
KRF

Erik Sandewall

List Processing in the
Knowledge Representation Framework

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-011, can persistently be accessed as follows:

Project Memo URL: http://www.ida.liu.se/ext/caisor/pm-archive/krf/011/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2010/008/

Date of manuscript: 2011-01-02

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

http://www.ida.liu.se/ext/caisor/pm-archive/krf/011/�
http://aip.name/se/Sandewall.Erik.-/2010/008/�
http://www.ida.liu.se/ext/krf/�
http://aip.name/info/�
http://www.ida.liu.se/=xxxxx�

1

Introduction

This is the first one in a sequence of lecture notes that are intended for use in
a course on Artificial Intelligence and its software techniques. The present
one is dedicated to the traditional issue of list processing, including the use
of lists (recursively nested sequences), symbols and their attributes. The
main part of the text uses a computer-oriented variant of the traditional
notation of discrete mathematics and formal logic, as defined in the Know-
ledge Representation Framework. The text end ends with an account of the
Lisp programming language, which is similar in spirit but uses somewhat
different notational conventions.

The next lecture note in the series proceeds with an account methods for
the preservation and management of knowledgebase content. The emphasis
is on knowledgebases of moderate size and with a rich structure, rather than
massively large ones with a simpler and uniform structure.

The third lecture note addresses software techniques for intelligent au-
tonomous agents, including software architectures for such agents (BDI,
HTN, etc) and languages such as KQML, FIPA-ACL, KIF, PDDL.

There is a preceding text, “Knowledge Representation Framework: Overview
of Languages and Mechanisms,” that should be read as an introduction and
before beginning to read the present text. It will be referred to in the sequel
as the KRF Overview.

Chapter 1

Introduction

1.1 History of List Processing

Knowledge-based autonomous systems are software systems that maintain
and use a collection of information about their environment, and often also
about themselves, and that use this information for taking action in that
environment. The software technology for such systems is based on two
principles: First, techniques for the computation of recursive functions of
symbolic expressions, which is usually called list processing and was pio-
neered by the Lisp programming language. 1“list processing.” Second, the
use of formal logic, and in particular first-order predicate logic as a repre-
sentation language.

The history of these software techniques is almost as long as software tech-
nology itself. The Lisp language was defined in 1959, and the systematic
use of logic for these purposes began with the introduction of the Prolog
language ten years later. Developments since then include both develop-
ments within the respective languages, and the transfer of techniques to
other kinds of programming languages. Lisp has developed with respect
to programming environment (the Interlisp system), standardization (Com-
monLisp), and the inclusion of object-oriented constructs (CLOS). It has
also inspired languages that are strongly similar to itself (Scheme) or mod-
erately similar (Haskell, Python), as well as languages that have imported
specific facilities (Simula and Java for garbage collection, Java for serializa-
tion of data structures, Ruby for closures). Lisp is a basis for the family of
functional programming languages which include e.g. ML and Microsoft’s
Sharp-F language, besides Haskell. Prolog has developed in similar ways
and given rise to, or influenced Constraint Logic Programming (CLP) and
the language Oz.

Although there are many cases where an application or an experimental
system has been written directly in Lisp, this language plays an equally im-
portant role as an advanced implementation language for other, high-level
or application-specific languages. Well-known practical examples include its
use as the internal language in the Emacs text editor and in the AutoCAD
software for computer-aided design. “Understanding Lisp” shall therefore
not only be understood as “understanding how to write programs in Lisp,”

1The name Lisp was originally an acronym for

2

3

is must also be understood as “understanding how languages with new con-
cepts can be implemented in Lisp.”

In an interesting and relatively recent development, specialists in several
fields outside of computer science have begun using the Scheme language
for modelling phenomena and process in their respective disciplines. Scheme
has been obtained from Lisp by “cleaning up” the design and making it more
systematic and elegant. This use of Scheme is based on the textbook Struc-
ture and Interpretation of Computer Programs by Sussman and Abelson.

