
KRF

Erik Sandewall

Software Architectures and Languages for
Autonomous Intelligent Agents

Version I, Incomplete

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-012, can persistently be accessed as follows:

Project Memo URL: http://www.ida.liu.se/ext/caisor/pm-archive/krf/012/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2010/009/

Date of manuscript: 2011-01-02

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

http://www.ida.liu.se/ext/caisor/pm-archive/krf/012/�
http://aip.name/se/Sandewall.Erik.-/2010/009/�
http://www.ida.liu.se/ext/krf/�
http://aip.name/info/�
http://www.ida.liu.se/=xxxxx�

1

Introduction and Prerequisites

The incorporation of intelligence in autonomous software agents is a central
area of interest for Artificial Intelligence, for two reasons: it is required in
a number of application areas, and it is a generative topic so that research
in this area produces techniques that turn out to be useful for other types
of applications as well. The present compendium is an introduction to con-
temporary software techniques in this area, that is, software architectures,
representation languages and their associated software “engines,” and so
forth.

This compendium uses the notation and terminology of the Knowledge Rep-
resentation Framework, and it is recommended to study the following texts
before the present one:

• Knowledge Representation Framework: Overview of Languages and
Mechanisms

• Compendium of Programming Techniques for Knowledge-based Au-
tonomous Systems, Part I: List Processing

• For the reader who is not already familiar with formal logic, in partic-
ular first-order predicate logic: Notes on Propositional and Predicate
Logic for the Knowledge Representation Framework.

• The Goals of Artificial Intelligence Research - A Brief Introduction

All of these are available on the webpage of the Knowledge Representation
Framework Courseware, http://www.ida.liu.se/ext/krf-courseware/ .

In the sequel we shall simply write “intelligent agents” and let the attribute
“autonomous” be understood.

About Cited Text

This compendium makes fairly extensive use of clippings from webpages
and reports that describe particular systems and languages. This is not
done merely for the convenience of the author. I believe that often the best
concise description of a system is made by the people that built it, and
if such a good description is available then it does not make any sense to
reformulate it merely for the sake of originality. On the other hand it may
sometimes be necessary to make minor adjustments in cited text fragments
in order to integrate them well into the surrounding text. Therefore, when
sections of text in this compendium are marked as being citations from an
external source, it shall always be understood that the citation may differ in
minor ways from the original, but without changing its essential meaning.

Citations from Wikipedia are made in accordance with the requirements
that are stated on the Wikipedia website, with direct links to the Wikipedia
page being cited. In other cases, and except for very short citations and one
case where the original author could not be reached, I have requested and
obtained permission from the authors or proprietors of the original text to
use it here, and these have also seen the modifications.

Chapter 1

Intelligent Agent
Architectures and
Terminology

The overall structure of a piece of software is often called its “architecture”
or its software model. The architecture specifies the answers to questions
such as, for example,

• What are the major collections of information in the system, and how
is information exchanged between them?

• What are the major computational processes in the system, and how
are they invoked, how do they invoke each other, and more generally
what are the methods for controlling the overall flow of information?

• What are the notational conventions for information when it is stored
in the system, and when it is exchanged with users and with other
systems?

When we think of intelligent agents as a particular kind of software system,
and a particular topic of research and development, there is an assumption
by many that there can be a specific software architecture or software model
that is appropriate for intelligent agents in general, although of course par-
ticular applications will require particular variations of the general design.

The present chapter will focus on one particular intelligent agent architec-
ture, the Belief-Desire-Intention Software Model, or the the BDI model for
short. This model is widely accepted in Artificial Intelligence in the sense
that there are many interpretations and variants of it, so many researchers
use it although they also make adaptations to fit their specific experience
and preferences. Also, even those who favor other software models than
this one will anyway often describe their approach by how it differs from
the BDI model.

2

3

1.1 Components of the BDI System State

Many computer programs are request-driven in the sense that their basic
behavior is to wait for a command or request from a user, execute the
command or service the request, and then wait for the next one. This
applies in particular for many softwares that people use in their personal
workstations or laptops, such as systems for document preparation and
electronic mail, but it also applies for servers and for transaction processing
systems for example in banking.

Autonomous agent systems have a fundamentally different character. They
are characterized by a system state that contains the agent’s “state of mind”
at each point in time, and by a cyclic process that uses and updates the
system state repeatedly. Each main cycle of the agent’s behavior may re-
ceive information from sensors, if we are talking about a physical robot, as
well as from interactions with users and with other agents. However, what
the agent does then is primarily determined by its current intentions which
is one part of its system state. Its intentions may be revised due to the
inputs it has received, of course, but such a change of intention is only done
after due deliberation and not immediately in order to service a particular
request.

The structure of the system state is therefore of paramount importance, and
the BDI model begins by defining and naming a number of system state
components. The following list of components is taken from the Wikipedia
article on the Belief-Desire-Intention Software Model [1] while just omitting
a few phrases that are of marginal importance at this point. It is represen-
tative for the literature although different authors differ somewhat in their
use of the terms. The definitions below will therefore be used for the present
compendium and the present course. Words and phrases that are written
in italic style will be defined later on.

Beliefs: Beliefs represent the informational state of the agent, in other
words its beliefs about the world (including itself and other agents). Beliefs
can also include inference rules, allowing forward chaining to lead to new
beliefs. Using the term belief rather than knowledge recognizes that what
an agent believes may not necessarily be true (and in fact may change in
the future).

Beliefset: Beliefs are stored in a database (sometimes called a belief base
or a belief set), although that is an implementation decision. [We will use
the term beliefbase rather than beliefset] .

Desires: Desires represent the motivational state of the agent. They rep-
resent objectives or situations that the agent would like to accomplish or
bring about. Examples of desires might be: find the best price, go to the
party or become rich.

Goals: A goal is a desire that has been adopted for active pursuit by the
agent. Usage of the term ‘goals’ adds the further restriction that the set
of active desires (i.e., current goals) must be consistent. For example, one
should not have concurrent goals to go to a party and to stay at home -
even though they could both be desirable.

Intentions: Intentions represent the deliberative state of the agent - what

1http://en.wikipedia.org/wiki/Belief-Desire-Intention software model

http://en.wikipedia.org/wiki/Belief-Desire-Intention_software_model�

4

the agent has chosen to do. Intentions are desires to which the agent has
to some extent committed. In implemented systems, this means the agent
has begun executing a plan.

Plans: Plans are sequences of actions (recipes or knowledge areas) that
an agent can perform to achieve one or more of its intentions. Plans may
include other plans: my plan to go for a drive may include a plan to find
my car keys.

Events: These are triggers for reactive activity by the agent. An event
may update beliefs, trigger plans or modify goals. Events may be gener-
ated externally and received by sensors or integrated systems. Additionally,
events may be generated internally to trigger decoupled updates or plans of
activity. End of quotation.

Desires can include both standing desires such as “do not allow any mal-
ware into the computer” and occasional desires that apply at a particular
time, such as “obtain printouts of all the pictures in the favorite photos
directory.” The same distinction applies for goals. Intentions are always
occasional, on the other hand, although they may involve repeated execu-
tion of a particular task at several points in time, for example “backup this
USB every morning.”

The elementary components of a plan are called actions, so each plan is
either an action or a partially ordered set of plan steps; each plan step is
either an action or a subordinate plan, called a subplan. A plan consisting
only of actions and no subplan is called sequential iff the order on the plan
steps is total. An arbitrary plan is called sequential iff the order on the plan
steps is total and all its subplans are sequential. Some systems and ap-
proaches include additional information in plans, for example, information
about the timing and duration of actions and subplans.

An action consists of an action verb and arguments for the action. Actions
may be primitive or compound according to the action verb. A compound
action verb is defined by a plan script that shall be performed in order to
perform an action with that verb. A plan script is like a plan except that
it can refer to, and make use of the arguments of the action invoking the
script. A primitive action verb must instead have an attached procedure in
a conventional programming language that is executed in order to perform
an action with that verb.

A plan that consists of a single, primitive action is called atomic; plans
consisting of several actions or subplans, or of a single, compound action
are called composite or non-atomic.

1.2 The Main Cycle of the BDI Model

1.2.1 The Generic BDI Main Cycle

The following is the simplest version of the main cycle in the BDI model.
This cycle is defined as a script, namely, as a simple program consisting
of a few steps, each of which must be further defined, and which can be
defined differently in different application situations. This segment of text

5

is quoted from the important article by Georgeff and Rao in 1995 [2] where
they describe the principles for their Procedural Reasoning System (PRS)
and its successors. This article is recommended reading. We quote a passage
of its text, with a few explanations inserted.

initialize-state
repeat

options := option-generator(event-queue)
selected-options := deliberate(options)
update-intentions(selected-options)
execute()
get-new-external-events()
drop-unsuccessful-attitudes()
drop-impossible-attitudes()

end repeat

The value of the variable event-queue is maintained throughout the process
and is initially an empty set or queue. At the beginning of every cycle, the
option generator reads the event queue and returns a list of options, that is,
things that may become intentions. Next, the deliberator selects a subset
of the options to be adopted and adds these to the intention structure. If
there is an intention to perform an elementary action at this point in time,
then the agent executes it. Any external events that have occurred during
the interpreter cycle are then added to the event queue. Internal events
are added as they occur. Next, the agent modifies the intention and desire
structures by dropping all successful desires and satisfied intentions, as well
as impossible desires and unrealizable intentions. End of quotation.

The plan library is fixed in the basic model and there is no mention of how
to generate new plans. Therefore, if you consider three major activities for
an autonomous intelligent agent, namely:

• Create plans

• Choose between possible plans

• Execute plans

then the main cycle script separates the latter two activities. However,
the script does not say anything about the activity of plan creation. It is
organized around some of the presumed BDI system state components that
were defined above, namely, events, intentions, and plans. One must assume
that several of the operations such as deliberate and option-generator
make use of the agent’s beliefbase. The notions of desires and goals are only
present in this main cycle in the sense that “attitudes” is used as a common
name for desires, goals and intentions in the script. Furthermore, selection
of intentions and plans may take standing desires and goals into account in
order to increase or decrease the estimated merit of adopting that intention
or plan.

2Rao, M. P. Georgeff. (1995). ”BDI-agents: From Theory to Practice”.
Proceedings of the First International Conference on Multiagent Systems (IC-
MAS’95). https://www.aaai.org/Papers/ICMAS/1995/ICMAS95-042.pdf

6

1.2.2 Choice of Intention and Plan

The operation option-generator in the main cycle script depends on the
application and has to be defined in its own way for each of them. We
therefore proceed to discussing the next two operations in the script, that
is, deliberate and update-intentions.

Going back to the definitions, intentions are “desires to which the agent
has to some extent committed” and a plan is “a sequence of actions.” In
a simple interpretation of this, an intention may be for example “go to the
train station” and a plan may be “walk to the bus stop, wait for the first
bus to the train station, go with that bus.” The agent may contain a plan
library consisting of fixed plans, and with information about which plans
are appropriate for which intention. When performing the main cycle script
it needs to look up available plans for a selected intention, choose between
them, and use one for the step called execute.

At some points the agent has to make a choice between different possible
intentions, such as “go to the train station” or “cancel the train trip.” This
choice should be based on the desires and goals that the agent has estab-
lished in its system state. The definition of the main cycle script is not clear
about whether the choice of intention, and the choice of plan for a given
intention shall be included in deliberate, in update-intentions, or even
in execute.

The design choice in this respect depends on whether the choice of intention
and the choice of plan are interdependent or not. Suppose the agent has
the option of “going to Stockholm by train over the day” or “cancelling the
train trip.” It selects the former option, i.e. turns it into an intention, based
on the fact that it is in line with some of its goals, such as seeing football
(soccer) matches. Then it considers the possible plans for this. The first
step of the plan will be going to the train station, and there are several
subplans for this in the plan library, including walking, taking the bus, and
taking a taxi. Suppose now the agent considers all the plans, decides that
each of them has significant disadvantages, and then changes the intention
to the second one and cancels the trip. How is this possible in the framework
of the main BDI cycle?

