
KRF

Erik Sandewall

Knowledge Representation Framework:
Overview of Languages and Mechanisms

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-009, can persistently be accessed as follows:

Project Memo URL: www.ida.liu.se/ext/caisor/pm-archive/krf/009/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2010/006/

Date of manuscript: 2010-06-09

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

Introduction

The Knowledge Representation Framework (KRF) contains a notational
system that combines and extends the following traditional notations:

• Set theory notation for sets and sequences.

• The syntax of predicate logic.

• The notation for recursive functions of symbolic expressions, along
the lines introduced by the Lisp programming language.

This framework also provides a simple notation for assigning attribute values
to entities, and conventions for organizing definitions and other knowledge-
base contents in a modular way as structured textfiles.

Among other notational approaches with similar goals, there is in particular
the family of S-expression-based languages and the family of SGML-based
languages. S-expressions are the recursively parenthesized expressions that
were introduced by the Lisp language, and this family includes i.a. the
Knowledge Interchange Format (KIF), the FIPA-ACL Agent Communi-
cation Language, Agent Planning Languages such as the Reactive Action
Packages (RAPS), and finally the Planning Domain Definition Language
(PDDL). SGML was the ancestor of HTML and XML, and SGML-based
languages include the Resource Definition Framework (RDF), the Web On-
tology Language (OWL) which is built on RDF, and a large number of
application-specific languages. The relations between these languages and
those in KRF will be discussed in several of the chapters in this report.

Although the KRF notation is based on the mathematical languages men-
tioned initially, its graphical appearance differs from them in order to make
it more suitable for use in communication with computers. It is restricted
to the Latin-1 character set, it does not use lowered or raised text (as for
exponentials), and most importantly, it makes it convenient to use identi-
fiers consisting of several characters, like e.g. in programming languages.
This differs from the usual notation in mathematics and formal logic where
formulas can be very compact, but at the expense of strong limitations on
the size of the vocabulary being used.

It is intended that KRF notation shall be used both in printed text, for
example textbooks and research articles, and for input to, and output from
software systems. We want to make it as easy as possible to take a method
that is described in a textbook and implement it in a computer; we also want
to facilitate the step from computer output to published report, so that the
experience from implemented software can be reported as transparently as
possible.

1

2

The KRF notational system is extensible in the sense that it contains strict
definitions of some notational domains and it also provides ways of extend-
ing the notation. We shall therefore describe it as a collection of several
interdependent languages. These are interdependent in the sense that an
expression in one language can occur as a sub-expression in another one
of the languages, which means that when a new language is added, it can
freely build on and incorporate the syntax of previously defined languages.

The KRF contains notation both for modelling (i.e. for describing the ap-
plication or environment where a KRF-based system will be used) and for
expressing commands to such a system. Both these aspects require clear
definitions of the notation’s semantics, i.e. what is the meaning of expres-
sions in the respective notation. The KRF framework therefore introduces
the notion of mechanisms in order to define the meaning of commands in
a principled way. These mechanisms have only informal definitions at the
present time.

Besides its basic notational system consisting of a few interrelated languages
and the associated definitions of mechanisms, the Knowledge Representation
Framework also contains the following parts:

• A type system and an ontology for use in organizing knowledgebases
of nontrivial size.

• An Agent Messaging Framework (AMF) including an Agent Message
Language (AML) for defining command-passing and other message-
passing between software agents.

• A Document Preparation Framework (DPF) including a markup lan-
guage for documents and for defining static and dynamic webpages.

A small part of the type system and ontology is used for defining the struc-
ture of the KRF mechanisms, but apart from that it is optional and need
not be used. The Agent Messaging Framework is only needed in applica-
tions where agents send or receive messages, although it can also be used
for defining web servers. Type system, ontology, AMF and DDF will not
be addressed in the present report.

The Leonardo software system is an implementation of the KRF framework
and contains concrete implementations of these facilities together with a
knowledgebase for storing and operating on application models.

The present report introduces the core part of the KRF notational system.
It is cited as required introductory reading for the following four groups of
publications:

• For our textbook “Knowledge Representation for Intelligent Autonomous
Agents,” and in due time also for some research articles in the same
area.

• For further reports on the Knowledge Representation Framework, in
particular its type system, ontology, AMF and DDF.

• For the documentation of the Leonardo software system and its ap-
plications, and indeed also for the software of that system itself.

• For publications and systems in the area of information analysis.

3

The material in the present report has therefore been selected as a kind of
least common denominator for what is required in those four topic areas,
and the continued publications will build on it but proceed in different
directions.

Additional publications and other information from work that is based on
the Knowledge Representation Framework can be obtained from our website
at http://www.ida.liu.se/ext/krf/.

Chapter 1

Overview

1.1 Language Structure

The Knowledge Representation Framework is based on four intertwined
syntaxes or ‘languages’ which are as follows:

• The syntax for Knowledge Representation Expressions, or KR expres-
sions, which is used for expressing structured information in textual
form.

• The Entityfiles syntax which defines the structure of textfiles con-
taining assignments of attribute values to individual symbols called
entities. The values are written as KR expressions.

• The Common Expression Language, or CE language, which defines
functions and predicates for use in recursively formed expressions.
Expressions in the CE language are KR expressions; they can be
evaluated and their values are also KR expressions.

• The Session Command Language, SCL, which is a language for com-
mands that can be given to a software system that implements the
Knowledge Representation Framework. Each SCL command consists
of a verb and its sequence of arguments. The arguments are expressed
in the CE language and the entire command is a KR expression.

A knowledgebase is therefore essentially a collection of entityfiles; opera-
tions on it and operations using it are expressed in the Session Command
Language. The latter is the first one in a suite of command languages that
are specialized for various purposes. They share a common syntax, and
most of them use arguments written in the Common Expression Language.

Each command language allows the formation of scripts consisting of com-
mands that are to be executed sequentially or concurrently. Some of the
verbs in a command language are elementary; other verbs are defined using
scripts, and ultimately in terms of elementary verbs. Entityfiles are used
for storing the scripts that define non-elementary verbs.