1.2 Goal and Approach in this Compendium

The purpose of the present compendium (= lecture notes) is to present
the above-mentioned cluster of programming techniques in a concise and
coherent fashion. The purpose is not merely to introduce a particular pro-
gramming language, but to introduce a language together with a number
of general design principles for programming languages and systems in this
family of languages, as well as software techniques that are important in
the contexts where these languages are widely used. The Knowledge Rep-
resentation Framework is used throughout as a well-defined notational and
conceptual’ basis.

The present, first part of the compendium is language-oriented. It begins
with a basic notation called CEL (Common Expression Language), and then
proceeds to introduce the Lisp language as a notational variant of CEL.
At the end of Part I the reader should be able to write simple programs
in Lisp as well as function definitions in CEL; he or she should also have
understood the related system design principles.

The Leonardo software system is an implementation of the Knowledge Rep-
resentation Framework, and it is used as the software tool for the present
text.

The CEL notation is closely related to the notation of predicate logic, and
indeed one major reason for first introducing CEL and then describing Lisp
as a variant of it is to show the connection between Logic and Lisp. Ex-
pressions in predicate logic are called propositions, and propositions are used
extensively in the present text, but a full-fledged introduction to logic has to
be made separately. The reader who is not already familiar with predicate
logic is advised to study the accompanying compendium, “Introduction to
CEL and Logic” concurrently with the present text.

1.3 Prerequisites and Exercises

The KRF Overview should be read before the present text and as a prepa-
ration for it, as was mentioned in the Introduction section.

The reader should also be familiar with the Boolean operators and, or,
and not , the usual truth-tables for defining their evaluation, and the stan-
dard equivalence rules whereby an expression using these operators can be
rewritten to other, equivalent expressions.

No other prerequisites should be needed.

4

The working of exercises and lab assignments is strongly recommended as
a part of the study of the present text.

Chapter 2

The Common Expression
Language on Sequences

The syntax for Knowledge Representation Expressions and for the Common
Expression Language were defined in the KRF Overview report. The present
report (Part I) will address a subset of these languages where sequences are
the only kind of composite expressions. This is the topic of list processing.

2.1 Expressions on Sequences

The KRE syntax allows three kinds of elementary expressions: symbols,
strings, and numbers, and a variety of composite expressions that can be
constructed from these elements. In this section we consider that part of
KRE that only allows one kind of composite expressions, namely sequences.
Sequences are enclosed by angle brackets in the notation, as in

<symbol-1 "This is a string" 3.1416 symbol-2>

Symbols are a kind of entities. Full KRE also allows composite entities but
these are not considered in the present chapter, so for now symbols and
entities are the same thing.

Expressions in CEL are formed using functions and other operators that
have KRE expressions as their arguments and values. As a special case,
each KRE expression is itself a CEL expression. Each correctly formed
CEL expression has a value; KRE expressions have themselves as values.

Consider now CEL expressions that also contain functions, as in the follow-
ing example

(e3 <a b c d e>)

The function e3 obtains (i.e., has as value) the third element of the sequence
given as its argument. The value of the CEL expression above is therefore
the entity c .

In our further examples we shall write the CEL expression and its value on
the same line, for compactness, and separated by => as follows:

(e3 <a b c d e>) => c

5

6

This is similar to the notation in the Leonardo system dialog, except that
there you type the expression on one line and then obtain the => arrow and
the value on the next line.

The functions e1, e2, e3 and e4 are defined; for later elements one uses
the more general function en that takes the desired position as its first
argument, as in

(en 3 <a b c d e>) => c

The function concat concatenats two or more sequences, as in

(concat <a b> <c d e> <g h>) => <a b c d e g h>

The functions t0, t1, t2, t3, t4 are analogous to the ei functions, but
they have the effect of obtaining the rest of a sequence when a few elements
at the beginning are omitted. For example,

(t3 <a b c d e>) => <d e>
(t1 <a b c d e>) => <b c d e>
(t0 <a b c d e>) => <a b c d e>

The function tn of two arguments is analogous to en. The rest of a list that
is obtained in this way is often called a tail which is the reason for using
the letter t in these function names. The function tl is defined both with
a digit 1 and a letter l for convenience.