One possibility is to arrange that choice of intention and choice of plan are
done in sequence. Then the choice of going to Stockholm is done in the
deliberate step, and the update-intentions step consists of extending
the structure of selected intentions by adding information to them, in partic-
ular, adding an appropriate plan for the selected intention. If no plan can be
found then the intention fails in the execute step, so nothing happens in this
respect, and it is removed in the operation drop-impossible-attitudes.

Another possible realization of the main cycle script is to let the deliberate
step consist of more things: consider the newly generated options, identify
possible plans for each of them, and evaluate each of them with respect to
both the importance of the intention (i.e. how it relates to one’s desires and
goals) and the quality of the considered plan with respect to those desires
and goals. Then update-intentions consists of making a choice between

7

the intention/plan pairs based on this evaluation.

The main cycle script shown above can therefore be understood and imple-
mented in more than one way. When one is actually designing the software
for an intelligent agent one may use it as a first outline of the design in
a top-down design process, but it must be complemented by a number of
additional design decisions.

1.2.3 Alternative Models for Plan Execution

Although the main cycle script separates choice of plans from execution
of plans, it actually only provides structure for the former activity, since
plan execution is represented by the simple operation execute. The exact
character of plans, the method for executing plans, and the relation between
intentions and plans must therefore be clarified, and these questions may
be answered differently in different uses of the main cycle script.

Consider therefore the situation where the agent has committed to one
particular intention and one particular, non-atomic plan for realizing that
intention. Assume for simplicity that the plan is also sequential. One way
of defining execute is to say that it will perform the entire plan in one go,
so that the execute operation has finished when all the steps in the plan
have been performed, and then the main cycle script can proceed to its next
step.

This is an appropriate definition in some cases, but not always. It is prob-
lematic if the plan execution takes a certain time, as is often the case for
mobile robots, for example, and for two reasons: first, it precludes any
activity with the other steps in the main cycle script while the robot is per-
forming its actions, such as moving from one place to another, and secondly
it does not facilitate the handling of problems that may arise during the
execution of the plan, namely, if something should go wrong then.

An alternative arrangement is to let the interpreter for the main cycle script
maintain the execution stack for each plan being performed, so that the
execute operation means “advance one step in the current plan, perform
one more action, but no more.” This has the effect that all the other steps
in the main cycle script are executed once again between each step in the
plan and its subplans on all levels. The definition in Subsectin 1.2.1 favors
this approach. This solves the mentioned problem but introduces another
one, namely, that it may slow down the system considerably. We shall refer
to this as BDI-aware plan execution.

A third possibility is to use multiple execution threads as provided by the
operating system or the programming language at hand, so that the execu-
tion of a plan can continue in a separate thread and the main cycle script
can proceed in the original thread. In this case the definition of execute
in the script shall really be understood as invoke since the only thing that
happens before the script proceeds to its next step is that the execution of
a plan is started.

The separate-thread approach has several advantages, but it is less easy to
implement and it requires certain extensions to the basic model in order to
handle the situations that arise when the execution of a plan fails without
having achieved the intention that the plan was started for. The failure of

8

the plan should then generate an event, in the sense of that term in the
BDI model, in order to communicate the failure back to the main cycle.
This event should be taken care of there by a reconsideration of the agent’s
intentions, for example, cancelling the intention in question since it could
not be realized, or retaining the intention and trying again with another
plan.

A similar thing should in fact be possible in the system even if a plan
proceeds according to its definition but the execute operation recognizes
that the operation takes unexpectedly much time or other resources. In
such cases should the plan also generate a warning event that can be picked
up in the main cycle, and that may cause it to discontinue the execution of
the plan in favor of some other action.

1.2.4 Restrictions on the BDI Model

As Georgeff and Rao write in their article about the PRS system, the main
cycle script and its description is an idealized definition that corresponds
well to the underlying psychological theory, but it is not a practical system
for rational reasoning. The authors propose the following restrictions in
order to obtain reasonable performance and a manageable system:

• Consider only beliefs about the current state of the world. Each belief
is a literal in the sense of logic, that is, an expression consisting of a
predicate and its arguments, or the negation of such an expression.

• Represent information about the means of achieving certain future
world states as a library of plans. Each plan has a body, an invoca-
tion condition that specifies what intentions the plan in question may
achieve, and a precondition that specifies what must hold in order for
the plan to be executable.

• The system forms an intention by adopting a plan, and in each case
it creates a separate process for executing that plan, allowing for the
plan to contain invocation of subplans.

1.2.5 Logicist Realization of the Main BDI Cycle

It may seem strange at first that the main BDI cycle defines a somewhat
elaborate structure for the selection and management of intentions and
plans, but it says absolutely nothing about the execution of plans. One
reason for this is however that there are efforts to define the operation of
the steps in the main cycle in terms of logic, except usually the execute
step, and not merely as a conventional subprogram. Such a logicist def-
inition of the main cycle may be used as a specification for conventional
programming, or it may be used directly by manipulating the logic formulas
in the operation of the intellligent agent.

The following also taken from the Wikipedia page; should be simplified. An
important aspect of the BDI software model (in terms of its research rele-
vance) is the existence of logical models through which it is possible to define
and reason about BDI agents. Research in this area has led, for example, to
the axiomatization of some BDI implementations, as well as to formal logical
descriptions such as Anand Rao and Michael Georgeff’s BDICTL. The latter

9

combines a multiple-modal logic (with modalities representing beliefs, de-
sires and intentions) with the temporal logic CTL*. More recently, Michael
Wooldridge has extended BDICTL to define LORA (the Logic Of Rational
Agents), by incorporating an action logic. In principle, LORA allows rea-
soning not only about individual agents, but also about communication and
other interaction in a multi-agent system. End of quotation.

1.3 The SOAR Architecture

Although the Belief-Desire-Intention Software Model is widely used and
adapted, it is not the only available one. For perspective we shall briefly
describe the SOAR architecture [3] which actually predates the BDI model.

The SOAR Architecture was proposed by John Laird, Allen Newell and
Paul Rosenbloom in the mid 1980’s as a step towards a “Universal Theory
of Cognition.” In other words, it was motivated at least as much by the dis-
cipline of Psychology as by Artificial Intelligence. It proposes that cognitive
behavior shall be modelled using the following main cycle:

• Input

• Elaboration

• Decision

• Application

• Output

In the input step the system receives observations from its sensors, in a broad
sense of that word, so for example the reception of a command phrase from
the user is considered as just one of those inputs. The result of the input step
is to update the agent’s beliefbase, including in particular its model of the
environment where it is operating. The elaboration step consists of drawing
conclusions from the state of the beliefbase that resulted from the input
step. These “conclusions” may be bona fide conclusions about the current
state of the outside world, but there can also be internal conclusions. One
particular kind of internal conclusions is suggestions, that is, expressions
representing some action that it might be appropriate for the agent perform.
Suggestions are similar to ‘options’ in the BDI model.

The purpose of the decision step is to select one action from the suggestions
in the outcome of the elaboration step. In simple cases there is just one
suggestion and this suggestion is a good one, according to criteria being
used by the decision step, but in many cases this is not so. Maybe there are
several suggestions, or no suggestion, or one suggestion but one that does
not meet the standards. Situations such as those are called impasses . In
these cases the decision step starts a sub-process of the same form as the
main process, with the goal of resolving the impasse and coming up with a
result from the top-level decision step.

The application step executes the outcome of the decision step, and the
output step reports the results to the parties concerned, for example, to a
log that keeps track of past actions and their results.

3http://sitemaker.umich.edu/soar/home

http://sitemaker.umich.edu/soar/home�

10

A major difference between the BDI model and the SOAR model is there-
fore that the SOAR model cycle is defined to be recursive: at certain points
it calls itself recursively and causes a sub-loop of the same kind as the loop
at hand, although normally one with limited duration. There is no counter-
part of this design choice in the BDI model. However, the same effect can
be achieved there as well through a suitable definition of the intention struc-
ture, including in particular the use of a stack-like construct that replicates
the recursive invocation of the main cycle in the SOAR model.

1.4 BDI-Aware Plan Execution

Let us return now to the alternative of BDI-aware plan execution which was
mentioned briefly above, where the main BDI cycle proceeds step by step
through the plan and all its subplans possibly on several levels, and where
the revision of the intention structure occurs before every such step. This
is done down to the level of primitive actions, and these are executed by
either of the other two methods that were described in Section 1.2.3, that
is, either by direct execution or by the use of concurrent execution threads.

In particular, consider the combination of BDI-aware plan execution with
the use of event-to-plan shortcuts where the arrival of a particular type of
event in event-queue is allowed to bypass the operations called option-generator
and deliberate, and to proceed directly to the execute operation. This
may be used for implementing reflex actions where a particular stimulus
leads to an immediate and rapid reaction, for example in order to avoid
danger or harm.

1.4.1 Understanding of Natural-Language Phrases

However, event-to-plan shortcuts can also be used for defining various kinds
of standard behavior in the main cycle. Consider for example the case where
the agent is able to receive phrases in natural language (English, Swedish,
and so forth) and to react properly to them. This task is divided into two
main parts: understand the phrase being received, and respond to it. Both
of these steps may make use of the machinery of the top cycle: one may
need to deliberate both in order to understand the phrase, and in order to
answer it if it is a question, or to perform the requested action if this is
what the phrase is about.

One way of implementing this assumes that there is one specific event type
for the arrival of an incoming phrase, and each event of this type has the
phrase in question as a parameter. One can then let the plan library include
a plan consisting of the two actions or subplans for understanding the phrase
and for responding to it, and where the first action produces a representation
of the contents of the phrase in a representation that the second action can
interpret. The event type for arrival of incoming phrase obtains a shortcut to
this plan. After this, each phrase arrival leads to an immediate start of the
phrase understanding action, and when it has been completed successfully
it is followed by the response step.

This way of organizing the computation has the advantage that the treat-
ment of natural-language input is well integrated with other causes that lead
the agent to perform actions, such as its own spontaneous reaction to events

11

in the environment. It also means that failure to understand a phrase, or to
perform a phrase as required, can be handled by the same failure-handling
mechanisms as are used for other purposes in the main cycle.

What has been described is one example of a cognitive plan, that is, a plan
consisting of actions that are performed internally in the agent itself, with
effects on its system state, but without any significant effects on the agent’s
environment. Cognitive plans are a powerful means of augmenting the main
cycle with facilities that are generally considered as important aspects of
intelligence. We shall consider a few of those in the next subsection.

1.4.2 Cognitive Plans

Key points in the intended contents in this subsection:

• Planning: If the deliberate operation is not able to find a plan in
the plan library for a selected intention, then it can generate a failure
event that has a shortcut to the planning action, that is, the action
of constructing a plan for achieving that intention

• Case-Based Learning: This cognitive action presupposes that the
agent contains a review action that is invoked at the end of the ac-
tivities for an intention, and that does two things: it accumulates the
information about how the intention was processed into the agent’s
memory, and it analyzes whether there is something to be learnt from
how this was done. This is an example of a cognitive plan. In order
to have a loose coupling between a given action and the review of it,
the things are set up so that the completion of an ordinary action
generates an event of a particular type, which in turn may trigger
the review action via the option-generator action, or even via a
shortcut.

• Error Recovery and Robustness: When an action or plan fails,
it may sometimes be necessary to do a certain amount of deliberation
in order to figure out what were the causes of the failure, and to
decide what to do next. Deciding what to do next is a natural task
for the main cycle as such, but the diagnosis of what went wrong
is an activity that has its own character and for which there exist
systematic methods. It is therefore reasonable to consider diagnosis
in this sense as a cognitive action in the agent.

In general, since the main BDI cycle script is expressed in such general
terms, there are many needs for making it more specific, or to replace it
with something else, in order to have something that is applicable for each
type of application. However, in some cases it is possible to accomodate such
needs by introducing a cognitive plan and to provide it with an appropriate
definition, as these examples have showed.