The four languages shown above are interdependent so all of them are
needed in order to have a working system. It is common however that

4

5

a system consists of several cooperating ‘agents’, and in this case a fifth
language is needed:

• The Agent Message Language, AML, specifies the structure of mes-
sages that can be sent from one agent to another, including requests
whereby an agent asks to obtain some information or some service,
and responses that agents return after they have honored a request.
The Agent Message Language is expressed as KR expressions, much
like the CE language is.

The present chapter will give a few simple examples from each of the four
languages listed initially, in order to give a general idea of how they are
organized and how they combine. Later chapters define each language in
more detail and in the following order:

• Chapter 2: Knowledge Representation Expressions

• Chapter 3: The Common Expression Language

• Chapter 4: The Session Command Language

• Chapter 5: Entityfiles and Processors

• Chapter 6: Some Knowledge Representation Issues

• Appendix: Notational Details in KRE

Agent cooperation and the Agent Message Language will not be addressed
in the present report; please refer to a separate document in the same series.

An earlier language, the Knowledge Interchange Format (KIF) was intro-
duced in the U.S. by DARPA in the early 1990’s (reference) and with the
same goals as the Common Expression Language. The CEL has many sim-
ilarities with KIF; the major differences will be described in Chapter 3 (the
chapter on CEL).

The Knowledge Query and Manipulation Language (KQML) (reference) was
introduced at the same time as KIF, and as a complement to it. KQML
was later replaced by FIPA-ACL, an industry-standard Agent Communi-
cation Language (reference). The Agent Message Language is essentially a
subset of FIPA-ACL which is expressed using KR expressions for the sake
of uniformity.

Other formats for the representation of structured information in text files,
such as XML, OWL and YAML will be discussed in Chapter 5 (the chapter
on the syntax of entityfiles).

1.2 Languages

The following very simple example is a fragment from an entityfile where
values are assigned to attributes for two entities called yellow and blue.
These entities are of course intended to represent the two colors whose
English-language names they carry.

6

--
-- yellow

[: type color]
[: has-examples {dandelion sun amber}]
[: translations {[: french jaune][: german gelb]}]

--
-- blue

[: type color]
[: has-examples {bluebell forgetmenot sky turqoise}]
[: translations {[: french bleu][: german blau]}]

--

Between two successive dash-lines one finds first a header line containing the
entity that is to be defined, for example the entity blue, and then a sequence
of maplets each of which consists of an attribute and the corresponding value.
The values for the has-examples and translations attributes are simple
examples of KR expressions.

Besides sets and mappings which occur in this example, the KRE notation
also allows for a few other constructs, such as for sequences. It differs from
conventional mathematical notation by being restricted to the character-set
of a conventional computer keyboard, and its use of a fixed-width font, like
from a typewriter. The latter convention is because large KR expressions
must be written on several lines, which means systematic indentation must
be used, and this looks more natural in typewriter style.

The representation of the color-related information that was shown above
can be maintained and preserved in conventional files in a computer’s di-
rectory structure. Such files are called entityfiles. In order to be used
computationally they are read into the working memory of a session with
a software system, such as Leonardo for example, and one may expect that
such a system will convert this information into a datastructure where en-
tities are represented as nodes in a network-like structure, and where the
attributes values are represented in a computationally efficient form. These
datastructures constitute the dynamical manifestation of the information,
as opposed to the original textual manifestation. The two manifestations
are interdependent since each can be converted to the other one.

Commands in the Session Command Language are intended to be addressed
to sessions with software systems that implement the Knowledge Represen-
tation Framework, and their effect shall be to extract information from, or
to modify the information in the current state of that session. The following
is a simple example of an SCL command:

[addmap yellow translations [: swedish gul]]

This command would be intended to add the translation item [: swedish
gul] to the translations attribute-value of the entity yellow. Actual
implementations may receive such commands either by command-line input
from the user, or as the result of an interaction on a webpage where the
implemented system is the webserver, or by receiving a command-message
from another software process. The textual representation of the command

7

serves as a normal form for these various ways of communicating it.

In this particular example, the three arguments in the command are KR
expressions. However, in many cases one wishes to use commands where
the arguments are stated as CE expressions that are to be evaluated and
their respective values are to be used by the definition of the command verb.
The following example of a Leonardo system command-line will illustrate
the reason for this.

[put amber has-examples (get yellow has-examples)]

The idea here is that the system shall retrieve the value of the has-examples
attribute of the entity yellow and assign it to amber, so that these two
concepts will have the same set of examples. The expression (get yellow
examples) is evaluated and its present value in the current session is used
as an argument for the put command.

1.3 Mechanisms

Besides the languages that have now been described in gross outline, the
Knowledge Representation Framework also specifies the use of a few mecha-
nisms, that is, computational artifacts that operate on expressions in these
languages. The Leonardo system is an actual implementation of the KR
Framework, so it is a concrete KRF mechanism. However, a more abstract
and implementation-independent description of KRF mechanisms is useful
in order to clarify the meaning and the use of the languages.

KRF mechanisms include processors and engines. A processor is a free-
standing software system; an engine in this context is a program that can
be used as a subsystem within an processor. An instance of the Leonardo
system is an example of a processor. In general, a KRF processor must be
able to create and perform computational sessions during which it interacts
with a user or with a physical environment, or with other sessions, or with
several of these.

A KRF processor can relate in the following ways to the four types of
notations and languages that were described above.

• KR Expressions: A session with a processor maintains an internal
representation, in the form of datastructures, of information that can
also be expressed textually using KR expressions. More specifically,
it maintains a mapping that can assign a KR expression in internal
form, to any combination of an entity and an attribute.

• Entityfiles: A session can load and save entityfiles. Loading an entity-
file means parsing the textual contents of the file and converting them
to the internal representation in the session. Doing so may overwrite
information previously contained in the session. Saving an entityfile
means producing a textual file containing a serialization of a desig-
nated part of the session’s information contents. Loading and saving
are reciprocal operations.