2.2 Evaluation and Session Variables in a
Leonardo Session

The examples in the previous section showed expressions that have a value
which is obtained as the result of evaluating the expression. This is the
main topic of the present report, but for presentational convenience we
shall make a brief digression into how expressions can be evaluated in an
implementation such as a Leonardo system.

As soon as a Leonardo session has started it is ready to evaluate CEL ex-
pressions. In this case the user input shall consist of a point character (.)
followed by the expression in question on a single line, and the return ‘char-
acter’. Formally, the point is considered as a command that says “evaluate
my argument and show the result.” The value of the expression is obtained
on the next line, for example as follows

502) .(t2 <a b c d e>)
=> <c d e>

In each session it is possible to introduce session variables and assign values
to them. These values can then be used in further input expressions. The
following command

ssv .alpha 5

introduces .alpha as a session variable, if it is not already, and assigns the
value 5 to it, so ssv behaves like assignment in most programming lan-
guages. Thereafter during the same session, one can use it as a component
of expressions, as in the following examples.

7

<3 4 .alpha 6 7> => <3 4 5 6 7>
.alpha => 5

Also, of course, after having entered the command

ssv .beta <3 .alpha 7>

one will have for example

(concat (t1 .beta) <9 11>) => <5 7 9 11>

Session variables are in fact of relatively little use in actual systems since
there are other, and more structured ways of storing and accessing infor-
mation. They are however useful during program development sessions, for
example for keeping test data, and they are also convenient for the examples
in the present compendium.

The general rules are as follows. Symbols beginning with a point charac-
ter are considered as variables and not as entity symbols. If a sequence
expression contains one or more variables, then the current values of those
variables are used when the expression is evaluated. The ssv command-verb
takes two arguments where the first one must be given as a variable; the
second argument is evaluated and then its value is assigned to the variable
that is the first argument.

2.3 Predicates and Propositional Connectives

The following are some simple examples using the predicate equal

[equal <a b> <a b>] => [true]
[equal 4 <c d>] => [false]
[equal 4 <4>] => [false]

In general, a literal is formed using a predicate followed by its arguments,
and surrounded by square brackets. Literals are CEL expressions whose
value can be [true] or [false] . Certain other values may also occur,
for example [unknown] , but they belong to the more advanced topics.
These truth-values are in fact also literals, so [true] and [false] are
predicates without arguments that have their own expressions as values.

Each predicate has a negation which is written by prefixing the predicate
symbol with the dash sign. The value of the negation is the opposite of the
value of the original predicate with the same arguments, for example:

[-equal <a b> <a c>] => [true]

An expression formed using a negated predicate and its arguments is called
a negative literal.

The equal sign = can sometimes be used instead of symbol equal but in this
particular case the negation is written as /= rather than -=

Literals can be combined using the operators and, or, and not, always
enclosed by ordinary, round parentheses. These propositional connectives
evaluate according to the standard truth-tables, as long as their arguments
are nothing else than [true] or [false] . The operators and and or
can take any number of arguments; not can only take one argument. One
example should be sufficient:

8

(and [equal 4 4] (not [equal 4 5])] => [true]

Notice that if -pred is the negation of a predicate pred of for example two
arguments, then [-pred .x .y] has the same value as (not [pred .x
.y]) for any values of the arguments.