Chapter 2

Systems for Planning and
Plan Execution

As already discussed, the BDI models focuses on the mechanism for the
choice of actions and plans in a deliberative agent, and it says little about
planning (i.e. the making and the revision of plans) and about the execution
of plans. A full description of an intelligent agent that is built according
to the BDI architecture must therefore also include an account of how plan
execution is performed in such a system.

The question of planning is more open: there are plenty of actual AI applica-
tions where there is no need for a separate planning component, so that the
systems for these applications manage well with a flexible and robust plan
execution component. However, in those cases where planning is required,
it is a third topic that is closely interdependent both with plan execution,
and with the questions of goals and intentions that are addressed by the
BDI model.

In fact, there are also systems where the plan execution component domi-
nates, and where questions of goals and intentions are handled in a limited
way as part of the plan execution process. In those cases there is no signif-
icant BDI aspect in the system as a whole.

The present chapter will describe the major alternatives in these respects,
beginning with planning and plan execution systems that have been de-
veloped together with the BDI model, and proceeding with two types of
systems where the planning and plan execution aspect dominates.

2.1 BDI-based Task Execution Systems

2.1.1 Procedural Reasoning Systems

The original Procedural Reasoning System (PRS) was developed at Arti-
ficial Intelligence Center at SRI during the 1980s. It has been succeeded
by a number of extensions and later developments, including SRI’s SPARK
system (SRI Procedural Agent Realization Kit) and the OpenPRS system

12

13

[1] both of which are presently in active use for major projects.

Add more text here.

2.1.2 AgentSpeak and Jason

The following citation is from Lambda the Ultimate Weblog, [2] which also
contains some discussion about AgentSpeak. (check with ehud.lamm at
gmail.com)

AgentSpeak is a Prolog-like resolution-based language, but which is ex-
tended to support agent-based programming in several ways, most impor-
tantly:

1. It extends the language, so that clauses can talk about not just satisfac-
tion of predicates, but also of an agent desiring to bring about a predicate,
and desiring to find out whether a predicate is true; and to distinguish
between normal goals and special goals relevant to the BDI model (Belief-
Desire-Intention model);

2. It amends the resolution engine to support what Rao calls reactive con-
currency, where agents form plans via a process resembling SLD-resolution,
but plans are formed or abandoned on the basis of agent-internal reactions
called triggering events. (End of quotation)

One should not confuse AgentSpeak in this sense with a speech generation
product with the same name.

AgentSpeak should be thought of as a prototype for demonstration pur-
poses, rather than as a platform for practical systems. It has been further
developed into the Jason system [3]

2.2 Hierarchical Task Networks

A major approach for planning and plan execution systems is Hierarchical
Task Networks, HTN. A task network is a data-structure representation of a
plan, consisting of actions and subplans as defined in Section 1.1, and where
the properties of the plan’s components and the dependencies between them
have been made explicit using links in a network structure. Dependencies
may include the requirement that one plan step shall precede another plan
step since the postcondition of the former achieves the precondition of the
latter. Dependencies may also include metric temporal constraints having
to do with the durations of various plan steps, or the permitted window in
time for the start or the end of some plan steps or the entire plan.

The following are some implemented HTN systems:

• Nonlin, one of the first HTN planning systems, developed at the Uni-
versity of Edinburgh, UK

1https://softs.laas.fr/openrobots/wiki/openprs
2http://lambda-the-ultimate.org/node/3003
3http://dtai.cs.kuleuven.be/projects/ALP/newsletter/aug06/nav/articles/article5/article.html

https://softs.laas.fr/openrobots/wiki/openprs�
http://lambda-the-ultimate.org/node/3003�
http://dtai.cs.kuleuven.be/projects/ALP/newsletter/aug06/nav/articles/article5/article.html�

14

• O-Plan, developed at the AIAI at the University of Edinburgh [4]

• GPGP, developed at the University of Massachusetts at Amherst,
USA

• SIPE-2, developed at SRI International, Menlo Park, CA, USA

• UMCP and SHOP2, developed at University of Maryland, USA

• HTNPlan-P, developed at the University of Toronto, Canada

These systems and others like them use their own, system-specific repre-
sentation languages for a textual representation of the Hierarchical Task
Network and the domain model that underlies it. Some of these languages
use one of the standard styles; for example the GPGP system uses the S-
expression-style TÆMS [5] language (Task Analysis, Environmental Model-
ing and Simulation). Others use their own syntactic style, for example the
Task Formalism (TF) of the O-Plan system.

In the present chapter we shall give particular attention to two of the above:
The GPGP/TÆMS approach and the O-Plan system.

2.2.1 GPGP and TÆMS

Generalized Partial Global Planning (GPGP) is an approach to the de-
sign of HTN systems, and TÆMS is the representation system used in
this approach. As such, TÆMS is both a modelling language that uses
S-expressions as its syntactic style, and a design for the representation and
use of Hierarchical Task Networks in the working software system.

We shall describe this approach by quotations. The following is the ab-
stract of a key article describing GPGP: Victor Lesser: Evolution of the
GPGP/TÆMS domain-independent coordination framework. Proceedings
of the first international joint conference on Autonomous agents and mul-
tiagent systems, 2002.

Generalized Partial Global Planning (GPGP) and its associated TÆMS hi-
erarchical task network representation were developed as a domain-independent
framework for coordinating the real-time activities of small teams of coop-
erative agents working to achieve a set of high-level goals. GPGP’s de-
velopment was influenced by two factors: one was to generalize and make
domain-independent the coordination techniques developed in the Partial
Global Planning (PGP) framework (this also involved our understanding
that coordination activities could be separated from local agent control if
an appropriate bi-directional interface could be established between them);
the other was based on viewing agent coordination in terms of coordinat-
ing a distributed search of a dynamically evolving goal tree. Underlying
these two influences was a desire to construct a model that could be used to
explain and motivate the reasons for coordination among agents based on
a quantitative view of task/subproblem dependency. Coordination of be-
haviors among agents requires three things: specification (creating shared
goals), planning (subdividing goals into subgoals/tasks, i.e., creating the
substructure of the evolving goal tree) and scheduling (assigning tasks to

4http://www.aiai.ed.ac.uk/∼oplan/
5ftp://mas.cs.umass.edu/pub/TAEMSwhite.pdf

http://www.aiai.ed.ac.uk/$sim $oplan/�
ftp://mas.cs.umass.edu/pub/TAEMSwhite.pdf�

15

individual agents or groups of agents, creating shared plans and schedules
and allocating resources). GPGP is primarily concerned with scheduling
activities rather than the dynamic specification and planning of evolving
activities (e.g., such as decomposing a high-level goal into a set of subgoals
that if successfully achieved will solve the high-level goals).

In order to give some idea of the flavor of the TÆMS language, we cite the
following example from the TÆMS White Paper, where it is described as
being “probably the simplest complete task structure youll run across. It
consists of a single root node, which well call a task group, which is the
parent to a single child, which we’ll call a method.” (The semantics of these
terms is defined later on in the document).

; The Task Group
(spec_task_group

(label Root)
(agent Agent_A)
(subtasks Method_1)
(qaf q_min))

; The Method
(spec_method

(label Method_1)
(agent Agent_A)
(supertasks Root)
(outcomes

(Outcome_1
(density 1.0)
(quality_distribution 10.0 1.0)
(duration_distribution 6.0 1.0)
(cost_distribution 5.0 1.0)

)))

The TÆMS White Paper further writes:

TÆMS was designed as a modeling language for describing the task struc-
tures of agents. The acronym stands for Task Analysis, Environmental
Modeling and Simulation. In this overview we will cover some of the high
level ideas that underly this acronym and give TÆMS its capabilities. There
is nothing in TÆMS that precludes it from being used outside of an agent
or multi-agent system, but you will see in this document that most of the
distinguishing characteristics of TÆMS are agent related, including its abil-
ity to represent capabilities of remote agents, and explicitly represent the
interdependencies that exist between them and those of the local agent.

So what do we mean by ”task structure”? In any sophisticated agent system,
the designer will inevitably arrive at a point where the agent must reason
about its potential actions in the context of its working environment. So,
presented with a given situation, what should an agent do? What goals
can and should it be trying to achieve? What actions are needed to achieve
those goals? What are the implications of those actions, and of actions
performed by remote agents, on the agents local state? There is a whole
host of questions that an agent will need to be answered if it is to reason
about its situation and act intelligently. Thus, the agent must have some
representation of what its capabilities are. One such representation is called

16

a task structure - something which describes the tasks the agent may per-
form. TÆMS improves upon conventional task structures by adding such
features as quantitative action characterizations, explicit models of local and
remote interactions and mechanisms to represent the wide range of ways a
particular task can be achieved.

While the details associated with TÆMS can be daunting, there are in real-
ity just a few simple concepts behind its structure and function. A TÆMS
task structure is essentially an annotated task decomposition tree (actually
a graph, but we will refer to is as a tree for simplicity here). The highest
level nodes in the tree, called task groups, represent goals that an agent
may try to achieve. Below a task group there will be a sequence of tasks
and methods which describe how that task group may be performed. Tasks
represent sub-goals, which can be further decomposed in the same man-
ner. Methods, on the other hand, are terminal, and represent the primitive
actions an agent can perform.

The structure above will work out to be a tree structure containing goals and
sub-goals that can be achieved, along with the primitive methods needed
to achieve them. Annotations on a task describe how its subtasks may be
combined to satisfy it. Another form of annotation, called an interrelation-
ship, describes how the execution of a method, or achievement of a goal, will
affect other nodes in the structure. For instance, the execution of method
A may enable the execution of method B. In other words, method B cannot
be successfully performed before A is successfully completed. Several types
of interrelationships exist to describe various types of situations.

(End of quotations).

2.2.2 The O-Plan System

The O-Plan system and approach were developed by Austin Tate and his
group at the Artificial Intelligence Applications Institute (AIAI) at the Uni-
versity of Edinburgh. The O-Plan webpage writes:

The O-Plan (the Open PLANning Architecture) Project is exploring issues
of coordinated command, planning and control.

The objective of the O-Plan Project is to develop an architecture within
which different agents have command (task assignment), planning and ex-
ecution monitoring roles.

Each agent has a structure which separates the following components:

• the representation of the processing capabilities of an agent;

• the computational facilities available to perform these capabilities;

• the constraint managers and commonly used support routines which
are useful in the construction of command, planning and control sys-
tems;

• the decision making about what the agent should do next;

• the handling of communications between one agent and others.

17

The main contribution of the O-Plan research is to provide a complete vision
of a more modular and flexible planning and control system incorporating
AI methods.

We have demonstrated our approach on realistic problems related to mili-
tary logistics. Our approach will have an impact in the following ways:

• it will allow for improved connectivity and consistency between com-
mand, planning and control;

• it will make plans open, inspectable, explainable and changeable;

• it will allow greater scope in Course of Action analysis and as such
provide greater plan reliability.

Within the agent-based O-Plan architecture we have created specific agents
to provide a domain-independent general planning and control framework
with the ability to embed detailed knowledge of the domain. The system
combines a number of techniques:

• A hierarchical planning system which can produce plans as partial
orders on actions similar to the Edinburgh Nonlin planner.

• An agenda-based control architecture in which each control cycle can
post pending tasks during plan generation. These pending tasks are
then picked up from the agenda and processed by appropriate han-
dlers (Knowledge Sources).

• The notion of a “plan state” which is the data structure containing the
constraints on emerging plan, the “agenda” of further requirements,
and the information used in building the plan.

• Constraint posting and least commitment on object variables.

• Temporal and resource constraint handling using incremental algo-
rithms which are sensitively applied only when constraints alter.

• O-Plan is derived from the earlier Nonlin planner from which it takes
and extends the ideas of Goal Structure, Question Answering (Modal
Truth Criterion) and typed conditions.

