing them one at a time. The file contents need not be restricted
to using the command-verb put, of course. For example, if the relation of
being married is represented as properties both ways between the husband
and the wife, then it may be convenient to have a function that takes the
identifiers for the two persons as arguments, and that assigns both properties
(or attributes), and then one may choose to let the information-preserving
file contain a number of commands of that kind.

1.2 Representation Files

A representation file is a file containing a (usually) textual representation
of some information. KRF entityfiles, which were described in the KRF
Overview are examples of representation files. The major advantage of rep-
resentation files is that they may be more readable than command files,



3

since the latter are restricted to the notation used for the commands. Com-
pare the following simple examples of the two approaches, first a part of a
representation file:

---------------------------------------------------------------
-- red

[: type color]
[: has-examples {rose ruby poppy}]
[: translations {[: french rouge][: german rot]}]

@Associations
The red color is associated with a lot of symbolism, such as
denoting "stop" at traffic lights, representing particular
political movements, and being recognized as the color of love.

---------------------------------------------------------------
-- blue

[: type color]
[: has-examples {bluebell forgetmenot}]
[: translations {[: french bleu][: german blau]}]

---------------------------------------------------------------

and then a part of a command file:

[put red type color]
[put red has-examples {rose ruby poppy}]
[put red translations {[: french rouge][: german rot]}]
[put red Associations
"The red color is associated with a lot of symbolism, such as
denoting "stop" at traffic lights, representing particular
political movements, and being recognized as the color of love.
"]
[put blue type color]
[put blue has-examples {bluebell forgetmenot}]
[put blue translations {[: french bleu][: german blau]}]

This example shows how, in a command file, it may be more difficult to get
an overview of the information contents and to distinguish its various parts.
This problem may be mitigated by the judicious use of whitespace (i.e.
space characters and blank lines) and comment lines, but the approach of
the representation file gives by definition more opportunities for readability-
improving measures.

If the intention is that information contributions are mostly to be made
using commands or other interactions during sessions with the system then
the readability of saved files is unimportant. This may be the case when
all information has very simple structure. However, when more complex
information is used, an in particular if program modules and scripts are also
to be considered as part of the same information base, then it is usually
a requirement that one shall be able to edit the textfile representations
of information and load them into the session, and then the readability



4

of these files is an important consideration, and there is a case for using
representation files.

1.3 Embedding Command Sequences
in Representation Files

The strict use of the representation-file approach has the disadvantage of
being somewhat restrictive, and there are cases where one would like to use
representation files for the major part of the information, but to also have an
option of using commands in the input files in those situations where this
is more convenient. Although one may of course use an approach where
some of the files are command files and others are representation files, it
is more convenient to use representation files where some of the attributes
or properties contain commands, and to define the loading process so that
it executes commands when it encounters them in specific positions of a
representation file that is being loaded.

The Knowledge Representation Framework uses representation files where
attributes and properties are displayed in different ways, as shown in the
above example. The values of properties are in fact multi-line strings, and
one use of property-values is to contain a command or a sequence of com-
mands. This combines the advantages of the two approaches.

Incremental programming systems, such as those for the Lisp, Perl and
Python languages, contain a built-in command that loads a given file in
the sense of reading it and executing the commands in it one after the
other. Data files using the command-file approach can therefore be read
directly in such systems. Data files using the representation-file approach
must instead be read using a separate data parser which may slow down
the operation. If this gives rise to a performance problem then it can be
solved by using a dual approach where there are two save operations, one for
saving a representation file and another one for saving a command file, as
well as the corresponding load operations. Particularly large files are saved
and reloaded as command files; changes to their contents are made via the
command-line executive; but one retains the possibility of also writing, edit-
ing, and reloading the corresponding representation file in those situations
where this is worth the resulting time delay.

Conventional programming systems for languages such as C++ do not of-
fer these possibilities, and there it is necessary to use a separate parser
regardless of whether the command-file approach or the representation-file
approach is being used.

1.4 Representation Files in the Leonardo
System

The Leonardo system is an implementation of the Knowledge Representa-
tion Framework and is presently written in Allegro CommonLisp. It uses the
representation-file approach and allows commands to be embedded in the
values of certain specific properties of the representation files. The property



5

Execute/Lisp is used for commands that are to be executed by the underly-
ing Lisp system, and the Execute/SCL property is used for commands that
shall be executed in the same way as if they were typed to the command-line
executive. The following is a trivial example of an entity-description using
these facilities.

---------------------------------------------------------------
-- abs

[: type leofunction]

@Comment
Obtains the absolute value of the number given as argument.

@Execute/Lisp
(defun abs (a)(if (< a 0) (- a) a))

@Execute/SCL
[def [equal (abs .a) (if [ls .a 0] (- .a) .a)]]

---------------------------------------------------------------

SCL commands appear with their proper syntax, which means that they
are enclosed in square brackets. These square brackets are optional in
command-line input, but they shall be present in all other contexts.



Chapter 2

Operations on Attributes
and Properties

The following operations apply to attributes and properties in the Leonardo
system. A larger reportoire of Leonardo system commands are documented
in the technical report “Facilities in Leonardo.”