2.4 Function Definitions

The element functions e1 and onwards, the tail functions t0 and onwards,
and the concat function are the basic ones for operating on sequences, and
they may be used directly for defining the effects of action-verbs. A later
chapter will describe how to do this. However, it is very often required to
define additional functions in terms of the given ones. This is done using
the action-verb def like in the following example:

def [equal (myfun .a .b) (concat .b <"-"> .a)]

After this definition has been received in the session, the function myfun
can be used like in the following example:

(myfun <"alpha" "beta"> <"phi" "psi">) =>
<"phi" "psi" "-" "alpha" "beta">

In general the operator def takes a single argument which must be given as
an expression headed by the predicate equal. The first argument of equal
must be given as an expression consisting of the function to be evaluated,
with arguments that are given as variables; the second argument of equal
must be given as a CEL expression which may use those variables.

Note: When we write that an argument must be “given as” a particular
structure, we mean that it must be written directly in that form. For
example, in the case of the def operator, it would not be correct to write

def [equal .c (concat .b <"-"> .a)]

referring to a variable .c whose value is the expression (myfun .a .b). In
the opposite case, where it is accepted to write the argument using func-
tions, variables, etc which are evaluated before the operation in question is
performed, we write merely that the argument must be this or that, when
restrictions on it have to be made.

In practice one will usually write function definitions in files that can be
loaded into a session, instead of having to type them into the session directly.
The methods for doing this will be described after we have first introduced
logical primitives and their use.

Most function definitions contain conditional expressions, for example:

def [equal (altfun .a .b) (if [equal .a 0] .b .a)]

The operator if shall have two or three arguments, where the first argument
must be given as a proposition (whose value can only be [true] or [false]
in fact) and the other argument(s) are given as arbitrary CEL expressions.
An expression headed by if is evaluated in the fairly obvious way: the
first argument is evaluated, and then the second or the third argument is
evaluated and the value is obtained, depending on the value of the first
argument. If the third argument is omitted then the value nil is intended.

9

The following is the definition of a function that obtains the last element of
a non-empty sequence, as an example.

def [equal (last .a) (if [equal (t1 .a) <>] (e1 .a)
(last (t1 .a)))]

This definition uses the function last recursively. The use of recursive
function definitions is characteristic of Lisp as well as all other languages
that operate on symbolic expressions, and getting used to writing recursive
function definitions is an important aspect of understanding such languages.

2.5 From CEL to Lisp

The simple CEL language that we have introduced so far is similar to the
central part of the Lisp language. There are a number of differences with
respect to the naming of functions and predicates, but these are of course
entirely trivial. Most of the function names in the core of Lisp were chosen
in the early days of the language, and some of them are a bit weird, such
as car, cadr, caddr for e1, e2, e3. We choose to replace such names
in the present compendium.

There is however one major difference, which concerns the representation
of variables. CEL is similar to most programming languages, and to Logic,
in that it makes a distinction between variables and atomic data items.
Lisp does not make that distinction, and uses an operation called quoting
instead.

This peculiarity in Lisp is due to another basic choice, namely, that all data
and all evaluable expressions are written using one single kind of brackets,
namely the round parentheses. Thus a KRE sequence such as

<a b c d>

will be written as follows in Lisp

(a b c d)

and the following CEL expression

(concat <a b> <c d>)

will be written as follows in elementary Lisp

(concat (quote (a b)) (quote (c d)))

The quote is not a representation of the angle bracket; it is needed in order
to identify the arguments as data. If one writes the following expression

(concat (a b) (c d))

in Lisp then it assumes that a is a function of one argument, and that its
argument b is a variable whose value is to be looked up before the function
a is applied to it. The same applies for (c d) of course.

The function concat is actually called append in Lisp but this is a technical
detail. Expressions formed recursively using round parentheses in Lisp are
called S-expressions and each parenthesized level in such an expression is
called a list. Functions on lists in Lisp correspond fairly directly to functions
on sequences in CEL, therefore.

10

One consequence of this arrangement is that Lisp also needs a list-forming
function. The following expression in CEL

<alpha beta .x delta>

would be written as follows in Lisp

(list (quote alpha) (quote beta) x (quote delta))

Here, the quote expressions mark that their arguments shall not be treated
as variables, so the system shall not try to look up their values, but x is
not quoted, so it is a variable in this position, and its value is looked up.
The function list forms a list consisting of the values of its successive
arguments.