• We have extended Nonlin’s style of task description language Task
Formalism (TF).

Major Subsystems:

• A Task Assigner specifies a task that is to be performed through
some suitable interface.

• A Planner plans and (if requested) arranges to execute the plan to
perform the task specified.

• The Execution system seeks to carry out the detailed tasks speci-
fied by the planner while working with a more detailed model of the
execution environment.

(End of quotation).

18

2.3 Logic-Based Systems

The contents of this section will be added later.

2.3.1 IxTeT

The IxTeT system has been developed in the Robotics and A.I. group at
the LAAS laboratory in Toulouse.

2.3.2 TALplanner and DyKnow

(TALplanner is a planning system; DyKnow is a middleware that provides
support for executing plans generated by TALplanner).

2.3.3 The Golog System

To be imported or written. Have not been able to find a good webpage for
this yet.

2.4 Procedural Systems

2.5 The PDDL Language

Wikipedia writes:

The Planning Domain Definition Language (PDDL) is an attempt to stan-
dardize planning domain and problem description languages. It was devel-
oped mainly to make the 1998/2000 International Planning Competitions
possible. It was first developed by Drew McDermott in 1998 and later
evolved with each International Planning Competitions.

Planning tasks specified in PDDL are separated into two files:

• A domain file for predicates and actions

• A problem file for objects, initial states and goal specifications

End of citation

PDDL is an S-expression style language. The original version of PDDL is
specified in [6] and this is still a useful introduction. The PDDL+ version
from 2006 is an extension of PDDL 2.1 and the article describing it [7] is
recommended reading for learning about the current stage of development,
since the additional changes for PDDL 3.1 (the most current version) are
not very significant.

6http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf
7http://www.jair.org/media/2044/live-2044-2913-jair.pdf

http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf�
http://www.jair.org/media/2044/live-2044-2913-jair.pdf�

Chapter 3

Languages and their Styles

The entire system state in the BDI model is a complex information ob-
ject which therefore requires an expressive representation language, and
the same applies for other models and approaches, such as SOAR, and the
HTN approach. Some of its components may be relatively simple, and in
particular the beliefbase is often organized merely as a set of literals, for
example in the PRS system. However, plans and intentions are necessarily
composite information objects that can best be thought of as formulas, or
as simple programs of the kind that are often called scripts in programming
terminology.

The choice of a representation language is therefore an important and nec-
essary step in the development of the software architecture for an intelligent
agent. There is a large variety of representation languages in the literature,
but a few main lines are evident.

First of all, one can identify a small number of syntactic styles, that is, ways
of writing formulas that are used in common between several representa-
tion languages. Lisp S-expressions is one syntactic style; XML notation is
another syntactic style.

The underlying notion is that an intelligent agent system does not merely
need one language for expressing its system state, it needs a number of
related languages for different purposes. (The same is actually true for many
other types of software as well, including for operating systems.) Rather
than inventing an entirely new language for each purpose, it is convenient
to define a general framework for how formulas are written, to implement
general-purpose software for supporting that framework or style, and to
have ways of specializing or adapting the framework and the software for
each of the specific languages.

A syntactic style is just a set of conventions for writing formulas, and formu-
las can be used for many things, including for mathematical formulas, logic
formulas that make statements about the real world, computer programs,
chemical compounds, and many other things. The case of computer pro-
grams or scripts is of course of particular importance and many syntactic
styles have one or more programming languages among their uses, but it
is important to keep in mind that a style also has other uses besides for a
programming language.

Styles also have a second important relation to programming languages,

19

20

namely their use as a data language, that is, as a textual representation
of data that can be processed by the programming language in question.
Conventional programming languages such as C++ do not have any data
language of importance, since the “print” operation is only defined for num-
bers and strings, but not for records, arrays or other composite data objects.
However, languages like Python do provide a standardized way of writing
and reading composite data, thereby having their own data language. In
the particular case of Python the data language is ideosyncratic and used
by Python only, but it is also possible to have a data language that belongs
to a widely used syntactic style.

Languages like Lisp and Python are defined with a data language from the
start. Other languages have obtained a data language as an add-on facility,
and in these cases it is often referred to as a method of serialization of the
data structures that are intrinsic to the language. This is the case for the
Java language, in particular. Have to check that this is really true. The
next section describes the most important syntactic styles that are used in
representation languages for intelligent agents. The following chapter will
describe major representation languages using these styles.

3.1 Major Language Styles

3.1.1 The S-Expression Style

The S-expression style has two characteristic features. First, there is a
purely syntactic definition: S-expressions are expressions that are constructed
recursively and where each level is surrounded by one kind of brackets; by
convention the ordinary round parentheses are used as brackets. Such a
sequence is called a list. The elementary components of S-expressions may
be symbols, strings, or numbers. Strings are surrounded by double quote
characters and may not contain double quotes inside them, except using
an escape-character arrangement. The following are some examples of S-
expressions.

A_symbol
"This is a string"
(This is "a list")
(This is (a list)(containing 2 sublists))

Secondly, the S-expression style also adopts a loose semantic convention,
namely, that the first element in every list on every level shall be an op-
erator that takes the remaining elements in the list as ’arguments’ in one
sense or another. This means that a mathematics-like notation that allows
expressions such as, for example

(a + f(b + c) * c)

will not count as S-expression style, although from a purely syntactic view-
point it qualifies as an S-expression. To be considered as S-expression style
it would have to be written like, for example,

(+ a (* (f (+ b c)) c))

S-expressions were introduced in 1959 as the data language for the Lisp
programming language. It was originally intended that Lisp should have

21

a programming language that resembled conventional programming lan-
guages at the time, such as Algol, but it was also decided to define a way
of representing Lisp programs as S-expressions, that is, to write programs
in the data language. This was partly as an intermediate solution awaiting
the implementation of a parser for the forthcoming, separate programming
language, and partly in order to make it possible to analyze and manipulate
Lisp programs as data. It soon became clear however that most users pre-
ferred to write Lisp programs directly in S-expression notation, so Lisp uses
S-expressions both for expressing programs and for expressing data, which
means that the two are easily exchangeable.

A number of other programming languages also use S-expressions in this way
and are considered as descendants of Lisp, such as the Scheme language in
particular.

There are a number of languages and formats in general computing, be-
sides programming languages, that use S-expressions, including the Inter-
net Message Access Protocol (IMAP) which is a standard for electronic
mail exchange. Another example is the Document Style Semantics and
Specification Language (DSSSL) which was later replaced by the Extensi-
ble Stylesheet Language (XSL). The TÆMS language that was mentioned
in the previous chapter is an S-expression style language, and additional
ones will be described later on in this compendium.

3.1.2 The Prolog Style

Not clear whether this qualifies as a style, but keep the subheading here for
the time being.

3.1.3 The XML Style

The XML style originates from the Standard Generalized Markup Language
(SGML) which was established in 1986 as an ISO-standard technology for
defining generalized markup languages for documents. SGML was the basis
for HTML which was introduced as the markup language for World-Wide
Web pages in the early 1990’s. After some time it was recognized that
HTML was too restrictive but SGML was not an alternative since it was
too complex, and XML was introduced as an intermediate solution.

One of the important aspects of XML was that it should be a representation
both for text in natural language (the original purpose of SGML) and for
structured data. It is in the latter sense that it is a language style for data
languages. This dual use of the style has some advantages, namely, that it
facilitates the integration of text and data, but it also has the important
disadvantage that the XML representation of structured information be-
comes practically unreadable for the human reader except for reading small
fragments. XML for structured information should therefore be considered
as an exchange protocol that can be used for transmission of information
between programs, but for human use it is more or less necessary to use
viewing programs that display the information in a more user-friendly way.

Write here about efforts to define scripts and a programming language using
XML style.

22

3.1.4 Knowledge Representation Expressions

Knowledge Representation Expressions are defined in our KRF Overview
memo. They are similar to S-expressions in the sense that a KR expres-
sions is a recursively formed, bracketed expression with symbols, strings,
and numbers as its elements, but it differs from S-expressions by using sev-
eral kinds of brackets, and not merely the round parentheses that are used
by S-expressions. In particular, sets and sequences are represented by their
standard notation in mathematics, as long as they are specified by enumer-
ating their elements.

KR expressions also provide some additional structure within each bracket-
ing level, in particular through a distinction between arguments and param-
eters in records, a record being an expression surrounded by square brackets.
In this way KRE expressions are more readable than S-expressions, and of
course much more readable than XML expressions.

There has not been a definition of a full programming language based on
KR expressions, and the current software support for KRE is implemented
in Lisp. KRE-based applications must therefore often be written in Lisp.
However, the Common Expression Language (CEL) uses the KRE style and
defines functional expressions (terms) in such a way that they can be used
both for simple programming (scripts) and in logic formulas. It corresponds
to the central parts of Lisp.

The need for seamless integration of text and structured data is supported
in XML by using markup conventions that are reasonable for text but very
clumsy for structured data. The KRE style has another solution for this
problem, namely the use two closely related languages. The Document
Scripting Language (DSL) uses KRE style without exceptions, so that it
can be parsed using the standard KRE parser. It is useful for specifying
texts that are included in structured data and texts that contain a large
proportion of embedded data, which is for example often the case in scripts
for dynamic web pages. The Text Scripting Language (TSL) uses somewhat
different conventions which make it convenient for markup of source text,
in the same way as Latex markup, but the TSL parser converts its input
to the same datastructure representation as is used for all KR expressions,
and in particular for DSL. This achieves the desired seamless integration of
markup for text and representation of structured information, but retaining
good legibility for both of these.

Chapter 4

Knowledge
Representation Languages

One type of language that is needed in an intelligent agent architecture is
for representing beliefs in the agent’s belief base, and for transmission of
facts and beliefs between agents. Languages of this kind are called know-
ledge representation languages. The most important characteristics of KR
languages, in comparison with programming languages, is that the former
refer to phenomena in the real world, such as persons, cars, colors, ve-
locities, utterances, and so forth, whereas programming languages refer to
numbers, strings, records and other similar structures in a computer. The
semantics of a knowledge representation language must therefore specify
how expressions in that language relate to things in the world.

The difference is not absolute, however, since things like ’numbers’ and
’names’ (represented as strings) must occur both in a programming lan-
guage and in a representation language, and both have a need for the basic
operations on these types. For example, a reasonable representation lan-
guage should make it possible to express statements about the current air
temperature, or the change in exchange rate between the Euro and the US
Dollar from one day to the next. This overlap between the two types of
languages may be exploited in either of two ways: by having a program-
ming language and a representation language as two separate languages,
which however coincide in some of their parts, or by having a single lan-
guage that uses two different semantics, i.e., two different ways of evaluating
expressions. The combination of the programming language Lisp and the
representation language KIF is an example of the first approach; the KRE-
based Common Expression Language is an example of the second approach.
Two variants of evaluation are defined for CEL, namely computational and
representational evaluation.

23

24

4.1 Extended Logic Representation Languages

4.1.1 Knowledge Interchange Format

The Knowledge Interchange Format (KIF) [1] is a knowledge representation
language that uses the S-expression style, and that coincides with Lisp in
some of its parts. As the name suggests it was originally designed for use in
message exchange, in particular using the Knowledge Query and Manipu-
lation Language (KQML) which also uses the S-expression style and which
is described in a later chapter. However, KIF is also used for representing
knowledgebases and ontologies, for example in the Suggested Upper Merged
Ontology (SUMO) [2]

The following are some examples of expressions in KIF, all taken from the
SUMO Ontology. First, a number of ground literals from the SUMO geog-
raphy:

(instance MississippiRiver River)
(part MississippiRiver UnitedStates)
(documentation MississippiRiver EnglishLanguage

"The major River in the &%UnitedStates.
It runs almost the entire width of the UnitedStates, from &%Minnesota
to the &%GulfOfMexico.")