• Common Expression Language: A session is able to evaluate expres-
sions in the Common Expression Language. Some expressions in the
CEL are context-dependent in the sense that their value is obtained
from the current contents of the session where they are evaluated.

8

• Session Command Language: A session is able to execute single com-
mands and scripts in the Session Command Language. The scripts
that define non-elementary verbs are stored in the session’s informa-
tion state, which means that they are usually also stored and pre-
served in entityfiles and entered into the session using a load opera-
tion.

Examples of engine types for use in KRF processors include automatic de-
duction engines, engines for decision-trees and causal nets, and engines for
planning a sequence of actions. The lecture notes “Knowledge Representa-
tion for Autonomous Intelligent Agents” describe major such engine types
using the framework that is described in the present text.

Each engine must be associated with one or a few elementary verbs whereby
the engine can be invoked and controlled from a command in the Session
Command Language.

The execution of a command (elementary or not) during a session is called
an action in that session. Processors may differ with respect to how actions
are invoked. The following are the major cases.

• Command-driven processors operate a command-line loop whereby a
user may enter SCL commands for execution by the processor.

• GUI-driven processors maintain a graphic user interface where a user
can invoke commands by clicking buttons or selecting from menues.

• Servers continuously receive commands from a communication net-
work and execute incoming commands.

• Interactors exchange commands with other interactors in a network,
so they can both execute incoming commands and send commands
to other interactors for execution there.

• Reactive processors operate on computers or in computer networks
that are equipped with sensors for their environment. They contain
one or more sensory engines that interpret incoming sensor informa-
tion; they also contain a decision mechanism that is able to invoke
actions according to information obtained from the sensory engine.

• A deliberative processor is a variant of any of the above which is able
to use idle time (in the absense of incoming commands or decisions
about additional actions) for analyzing its own current ‘state of mind,’
including its current model of the state of the world and its history of
past events, in order to modify and improve its current state. Some
methods that are used in artificial intelligence, in particular case-
based methods are well suited for being used in this way.

A processor of any of these types is called an agent iff it maintains an
explicit representation of its own past and future actions, and uses it for
some purpose. A processor that merely receives commands and executes
them, without keeping any trace of them is not an agent.

Reactive and deliberative agents are often called autonomous agents, em-
phasizing their ability to perform actions “according to their own decisions,”
and more specifically, their capability for other behavior than what is dic-
tated step by step and by user commands.

9

1.4 Usage

Processors that are organized according to the Knowledge Representation
Framework and using its languages are intended to have significant advan-
tages when implementing knowledgebased systems, such as the cognitive
part of an intelligent autonomous robot system, as well as for more mun-
dane tasks such as author-assistance systems for document preparation, or
systems for information analysis. (Should write more about this here).

Chapter 2

Knowledge Representation
Expressions

This chapter shall define the notation for Knowledge Representation Ex-
pressions, or KR expressions for short. We first define the basic notation
and then a few cosmetic extensions

2.1 Basic KR Expressions

KR expressions are constructed from three kinds of elements:

• numbers, which are written in the usual way, for example as 128 or
as 3.14

• strings, which are written enclosed by double quotes, for example as
"This is a string"

• untyped symbols, which are written as a sequence of characters that
does not contain a space or a double quote, and that can not be
interpreted as a number.

For untyped symbols containing interpunction characters (i.e. those that are
neither letters nor digits) there are some configurations that are reserved for
special purposes, as described in Chapter 4 and Appendix 1. The emerging
notation for typed symbols is also discussed in Chapter 4.

Argument Lists and Composite Entities

An argument list of arity n, where n is a non-negative integer, is a sequence
of exactly n KR expressions, preceded and separated, if necessary (1), by at
least one whitespace character (space, tab or new line) between successive
elements.

Symbols beginning with a colon character (:) are called tags. An extended
argument list of arity n is an argument list of arity n, immediately and

1See the Leonardo system documentation for the exact whitespace require-
ments.

10

11

optionally followed by one or more pairs consisting of a tag and a KR
expression called the parameter for the tag that precedes it. The following
is an example of an extended argument list:

red big :size 44 :caption "Dynamo"

Command verbs and other operators are used together with argument lists,
and each operator imposes its particular restrictions on the structure of
argument lists that are to be used with it. A signature is a collection of
information that expresses these restrictions for a particular language and
in a particular context. We shall later define how signatures are expressed,
and here we just observe that any context where KR expressions are used
shall contain a current signature.

Symbols are sometimes used as composers. The status of a symbol in that
respect is represented in the current signature. A tag can not be used as a
composer. Each composer is either an entity composer or a record composer.
By convention, entity composers will often be written as symbols whose last
character is a colon.

A composite entity consists abstractly of an entity composer and an argu-
ment list. The current signature specifies what is the correct number of
arguments (the “arity” of the entity composer). The signature may also
impose restrictions on the arguments themselves, for example, that a par-
ticular argument must be a symbol, or must be a number. A composite
entity is written as a left parenthesis, an entity composer, whitespace, the
argument list, and a right parenthesis.

An entity is either an untyped symbol, a typed symbol, or a composite
entity.

Composite KR Expressions

There are several other kinds of composite KR expressions, besides com-
posite entities, namely records, sequences, sets, and mappings.

A record is similar to a composite entity, but it is formed using a record
composer rather than an entity composer, it is formed using an extended
argument list, and in its textual manifestation it is enclosed in square brack-
ets rather than parentheses.

The main formal difference between composite entities and records is that
composite entities can have attributes assigned to them, whereas the same
does not hold for records.

A form is composed of a formant and a (non-extended) argument list, where
the formant is an entity and its status as a formant is specified by the current
signature. The concrete manifestation of a form encloses the formant and
the argument list by round parentheses. Notice that forms and composite
entities are different kinds of things. The distinguishing property of forms
will be described in the next subsection.

A sequence and a set is defined as usual in set theory, and are represented
by enumerating all the elements. The concrete representations of sequences

12

and sets use angle brackets, 〈〉 (2) and curly brackets, {}, respectively, to
enclose the representations for the elements, separated by whitespace. It is
permitted to separate the elements using commas, but it is not required.
We shall sometimes use commas for separating successive atomic elements,
but not when one or both of them is a composite expression.