2.1 Command Verbs

[put .c .a .v]

The first two arguments must be entities; the third argument can be any
KR expression. The effect of executing this command is that subsequently
the term (get .c .a) obtains the value .v

2.2 Functions and Predicates

(get c a)

Both arguments must be entities. The value is the most recently assigned
value according to the put command or according to an entityfile that has
been loaded using the loadfil command or equivalent. If no value has been
assigned then the function returns the symbol nil.

[has-location ef]

This literal is true iff the argument is an entity that serves as the name of an
entityfile. The concrete condition is that ef is associated with information
specifying the location of the entityfile in the directory structure at hand.
Ω

[exists-file ef]

The literal is true iff the entityfile ef is associated with information about
where the corresponding file is to be located in the directory structure, and
this file actually exists. Ω

6



7

2.3 Saving Assigned Values

Leonardo distinguishes between attributes and properties, although the op-
erations get and put as well as other similar operations can be used for
both attributes and properties. The differences are as follows.

• Attribute values shall be KR expressions and are represented accord-
ingly as data structures in computational sessions. Property values
are considered as strings, and often they are multi-line strings.

• When an entityfile is written using the writefil command or equiv-
alent, then the type of an entity determines which attribute values
are going to be written. The type of the entity, as specified by its
type attribute, shall be again an entity having an attributes at-
tribute whose value is a set or sequence of entities indicating which
attributes are to be written. – For properties there is no such rule,
and instead the writefil operation will in principle write back the
properties that were in the entityfile when it was loaded (more about
this below).

• In order to help with the distinction, there is a recommendation that
attributes shall be written with a small first letter and properties with
a capital first letter. However this is not a binding rule.

With respect to properties, the actual rule is that each entity has a hidden
attribute (not mentioned in the attributes attribute, and not written into
the textual entityfile) called textprops whose value shall be a set of the
symbols that occur as properties for the entity in question. The value of
this attribute is set when a entityfile is loaded and for the entities that occur
in that entityfile. Therefore, if one should wish to add or remove properties
during a session, this is done by changing the value of the entity’s textprops
attribute.

There are a few reserved attributes that need not be included in the list of
attributes in the attributes attribute, and that are written into the result
file anyway. This includes in particular:

• type, showing the type of the entity

• in-categories, where the value shall be a set of entities that indi-
cate particular characteristics of the entity in question

• latest-rearchived, which is used by the built-in version manage-
ment system in Leonardo.



Chapter 3

Operations on Entityfiles
and Knowledgeblocks

3.1 Knowledgeblocks

The following operations are used.

[crek .kb]

Creates a knowledgeblock with the name specified in the argument.

[setk .kb]

Selects the (existing) knowledgebase .kb as the current knowledgebase, for
use in some of the following commands.

The names of knowledgeblocks should be selected so as to end with the three
letters -kb – if this does not happen then the last three letters of the name
will be removed anyway. Introduction of a knowledgeblock called for exam-
ple colors-kb will result in the creation of a subdirectory called Colors
for the agent in question, and the creation of a catalog file called colors-kb
in that directory. It will also lead to the creation of a sub-subdirectory
Colors/cl which is used for command files expressed in CommonLisp, us-
ing the dual file approach that was described in Section 1.3.

The role of the catalog file is to contain information about which additional
entityfiles are created in the knowledgeblock in question, and also to pro-
vide a place for attached procedures that are to be invoked each time the
knowledgeblock is loaded. The locations of the entityfiles in the knowledge-
block are usually in the directory that was created for that knowledgeblock,
i.e. Colors/ in the example, but there are a number of cases where one
wishes to locate them elsewhere. Please take a look at the contents of such
a catalog file and you will see how it is organized. (You will see that there
is a certain redundancy in the attributes in a catalog file, but this is for
legacy reasons in the system).

The location of the catalog file can not be in the directory of the knowledge-
block since this would lead to a circularity in the access mechanism. It is

8



9

instead specified in a meta-catalog that is located in

Process/main/Defblock/kb-catal.leo

as seen from the agent’s top-level directory. This entityfile is therefore
updated when a new knowledgeblock is introduced.

The entity representing a knowledgeblock has a number of attributes that
control how the knowledgeblock is loaded, in particular the attributes requires
and mustload. The value of requires shall be a set or sequence of other
knowledgeblock entities, and the value of mustload shall be a set or sequence
of entityfile entities. Both attributes are optional. The loadk command is
defined so that it will first load the entityfile given as its argument, then
make a loop over the elements of its requires attribute and apply the
loadk operation on them, recursively, and finally apply the loadfil opera-
tion on the value of the mustload attribute. This feature makes it possible
to declare how some knowledgeblocks depend on some others.

For some odd reason that has not yet been understood it does not work to
include indivmap-kb in the requires attribute and it has to be loaded by
a separate command by the user.

The value of the mustload attribute will usually be entityfiles in the same
knowledgeblock, but this is not necessary and it may also contain entityfiles
from other knowledgeblocks, as long as their respective catalog files have
been loaded first.

3.2 Entityfiles

The following commands are used.

[crefil .ef]

Initializes an entityfile called .ef in the current knowledgebase.