(connected MississippiRiver GulfOfMexico)

Notice the possibility of using predicates with different arities, for exam-
ple the ternary predicate documentation. Notice also the possibility of
embedding entities within strings using the ampersand-percent prefix.

Next, a rule saying that Paris is the largest city in France in terms of
population:

(=>
(and

(instance ?CITY City)
(part ?CITY France))

(lessThanOrEqualTo
(CardinalityFn (ResidentFn ?CITY))
(CardinalityFn (ResidentFn Paris))))

The function Residentfn maps a city to the set of its inhabitants, and is
a clear example of how a representation language must refer to phenomena
in the world, including those that can not have an explicit counterpart in
the computer. It is of course not possible to have a representation in the
computer for each one of the inhabitants of Paris, France, but this does not
preclude the representation language for using an expression whose defined
value is exactly the set of those persons.

Variables are preceded by the questionmark character in KIF, and are de-
fined to be universally quantified in the absence of an explicit quantifier.
Finally, a definition of the concept of a generalized union.

(deffunction generalized-union (?set) :=

1http://www.ksl.stanford.edu/knowledge-sharing/kif/
2http://www.ontologyportal.org/

http://www.ksl.stanford.edu/knowledge-sharing/kif/�
http://www.ontologyportal.org/�

25

(if (and (set ?set)
(forall (?s) (=> (member ?s ?set) (set ?s)))

(setofall ?x (exists (?s) (and (member ?s ?set)
(member ?x ?s))))))

KIF can be understood as a development of Lisp that introduces additional
concepts from set theory and predicate logic, besides switching from compu-
tational to predominantly representational evaluation. There is a function
listof that works like the function list in Lisp; there is also a function
setof that forms the set of those objects that occur as its arguments. The
values of these functions are defined in the semantics of the language. The
function setofall also forms a set of objects, but defined by a condition
that is expressed in logic as in the example above.

4.1.2 The CycL Language

The CycL language is developed and used in the Cyc project [3] whose
purpose is to build a very comprehensive, and therefore very large know-
ledgebase using an extended predicate-logic notation. The language is based
on predicate logic, like KIF, and uses S-expression style. The following is a
simple example of a statement in the Cyc language:

(#$implies
(#$and

(#$isa ?OBJ ?SUBSET)
(#$genls ?SUBSET ?SUPERSET))

(#$isa ?OBJ ?SUPERSET))

Here isa represents membership in a set or type and genls stands for
‘generalisation’ and represents the subset relation. This rule says that if e
is a member of a and a is a subset of b then e is a member of b. The #$
character combination that precedes the logical symbols in this expression
are optional, but widely used by convention.

4.1.3 The Prolog Language

An account of Prolog as a representation language is maybe to be added
here, or else combine this with ICL in Section 6.4.

4.1.4 The Common Expression Language

Discuss how it relates to the previous ones. Many points in common with
KIF, but more legible through use of the variety of data types already on
the style level: sets, sequences, records, and the associated use of multiple
bracketing. The use of infix operations also increases readability consider-
ably, bringing the language fairly close to standard notation especially in
formal logic.

3http://en.wikipedia.org/wiki/Cyc

http://en.wikipedia.org/wiki/Cyc�

26

4.2 XML-based Representation Languages

4.2.1 The Resource Definition Format

The Resource Definition Format (RDF) has been developed in the XML
community and for representing information about objects in the Internet
and the World-Wide Web, objects that are then called ‘resources.’ RDF
is usually written using an XML style. It has been extended, by way of
notation and of use, into the OWL language which will be described next.

4.2.2 The Web Ontology Language

OWL, the Web Ontology Language. is a language for characterizing entities,
including both specific objects and classes of objects, as well as attributes
of these entities and relationships between them. Particular attention is
given to the subsumption relation because of its importance for representing
ontologies.

Like RDF, OWL is usually expressed using an XML style notation, although
in principle it is open to the use of other notations. The following is an ex-
ample of a few entity descriptions in OWL, obtained from the OWL website
[4]

<Region rdf:ID="SantaCruzMountainsRegion">
<locatedIn rdf:resource="#CaliforniaRegion" />

</Region>

<Winery rdf:ID="SantaCruzMountainVineyard" />

<CabernetSauvignon
rdf:ID="SantaCruzMountainVineyardCabernetSauvignon" >
<locatedIn rdf:resource="#SantaCruzMountainsRegion"/>
<hasMaker rdf:resource="#SantaCruzMountainVineyard" />

</CabernetSauvignon>

The information in these would be expressed as follows in KRE.

-- SantaCruzMountainsRegion
[: type Region]
[: locatedIn CaliforniaRegion]

-- SantaCruzMountainVineyard
[: type Winery]

-- SantaCruzMountainVineyardCabernetSauvignon
[: type CabernetSauvignon]
[: locatedIn SantaCruzMountainsRegion]
[: hasMaker SantaCruzMountainVineyard]

4http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/�

27

4.3 Class Description Languages

The contents of this section are not to be confounded with Description Logic
which will be discussed elsewhere in the present suite of compendiums.

4.3.1 The Language of the Knowledge Machine

The Knowledge Machine (KM) and its associated language have been de-
veloped by Bruce Porter, Peter Clark and their affiliates at the University of
Texas at Austin, USA. The KM language uses S-expressions syntactically,
but not exactly S-expression style since operators are arranged differently
than in e.g. KIF and CycL. The following example is obtained from the
KM website. [5] and shows how the class of buying actions is expressed in
the KM language.

(Buy has (superclasses (Event))) ; Properties of the class
; (‘owns’ properties)

(every Buy has ; Properties of its members
(buyer ((a Agent))) ’ (‘template’ properties)
(object ((a Thing)))
(seller ((a Agent)))
(money ((the cost of (the object of Self))))
(subevent1 ((a Give with

(agent ((the buyer of Self)))
(object ((the money of Self)))
(rcpt ((the seller of Self))))))

(subevent2 ((a Give with
(agent ((the seller of Self)))
(object ((the object of Self)))
(rcpt ((the buyer of Self)))))))

This definition says that a buying action has attributes called buyer, seller,
object and money, and two subevents namely one where the buyer gives
money to the seller, and one where the seller gives the object to the buyer.

The KM language can therefore be characterized as a language for expressing
descriptions of things and classes. The reader is recommended to study the
very instructive script of an example session with the KM system [6]

4.4 API Approaches

Knowledge Representation Languages allow their user to write down infor-
mation in formal, textual form and to work with that representation of the
information, for example for having it reviewed by a panel of people. At
the same time it is possible to input information in this form into intelligent
agent systems as well as other software systems, where it can be used for a

5http://userweb.cs.utexas.edu/∼mfkb/km/
6http://userweb.cs.utexas.edu/users/mfkb/km/km-overview.script

http://userweb.cs.utexas.edu/$sim $mfkb/km/�
http://userweb.cs.utexas.edu/users/mfkb/km/km-overview.script�

28

variety of purposes. Knowledgebase contents can be expressed in the know-
ledge representation language, and can be shared between people, between
agents, and between projects, and in this way the knowledge representation
language becomes a medium of exchange.

However, there is also an alternative approach using an Application Pro-
gramming Interface (API) where one defines a set of operations that can
be implemented for each one of several different knowledgebases, each of
which may use its own internal representation. This approach is useful if
those knowledgebases are already in place and it is necessary to combine
their use, or if the various knowledgebases serve different purposes which
has made it necessary to organize them in different ways.

One important representative of the API approach is the Open Knowledge
Base Connectivity (OKBC)

Citation: The OKBC is a protocol and an API for ontology repositories or
object-relational databases. It is somewhat complementary to the Know-
ledge Interchange Format in the sense that it has been implemented as an
API to KIF databases, together with several other representations. In this
model, an ontology consists of a set of classes organized in a subsumption
hierarchy to represent a domain’s salient concepts, a set of slots associated
to classes to describe their properties and relationships, and a set of in-
stances of those classes - individual exemplars of the concepts that hold
specific values for their properties.

Other OKBC implementations provide an API to LOOM which was a
description-language database, and to Ontolingua which was a frame-structure
knowledgebase. More about frame structures needed here. The Protégé soft-
ware platform, developed at Stanford University, is an example of a widely
used system that uses the OKBC knowledgebase interface, at the same time
as it also uses the OWL representation language.

Chapter 5

Process-Controlling
Agents

This chapter has not been written yet. The following are some indications
of its intended contents.

Topic: how to organize systems where actions are executed in the real world
using various kinds of sensors and/or controllers.

5.1 Three-Level Architectures

The following is the suggested general approach for this section. Simply
speaking, the cognitive architeture may be used for the uppermost layer;
the middle layer can be finite-state automaton, and the process layer may
consist of control algorithms. However, there is no clear evidence in terms
of actually implemented systems that this will work as intended.

The topic of this chapter is a very important one, but it will be only briefly
covered in the present course.

5.2 Task Control Architecture

The webpage of the original Task Control Architecture (TCA) [1] writes:
The Task Control Architecture (TCA) simplifies building task-level con-
trol systems for mobile robots. By ”task-level”, we mean the integration
and coordination of perception, planning and real-time control to achieve a
given set of goals (tasks). TCA provides a general control framework, and
it is intended to be used to control a wide variety of robots. TCA provides
a high-level, machine independent method for passing messages between
distributed machines (including between Lisp and C processes). Although
TCA has no built-in control functions for particular robots (such as path

1http://www.cs.cmu.edu/afs/cs/project/TCA/release/tca.orig.html

29

http://www.cs.cmu.edu/afs/cs/project/TCA/release/tca.orig.html�

30

planning algorithms), it provides control functions, such as task decompo-
sition, monitoring, and resource management, that are common to many
mobile robot applications.

TCA can be thought of as a robot operating system — providing a shell for
building specific robot control systems. Like any good operating system,
the architecture provides communication with other tasks and the outside
world, facilities for constructing new behaviors from more primitive ones,
and means to control and schedule tasks and to handle the allocation of
resources. At the same time, it imposes relatively few constraints on the
overall control flow and data flow in any particular system. This enables
TCA to be used for a wide variety of robots, tasks, and environments. (End
of quotation)

In its later development [2] has been split into the Inter-Process Commu-
nications facility, IPC, and the Task Description Language, TDL, and its
descendants. TDL is a superset of C++ that includes explicit syntax for
task-level control capabilities.

5.3 TALplanner and DyKnow

It’s not clear at this point whether this topic should be in the present chapter
or in chapter 2.

5.4 The Subsumption Architecture

Not yet written.

2http://www.cs.cmu.edu/afs/cs/project/TCA/www/TCA-history.html

http://www.cs.cmu.edu/afs/cs/project/TCA/www/TCA-history.html�

Chapter 6

Message-Passing Between
Agents

6.1 Introduction

Many artificial intelligence systems, in particular in robotics, require the
use of several concurrent processes. Examples include:

• Having one process for the movements and other physical behavior of
an intelligent robot, and another process that defines its goal-directed
behavior, planning, and the like

• Having a separate process for the agent’s linguistic ability, when it is
required to communicate in natural language

• Having a separate process for anticipatory simulation, as a way of
predicting the immediate future of an agent

• Having a separate process for learning which can operate while the
main system performs it normal tasks.

Powerful methods for the implementation of concurrent computational pro-
cesses have been developed in the areas for programming languages and
software engineering, using constructs such as software semaphores. How-
ever, methods such as these apply to conventional programs and they are
not useful e.g. if one of the processes is organized according to the BDI
model. In such cases the usual method is to let the processes communicate
by passing messages to each other. (There are also other methods, such as
the use of so-called blackboards, but these will not be covered in the present
compendium). Given that one or more processes are organized using a soft-
ware architecture for agents, it is common to consider each of the processes
as an agent, so that the entire system is a system of communicating agents.

Notice that it is not necessary for all of the agents in such a system to be
intelligent ones. It may well be that one of them is organized according
to the BDI model, for example, and the others are fairly conventional pro-
grams. The point is however that then the BDI-model agent determines
the character and the needs of the message-passing, and those agents that

31

32

are more conventional programs have to be implemented so as to conform
to those needs. In fact, in many cases it is questionable whether any of
the agents deserves to be called ‘intelligent’ and it may be that only the
combined system has that character.

