KRF

Knowledge Representation Framework Project
Department of Computer and Information Science, Linkoping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

Erik Sandewall

Notes on Propositional and Predicate Logic
for the Knowledge Representation Framework

This series contains technical reports and tutorial texts from the project on
the Knowledge Representation Framework (KRF).

The present report, PM-krf-013, can persistently be accessed as follows:

Project Memo URL: www.ida.liu.se/ext/caisor/pm-archive/krf/013/
AIP (Article Index Page): http:/aip.name/se/Sandewall.Erik.-/2010/007/
Date of manuscript: 2010-07-29

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:
KRFwebsite: http:/www.ida.liu.se/ext/krf/

AIP naming scheme: http:/aip.name/info/

The author: http:/www.ida.liu.se/~erisa/

Introduction

This compendium is intended for those participants in my course on Artifi-
cial Intelligence that have not already taken a standard course in logic. It
contains the bare minimum information that is needed as prerequisites, and
does not replace an regular textbook.

The notation of the Knowledge Representation Framework (KRF) is used
for compatibility with the Al course, but we also mention other standard
notations in logic. Notice that there is a fairly large variety of notations for
formal logic in the literature.

Chapter 1

Propositional Logic

A logic formula in propositional logic is either a proposition symbol or a
composite formula which can be on any of the following forms

(not p)

(and p @
(or p q)
(imp p Q)
(eqv p)

where the components p and q are in turn logic formulas, recursively. In the
remainder of this chapter, the phrase ‘logic formula’ means logic formula in
propositional logic.

A wvocabulary of a logic formula or a set of logic formulas is a set of propo-
sition symbols containing all the proposition symbols that occur in it, or in
any of them. The vocabulary may also contain other proposition symbols
besides those that occur in the given formula(s).

1.1 Evaluation

An interpretation of a logic formula is a mapping from a vocabulary for it
to the truth-values T and F. In other words, the interpretation assigns one
of the values T or F to each proposition symbol in the vocabulary, and it
may also assign values to some other proposition symbols.

Let r be a logic formula and v be an interpretation of r . The value of r
in v is written (val r v) and is defined recursively as follows. If r is a
proposition symbol then (val r v) is the value that v assigns to r , that
is, (v r). Otherwise, r is a composite formula of some of the forms shown
above, and its value is defined as follows.

e If ris (not p): If (val p) = T then F otherwise T

e If ris (and p q): If both (val p) = T and (val q) = T then T
otherwise F

e If ris (or p @: If both (val p) = F and (val q) = F then F
otherwise T

e If ris (dmp p @ : If both (val p) = T and (val q) = F then F
otherwise T

o Ifris (eqv p q): If (val p) = (val q) then T otherwise F

An interpretation for a logic formula is called a model if the value of the
formula is T in that interpretation.

1.2 Equivalence Rules

A joint vocabulary for two or more logic formulas is a set of proposition
symbols that is a vocabulary for both or all of them, that is, it contains all
the proposition symbols that occur in any of the formulas.

Two logic formulas are said to be equivalent iff they have the same value
in all their joint vocabularies. We write p == q to express that p and q
are equivalent. Notice that the expression p == q is not a logic formula, it
expresses a relation between two logic formulas.

Do not confuse the connective eqv which can occur in logic formulas, with
the relation == that relates two logic formulas.

The equivalence relation == has the following simple properties which can
easily be verified, for arbitrary p, q, and r.

e p ==
e Ifp == qthenq == p
o Ifp ==gandq == rthenp == r
The following equivalence rules for logic formulas are also easily verified. In
all cases p, q, and r are arbitrary subformulas.
e (not (not p)) ==p
e (and p p) ==
e (and p @) == (and q p)
e (and p (and q r)) == (and (and p q) r)
e (or pp) ==p
e (or p @) == (or q p)
e (or p (or q r)) == (or (or p @) 1)
e (not (and p q)) == (or (not p)(not q))
e (not (or p q)) == (and (not p)(not q))
e (and p (or q r)) == (or (and p q)(and p r))
e (or p (and q r)) == (and (or p g)(or p 1))
e (imp p @) == (or (not p) q)
e (eqv p q) == (or (and p q)(and (not p)(not q)))

Finally we have the following substitution rule: If p == q, the formula p
contains a subformula r where r == r’, and p’ is obtained from p by re-
placing r by r’, then p’ == q.

These rules are used very frequently for rewriting logic formulas to some
other, equivalent form, so it is important to know them well.

According to these rules the relation == has the properties of the equality
relation. The reason why we do not simply write it as equality is that in a
later chapter we are going to introduce logic formulas that have the form [=
a b] so that equality is used within logic formulas. Therefore it is strongly
recommended to pronounce == as ‘is equivalent to’ and not as ’equals’.