A mapping is a set of maplets each of which is a twotuple consisting of
an entity and a corresponding value, and is written like in the following
example:
[·age 46]·

or equivalently as

[: age 46]

The first notation is for use in publications like the present one; the second
one is for computer input where the dotted bracket is of course not available.

The mapping can not contain two maplets [·e v]· and [·e w]· having the same
first element and different second elements.

An entity e is said to be defined in a mapping M iff there is a maplet [·e v]·
in M for some v.

Two mappings are separate iff no entity is defined in both of them.

A KR expression is either of a string, a number, an entity, a record, a form,
a set, a sequence, or a maplet.

2.2 Cosmetic Extensions of KRE

Besides the basic notation that was described above, there are some exten-
sions to the notation that may help to make it even more readable. Some
of these will be introduced in later chapters, in contexts where we can see
the reasons for them, but some can be introduced here.

The elements of a set or sequence may be separated by commas. This is in
accordance with conventional set theory notation, but notice that here it is
not necessary, just an option. The use of commas is often natural when the
members of the set or sequence are elementary objects, but not when they
are composite expressions.

An expression for a mapping consisting of explicitly written maplets, for
example

{[: johan 23][: berit 25]}

can alternatively be written as follows

{johan = 23, berit = 25}

The latter notation is however not sufficient in situations where one wishes
to refer to individual maplets, like in the command example in Chapter 1.
The bracket-colon notation is more general.

2The software system variant of the KRE notation uses less-than and greater-
than characters as angle brackets, in order to remain with the characters on the
standard computer keyboards. The publication variant of the notation, which is
used here, uses the 〈 and 〉 characters instead.

13

2.3 Embedding of Other Languages

Some applications require the embedding of other languages within KR
Expressions. This can sometimes be done by representing expressions in
the other language as strings, but doing so is impractical e.g. when the
embedded expressions contain double quotes. There is a general notation
whereby one writes

[$altlan (... expression in the altlan notation) $]

This notation allows the embedding of a variety of languages each of which
is characterized by its own code to be used as [t altlan], so for example

[$tex one may embed text in {\em LaTeX} markup $]

(Replace dollar character by paragraph character here) The only restriction
on the expression in the embedded language is that it may not contain a
paragraph character and a right square bracket in immediate succession.
The explicit tagging of the choice of language is helpful for organizing the
processing of such data.

Chapter 3

The Common Expression
Language

The Common Expression Language contains constructs for retrieving infor-
mation from the current knowledgebase in the session where it is used, and
also for composing and decomposing KR expressions. To this end it uses
two major types of constructs, namely conditions and terms. Terms have
KR expressions as values, conditions have truth-values such as [true] or
[false] as their values. The present chapter defines the syntax for terms
and conditions in CEL.

3.1 Terms

Terms are formed using a term composer followed by arguments and are
enclosed in ordinary, round parentheses. Notice that the term composer is
also located inside the parentheses, which is different from standard mathe-
matical notation.

We mention the following operators as introduction and examples. The sep-
arate compendium “Compendium of Programming Techniques for Knowledge-
Based Autonomous Systems” contains a list of the term composers that
constitute basic CEL.

(get c a)

Obtains the value of the a attribute for the ’carrier’ entity c. Ω

(filemembers ef ty)

Obtains the set of those members of the entityfile ef whose type is ty. Type
is only defined directly as the value of the type attribute and does not allow
for subsumption from a supertype. Ω

(concat s1 s2 ...)

All the arguments shall evaluate to strings; this function obtains the con-
catenation of the values of the respective arguments. Ω

14

15

Use of Infix Notation for Operators

As an additional cosmetic measure, some composers are specified to be
infix composers and these can optionally be placed between the first and
the second argument, provided that there are exactly two arguments. It
is always possible to let the composer be the first element and thereby to
precede the arguments. For example, the term (a + b) is the same as (+
a b) given that + has been declared as infix. The infix specification is part
of the signature.

Moreover, if an infix composer admits more than two arguments as well, as
is the case for example for + then it is possible to use the natural notation
where the composer is placed between all arguments, so that e.g. (a + b
+ c) is the same as (+ a b c). Notice that it is obligatory to repeat the
infix operator, so (a + b c) is not correct.

Notice also that it is not allowed to mix several different operators, prefix
or not, within the same parenthesis level. Thus it is not permitted to write
(a + b * c) and one must write this as (a + (b * c)).

The following are some of the infix operators: + - * union. All except -
allow n arguments in the way just described. The - composer can be used
with one or two arguments, but not more.

3.2 Conditions

Elementary conditions are called literals and are defined as follows.

3.2.1 Positive Literals

A positive literal consists of a predicate and its arguments and is enclosed in
square brackets. Usually the predicate precedes the arguments, but like for
terms there are some predicates of two arguments that have been declared
to be infix operators. For example, one can write [a = b] equivalently
with [= a b] The following predicates are defined in basic CEL.

[true]

This predicate of no arguments always has the value true. Ω

[false]

This predicate of no arguments always has the value false. Ω

[equal a b]

The literal is true iff the two arguments are equal. Equality between sets
is defined so that two set expressions containing the same members but in
different order are still considered as equal. Ω

[member a b]

Membership relation in a set. Ω

[subseteq a b]

Subset relation between sets. Ω

16

[singleton a]

The literal is true iff a is a set or sequence with exactly one member. Ω

[hastype a ty]

This literal is true iff the type of the entity a i.e. the value of its type
attribute is either equal to ty or is subsumed by ty according to the entity
subsumption predicate sub. Ω

[sub a b]

The two arguments shall be entities representing types or other things for
which a subsumption relationship is defined. The literal is true iff there is a
subsumption chain from a to b, including the case where the two arguments
are equal. Ω

3.2.2 Negative Literals

A negative literal is the negation of a positive literal. This is represented
by preceding the predicate with a dash character (-). For example, the
negative literal [-sub a b] is the negation of the positive literal [sub
a b] A negated literal can be written in infix if this is allowed for the
corresponding positive literal.