Repeated use of the quote operator tends to be clumsy and it can therefore
be abbreviated using the single-quote character. The last example above
can therefore equivalently be written as

(list ’alpha ’beta x ’delta)

but the internal representation in the executing system uses the unabbrevi-
ated representation.

The approach of Lisp with respect to variables and quoting may take some
time for getting used to, but it has considerable advantages as well as some
long-term disadvantages. The major advantage is formal simplicity: it leads
to an absolutely minimal language which is used for both ‘data’ and ‘pro-
grams’. This makes it very easy to write programs that operate on other
programs, for example, which is important when Lisp is used as an advanced
implementation language.

One disadvantage with the Lisp approach that does not go away with prac-
tice is that it increases the superficial difference between Lisp and the con-
ventional notation of Logic. CEL is much closer to logic notation. This
explains why we have chosen to use CEL for the introductory parts of this
compendium, postponing the more extensive treatment of Lisp to a later
chapter.

2.6 From CEL to Logic

Whereas the step from CEL to Lisp is a change of representation and re-
quires a transformation on the expressions concerned, the step from CEL
to the notation of Logic is mostly a change of usage of these expressions.
We have described CEL as a language for expressions that can be evaluated
in a computational context. Predicate logic uses expressions which have
exactly the form of CEL propositions, since they are constructed using the
propositional connectives (and, or, etc.) operating on literals consisting
of predicates and their arguments. However, the primary use of proposi-
tions in Logic is as assertions, in the sense that the user states a number of
propositions as being known facts. In effect they constitute the knowledge-
base. The primary operation on the knowledgebase is to draw conclusions,
that is, to obtain other propositions by combining known information in
well-defined ways. This is a different kind of operation compared with the
evaluation of propositions and other CEL expressions which occurs in the
computational setting.

11

This said, one must however also be aware that even in logic there is a notion
of evaluation of propositions, but it is used as a formal tool for proving the
correctness of particular methods of drawing conclusions.

Propositions are used in several ways, therefore: as an argument of operators
such as the if of CEL, and as assertions in the context of logic. There are
in fact additional uses as well, namely, in order to specify the preconditions
of actions, and to characterize their intended or actual effects. The use
of the notation of logic will therefore be a recurrent theme in the present
compendium, and especially in Part II.

2.7 Infix Variants of CEL

We have defined all these functions and predicates with prefix notation, so
that the operator in question precedes all its arguments. This is a principled
and systematic notation. However, for many of the two-argument operators
it is natural often to write them on infix form, so that the operator appears
between its two arguments. Specific declarations in the Leonardo system at
hand indicate in which cases this is admitted. The following is an example of
using this possibility for the predicate equal in the definition of the function
last

def [(last .a) equal (if [(t1 .a) equal <>] (e1 .a)
(last (t1 .a)))]

Lisp does not have this possibility, except in the Interlisp variant which is
not in much use nowadays.

However, in all cases it is necessary to retain the parentheses and brackets;
several operators can not be mixed on the same parenthesization level.

Chapter 3

Operations on Scalars and
Sequences

By ‘scalars’ in CEL we mean integers, so-called real numbers, and strings.
Like in other computer languages, when we say ‘real number’ we really
mean a rational number expressed using an integer part and decimals. The
following is a basic set of functions and predicates on sequences and scalars
which shall be used for the present compendium and the associated course.
We provide brief definitions of each function, but omit technical details as
well as information about what value or other response is obtained if the
function is invoked with incorrect arguments.

3.1 Type and Coercion Operations

In some cases it is important to know the type of a particular data object
which has been obtained as a value from a function. The following function
is used.

(type-of .x)

The value is an entity that characterizes the type of the argument. It
can be one of the entities symbol, string, integer, real or sequence.
Additional alternatives will be introduced in later chapters.

Coercion functions are functions that convert from one datatype to another.
They have a prefix coe. indicating that they are this kind of function.