1.3 Entailment Rules and Proofs

Equivalence rules are two-way rules: if p can be replaced by q according
to an equivalence rule, then q can be replaced by p. Entailment rules are
corresponding one-way rules and are defined as follows. A logic formula p is
said to entail a logic formula q iff q is true in all interpretations where p is
true, where of course one only uses interpretations over a joint vocabulary
for p and q. This is written p |= q. Here are some examples of entailment
rules.

e (and p q) I=1p
ep |= (or p @)
e (not p) |= (imp p q)
e (and p (not p)) I=gq

Moreover, a pair of logic formulas p and q is said to entail a third logic
formula r, which is written p, q |= r iff r is true in all interpretations
where both p and q are true, considering only interpretations over a joint
vocabulary between p, q and r.

The formulas that are given to the inference rule are called antecedents and
the result is called a consequent. Here are some additional examples of
entailment rules, now using two antecedents.

ep, (impp @ I=¢q
ep, ql=(and p @

The first one of these rules is called Modus Ponens and it is a quite important
rule.

Entailment rules are used for proofs. Proofs are constructed as follows. One
is given a set of logic formulas, which are called the premises of the proof.
Then one adds successively more logic formulas, where each of them must
be obtained from some of the previously introduced formulas according to
an entailment rule. These are called inferred formulas. It is customary to
write each premise and each inferred formula on a separate line. The last
formula in the proof is called the conclusion of the proof.

The following is a simple example of a proof. There are two premises,
marked P1 and P2.

P1 (and p q)
P2 (imp q 1)

q
r

1.4 Resolution Theorem-Proving

There are several ways of using logic formulas computationally. Some com-
putational methods are based on doing equivalence transformations on logic
formulas, or simply on evaluating a given set of logic formulas repeatedly in
particular ways. Yet another type of logic-based computation is theorem-
proving, where the program searches for a proof with a desired conclusion,
or a conclusion that belongs to a given class of desired conclusions. The lec-
ture notes on Knowledge Representation describes computational methods
of these different types.

Most theorem-proving programs are organized using the resolution method
for first-order predicate logic. First-order logic is a generalization of propo-
sitional logic and is described in the next two chapters. However the res-
olution method can also be used in the special case of propositional logic,
and we shall now describe the resolution method for propositional logic as
an introduction.

Consider that a set of logic formulas (the premises) and a specific logic for-
mula (the desired conclusion) are given, and one wishes to use the resolution
method for finding a proof of the desired conclusion. The first step is then
to rewrite the premises and the desired conclusion on conjunctive normal
form. In this case one first of all generalizes the and and or operators so
that they can take an arbitrary number of arguments, and not necessarily
two. Thus one can write, for example,

(or pgr s)
This can mean any of the following

(or p (or q (or r s)))
(or (or (or p q) 1) s)
(or (or p q)(or r s))

as well as a number of other configurations. These variants are equivalent
so it does not matter which of them is used. The definition of val for or-
and and- expressions can easily be generalized for the case of an arbitrary
number of arguments.

A logic formula is on conjunctive normal form if it is an and- expression
where each of the elements is an or- expression, and each argument of the
or- expression is a literal. A literal is defined as being either a proposition
symbol, or an expression of the form (not p) where p is a proposition
symbol. The following is an example of a formula in conjunctive normal
form.

(and (or p (not q) r) (or (mot p) q)(or r))

The procedure for rewriting a formula on conjunctive normal form is quite
easy:

e Replace all occurrences of imp and eqv by expressions using and, or,
and not.

e Move all occurrences of not “inwards” using
— (not (and p q)) == (or (not p)(not q))
— (not (or p @) == (and (not p)(not q))

e Simplify all subexpressions of the form (not (not p)) top
e Move all occurrences of or “inside” occurrences of and

e Simplify all or- expressions for example by rewriting (or (or p q)
r) as (or p q r) , and similarly for and

Each premise is converted to conjunctive normal form in this way. Then
the surroundig and- expression is removed so that each premise becomes a
set of or— expressions, and one takes the union of those sets. In this way,
one obtains the entire set of premises as a set of or—- expressions.

The same operation is done on the desired conclusion. If it is a set of a
single or- expression then that is the conclusion that is to be proved. If it
is a set of more than one or- expression then one makes a separate proof
for each of them.

For readability it is convenient to write (not p) as -p. This is possible
since after the transformations, all uses of not have a proposition symbol
as its argument, and never a composite expression.

Finally, instead of considering each or- expression as having a sequence of
arguments, one considers it as having a set of arguments. This means that
the order of the arguments is considered as unimportant, and repeated use
of the the same argument does not count. For example, (or p q p) is
considered as the same expression as (or p q). This means that a number
of equivalence rules that were mentioned above can be eliminated since they
are implicit in the notation.