3.2.3 Composite Conditions

A boolean composite condition is formed from positive and negative liter-
als by combining them using the operators not, and, or or imp and sur-
rounding the expression with round parentheses. The operator not has one
argument, imp has two arguments, and and and or can have two or more
arguments. All except not can be written in infix mode.

The negation obtained using the operator not is the same as the one ob-
tained by using a negative literal. For example, [-sub a b] is entirely
equivalent to (not [sub a b]) A quantified composite condition is formed
recursively from the previous types of conditions also using quantified ex-
pressions formed as in the following examples:

[all :x a :y b ^ ([.x sub .y] imp [.y sub .x])]
[exists :x a :y b ^ ([.x sub .y] and [.x -equal .y])]

In general, the quantifiers all and exists are used as record formers for
records with exactly one argument, and with one or more parameters. The
tag in each parameter serves as a quantified variable; the corresponding
parameter value shall be an entity representing a type that the variable in
question will vary over. Notice that the variable symbols are preceded by
a colon when the variable is bound in the quantifier, and by a fullstop (i.e.
point) when the variable is used in the quantified expression.

The first example shall thus be read ”for all x whose type is a and for all y
whose type is b , [x sub y] implies [y sub x] ”.

17

3.3 The Relationship between KRE and CEL

If we compare the KRE notation of Chapter 1 with the CEL notation of the
present chapter, it is clear at once that they use the same syntax. The KRE
specifies a few simple rules for the use of round parentheses, square brackets
and a few other delimiters, and it turns out that the CEL conforms to all of
these conventions. The difference is instead that KRE is mere syntax since
it only specifies how expressions are to be written, whereas CEL is more
specific about the meaning of its syntactic constructs as it distinguishes
between terms, positive and negative literals, and so forth.

Therefore, although the introduction in the first part of Chapter 1 charac-
terized KRE as one language and CEL as another one, this must be under-
stood as a difference of meaning, or lack thereof, and not as a difference of
appearance. The best way to look at this is to think of KRE as a syntax
that can be used for a variety of purposes. Representing information in a
system’s knowledgebase is one purpose, and serving as the syntax for CEL
expressions is another such purpose.

This means also that CEL expressions can be stored in the knowledgebase,
like any other KR expression. For example, whereas a query like in the
example at the beginning of this chapter can be input to a system in the
command-line dialog, it can also be stored away as an attribute value for
some entity that is a name for the query, for example for the purpose of
re-executing it at regular intervals of time.

3.4 Relaxation of Syntax for Publication Use

The syntax for KRE, also used by CEL was defined with two major goals
in mind: it should be a systematic and easily readable notation for struc-
tured information, and it should be directly usable for input and output to
computers using the standard keyboard and character set. In particular it
should be possible and convenient to use this as the standard notation in
textbooks and articles.

When the notation is used for publication purposes, it may actually be
convenient to allow the commonly used symbols for a number of functions
and predicates, although they are not available in the computer keyboard.
For example, the subseteq predicate can be replaced by the commonly used
symbol ⊆, and the term composer union can be replaced by the symbol ∪
as usual.

In publication usage it is not necessary to always insist on full parenthesiza-
tion of terms. A certain latitude in the use of the notation helps readability
and it is insignificant as an obstacle to the easy transfer of definitions and
information collections between publications and their use in a computer
system. In any case it is natural to require that the computational variety
of KRE and CEL shall be defined with full precision, and only to allow
commonsense-based exceptions in the publication variety.

Chapter 4

The Session Command
Language

4.1 Commands

A simple command is written as an expression that is surrounded by square
brackets, and consists of a command verb followed by arguments. The cur-
rent signature specifies what is its correct number of arguments for each
verb, and there are also some verbs that shall not have any argument. The
verb put shall have three arguments; the verb creobj shall have two argu-
ments, for example.

A composite command is also written as an expression surrounded by square
brackets, but here the first element shall be a command composer. The
following arguments may be commands, terms or conditions according to
the specific rules for each command composer.

4.1.1 Some Simple Commands

A separate memo, “Facilities in Leonardo” contains a list of the command
verbs that are defined in the core part of the Leonardo system. The following
are some of them to serve as introduction and examples.

[show a]

Evaluates its single argument and displays it on standard output, which
usually is the terminal screen. The use of a single point character (.) has
the same effect. This is used in those cases where one wishes to give a form
to the command-line dialog and obtain the corresponding value. Ω

[put c a v]

For the ’carrier’ entity c and attribute a assign the value v Ω

[putsub c a i v]

The carrier c has a value for the attribute a that is a mapping. This
operation modifies that mapping so that it maps i to v Ω

[addmember s e]

18

19

Add e destructively to the set s. If it is already a member then no action
is taken. Ω

[output]

The arguments are successively evaluated and produced to standard output,
with a space character between each argument. Normally, each argument
value is written to standard output as it is. By exception, if the value of
some xi is a symbol representing a System Output Phrase (as described in
the memo ”Facilities in Leonardo”) then the phrase for that symbol in the
currently selected language is produced to output instead. Ω

4.1.2 Command Composers

The following command composers are defined in the core part of the Session
Command Language.

[soact cmd1 cmd2 ...]

The composer is an acronym for ”sequence of actions.” The arguments are
supposed to be commands and are executed in sequence. Ω

[coact cmd1 cmd2 ...]

The composer is an acronym for ”concurrent actions.” The arguments are
supposed to be commands and are executed, but in no particular order. Ω

[if cond cmd1 cmd2]

The cond argument must be given as a condition expression; the other two
shall be commands. The third argument may be omitted. Such a command
is executed by first evaluating cond. If its value is [true] then cmd1 is
executed, otherwise cmd2 is executed if it is present. Ω

[repeat i r cmd1 cmd2 ...]

The first argument must be given as a variable; the second argument shall be
a set or a sequence. The command executes the command sequence cmd1,
cmd2, etc once for each member of r. The parameter i that is given as the
first argument is bound to the current sequence member in each cycle. The
first argument is used as is and is not evaluated. Ω

[let cmd1 cmd2 ...]