(coe.string .x)

Converts a number or a symbol .x to a corresponding string.

(coe.number .s)

Converts a string .s to a corresponding number: if there exists a number
.n such that the value of (coe.string .n) equals .s then this number is
obtained.

12

13

(coe.entity .s)

Converts a string .s to a corresponding entity.

(coe.tag .s)

Converts a string or entity .s to a corresponding tag, as in

(coe.tag "name") => :name
(coe.tag name) => :name

Tags are used in the formation of records. (The syntax for records was
defined in the KRF Overview.) There are also functions for converting
from tags to entities, and to and from variable symbols. These are defined in
Chapter 6. Functions for converting between integers and reals are defined
in Section 3.2.

3.2 Numerical Functions

(+ .x .yz)

Addition of numbers. Each number can be integer or real. The value is a
real number if at least one of the arguments is so, otherwise integer.

(* .x .yz)

Multiplication of numbers. Integers vs reals are handled like for the + func-
tion.

(- .x .y)

Subtraction of numbers. Integers vs reals are handled like for the + function.
This function can be used with one or two arguments, but not with more
than two. An expression (- .x) is interpreted as (- 0 .x) which is natural.

(/ .x .y)

Division of numbers, where .y must be different from zero. The value is
an integer if both arguments are integers and the first argument is an even
multiple of the second argument, otherwise a real.

(/up .x .y)

Similar to the / function, but the value is an integer which is obtained by
rounding the quotient upwards, in the sense of away from zero, if necessary.

(/down .x .y)

Similar to the / function, but the value is an integer which is obtained by
rounding the quotient downwards, in the sense of towards zero, if necessary.
For example,

14

(/down 13 -3) => -4

(coe.up .r)

The argument is a real number or an integer; the value is then always an
integer. A real argument obtains the next ‘higher’ integer in the sense of
moving away from zero, increasing for positive arguments and decreasing
for negative arguments. For integers this is the identity function.

(coe.down .r)

Similar to coe.up but obtains the nearest integer in the direction towards
zero.

These functions should not be confounded with the string functions str.upcase
and str.downcase which are defined in Section 3.4.

(random .n)

The argument shall be a positive integer. The value is a positive integer
that is less than or equal to .n .

The underlying Lisp system contains additional functions for computation
with ratios (i.e., exact quotients between integers), double and multiple
precision ‘real’ numbers, and very large integers. Applications requiring
these facilities should be programmed on the Lisp level, therefore.

3.3 Numerical Predicates

The predicate equal has already been introduced and applies to numbers
as well as to other objects. In the particular case where the arguments are
numbers it can also be written as the symbol = , for example [= .a 4] By
way of exception and for mnemonic reasons, the negation of = is written
as /= and not as -=. We also use the following predicates for inequalities
between numbers.

[ls .a .b]

The first argument is strictly less than the second argument.

Other inequality predicates are gt for ‘strictly greater than,’ ls= for ‘less
than or equal to’ and gt= for ‘greater than or equal to.’ The predicate gt=
is the same as -ls and ls= is the same as -gt, but we use them all in order
to benefit from their mnemonic character.

These predicates can only be used with exactly two arguments.

3.4 String Functions

The following functions are defined for strings.

15

(str.concat .s1 .s2sn)

This function concatenates the strings given as arguments, for example:

(str.concat "abc" "---" "def") => "abc---def"

(str.length .s)

Obtains the length of the string given as argument, expressed as a non-
negative integer. The length of the empty string is zero.

(substring .s .m .n)

Obtains a substring of .s by removing all characters after the first .n char-
acters, and also removing the first .m characters. For example,

(substring "abcdefgh" 2 6) => "cdef"

The third argument may be omitted and the value will then extend to the
end of the given string.

(str.upcase .s), (str.downcase .s)

These functions convert the string given as argument to uppercase charac-
ters and to lowercase characters, respectively. Non-letter characters remain
unchanged.