An or- expression having a set of literals as its argument set is called a clause
in the resolution method. After the described transformations one has a set
of clauses as the premises, and a single clause as the desired conclusion, and
this is the starting point for constructing a proof. One single entailment rule
is used for the proof, namely the resolution rule, which has the following
form:

(or p Q), (or -p R) |= (or Q R)
where both Q and R represents no, one or more literals. For example,
(or ab -¢c), (or —a d) |= (or b -c d)

It is easily seen that this is a correct entailment rule, in the following ways,
and for the example. Consider now an arbitrary interpretation where both
(or a b -¢) and (or -a d) are true. The value of a in that interpretation
can be either T or F. If it is T then d must be true. If it is F then either b
or —c must be true. In either case at least one of b, -c and d must be true,
which means that the expression (or b -c d) must be true. The general
form of the rule is explained in the same way.

The resolution rule is a generalization of Modus Ponens, since the latter can
be written equivalently as

(or p), (or -p q@) |= (or @)

1.5 Proof by Contradiction

One important way of making proofs is using proof by contradiction. Sup-
pose you have a set of premises I and a desired conclusion p. Let I'” be
obtained by adding (not p) to I'. If it is possible to prove two propositions
q and (not q) from I, then one has a proof of p from I'. The argument is
that if (not p) were true then there would be a contradiction, which is not
possible, and therefore p must be true. Proofs by contradiction are quite
common both in everyday reasoning, and in mathematical texts.

The formal motivation for proof by contradiction is as follows. Consider the
set M of models for T', i.e. the set of all interpretations where all members
of I are true. Let M T be the subset of M containing those interpretations
where p is true, and M~ those where p is false, and let m™ be an arbitrary
member of M. Then all members of I are true in m~. All conclusions
from the members of I are also true in m~, according to the definition of
entailment rules. Therefore both q and (not q) are true m™, but this is not
possible, and it follows that M~ must be the empty set, so that M = M™.
Therefore p is true in all interpretations where the members of I' are true.

Proofs by contradiction can be used in different varieties of logic, and in
particular they are very often used in the resolution method. Instead of
converting the given premises and the desired conclusion separately, one
adds the negation of the desired conclusion to the premises, converts the
extended premises to clause form, and attempts to find a proof for a con-
tradiction, that is, to prove both (or p) and (or -p) for some proposition
symbol p. In fact, according to the definition of the resolution rule, if one
has obtained (or p) and (or -p) as conclusions then one can also obtain
the clause (or). This somewhat artificial expression is therefore a repre-
sentation for “contradiction” in the resolution method.

Chapter 2

Relational Predicate Logic

Relational predicate logic is a generalization of propositional logic that is
obtained by allowing proposition symbols to have arguments, and they are
then called predicates. The concepts and definitions for predicate logic are
similar to those for propositional logic. However, in order to establish the
convention that all occurrences of a predicate have the same number of ar-
guments one must start with the definition of a vocabulary. The definitions
of terms in this chapter apply to relational predicate logic.

A vocabulary consists of a vocabulary of predicates, a vocabulary of constants
and a vocabulary of variables. The latter two are simply two disjoint sets of
symbols. The vocabulary of predicates is a mapping from symbols (called
predicate symbols) to non-negative integers, where the predicate symbols
can not be members of the other two vocabularies.

In KRF we write variables preceded by a point (for example .x) or using
fixed-width italic characters (for example z) depending on what is available
in the graphic medium at hand.

2.1 Ground Propositions

We begin with the case where there are no variables, merely predicates
and constants, so the vocabulary of variables is the empty set. In this
case formulas are called ground formulas. A ground atomic formula for a
vocabulary is an expression of the form [p a b ...] where p is in the
vocabulary of predicates and each of the arguments a, b, etc. is in the
vocabulary of constants.

For example, if is-capital-of is in the vocabulary of predicates and finland
and helsinki are in the vocabulary of constants, then [is-capital-of
helsinki finland] 1is a ground atomic formula for the vocabulary in
question.

Notice that it is not necessary that all the predicates and constants in the
vocabulary are used in the formula, so for each formula there can be several
vocabularies for it, just like for propositional logic.

A ground formula for a vocabulary is formed from ground atomic formulas
using the propositional operators not, and, or, etc. which were defined

in the previous chapter.

An interpretation for a vocabulary consists of the following components:

e A set of objects, called the domain

e A mapping from constants to objects in the domain, called the con-
stant mapping

e A mapping from atoms to the truth-values T and F , called the pred-
icate mapping

In this definition, an atom is similar to a ground atomic formula except that
the arguments are objects in the domain, rather than constant symbols.

The wvalue of a ground atomic formula in an interpretation is obtained by
replacing each argument in the formula with its value according to the
constant mapping, and then obtaining the value of the result using the
predicate mapping. The value of an arbitrary ground formula is obtained
using the evaluation rules for the propositional operators that were defined
in the previous chapter.