The arguments of this composer are evaluated in succession. However, the
command record may also have parameters, and these parameters are avail-
able to the cmdi during their execution. Ω

[set-outcome v]

This operation may be used inside a let -expression that binds the parame-
ter :outcome and it has the effect of assigning the value v to that parameter.
The intention is that different steps during a sequential execution shall be
able to assign a value to the eventual outcome from that sequence. Ω

[with]

The first argument shall evaluate to a record; the following arguments are
like a case-expression over the composer of the record from the first argu-
ment. Each of the later arguments shall have the form [on c cmd1 cmd2

20

etc] The with operation identfies the one of the later arguments whose c
component equals the record former. It then executes cmd1, cmd2, etc.
in sequence. The parameters in the record from the first argument are avail-
able in the execution of the cmdi. This construction is useful e.g. when
the first argument is the outcome of executing a command, and where one
wishes to take different action depending on what kind of outcome record
is obtained from that command. Ω

4.2 Definitions of Command Verbs

Command verbs such as those described above are intended to be used
for giving commands to a software system, and there must therefore be a
definition of the effects for each of these verbs. Such definitions can be made
in a few different ways, as follows

• Elementary verbs are defined using a piece of program in the sys-
tem’s host programming language, i.e. the language that the system
is written in. The present implementation is written in CommonLisp.

• Command composers are also defined using a piece of program in the
host programming language, but they differ from elementary verbs in
an important aspect. When the system executes a command with an
elementary verb, it will first evaluate the arguments and parameters
in the command, and then give control to the verb’s definition. For a
command composer, on the other hand, the unevaluated arguments
and parameters are given to the definition of the composer.

• Composite verbs are defined using an an expression in the Session
Command Language, i.e. using the constructs that have been defined
above. For example, to define the operation symput so that [symput
jesper lina spouse] assigns lina as the value of (get jesper
spouse) and vice versa, one could write the following definition.

[def [equal [symput .x .y .a]
[soact [put .x .a .y][put .y .a .x]]]]

Arguments are referred to using variables in the same sense as the variables
that are used in condition expressions, i.e. a symbol preceded by a full stop.
A following chapter says more about the naming and binding of arguments.

4.3 The Generic Scripting Language

Several kinds of software systems need to make computation about actions
and events, that is, things that have happened or are expected or planned
to happen. This includes intelligent robotic systems that need to anticipate
future events in their environment before they actually happen in order to
plan their own actions; it also includes discrete-event simulation systems,
advanced computer games with an artificial intelligence component, and
many others. In fact, it also includes various facilities in the computer’s
internal operation, for example, for maintaining a log of past user commands
and for extracting information from it.

21

The notation that has been described in this chapter is therefore applicable
for a broader range of purposes besides for the command-line dialogue in
an interactive computer system. We define the Generic Scripting Language
as the language described above, but without the particular reportoire of
command verbs that we had in a few examples. Several varieties of scripting
language can be obtained by changing the reportoire of command verbs, and
by extending the sets of term composers and of predicates. The following
are some important instantiations of the Generic Scripting Language:

• The Session Command Language, SCL, described here.

• The Robot Scripting Language, RSL, for representing the actions of a
robotic system that operates in a physical environment.

• The Document Scripting Language, DSL, for representing the con-
tents of publications and web pages. In this case the ’commands’ are
formatting commands, for example ”produce the text in the argu-
ments using italic font.”

• The Operations Scripting Language, OSL, for representing commands
to a computer on the operating-system level. Thus the OSL is a va-
riety of shellscript language, but using the uniform notational format
of the GSL.

• The Vector Graphics Scripting Language, VGSL, for defining dia-
grams defined in terms of line segments and closed areas defined by
a set of line segments.

The syntax for the Generic Scripting Language and all its instances is en-
tirely consistent with the notation for Knowledge Representation Expres-
sions that was defined in Chapter 2. This means that the same notation is
used for expressing simple, static knowledgebase contents of the kinds that
we saw in the examples in Chapter 2, and for the more complex contents that
arise when actions, events, and dynamic processes are to be represented.

Command composers such as if and repeat are considered as part of the
Generic Scripting Language, which means that they can be used in all of
the language instances.

4.4 Example: Document Preparation

The production of the present report is one example of how this uniformity
of representation can be used. The running text in the report is represented
using a variety of the Document Scripting Language. However, those pieces
of text that define a particular command verb or predicate are located in
the source file of the Leonardo software system that implements our ap-
proach. All the information about a particular command verb is located
together, including its procedural definition which is written in Common-
Lisp, the description of the command verb that is included in the present
report, comments about the procedural definition which are important in
the maintenance of the software, and so forth. The formatting of the report
compiles the contributions from the various sources and creates the finished
document in .pdf form. The implementation of this information architec-
ture is greatly facilitated by the use of a uniform notation and one single,
coherent software system.

22

For this kind of system usage it is essential that same notation, viz. the
Common Expression Language can be used for the command arguments in
all the command languages in the family. In the example it means that the
source text for the present document can contain ‘queries’ that are evaluated
in the session at hand in order to obtain information for inclusion in the
document produced.

As another example, if one wishes to produce a well-formatted report of
some of the knowledgebase contents, one will use CEL expressions as ‘queries’
against the knowledgebase, and embed them in a script for the overall doc-
ument that is written in the Document Scripting Language. Conversely,
constituent programs in the Leonardo implementation sometimes use DSL
expressions in order to specify explanations of system “errors” or other non-
intended outcomes of commands.

t are evaluated in the session at hand in order to obtain information for
inclusion in the document produced.

As another example, if one wishes to produce a well-formatted report of
some of the knowledgebase contents, one will use CEL expressions as ‘queries’
against the knowledgebase, and embed them in a script for the overall doc-
ument that is written in the Document Scripting Language. Conversely,
constituent programs in the Leonardo implementation sometimes use DSL
expressions in order to specify explanations of system “errors” or other non-
intended outcomes of commands.

use CEL expressions as ‘queries’ against the knowledgebase, and embed
them in a script for the overall document that is written in the Document
Scripting Language. Conversely, constituent programs in the Leonardo im-
plementation sometimes use DSL expressions in order to specify explana-
tions of system “errors” or other nonintended outcomes of commands.