Communication between agents may also occur for another reason, namely,
if there are several systems that are more or less similar and that need to
cooperate in order to achieve a common task. This is different from the
situation we have described first, where the introduction of several agents
is used in order to organize one single, coherent system. We use the term
individual for a coherent system that consists of several agents performing
different functions in that individual. Consequently we distinguish between
message-passing within an individual, i.e. between the agents that make up
the individual, and message-passing between individuals.

There are cases where it is a matter of definition what is an individual and
what subsystems are merely parts of a single individual. This is just like, in
the realm of zoology, one may view ants as separate individuals, but for some
purposes one may also view the entire ant-heap as one individual although
its different ‘parts’ can move freely relative to each other. However, in most
cases this is not an issue, and the individuals of the overall system can be
identified easily.

A particularly interesting case, especially from a philosophical point of view,
concerns individuals that have a system state (in the sense of Section 1.1)
that persists over a relatively long period of time, such as months or even
years, and that is able to evolve during that time by the accumulation of
memory, such as records of past events, and by the successive learning of
new capabilities. Such individuals are called persistent individuals.

6.2 Searle’s Speech Act Theory

The major approach to message-passing in A.I. systems has been inspired
by Searle’s theory of speech acts. Searle’s theory is rich in content and has
developed over time, and it is not possible to make full justice to it here. The
following should be taken as merely an indication of some major points in
the theory. Some segments of text have been obtained from the Wikipedia
article on speech act theory.

Searle uses the well established distinction between the ’illocutionary force’
and the ’propositional content’ of an utterance. He does not precisely define
the former as such, but rather introduces several possible illocutionary forces
by example. According to this terminology, the sentences

Sam smokes habitually.
Does Sam smoke habitually?
Sam, smoke habitually!
Would that Sam smoked habitually!

in their plain reading indicate the same propositional content (Sam smoking
habitually) but differ in the illocutionary force indicated (a statement, a
question, a command, and an expression of desire, respectively).

The analysis of utterances in terms of illocutionary force and propositional
content is relevant for the analysis of dialogs, that is, for addressing the

33

problem that was illustrated by the “Bath Assistance Scenario” in our in-
troduction to the goals of A.I. research. A simple assertion phrase, such as
“I can not do that myself” may have different illocutionary force according
to context, where being a statement is one alternative and being a request
for assistance (that is, a kind of command) is another one.

From the point of view of speech act theory it is natural to consider the
illocutionary aspect of the utterance as the major one, and to view it as
a particular kind of action, called an illocutionary act. The propositional
content of the utterance is then seen as a kind of argument or parameter to
the illocutionary act.

One significant property of illocutionary acts, according to Searle, is that
they are characterised by their having conditions of satisfaction and a di-
rection of fit. For example, the statement “John bought two candy bars”
is satisfied if and only if it is true, i.e. John did buy two candy bars. By
contrast, the command “John, buy two candy bars” is satisfied if and only
if John carries out the action of purchasing two candy bars. Searle refers
to the first as having the word-to-world direction of fit, since the words
are supposed to accurately represent the world, and the second as having
the world-to-word direction of fit, since the world is supposed to change to
match the words. There is also the double direction of fit, in which the
relationship goes both ways, and the null or zero direction of fit, in which
it goes neither way because the propositional content is presupposed, as in
“I’m sorry I ate John’s candy bars.”

When a listener in a dialog receives an utterance, the propositional content is
often quite explicit, but the illocutionary content is sometimes implicit and
the listener has the task of identifying it. This may be done by considering
a range of possible illocutionary content and by checking, for each of them,
whether its conditions of satisfaction are applicable and whether they make
sense.

Need a good example here. Searle has also worked extensively on other top-
ics, including the topic of intensionality, but his work on illocutionary acts
is what is particularly relevant for the design of message-passing systems.
More specifically, it is the concepts of satisfaction conditions and direction
of fit that are of concrete interest, whereas the mechanisms for recogniz-
ing implicit illocutionary content are not so applicable to communication
between software agents, at least with the present level of technology.

6.3 Message-Passing Infrastructure

We proceed now to the description of languages for the message-passing
infrastructure that is needed in systems of communicating intelligent agents.

6.3.1 The KQML Language

The KQML language was developed around 1990 and was adopted in par-
ticular in the DARPA AI community as a standard for the representation of
messages between agents. KQML stands for “Knowledge Query and Manip-
ulation Language,” where a ‘query’ is to be interpreted as an information
request from one agent to another, and not as e.g. a database query. It uses

34

the syntactic style of S-expressions and is organized as a set of communica-
tive acts; this term replaces the term “speech acts” since software agents
do not use speech for communication between them. These communicative
acts are formally defined using their satisfaction conditions, along the lines
of Searle’s speech act theory.

The KQML language was the basis for a standardization effort in the FIPA
(The Foundation for Intelligent Physical Agents; existed from 1996 to 2005)
which was a body for developing and proposing computer software stan-
dards for heterogeneous and interacting agents and agent-based systems.
The FIPA “standard” called the Agent Communication Language (FIPA-
ACL) is the most widely used one of FIPA’s proposed standards. After the
dissolution of FIPA its work continues in an IEEE standards committee.

6.3.2 The Agent Communication Language

The specification of ACL consists of a set of communicative acts and the
description of their pragmatics, that is, the intended effects on the system
state of the sender and receiver agents. As an adaptation to the technical
context, communicative acts are also called message types. The pragmatics
of a message type is similar to the satisfaction condition but it is more
limited since it does not take changes in the physical world into account.

The satisfaction condition of a communicative act is described with both
a narrative form and a formal semantics in a specification language that is
based on modal logic.

ACL Message Structure

The following is a simple example of a message in the ACL language in
its transport form, that is, a form that can be used when the message is
transmitted from one agent to another.

(inform
:sender agent1
:receiver hpl-auction-server
:content (price (bid good02) 150)
:in-reply-to round-4
:reply-with bid04
:language sl
:ontology hpl-auction)

In their transport form, messages are represented as S-expressions. The
first element of the message is a word which identifies the message type
or communicative act being communicated. There then follows a sequence
of message parameters, introduced by parameter keywords beginning with
a colon character. No space appears between the colon and the parameter
keyword. One of the parameters contains the content of the message, similar
to the propositional content in Searle’s terms. The contents is encoded as
an expression in some formalism, and the choice of formalism is indicated
by the language parameter. Other parameters help the message transport
service to deliver the message correctly (e.g. sender and receiver), help
the receiver to interpret the meaning of the message (e.g. language and

35

ontology), or help the receiver to respond co-operatively (e.g. reply-with,
reply-by).

The ACL language can be specified using two separate lists: a list of rec-
ommended communicative acts, and a list of parameter keywords. Many of
the parameters are used by several of the communicative acts, so it is not
necessary to specify a separate list of parameters for each act.

Communicative Acts

The following is the recommended set of communicative acts according to
the published standards document of FIPA,

http://www.fipa.org/specs/fipa00037/SC00037J.html#_Toc26729697

I think underscore characters are missing here.

• Accept Proposal

• Agree

• Cancel

• Call for Proposal

• Confirm

• Disconfirm

• Failure

• Inform Content is a proposition. Sender holds it to be true, wishes
the receiving agent to also hold it to be true, and does not already
believe that this is the case.

• Inform if

• Inform Ref Content should consist of two arguments both of which
are terms. The first term is not to be evaluated by the receiving
agent; the second term is to be evaluated. The purpose of the act is
to inform the receiving agent that the value of the first term equals
the value of the second term. The sending agent must assume that
the receiving agent is able to evaluate the second term but not the
first term.

• Not Understood Sender informs receiver that it observed an action
by receiver but did not understand it. Special case: received message
from it but did not understand the message.

• Propagate Content specifies embedded message to be forwarded, and
a set of agents to forward it to.

• Propose Propose receiver to perform action given in contents, pro-
vided that condition given in contents is true.

• Proxy

• Query If

• Refuse Response to request act when not willing or able to perform
the act.

• Reject Proposal

36

• Request Request receiver to perform a particular action.

• Request When

• Request Whenever

• Subscribe

Parameters in ACL Messages

The following are the available message parameters in the ACL standard.
Additional parameters may be added in specific applications.

:sender Denotes the identity of the sender of the message, i.e. the name of
the agent of the communicative act.

:receiver Denotes the identity of the intended recipient of the message.
Note that the recipient may be a single agent name, or a tuple of agent
names. This corresponds to the action of multicasting the message. Prag-
matically, the semantics of this multicast is that the message is sent to each
agent named in the tuple, and that the sender intends each of them to be
recipient of the CA encoded in the message. For example, if an agent per-
forms an inform act with a tuple of three agents as receiver, it denotes that
the sender intends each of these agent to come to believe the content of the
message.

:content Denotes the content of the message; equivalently denotes the
object of the action.

:reply-with Introduces an expression which will be used by the agent
responding to this message to identify the original message. Can be used to
follow a conversation thread in a situation where multiple dialogues occur
simultaneously.

:in-reply-to Denotes an expression that references an earlier action to
which this message is a reply.

For example, if agent i sends to agent j a message which contains :reply-with
query1 then agent j will respond with a message containing :in-reply-to
query1.

:envelope Denotes an expression that provides useful information about
the message as seen by the message transport service. The content of this
parameter is not defined in the specification, but may include time sent,
time received, route, etc. The structure of the envelope is a list of keyword
value pairs, each of which denotes some aspect of the message service.

:language Denotes the encoding scheme of the content of the action.

:ontology Denotes the ontology which is used to give a meaning to the
symbols in the content expression.

:reply-by Denotes a time and/or date expression which indicates a guide-
line on the latest time by which the sending agent would like a reply.

:protocol Introduces an identifier which denotes the protocol which the
sending agent is employing. The protocol serves to give additional context
for the interpretation of the message.

37

:conversation-id Introduces an expression which is used to identify an
ongoing sequence of communicative acts which together form a conversa-
tion. A conversation may be used by an agent to manage its communi-
cation strategies and activities. In addition the conversation may provide
additional context for the interpretation of the meaning of a message.

Notice that several of these parameters require the corresponding value to
be a composite data expression. This applies for example for :envelope
and :reply-by and maybe also for :conversation-id, besides of course
for :content. The syntax for these values will therefore depend on the
conventions in each application. For example, if the Common Expression
Language is used as the content language, then it is natural to express these
other values as KR expressions as well, for example representing the value
of the :envelope parameter as a KRE mapping.

The Message Content Component

The contents of this section have been obtained from the FIPA-ACL web-
page. The content of a message refers to whatever the communicative act
applies to. If, in general terms, the communicative act is considered as a
sentence, the content is the grammatical object of the sentence. In gen-
eral, the content can be encoded in any language, and that language will
be denoted by the :language parameter. The ACL language specification
is therefore open with respect to content language, but it defines a pre-
cise requirement on the content language as follows (Requirement 6 in the
language specification):

In general, a content language must be able to express propositions, objects
and actions. No other properties are required, though any given content lan-
guage may be much more expressive than this. More specifically, the content
of a message must express the data type of the action: propositions for in-
form, actions for request, etc.

A proposition states that some sentence in a language is true or false. An
object, in this context, is a construct which represents an identifiable “thing”
(which may be abstract or concrete) in the domain of discourse. Object
in this context does not necessarily refer to the specialised programming
constructs that appear in object-oriented languages like C++ and Java. An
action is a construct that the agent will interpret as being an activity which
can be carried out by some agent.

Our comment: These requirements in the FIPA-ACL specification mean
that a content language for ACL must be a knowledge representation lan-
guage in the sense that was introduced in Chapter 4, and that candidate
content languages include KIF, the Cyc language, and the Common Ex-
pression Language. Notice that KIF was developed together with KQML
and that ACL is a direct successor of the latter.