Example. Consider an interpretation where the domain consists of the
five objects DK, SE, NO, FI, IS. These are intended to represent the five
Scandinavian countries. Consider then a vocabulary where the predicate
vocabulary is a mapping from the predicate symbol border-between to the
integer 2, indicating that it is a predicate of two arguments, and where the
constant vocabulary consists of the following constants:

sweden
denmark
finland
suomi

Let the constant mapping consist of the following maplets:

sweden SE]
denmark DK]
finland FI]
: suomi FI]

[B e B e B |

Notice that there is no one-to-one correspondence between constants and do-
main objects: several constants may have the same value, and some domain
objects are not the value of any of the constants. The predicate mapping
assigns the value T to the following atoms:

[border-between SE FI]
[border-between FI SE]
[border-between SE NOJ
[border-between NO SE]
[border-between NO FI]
[border-between FI NOJ

It assigns the value F to all other atoms using the same vocabulary. (The
predicate border-between is interpreted as “having a land border in com-
mon,” and having a bridge in common is not included.

This concludes the specification of the interpretation. The following are the
values of some formulas in this interpretation.

10

[border-between sweden suomil T
[border-between finland denmark] F
[border-between finland finland] F

(or [border-between sweden denmark]
[border-between suomi sweden])

—

2.2 Variables and Quantifiers

Ground propositions can be used for creating databases, but they are not
very useful for drawing conclusions. The introduction of variables and quan-
tifiers provides that additional expressivity. One then uses vocabularies
with a non-empty vocabulary of variables. The subsequent definitions are
extended accordingly.

An atomic formula for a given vocabulary is an expression that has the form
[p ab ...] where p isin the vocabulary of predicates and each of the
arguments a, b, etc. is in the vocabulary of variables or the vocabulary of
constants.

A logic formula for a vocabulary is a formula that is formed from ground
atomic formulas using the propositional operators not, and, or, etc., or
that is formed as either of the following:

[all x p]
[exists x p]

where x is a variable and p is a logic formula. The actual variable my be
for example .s or .v but we write x to indicate that x can be any of those.
Technically it is called a metavariable since stands for any of those variables.

The all and exists operators are called quantifiers, and a formula with
a quantifier as its top-level operator is called a quantified formula. A logic
formula is said to be closed if all occurrences of variables in predicate argu-
ment positions are inside an all- or exists- expression with that variable
as its middle element.

The definition of an interpretation is unchanged.

A wvariable assignment for the combination of a vocabulary and an interpre-
tation is a mapping from the variables to objects in the domain.

The value of an atomic formula in an interpretation and a variable assign-
ment for that interpretation is obtained by replacing each constant in the
formula with its value according to the constant mapping, replacing each
variable in the formula with its value according to the variable assignment,
and then obtaining the value of the result using the predicate mapping.

The value of an arbitrary formula is obtained using the evaluation rules
for the propositional operators that were defined in the previous chapter,
together with the evaluation rules for the quantifiers which are as follows.
Consider the evaluation of an expression [all x p] in an interpretation
I and a variable assignment B. For each object d in the domain, construct
a modified variable assignment B/d where the variable x is bound to the
value d and which is otherwise like B. Obtain the value of p in I and every
such B/d. If the value is T for all those B/d then the value of the quantified
expression is T, otherwise it is F .

11

The value for an exists- expression is defined in a similar way except that
the value of the quantified expression is T iff the value from at least one of
the evaluations with B/d has the value T .

The quantifiers can be understood as counterparts of the summation (X)
and product operators in mathematics. Just like summation is a repeated
application of addition over a range of values for the summation index, so
the all- operator represents a repeated application of the and operator
over the domain objects, and the exists- operator represents a repeated
application of the or operator.

2.3 Equivalence Rules for the Quantifiers

All the equivalence rules that were introduced in Chapter 1 apply for propo-
sitions in relational predicate logic as well. The following equivalence rules
for quantifiers apply as well and their correctness is easily verified. The
following definition is used: An occurrence of a variable in a logic formula is
said to be a free occurrence iff it is not a (direct or indirect) subexpression
of a quantification expression having that variable as its middle element.

e In a formula [all x p] ifp’ is obtained from p by replacing all free
occurrences of the variable x by the variable y , and if none of these
occurrences is inside a quantification of the variable y then
[all x p] == [all y p’] , and similarly for exists.

e If a formula p does not contain any free occurrences of a variable x
then p == [all x p] and p == [exists x p]

e (not [all x p]) == [exists x (not p)]
e (and [all x p] [all x q]) == [all x (and p Q)]
e (or [exists x p] [exists x q]) == [exists x (or p q)]

e If g does not contain any free occurrence of the variable x then
(or [all x p] @) == [all x (or p)] and
(and [exists x p] q) == [exists x (and p q)]

These equivalence rules are used widely when working with logical formu-
las containing quantifiers. They are also used when transforming a set of
premises to clause form in order to use the resolution method, but in that
case one needs a more general form of the logic which will be introduced in
the next chapter.