[loadfil .ef]

Loads the entityfile .ef into the current session.

[writefil .ef]

Rewrites the entityfile .ef in its place in the directory structure, using the
catalog of the entity .ef that is present in the current session, and the
current values of the attributes and properties of the entities that are in
that catalog.

[curfil .ef]

Sets the entityfile called .ef to be the current entityfile, as used in the
following commands.

[addent .e]



10

Adds the argument .e to the contents of the current entityfile. Notice that
in order to be included when that entityfile is written, the entity .e must
have a value for the attribute type, and a value for at least one attribute
or one property.

[loadf]

Like loadfil, but for the current entityfile.

[writef .ef]

Like writefil, but for the current entityfile.

The following specialized functions may be useful.

(filemembers ef ty)

Obtains the set of those members of the entityfile ef whose type is ty. Type
is only defined directly as the value of the type attribute and does not allow
for subsumption from a supertype. Ω

Each entityfile is represented by an entity having the same name as the
entityfile. Thus if the knowledgblock colors-kb contains an entityfile called
warmcolors then it will (usually) be located as Colors/warmcolors.leo
and the entity warmcolors will be the first entity in the entityfile. Its most
important attribute will be contents where the value shall be a sequence
(or set) of entities, with itself as the first member.

The value of the contents attribute is used for specifying which entities are
going to be written to a file under the writefil operation. The loadfil
operation reconstructs this value from the actual contents of the file that it
reads, so there is no need to modify the contents attribute yourself when
you text-edit an entityfile.

There is a special (and somewhat dangerous) rule saying that when the
writefil operation writes a result file, it will omit entities that do not
have a value for the type attribute, and it will also omit entities that,
although they do have a value for type, they have neither any property
assigned, nor any value for any other attribute besides type. This means
in particular that if you happen to mis-spell the value of the type attribute
then the entity will be omitted. As long as you are a novice to the system
it is therefore strongly advised to make backup copies of entityfiles before
you do writefil operations.

The list of entities of the entityfile .ef is obtained as the value of (get
.ef contents). While working with a system one may sometimes wish
to find out what was the entityfile where a particular entity .e is defined.
This can be obtained as (get .e read-in-file). The hidden attribute
read-in-file is assigned when an entityfile is loaded.



Chapter 4

Episodes and Microworlds

The purpose of the episode construct in Leonardo is to set up a framework
for representing past actions and possible future actions. This is important
for several purposes, including for planning, for anticipation of the future
as influenced by other agents, for ’diagnosis’ of the causes of past or current
situations, and for case-based operations.

The purpose of the microworld construct is to make it possible for the
system to restrict attention to a limited number of entities, in particular,
entitites that represent things in the system’s environment, in order to make
it possible to analyze these things and their relationships in sufficient detail.

Leonardo has chosen a realization of these two constructs whereby they are
tightly integrated, so that each episode is associated with a set of entities
constituting its microworld.

4.1 Episodes – General operations

The following representation is used. There is a type for episodes, and indi-
vidual members of that type are normally called episode-0000, episode-0001,
and so on. The starting procedure for a Leonardo session creates episode-0000
as an initial episode and assigns attributes to it. It is not included in any
entityfile, so if the user wishes this episode to be preserved after the end of
the session, it is up to the user to include it in a suitable entityfile.

At each point in time during a session there is a current episode for it.
Actions that are executed, for example as the result of command input, are
added to the history-list of the current episode. Additional episodes can be
created using commands. These can either be sub-episodes meaning that
they are included into the episode where they are created, or side-episodes
meaning that the episode starting them is ended when the new one takes
over, and they are both sub-episodes of the same super-episode.

The following operations are used for episodes.

[Cur]

11



12

Create a new episode that is directly subordinate to the top episode, episode-0000,
and make it the current episode.

[curep]

Display the past actions in the current episode, in reverse order.

[topep]

Display the past actions in the top episode, in reverse order, and then show
the list of its sub-episodes. These may have been created using the Cur
command.

4.2 Microworlds

The facilities for microworlds are not part of the general Leonardo system,
and are made available in library form. The remainder of this chapter will
describe how it is defined for the purpose of the AI course TDDC65.

A microworld is in this case as an entity that can generate one or more
episodes, and that is associated with a particular set of verbs, namely,
verbs for actions that can be executed in those episodes. A microworld
episode is an episode where actions defined by a particular microworld can
be performed. Each microworld episode is associated with a set of included
entities, that is, entities that the microworld’s actions can have as arguments
in that episode.

The sequence of actions in the microworld is therefore a sequence of actions
that operate on a well-defined set of objects and with a selected set of verbs.
The session where the microworld session executes normally contains many
other entities and many other actions, for example system actions such as
loading and writing entityfiles.

When microworld episodes are used e.g. for planning and for case-based
learning, it is normally the case that many episodes, and often quite small
ones are generated for the same microworld. An additional use of mi-
croworlds arises in labs for our course, since labs are set up so that they
are completed when the student has been able to construct a microworld
episode with desired properties. When he or she has achieved this then the
successful episode is placed in the lab report file which is uploaded to the
registration agent for approval.