In general, an action is supposed to produce an effect in the environment
and not a result that is communicated to another agent, but there are ex-
ceptions, in particular the iota operator in KIF which is expressed as (iota
<variable> <term>). This operator introduces a scope for the given ex-
pression (which denotes a term), in which the given identifier, which would
otherwise be free, is defined. An expression containing a free variable is not

38

a well-formed SL expression. The expression (iota x (P x) may be read
as “the x such that P [is true] of x.” The iota operator is a constructor for
terms which denote objects in the domain of discourse.

The JADE Implementation of FIPA-ACL

The FIPA-ACL standard has been implemented i.a. as the Java Agent
DEvelopment Framework (JADE). The following is an excerpt from the
JADE website.

The JADE Agent Platform complies with FIPA specifications and includes
all those mandatory components that manage the platform, that is the ACC,
the AMS, and the DF. All agent communication is performed through mes-
sage passing, where FIPA ACL is the language to represent messages. The
agent platform can be distributed on several hosts. Only one Java applica-
tion, and therefore only one Java Virtual Machine (JVM), is executed on
each host. Each JVM is basically a container of agents that provides a com-
plete run time environment for agent execution and allows several agents to
concurrently execute on the same host.

The communication architecture offers flexible and efficient messaging, where
JADE creates and manages a queue of incoming ACL messages, private
to each agent; agents can access their queue via a combination of several
modes: blocking, polling, timeout and pattern matching based. The full
FIPA communication model has been implemented and its components have
been clearly distincted and fully integrated: interaction protocols, envelope,
ACL, content languages, encoding schemes, ontologies and, finally, trans-
port protocols. The transport mechanism, in particular, is like a chameleon
because it adapts to each situation, by transparently choosing the best avail-
able protocol. Java RMI, event-notification, HTTP, and IIOP are currently
used, but more protocols can be easily added via the MTP and IMTP JADE
interfaces. Most of the interaction protocols defined by FIPA are already
available and can be instantiated after defining the application-dependent
behaviour of each state of the protocol. SL and agent management ontol-
ogy have been implemented already, as well as the support for user-defined
content languages and ontologies that can be implemented, registered with
agents, and automatically used by the framework.

6.4 The Interagent Communication Language
and OAA

The Interagent Communication Language (ICL) is the language used by the
Open Agent Architecture (OAA). See websites at

http://www.ai.sri.com/~cheyer/papers/aai/node12.html
http://www.ai.sri.com/software/OAA

ICL is in some ways more advanced than ACL and it also incorporates
important aspects of Prolog. We shall not use ICL material in the sequel
but we include an overview of OAA and ICL here in order to broaden the
perspective on agent communication systems.

39

The OAA website says: The OAA is a framework for building distributed
communities of agents, where agent is defined as any software process that
meets the conventions of the OAA society. An agent satisfies this require-
ment by registering the services it can provide in an acceptable form, by
being able to speak the Interagent Communication Language (ICL), and
by sharing functionality common to all OAA agents, such as the ability
to install triggers, manage data in certain ways. (Copied from the OAA
website.)

The ICL website says: OAA’s Interagent Communication Language (ICL)
is the interface, communication, and task coordination language shared by
all agents, regardless of what platform they run on or what computer lan-
guage they are programmed in. ICL is used by an agent to task itself or
some subset of the agent community, either using explicit control or, more
frequently, in an underspecified, loosely constrained manner. OAA agents
employ ICL to perform queries, execute actions, exchange information, set
triggers, and manipulate data in the agent community.

One of the fundamental program elements expressed in ICL is the event.
The activities of every agent, as well as communications between agents, are
structured around the transmission and handling of events. In communica-
tions, events serve as messages between agents; in regulating the activities
of individual agents, they may be thought of as goals to be satisfied.

Each event has a type, a set of parameters, and content. For example,
the agent library procedure oaa Solve can be used by an agent to request
services of other agents. A call to oaa Solve, within the code of agent A,
results in an event having the form

ev_post_solve(Goal, Params)

going from A to the facilitator, where ev post solve is the type, Goal is
the content, and Params is a list of parameters. The allowable content and
parameters vary according to the type of the event. [The OAA facilitator
is an intermediating process that can broadcast a service request to available
agents and return the positive answers to the initiating agent.]

The ICL includes a layer of conversational protocol, similar in spirit to that
provided by KQML, and a content layer, analogous to that provided by
KIF. The conversational layer of ICL is defined by the event types, together
with the parameter lists associated with certain of these event types. The
content layer consists of the specific goals, triggers, and data elements that
may be embedded within various events.

The conversational protocol is specified using an orthogonal, parameter-
ized approach. That is, the conversational aspects of each element of an
interagent conversation are represented by a selection of an event type, in
combination with a selection of values for an orthogonal set of parameters.
This approach offers greater expressiveness than an approach based solely
on a fixed selection of speech acts, such as embodied in KQML. For ex-
ample, in KQML, a request to satisfy a query can employ either of the
performatives ask all or ask one. In ICL, on the other hand, this type of
request is expressed by the event type ev post solve, together with the
solution limit(N) parameter - where N can be any positive integer. (A
request for all solutions is indicated by the omission of the solution limit
parameter.) The request can also be accompanied by other parameters,

40

which combine to further refine its semantics.

In KQML, then, this example forces one to choose between two possible
conversational options, neither of which may be precisely what is desired.
In either case, the performative chosen is a single value that must capture
the entire conversational characterization of the communication. This re-
quirement raises a difficult challenge for the language designer, to select
a set of performatives that provides the desired functionality without be-
coming unmanageably large. Consequently, the debate over the right set of
performatives has consumed much discussion within the KQML community.

The content layer of the ICL has been designed as an extension of the Prolog
programming language, to take advantage of unification and other features
of Prolog. OAA’s agent libraries (especially the non-Prolog versions) pro-
vide support for constructing, parsing, and manipulating ICL expressions

Check: is it appropriate to consider Prolog vs ICL content layer language
as a language couple that is analogous to Lisp vs KIF ?

6.5 Leonardo Message-Passing Infrastructure

This section is to be extended. The Leonardo system uses a system for
message-passing between agents that largely resembles the structure de-
scribed above, although only a subset of the ACL-FIPA communication
acts have been implemented at this point. The lower levels of the imple-
mentation uses the HTTP protocol for the transmission of messages, and
complements it with a small amount of additional conventions and code.

There are two major types of messages, namely requests and responses,
both of which are essentially records although some additional features are
added and their exact format is modified in order to fit the HTTP-based
message-passing infrastructure.

6.6 The CORBA Architecture

The Wikipedia article on CORBA [1] says: The Common Object Request
Broker Architecture (CORBA) is an architecture that enables separate pieces
of software written in different languages and running on different computers
to work together as a single application or set of services. More specifically,
CORBA is a mechanism in software for normalizing the method-call se-
mantics between application objects that reside either in the same address
space (application) or remote address space (same host, or remote host on
a network). Version 1.0 was released in October 1991.

Implementations exist for Lisp, Ruby, Smalltalk, Java, COBOL, PL/I and
Python. There are also non-standard mappings for Perl, Visual Basic, Er-
lang, and Tcl implemented by object request brokers (ORBs) written for
those languages.

The CORBA specification dictates that there shall be an ORB through
which the application interacts with other objects. In practice, the applica-
tion simply initializes the ORB, and accesses an internal Object Adapter,

1http://en.wikipedia.org/wiki/CORBA

http://en.wikipedia.org/wiki/CORBA�

41

which maintains things like reference counting, object (and reference) in-
stantiation policies, and object lifetime policies. The Object Adapter is
used to register instances of the generated code classes. Generated code
classes are the result of compiling the user IDL code, which translates the
high-level interface definition into an OS- and language-specific class base
for use by the user application. This step is necessary in order to enforce
CORBA semantics and provide a clean user process for interfacing with the
CORBA infrastructure. End of quotation.

This means that CORBA differs in important ways from the communica-
tion languages that have been described in earlier sections. Unlike them,
CORBA is “mere architecture” and it does not define a communication
language. The IDL that is mentioned above is the Interface Definition Lan-
guage. The characteristic properties of CORBA help performance, making
it a very appropriate choice for many robotic and process-control applica-
tions, but the same properties fail to meet all the needs of cognitive-level
applications. Uses of CORBA in intelligent robotics must therefore be com-
plemented with additional systems or layers that support the cognitive level
of the overall system.

Chapter 7

Specialized Top-Level
Platforms

This chapter is intended to cover tasks that do not fit directly into the gen-
eralized robotic paradigm of earlier chapters, and where models such as the
BDI model or the HTN model do not have much relevance either.

42

Chapter 8

Ontologies

8.1 Content and Purpose of Ontologies

The Wikipedia article on ontology in computer science [1] says:

In computer science and information science, an ontology is a formal rep-
resentation of the knowledge by a set of concepts within a domain and
the relationships between those concepts. It is used to reason about the
properties of that domain, and may be used to describe the domain.

In theory, an ontology is a “formal, explicit specification of a shared con-
ceptualisation.” An ontology provides a shared vocabulary, which can be
used to model a domain that is, the type of objects and/or concepts that
exist, and their properties and relations.

Ontologies are used in artificial intelligence, the Semantic Web, systems
engineering, software engineering, biomedical informatics, library science,
enterprise bookmarking, and information architecture as a form of know-
ledge representation about the world or some part of it. The creation of
domain ontologies is also fundamental to the definition and use of an enter-
prise architecture framework.

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. As mentioned above, most on-
tologies describe individuals (instances), classes (concepts), attributes, and
relations. Common components of ontologies include:

• Individuals: instances or objects (the basic or ”ground level” objects)

• Classes: sets, collections, concepts, classes in programming, types of
objects, or kinds of things.

• Attributes: aspects, properties, features, characteristics, or parame-
ters that objects (and classes) can have

• Relations: ways in which classes and individuals can be related to
one another

1http://en.wikipedia.org/wiki/Ontology (information science)

43

http://en.wikipedia.org/wiki/Ontology_(information_science)�

44

• Function terms: complex structures formed from certain relations
that can be used in place of an individual term in a statement

• Restrictions: formally stated descriptions of what must be true in
order for some assertion to be accepted as input

• Rules: statements in the form of an if-then (antecedent-consequent)
sentence that describe the logical inferences that can be drawn from
an assertion in a particular form

• Axioms: assertions (including rules) in a logical form that together
comprise the overall theory that the ontology describes in its domain
of application. This definition differs from that of ”axioms” in gener-
ative grammar and formal logic. In those disciplines, axioms include
only statements asserted as a priori knowledge. As used here, ”ax-
ioms” also include the theory derived from axiomatic statements.

• Events: the changing of attributes or relations.

Ontologies are commonly encoded using ontology languages.

8.1.1 Formal vs Lightweight Ontologies

Citation from [2]

A variety of ontologies form a continuum from lightweight, rather informal,
to heavyweight, and formal ontologies. The lightweight ontology approach
and the formal ontology approach are often used differently and have dif-
ferent strengths and weaknesses. Lightweight ontologies usually are tax-
onomies, which consist of a set of concepts (i.e., terms, or atomic types)
and hierarchical relationships among the concepts. It is relatively easy to
construct a lightweight ontology. To use a lightweight ontology for inter-
operability purposes, all parties need to agree on the exact meaning of the
concepts. Reaching such agreements can be difficult. The lightweight ontol-
ogy and the agreements together form a standard that all parties uniformly
adopt and implement. That is, a lightweight ontology is often used to sup-
port strict data standardization. In contrast, a formal ontology uses axioms
to explicitly represent subtleties and has inference capabilities. It can sup-
port data standardization in a different way, that is, the agreements are
explicitly specified in the ontology. More often, a formal ontology is used to
allow for data heterogeneity and to support interoperability, in which case
the different interpretations and representations of data are explicitly cap-
tured in the ontology. In either case, a formal ontology disambiguates all
concepts involved. Once created, a formal ontology can be relatively easy
to use. But it often takes tremendous effort to create a formal ontology due
to the level of detail and complexity required.