2.4 Entailment Rules for the Quantifiers

The following are some entailment rules involving quantifiers.

e [all x p] |= p’ where p’ is obtained from p by replacing all free
occurrences of the variable x by an arbitrary constant.

e [all x p] |= p’ where p’ is obtained from p by replacing all free
occurrences of the variable x by another variable y , provided that
none of those free occurrences of x is inside the scope of a quantifica-
tion that binds y.

12

The following is an example of a simple proof using the first of these entail-
ment rules. Each line begins with a line number, which is preceded by the
letter P for the premises, and each non-premise line ends with an indication
of which earlier line(s) is/are used for obtaining the present line.

P1 [all .x (imp [P .x1[Q .x1)]
P2 [all .y (imp [Q .yl[R .yD)]
P3 [all .x (imp [R .x][V .x])]
P4 [P green]

5 (imp [P green] [Q green]) P1
6 [Q green] P4,5
7 (imp [Q green] [R green]) P2
8 [R green] 6,7
9 (imp [R green] [V green]) P3
10 [V green] 8,9

Chapter 3

First-Order Predicate
Logic

In this chapter we make one more important extension of the logic language
from the previous section, namely, introducing the use of functions. In
this way the arguments of predicates can be composite expressions, called
terms, and not merely single constants or variables. The resulting logic is
called First-Order Predicate Logic (FOPL) or First-Order Predicate Calcu-
lus (FOPC).

First-order predicate logic can be used for expressing many kinds of formulas
that arise in mathematics. A simple example would be

[all .x [all .y [= (+ .x .y) (+ .y .x)]1]1]

expressing that for all values of x and y , x+y = y+x. In the present com-
pendium we use prefix notation throughout for predicates and functions,
but if infix are also allowed as described in the KRF Framework report one
can write the same logic formula as

[all .x [all .y [C.x + .y) = (.y + .x)]1]]

However, the major use of predicate logic in Artificial Intelligence and
Knowledge Representation is not for expressing mathematical information,
but for expressing application knowledge of other kinds. In those cases
one tends to obtain a fairly large number of predicates and of functions, as
well as a large number of constants, and in those uses it is convenient to
use the prefix-oriented and fully parenthesized notation of the Knowledge
Representation Framework.

3.1 Formulas and Evaluation

The definitions for first-order predicate logic follow the same pattern as for
relational predicate logic in the previous chapter, and some of the definitions
are unaffected by the generalization and therefore unchanged. They proceed
as follows.

A wocabulary consists of a vocabulary of predicates, a vocabulary of func-
tions and a vocabulary of variables. The last one is simply a set of symbols.

13

14

The vocabularies of predicates and of functions are mappings from sym-
bols (called predicate symbols and function symbols, respectively) to non-
negative integers. The sets of variables, function symbols and predicate
symbols must be disjoint.

A function that is mapped to zero in the vocabulary of functions is called a
constant, and is considered the same as a constant as defined in the previous
chapter.

A term for a vocabulary is either a constant, a variable, or an expression of
the form (£ a b ...) where £ is a function symbol, each of the arguments
a, b,... is a term, and the number of terms is the same as the number
specified for £ by the vocabulary of functions.

The definition of an atom remains as before. It has a counterpart in the def-
inition of a term-atom which is similar to a term except that the arguments
must be objects in the domain.

An interpretation for a vocabulary consists of the following components:

e A set of objects, called the domain

e A mapping from constants and term-atoms to objects in the domain,
called the function mapping , where £ and (£) are mapped to the
same object if £ is a function symbol that is specified to have zero
arguments

e A mapping from atoms to the truth-values T and F , called the pred-
icate mapping

The definition of a variable assignment is unchanged.

The value of a term for an interpretation and a variable assignment for that
assignment is obtained as follows. If the term is a variable then its value
is obtained from the variable assignment. If the term is a constant f then
the value is obtained by applying the function mapping to the expression
(£) If the term has the form (f a b ...) then the value is obtained by
applying the function mapping to the term-atom (£ a’ b’ ...) where a’
is the value of a with the same interpretation and variable assignment, and
similarly for the other arguments.

The definition of the value of an atomic formula is like above, except that
for the arguments one must now use the definition for the value of a term
that allows for terms consisting of a function with arguments.

The definition of the value of a composite logic formula is unchanged, includ-
ing both formulas formed using the propositional connectives and formulas
formed using the quantifiers.