Chapter 5

Entityfiles and Processors

Each KRF processor maintains a knowledgebase, and this knowledgebase
can be understood as an assignment of attribute values to a number of
entity-attribute pairs. Such a mapping is called an information state. In
practice there are two separate manifestations for the processor’s informa-
tion state. There is a textual manifestation using files in the computer’s file
system where each file consists of KR expressions for the attribute-values,
together with some surrounding notation. There is also the dynamic mani-
festation as datastructures in the executing program during a session with
the processor.

The notation for entityfiles is used for the textual manifestation; it has been
designed with two considerations in mind: ease of reading for the human
user, and ease of parsing and processing in the computer system. The design
of the dynamic representation is an issue for each implementation, the only
constraint being that it must make it effectively possible to implement the
verbs in the Session Command Language efficiently and reliably.

The basic model for the exchange between the textual and the dynamic
manifestation is very simple: A session can read entityfiles and construct
a dynamic representation with the same contents; it can also produce en-
tityfiles that express a part of the information in its dynamic information
state; and finally it can execute commands that change the contents of its
information state i.e. the dynamic representation. In one mode of use, en-
tityfiles are loaded at the beginning of a session, the information state is
modified using commands, and entityfiles are saved (i.e. written back as en-
tityfiles) at the end of the session. In another mode, the user text-edits the
contents of entityfiles and loads them into the session after each edit, and
the important commands to the session are those that use the information
state for some purpose. Other models are also possible.

The basic model is modified in a number of ways, however, and one should
think of the load-change-save model as a procedural skeleton that can be
modified using a variety of “plug-ins.” The present chapter will first describe
the syntax that is used for entityfiles for the purpose of the basic model, then
describe the structure within entityfiles and methods for organizing large
numbers of them, and finally describe some important plug-in facilities.

23

24

5.1 Entityfile Syntax

An entityfile consists of a sequence of entity descriptions separated by sepa-
rator lines. A separator line is a line consisting of at least four characters of
the same kind, which must be a dash (----), an equal sign (====) or the
small letter o (oooo), and no other characters. When separator lines are
produced in output from the Leonardo system they consist of 57 characters,
but this is unimportant; the parser in a KRF processour should accept any
line consisting of at least four of these characters as a separator line.

A separator line consisting of small letters o is called an ending line and
marks the end of the contents of the entityfile, and any material after it is
ignored. Separator lines consisting of dashes or of equality signs are treated
equally by the parser and the latter are only used for readability purposes
as they separate sections within the entityfile.

The first line of the entityfile shall be a separator line, then follows an entity
description (unless the first line is an ending line), another separator line,
and so forth.

An entity description consists of up to four parts: a head, an attribute part,
a definition part and a property part. The last two are optional. There
must be at least one blank line between each part. (A blank line is a line
that does not contain any printing character; it may contain whitespace
characters such as an ordinary space or a tab).

The head is a single line consisting of exactly two dash characters, followed
by a single space (not tab) character, followed by an entity which may be
either a symbol or a composite entity. The entity in the head is the one that
is assigned attribute values and property values by the parts that follow.

The attribute part is a sequence of maplets. Each maplet must start on a
new line, but maplets may extend over several lines. There is no need to
have blank lines between successive maplets.

The optional definition part is used in entityfiles containing programs in
the host programming language. In the case of the Leonardo system this is
CommonLisp, and the definition shall then be an S-expression that can be
evaluated using the standard eval function.

The optional property part consists of a sequence of property assignments
that are separated by at least one blank line between successive property
assignments. Each property assignment consists of a property line consisting
of an at-sign immediately followed by a symbol, and then the property value
which is an arbitrary number of lines of text (including blank lines), except
of course that none of these lines may be a separator line or a line beginning
with an at-sign.

Consider an entity description containing the following head

-- banana

where the following is one of the maplets in the attribute part

[: color yellow]

and the following is one of the property assignments:

@Shape

25

Most bananas are banana-shaped.

This entity description corresponds to an information state in a KRF proces-
sor where the value of the CEL expression (get banana color) is the entity
yellow , and where the value of the CEL expression (get banana Shape)
is the string "Most bananas are banana-shaped." There is a convention
that attributes are written with small letters, as in color, and properties
are written with a capital first letter, as in Shape, but this is not formally
required. A few basic attributes in the type system are also written with a
capital first letter.

The meaning of “corresponds to” involves definitions of a number of facilities
that are associated with the loading and saving of entityfiles. The basic idea
is that when an entityfile is loaded into a session with a KRF processor,
assignments are made so that subsequent evaluation of get expressions will
be as just described. Also, when an entityfile is saved in such a session,
it will contain entity descriptions containing maplets and properties with
values obtained using the get function. Additional aspects of this will be
added throughout the present chapter.

If the definition part is present then it will be evaluated when the entityfile
is loaded, using the function eval in the case of the Leonardo system. The
unevaluated definition part will also be preserved in the session so that it
can be produced in the resulting file when the same entityfile is saved.

5.2 Entityfile Self-description

The textual manifestation of a knowledgebase consists of a large number of
entityfiles, whereas the dynamic manifestation consists of one single data-
structure in the executing session. For example the basic remus agent,
which is often used for clones, consists of around 125 entityfiles. Loading
an entityfile means integrating its contents into the dynamic manifestation,
therefore, overwriting previous attribute values and property values if nec-
essary, and saving an entityfile means making an excerpt from the dynamic
manifestation and converting it to textual form.

How will the save operation know which entity descriptions to include in a
particular entityfile? Normally one wishes each entityfile to have an identity
of its own and a well-defined set of members, so that it can be saved con-
taining descriptions of the same entities as when it was previously loaded.
It must also be possible to add and to remove members during a session,
for example if a new entity is defined during the session and one wishes to
save it in a particular entityfile.