To summarize, lightweight ontologies are often used as data standards; as
artifacts, they are simple, and thus easy to create, but difficult to use. For-
mal ontologies are often used to support interoperability of heterogeneous
data sources and receivers; as artifacts, they are complex and difficult to
create, but easy to use. Either approach has its weakness that limits its
effectiveness.

2http://web.mit.edu/smadnick/www/wp/2006-06.pdf

http://web.mit.edu/smadnick/www/wp/2006-06.pdf�

45

(The Wikipedia article on lightweight ontologies is not recommended).

Domain ontologies and upper ontologies

The following distinction is mostly applicable for formal ontologies; lightweight
ontologies typically do not use it or need it.

A domain ontology (or domain-specific ontology) models a specific domain,
or part of the world. It represents the particular meanings of terms as
they apply to that domain. For example the word card has many different
meanings. An ontology about the domain of poker would model the “playing
card” meaning of the word, while an ontology about the domain of computer
hardware would model the “punched card” and “video card” meanings.

An upper ontology (or foundation ontology) is a model of the common ob-
jects that are generally applicable across a wide range of domain ontologies.
It contains a core glossary in whose terms objects in a set of domains can be
described. There are several standardized upper ontologies available for use,
including Dublin Core, GFO, OpenCyc/ResearchCyc, SUMO, and DOLCE.
WordNet, while considered an upper ontology by some, is not strictly an
ontology. However, it has been employed as a linguistic tool for learning
domain ontologies.

The Gellish ontology is an example of a combination of an upper and a
domain ontology.

Since domain ontologies represent concepts in very specific and often eclec-
tic ways, they are often incompatible. As systems that rely on domain
ontologies expand, they often need to merge domain ontologies into a more
general representation. This presents a challenge to the ontology designer.
Different ontologies in the same domain can also arise due to different per-
ceptions of the domain based on cultural background, education, ideology,
or because a different representation language was chosen.

8.2 Ontology Languages

Most of the representation languages that were described in Chapter 4 are
used for representing ontologies, in particular KIF, CycL and OWL. The
following are some additional languages that have been developed specifi-
cally for representing ontologies (quotation from the Wikipedia article on
ontologies [3])

• The Common Algebraic Specification Language is a general logic-
based specification language developed within the IFIP (International
Federation of Information Processing) working group 1.3 ”Founda-
tions of System Specifications” and functions as a de facto standard
in the area of software specifications. It is now being applied to on-
tology specifications in order to provide modularity and structuring
mechanisms.

• Common logic is ISO standard 24707, a specification for a family of
ontology languages that can be accurately translated into each other.

3http://en.wikipedia.org/wiki/Ontology (information science)

http://en.wikipedia.org/wiki/Ontology_(information_science)�

46

• DOGMA (Developing Ontology-Grounded Methods and Applications)
- additional information not available.

• The Gellish language includes rules for its own extension and thus
integrates an ontology with an ontology language.

• The Integrated Definition for Ontology Description Capture Method
(IDEF5) is a software engineering method to develop and maintain
usable, accurate, domain ontologies.

• The Rule Interchange Format (RIF) and F-Logic combine ontologies
and rules.

• The Semantic Application Design Language (SADL) captures a subset
of the expressiveness of OWL, using an English-like language entered
via an Eclipse Plug-in.

• OBO, a language used for biological and biomedical ontologies.

8.2.1 The RIF Language

Wikipedia says:
RIF is part of the infrastructure for the semantic web, along with (princi-
pally) RDF and OWL. Although originally envisioned by many as a ”rules
layer” for the semantic web, in reality the design of RIF is based on the
observation that there are many ”rules languages” in existence, and what
is needed is to exchange rules between them. End of citation.

In practice RIF is therefore a family of languages, rather than a single
language, and in terms of the present compendium one may consider RIF
as a language style and its various so-called dialects as languages using that
style. The following are simple examples from some of these ‘dialects’.

The Production Rules Dialect

The Production Rules Dialect (PRD) can be used to model production rules.
Notably features in PRD include negation and retraction of facts (thus,
PRD is not monotonic). PRD rules are order dependent, hence conflict
resolution strategies are needed when multiple rules can be fired. The PRD
specification defines one such resolution strategy based on forward-chaining
reasoning.

Prefix(ex <http://example.com/2008/prd1#>)
(* ex:rule_1 *)
Forall ?customer ?purchasesYTD (
If And(?customer#ex:Customer

?customer[ex:purchasesYTD->?purchasesYTD]
External(pred:numeric-greater-than(?purchasesYTD 5000)))

Then Do(Modify(?customer[ex:status->"Gold"])))

The Uncertainty Rule Dialect

The Uncertainty Rule Dialect (URD) supports a direct representation of
uncertain knowledge, as in the following example.

47

Document(
Import (<http://example.org/fuzzy/membershipfunction >)
Group
(

Forall ?x ?y(
cheapFlight(?x ?y) :- affordableFlight(?x ?y)

) / 0.4
Forall ?x ?y(affordableFlight(?x ?y)) / left_shoulder0k4k1k3k(?y)

))

It is debatable whether these RIF languages should best be described as
knowledge representation languages, specialized ontology languages or high-
level programming languages.

8.2.2 Common Logic

Wikipedia writes:
Common logic (CL) is a framework for a family of logic languages, based
on first-order logic, intended to facilitate the exchange and transmission of
knowledge in computer-based systems.

The CL definition permits and encourages the development of a variety of
different syntactic forms, called ”dialects.” A dialect may use any desired
syntax, but it must be possible to demonstrate precisely how the concrete
syntax of a dialect conforms to the abstract CL semantics, which are based
on a model theoretic interpretation. Each dialect may be then treated as
a formal language. Once syntactic conformance is established, a dialect
gets the CL semantics for free, as they are specified relative to the abstract
syntax only, and hence are inherited by any conformant dialect. In addition,
all CL dialects are equivalent (i.e., can be mechanically translated to each
other), although some may be more expressive than others.

The standard includes specifications for three dialects, the Common Logic
Interchange Format (CLIF), the Conceptual Graph Interchange Format
(CGIF), and an XML-based notation for Common Logic (XCL). The se-
mantics of these dialects are defined by their translation to the abstract
syntax and semantics of Common Logic. Many other logic-based languages
could also be defined as subsets of CL by means of similar translations;
among them are the RDF and OWL languages, which have been defined by
the W3C (World-Wide Web Consortium). End of citation.

The following is a simple example of these formats:

CLIF: (exists (x y) (and (Red x) (not (Ball x)) (On x y)
(not (and (Table y) (not (Blue y))))))

CGIF: ~[[*x] [*y] (Red ?x) ~[(Ball ?x)] (On ?x ?y)
~[(Table ?y) ~[(Blue ?y)]]]

This shows how CLIF uses S-expression style and CGIF uses its own special
format for representing logic formulas using the standard (Latin-1) com-
puter character set. The peculiar conventions of CGIF include the use of
square brackets for enclosing a conjunction (and-expression) and a universal
quantifier, and the use of the asterisk for marking the quantification of a
variable.

48

Notice that the concept of dialect in Common Logic is quite different from
dialects in RIF. RIF dialects are languages for different purposes that use a
more or less common style, whereas the point with Common Logic dialects
is to allow different styles for the same, or at least overlapping semantic
content.

8.2.3 The Gellish Language

The Wikipedia article about Gellish [4] writes:
Gellish is a controlled natural language, also called a formal language, in
which information and knowledge can be expressed in such a way that it is
computer-interpretable, as well as system-independent. Gellish is a struc-
tured subset of natural language that is suitable for information modelling
and knowledge representation and as a successor of electronic data inter-
change. From a data modeling perspective, it is a generic conceptual data
model that also includes domain-specific knowledge and semantics. There-
fore, it can also be called a semantic data model. The accompanying Gellish
modelling method thus belongs to the family of semantic modelling meth-
ods.

The data model in Gellish is based on binary relations between entities,
similar to the model in OWL.

Etymologically speaking, “Gellish” is originally derived from “Generic En-
gineering Language.” However, it is further developed into a language that
is also applicable outside the engineering discipline.

8.2.4 The SADL Language

A simple example of the use of SADL, from its webpage:

shapes-top.sadl
uri "http://ctp.geae.ge.com/iws/shapes_top".

Shape is a top-level class.
area describes Shape has values of type float.

shapes-specific.sadl
uri "http://ctp.geae.ge.com/iws/shapes_specific".

import "file://shapes-top.sadl" as shapes-top.

Circle is a type of Shape.
radius describes Circle has values of type float.

Rectangle is a type of Shape.
height describes Rectangle has values of type float.
width describes Rectangle has values of type float.

Reasoning over a set of SADL documents takes two basic forms. Validation
of a model involves checking the model for contradictions or inconsisten-
cies. Rule processing involves examining the rules in the model in light of

4http://en.wikipedia.org/wiki/Gellish

http://en.wikipedia.org/wiki/Gellish�

49

the current instance data to see if any of the rules can ”fire” to infer addi-
tional information. Two reasoners are integrated with the SADL Integrated
Development Environment (SADL-IDE).

A systematic transformation from SADL to OWL has been defined.

8.2.5 The IDEF5 Method and Language

The digit ‘5’ in the acronym IDEF5 is not a version generation number,
but represents the fact that there is an IDEF family of modelling languages
that serve different and complementary purposes, and IDEF5 is the partic-
ular language used for ontologies in this family. This family of languages
was developed by the U.S. Air Force in the early 1990’s, and is presently
maintained and used by a commercial company, Knowledge Based Systems,
Inc.

The IDEF5 method has three main components: A graphical language to
support conceptual ontology analysis, a structured text language for de-
tailed ontology characterization, and a systematic procedure that provides
guidelines for effective ontology capture. The graphical language appears
to be the primary representation.

8.3 Published Formal Ontologies

A large number of proposed formal ontologies have been published, both
general-purpose ones and specialized ontologies for different disciplines or
areas of knowledge or application. The following are some of the more
important general-purpose ontologies.

• The Cyc ontology, [5]

• The Suggested Upper Merged Ontology, SUMO, [6]

• The Generalized Upper Model, GUM

• The Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE), [7]

Ontologies such as these are fairly elaborate things, often beginning with an
almost philosophical discussion of types of concepts and their relationships
and uses. It is not the purpose of the present compendium to address
those issues, and we shall merely make a few notes about the technical and
administrative aspects of some of the ontologies, and in particular how they
relate to the styles and representation languages that have been described
in earlier chapters.

The Protégé Ontology Library [8] contains a considerable number of ontolo-
gies, in particular in the two formats that are supported by Protégé, i.e.
OWL and OKBC. Contents range from the very general, such as DOLCE,
to the quite specific e.g. Daycare - “A demo ontology about a childcare

5http://en.wikipedia.org/wiki/Cyc
6http://en.wikipedia.org/wiki/Suggested Upper Merged Ontology
7http://www.loa-cnr.it/Papers/DOLCE2.1-FOL.pdf
8http://protegewiki.stanford.edu/wiki/Protege Ontology Library

http://en.wikipedia.org/wiki/Cyc�
http://en.wikipedia.org/wiki/Suggested_Upper_Merged_Ontology�
http://www.loa-cnr.it/Papers/DOLCE2.1-FOL.pdf�
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library�

50

center showing the use of SWRL for reasoning,” or Camera - “An OWL
ontology about the individual parts of a photo camera.”

8.3.1 The SUMO Ontology

SUMO uses the KIF representation language.

Text to be added.

8.3.2 The DOLCE Ontology

Text to be added. The WonderWeb Foundational Ontologies Library (WFOL)
is intended to contain a variety of ontology documents together with tools
for relating them. DOLCE is the first item in that library.

8.3.3 The Cyc Ontology

The Cyc ontology uses the CycL representation language.

Text to be added.