3.2 Equivalence Rules and Entailment Rules

No additional rules are needed in principle, and the existing rules generalize
in their natural ways. However, when the substitution of a variable by
another variable is generalized to the substitution of a variable by a term
that may contain one or more variables, then the scope restriction will
apply to each of those variables. For example, if an expression [all x P]

15

is instantiated by replacing all free occurrences of x in P by the term (h
y z) then this is only allowed if none of the free occurrences of x in P is
a direct or indirect subexpression of a quantification over the variable y or
the variable z.

3.3 Resolution Operator for Predicate Logic

The resolution operator is defined for predicate logic, and the case of propo-
sitional logic that was described above is just a special case. For predicate
logic, like for propositional logic, one uses clauses that represent the dis-
junction (i.e., or- expression) of a set of literals. The difference now is that
each literal is a plain or negated atomic proposition, where the arguments
can be arbitrary terms so that they can use functions and variables.

Negated atoms can be represented by preceding the predicate symbol with
a dash, so for example (not [P a b]) can be written as [-P a b] like
in the propositional case.

Predicate-logic clauses do not contain quantifiers, so all variables are “free
variables,” and the interpretation is such that there is an implicit universal
quantifier (i.e., all- quantifier) around the entire clause, and for every
variable that occurs there. In principle there are two entailment rules,
namely, the propositional resolution operator that was introduced above,
and the instantiation rule which says that any variable can be replaced
by an arbitrary term, provided that this is done for all occurrences of the
variable in the clause. For example, the following clause

(or [P x y][R y x1)

entails each one of the following, given that x and y are variables and a and
b are constants:

(or [P a b][R b al)
(or [P a al[R a al)
(or [P y x][R x y1)
(or [P (f a)(g B)I[R (g b)(f a)])

as well as arbitrarily many others.

However, in practice one combines propositional resolution with instanti-
ation so as to make exactly as much instantiation as is needed in order
to unify terms, that is, make them equal. Suppose for example that the
following two clauses are given.

(or [P x (g I1IQ x y1)
(or [-P (h b) v]I[R v])

Here one can instantiate the clauses so that the two literals for P become
equal:

(or [P (W b)(g yIIQ (b b) y1)
(or [-P (A b) (g IR (g Y1)

and then the resolution operator gives:

(or [Q (B b) y1[R (g Y1)

16

It has been proved that it is sufficient to consider the most general instan-
tiations. Other and more specialized instantiations are also possible, for
example substituting y by (£ z), but according to that result no addi-
tional conclusions can be obtained by also considering that substitution,
besides the one showed above. The idea is that if that more specialized sub-
stitution will ever be needed later on in a proof, it can always be obtained
when needed by doing an additional instantiation then.

On the other hand, there are in fact cases where two given clauses can be
resolved in more than one way, namely if they contain more than one pair
of resolvable literals. For example, if one clause contains both a literal with
P and one with Q , and the other one contains both a literal with -P and a
literal with -Q then one can choose either to resolve with the P literals, or
to resolve with the Q literals. Both of these resolutions with their separate
resulting clauses have to be considered in order not to miss any conclusions.
Notice that one can not resolve both literal pairs at the same time!

3.4 Existential Quantifier Elimination

The transformation of given premises to clause form is done in a similar way
for the case of predicate logic as for the case of proposition logic, except there
is a major problem namely the elimination of quantifiers. The equivalence
rules for quantifiers make it possible to move all quantifiers outwards, so
that the result is a formula that contains one or more quantifiers inside
each other on the outermost levels, and then a quantifier-free formula inside.
That inside part can be transformed to conjunctive normal form without
problems, but the problem remains with the quantifiers. If all of them
are all- quantifiers then nothing needs to be done, but if some of them
are existential quantifiers then one does not have the clause form that is
required for the resolution operator.

The solution to this problem assumes first of all that the proof is done by
contradiction, so that one has added the negation of the desired conclusion
to the given premises, and that the composite of those is being transformed
to clause form. Then, after having done the standard transformations,
suppose for example that one has a formula of the form

[all x [all y [exists z [all v P]]]]

Now the following transformation is done: for each existential quantification,
introduce one more function symbol that is not already in the vocabulary,
for example g in the example, and let it have the number of arguments that
is specified by the number of universal quantifications outside the existen-
tial quantification in question. In the example one would let g have two
arguments. Every occurrence of z in P is replaced by the term (g x y) .

A function that is introduced in this way is called a Skolem function and the
transformation is called Skolemization. (Thoralf Skolem was a Norwegian
logician who invented this technique). The idea with this is that one can
always extend a function mapping so that for each combination of values
of x and y one picks one of the existing z as the value of (g x y). The
existential operator says that there exists at least one such object, and
even if there are several one can choose one of them for the value of g with
those arguments.