Extensive manipulation of strings requires additional functions, including
functions that can operate efficiently on the level of individual characters,
and on arrays. Such functions are not defined in CEL, and if they are needed
for an application of Leonardo then that part of the programming should
be done on the Lisp level. They are not of direct interest for the topic of
Knowledge-Based Autonomous Systems.

3.5 String Predicates

Besides the equal predicate we use the following ones for strings.

[str.begins .p .s]

This predicate obtains [true] if the first argument is an initial substring
of, or equal to the second argument, and [false] otherwise.

[str.ends .p .s]

Similar to str.begins but .p is a final substring of, or equal to .s

[str.prec .p .s]

The first argument precedes strictly the second argument alphabetically.

[str.prec= .p .s]

16

Similar to str.prec but for ‘precedes or is equal to.’

Notice that the corresponding ”string succeeds” predicates can be written
as -str.prec= and -str.prec respectively. The alphabetical ordering is
defined in such a way that upper-case and lower-case letters are consid-
ered as equivalent. Letters outside the 26-letter alphabet from A to Z are
considered to have the order that they have in the Latin-1 character set.

Chapter 4

Other List Processing
Operations

4.1 Operations on Sequences

The function concat and the functions in the en and tn families have al-
ready been mentioned. The predicate equal applies of course to sequences
as well as to other types of objects. In addition we have the following
operations.

(length .s)

Obtains the length of a sequence as a non-negative integer.

(cons .e .s)

The first argument can be an arbitrary KRE-expression, the second argu-
ment must be a sequence. The value is obtained as the extended sequence
where .e has been prepended at the beginning of .s for example:

(cons red <green blue white>) => <red green blue white>

(subseq .s .m .n)

Obtains a subsequence of the given sequence, in the same way as the function
substring. All three arguments are required. (If it is intended to extend
the subsequence to the end of the given sequence, then the function tn may
be used).

(reverse .s)

Obtains a sequence having the elements of the given sequence, but in reverse
order. (Cautionary note for the experienced programmer: This operation
destroys the datastructure given as argument.)

(sort .s .p)

17

18

Obtains a sequence having the elements of the sequence .s but sorted ac-
cording to the predicate .p, for example

(sort <4 3 7 5> ls) => <3 4 5 7>

The predicate str.prec is also suited to be used as the second argument
of this function.

4.2 Control Operators

The operator if has already been introduced, and in principle one can write
any program merely using this operation combined with recursion. However,
the following operators are also convenient in actual programming.

[let :var1 expr1 :var2 expr2 ... :vark exprk in expr]

The value of this expression is obtained by first evaluating the expressions
expr1 to exprk and binding the variables .var1 to .vark to the respective
values obtained. After this, the final expression expr is evaluated in the
context of these bindings. The symbol in is only used as a separator. For
example, in an environment where .v2 has the value 5,

[let :v1 (+ .v2 1) in <.v1 .v2>] => <6 5>

The let operation is useful when it helps to avoid repeating the same large
subexpression several times in a surrounding expression, which can help
both readability and computational efficiency. Sometimes the value is also
affected, as is seen by comparing the following two expressions.

<(random 100)(random 100)>
[let :v1 (random 100) in <.v1 .v1>]

The second expression will always obtain a sequence of two equal numbers,
whereas this is not the case for the first expression.

(seq.map .v .x .e)

The first argument of this operator must be given as a variable, the sec-
ond argument must be a sequence, the third argument is given as a CEL-
expression. The entire expression is evaluated by first evaluating x , and
then producing a sequence with the same length as that list, and where each
element has been obtained by evaluating .e with the variable .v bound to
the corresponding element in the value of x. For example,

(seq.map .a <1 2 3 4 5> (* .a .a)) => <1 4 9 16 25>

(apply .f .l)

The first argument must be a function, the second argument must be a
list. The elements of that list are given as arguments to the function, for
example:

(apply + <3 4 5>) => 12