17

This process is repeated for all the existential quantifications. Notice that
if there are several existential quantifications in the same formula, then it
is only the universally quantified variables outside a given existential quan-
tification that shall be used for the function being introduced. Existentially
quantified variables outside the given one will go away by the transforma-
tion, so they shall not be used in this way.

In the example one obtains [all x [all y [all v P’] 1] where P’
has been obtained from P by replacing each occurrence of the variable z by

g xy).

There is one important thing that one must remember about this transfor-
mation: it does not result in an equivalent formula. It is not the case that
the obtained formula is equivalent to the given one under the formula equiv-
alence relation that we write as ==. However, it is useful anyway because
there is another, weaker relation between the formula before and after the
transformation, namely one of them s inconsistent if and only if the other
one is. This is all we need given that the resolution method is used for a
proof by contradiction. If resolution is able to produce a contradiction then
we know that the transformed formula is inconsistent, and then the original
formula is inconsistent as well.

Chapter 4

Representation of
Application Domains

The uses of predicate logic for expressing information about computer appli-
cations is a broad and complex topic and it is neither possible nor reasonable
to address it in the present notes. We shall only make a few points of general
relevance; more follows in the lecture notes on knowledge representation.

4.1 Partial Information

When logic is used for knowledge representation it is usually the case that
one describes the application using a knowledgebase i.e. a set of logic for-
mulas which are used for theorem-proving or other computations. This
knowledgebase may contain a large set of ground literals that express ele-
mentary facts about the application; it may also contain a moderately sized
set of non-ground formulas (i.e. formulas that use quantifiers and variables)
that express general properties of the application.

Applications may also be described using ordinary databases. One impor-
tant difference between using a database and using a logicist knowledgebase
is that the latter can express partial and incomplete information in more
flexible ways. The following is a simple example to illustrate this point.
Suppose we let the object domains in our interpretations consist of the in-
tegers, we use one single predicate namely equality, and we use one single
function namely multiplication, with two arguments. We may need a num-
ber of axioms that characterize equality and multiplication (more about this
later), but our application also dictates the use of one constant called foo
as well as the following premise that is included in the knowledgebase.

[= (x foo foo) 25]

Since foo is a constant, each interpretation shall assign a value to it, and
by our assumption this value shall be an integer. It is easily seen that in
order for this premise to be true in an interpretation, it is necessary for the
value of foo to be either 5 or -5. Therefore, if G is the conjunction of all the
other axioms that are needed, we will have

[= (x foo foo) 25], G |= (or [= foo 5][= foo -5])

18

19

In other words, with this knowledgebase we do not know exactly what is
the value of foo, and we can not conclude it, but we are able to conclude
and to express that it is either of two possible values.

This example is suggestive but it is also incomplete, since it has left open a
number of important questions: how can we restrict the object domain to
consist of the integers; how can we define the properties of the multiplication
function, and so on. The following sections will address some of those
questions.

4.2 Equality

It is very common that one wishes to use equality as a predicate in one’s
domain model. However, equality must then be understood as saying that
the same domain object is being referred to. In our Scandinavian countries
example above, for example, the formula [= finland suomi] should have
the value T since the two constants finland and suomi (the name for Fin-
land in Finnish language) refer to the same object, according to the selected
interpretation. The fact that the two arguments are different constant sym-
bols is not a reason for saying the the formula has the value F.

The familiar properties of the equality relation must be specified explicitly
using axioms if one uses standard first-order predicate logic. (Alternatively
one may use a more sophisticated logic where equality is “built in” but this
is outside the scope of these notes).

[all .x [= .x .x]]

[all .x [all .y Gimp [= .x .yl[= .y .xD]]

[all .x [all .y [all .z (imp (and [= .x .yl[= .y .z])
(= .x .z])]]]

Moreover, for every argument position of every predicate symbol there must
be an axiom similar to the following one:

[all x [all y [all z (imp [= x yl(eqv [P x 2] [P y 2]1))]1]1]

Similarly, for every argument position of every function symbol there must
be an axiom similar to the following one:

[all x [all y [all z (dmp [= x yl1[= (f x z) (£ y 2)1)1]1]

These rules that do not specify a single axiom but a set of similar axioms
are called azioms schemas.

4.3 Closed Domains and the Unique Names
Assumption

Predicate logic is defined in general in such a way that several constants may
have the same object as value, and there may be objects that are not named
by any constant. However in some applications one may wish to make
the opposite assumption, that is, to assume a one-to-one correspondence
between objects and constants. There are separate axioms for the two parts
of this which should be included in the domain model.

20

The closed domains assumption says that there is no domain object besides
those that are named by the constants. It is expressed using an axiom of
the form

[all x (or [= x all=xbll=xc] ... [= x g])]

where the constant symbols a and onwards are all the members of the vo-
cabulary of constants.

The unique names assumption says that no domain object can be the value
of more than one constant. It is expressed using an axiom of the form

(and [/=abll/=ac] ... [/=agll/=bcl ...)

enumerating all pairs of different constant symbols. In the particular case
of the equality relation we write its negation as /= and not as -= since the
former looks more natural.

Notice that both of these require the use of the equality axioms in order to
be of any use.

4.4 Standard Domains, Predicates and
Functions

Suppose our application makes use of a number of numerical, integer quan-
tities and we wish to characterize them using logic formulas. For example,
the application may involve persons each of which has an age, expressed as
an integer number of years, and the general rules may include a rule saying
that the age of a person is less than the age of the person’s parents, provided
that the latter exist in the sense of being alive.

One way of organizing this is to decide that the vocabulary shall include,
among other things, the textual representations of all integers, for example
the symbols 23 and -12, and each interpretation shall map each of these
symbols to the corresponding number. For example, the symbol 23 that
consists of the digit 2 and the digit 3 shall be mapped to the number 23
which is equal to 22+1. This decision can be partly enforced using the
techniques of the previous section. (Actually it is problematic for a number
of reasons, such as that there is an infinite number of integers, but we ignore
that at this point).

Then we shall also need functions, such as the function + for addition and
the function * for multiplication. The arrangement in “pure” predicate
logic is that one shall include these function symbols in the function vocab-
ulary, and one shall introduce premises which are then also called azioms
that characterize the properties of these functions, so that only those inter-
pretations are admitted where the function mapping assigns the intended
functions to these function symbols. This is however a clumsy way of doing
things, and it is more convenient to use standard functions in such cases.
The idea is simple: besides specifying that the object domain shall contain
the integers, one specifies also that the function mapping shall map the
function symbol + to a mapping representing addition, that is, a mapping
consisting of all maplets of the form

[: <x y> x+y]

21

for all combinations of x and y . Then one does not need to write out any
axioms that characterize the properties of the addition function.

This approach is computationally straightforward as long as one merely has
to implement the evaluation operator, which was called val above, since
when it is required to evaluate a term having + as its leading function, then
instead of looking up the value of the term for the evaluated arguments
using the function mapping, one will simply invoke a plug-in the implements
the definition of addition of integers. Unfortunately, however, the problem
comes back in another form when one implements theorem-proving, for
example using resolution. Consider the problem of resolving the following
two clauses:

(or [P 24] @)
(or [-P (+ v 2)] [H v])

Clearly in order to unify the literals for P one must select v as 22, obtaining
the resolution result

(or G [H 22])

In other words, it is not sufficient to have a plug-in that is able to perform
addition, one also needs another plug-in that is able to perform the inverse
operation of addition with respect to one of the arguments. Furthermore,
consider the problem of resolving the following two clauses:

(or [P (+ x 4)] [G x])
(or [-P (+ y -3)] [H y1)

These can be resolved as follows in a step-by-step process. First rewrite
them as

(or [P (+ (+y -7)] [G (+y -TDD
(or [-P (+ y -3)]1 [H yD)

Simplify to

(oxr [P (+y-3)] [G (+y -]
(or [-P (+ y -3)] [H yI)

Now apply the elementary resolution operator, obtaining
(or [G (+ y -T)I[H yI)

This example shows how resolution of literals that use a standard function
may require a nontrivial combination of operations that capture the prop-
erties of that function in a variety of ways. In practice it will not be done
using the sequence of steps that were shown here but in a more aggregated
way, but the basic point remains.

On the other hand, if a function like + in this example is characterized using
axioms then the manipulations that were shown in the example will come
out through successive uses of the resolution operator.

Standard predicates are introduced and used in a similar way. For example,
it may be appropriate to define the less-than relation between integers as a
standard predicate.

22

4.5 Direct Axiomatization of the Non-negative
Integer Domain

For comparison, and not for practical use, it may be interesting to see how
the integers from 0 and up can be characterized using axioms. In this
case, one introduces one constant called 0, one function called 1+ which is
intended as the function of adding one to an integer, and one function of two
arguments called +. (This is the same name of the function 1+ as is used
in CommonLisp). The following axioms are used, with universal quantifiers
omitted:

(dmp [= (1+ x) (1+] [= x yD)
[= (+ x 0) x]

[= (+ (1+ x) y) (+ x (1+ y))]
A few more?

In addition there is an induction rule: If P is an arbitrary predicate of one
argument and the following two formulas hold

[P 0]
(imp [P x] [P (1+ x)1)

then it follows [all x [P x]] From these axioms together with the ax-
ioms for equality it is possible to prove for example

[= (+ x D+ y x)]

Doing so is very cumbersome, however, so this is not a useful method from
a practical point of view.

The bottom line is that when characterizing an application using a know-
ledgebase in the sense of a set of logic formulas, it is important to find a
balance between what is expressed using axioms and what is expressed using
standard domains, functions and predicates.