The following design is used for making this possible. Each entityfile is
represented by its own entity, and entities representing an entityfile shall in
particular have an attribute called contents whose value is a sequence of
entities, namely, those entities that are to be included when the entityfile is
written. The save operation will therefore take an entityfile entity (i.e. an
entity representing an entityfile) ef as its argument; it will evaluate (get
ef contents), whose value must be a sequence, and for each member of
that sequence it will write its entity description to the file being produced.

Where shall the entityfile entity be saved? Recall that the collection of
entityfiles is the only representation of an agent (or other processor) be-

26

tween sessions, so the entity descriptions for entityfile entities must also be
preserved in some entityfiles. The basic convention is that an entity that
represents an entityfile has itself as the first element in the list of contents,
so that it will be saved together with its contents.

For example, consider an entityfile called colorfile that shall contain en-
tity descriptions for the two entities yellow and blue that were mentioned
in Chapter 1. The first entity description in such a file should look as follows
(with considerable simplification):

--
-- colorfile

[: contents <colorfile yellow blue>]

--

followed by the entity descriptions shown in Chapter 1. In this way the
description of entityfiles is represented like any other information in the
knowledgebase, and can be operated on using the same software tools.

Another possible design for this could have been to consider entityfile mem-
bership as system information that is not accessible to the user, except
through functions whose natural names may be e.g. add-entityfile-member
and remove-entityfile-member. Such a design would be in line with the
“encapsulation” style of programming. The KRF does not subscribe to that
design philosophy, for good reasons that merit a report of their own.

5.3 Entity Types

In Chapter 1 we showed the entity descriptions for yellow and blue as
follows:

--
-- yellow

[: type color]
[: has-examples {dandelion sun amber}]
[: translations {[: french jaune][: german gelb]}]

--
-- blue

[: type color]
[: has-examples {bluebell forgetmenot sky turqoise}]
[: translations {[: french bleu][: german blau]}]

--

where in particular each entity has a type attribute. The use of a type con-
cept is a standard one and makes no surprise. It has a number of uses, and
in particular in the context of entityfiles, type information is used in order to
determine which attributes are to be written for each entity. In the present
example, the entity color should have the following entity description:

27

--
-- color

[: type qualitytype]
[: attributes {has-examples translations}]

--

When the save operation writes an entity description for a particular entity
(which occurs in the value of the contents attribute of the entityfile being
written), it therefore looks up the value of its type attribute, and then in
turn the value of the attributes attribute of the type. This specifies what
attributes are to be looked up and written for the given entity.

The same applies for entities representing entityfiles, of course, so the first
entity description in this file should actually be

--
-- colorfile

[: type entityfile]
[: contents <colorfile yellow blue>]

--

The definitions of type entities, such as color and entityfile must also
be present in the session information state when the save operation is per-
formed, which means that they must also be located in some entityfile. In
some cases it may be convenient to include the type entity in the same
entityfile as the instances of the type, in particular if all those instances
are located in the same file. This may be the case for color. In other
cases it is better to collect a number of type-defining entities into a separate
“ontology” entityfile.

Entities representing types must themselves have a type, for example the
entity qualitytype which was used above, thingtype, and so forth. The
resulting ascending chain is not very long, since one soon arrives at a type
that has itself as its type, or to a cycle of two types each of which has the
other as its type.

Types are used in several other, important ways; this is a topic for the next
chapter.

5.4 Agent Directory Structure

The Knowledge Representation Framework specifies the notation to be used
within entityfiles. Although each entityfile may contain a large number of
entities, the number of entityfiles is also substantial in a practical system,
since already the remus agent contains around 125 entityfiles, and nontrivial
applications require several times that. It is therefore necessary to assign
some structure to the collection of entityfiles, at least in order to facilitate
for the developer that is working with them and needs to keep track of
them. There are several methods for doing this, additional methods emerge,
and different implementations may do it in different ways. However, some

28

specific methods will be briefly mentioned in order to give a first idea of this
topic.

The organization of entityfiles has to take into account that there is both a
textual and a dynamic manifestation of a knowledgebase. The most obvious
organization of the textual manifestation is to partition the entityfiles into
groups and to assign each group into its own subdirectory. The textual
manifestation of the entire processor is then a directory structure, with one
top-level directory that represents the processor as a whole, and with one
or more levels of subdirectories that ultimately contain the entityfiles that
make up the processor.

It is not entirely obvious whether the dynamic manifestation of the know-
ledgebase needs to assign structure to the collection of entityfiles, except to
the extent that is needed in order to load and save entityfiles in their proper
subdirectories. However, it seems natural to have such a structure, and to
design it in such a way that it is coordinated with the directory structure in
the textual manifestation. The Leonardo system therefore uses a concept of
a knowledgeblock that has entityfiles as members, just as entityfiles contain
entity descriptions.

Another method, which complements the use of knowledgeblocks, is to or-
ganize an application in terms of several agents each of which has its own
entityfiles for both “programs” and “data.” If a particular task requires the
combined activity of several agents then they will communicate by message-
passing. If different tasks are done at different times then the application
may be held together simply by the use of shared data.

5.5 Compiled Entityfiles

Interpretive progamming languages such as Lisp, Perl or Python are at-
tractive choices for implementing a KRF processor since by their design
it is easy to integrate programs and data. The present section applies to
KRF implementations in such languages, including of course the Leonardo
system.

In interpretive languages it is usual that both programs and data can be
expressed as text files that essentially contain a sequence of commands in
the language in question, including commands to store particular data in the
system’s database, and commands that assign a definition to a particular
function or command word. Programs and data are text-edited by the user
and entered into a session using a load operation. The KRF processor design
uses the same method, but adds to it by also having a uniform procedure
whereby such files can be saved from a session. This additional facility was
introduced by the Interlisp system and is not present in CommonLisp.

When a KRF processor is implemented in an interpretive language, each
session must start by reading a few files that are expressed in the host
language, including a file containing a parser for KRF entityfiles. Only
when the parser and other basic facilities are in place is it possible to start
reading entityfiles using the syntax described above.

At the same time it is a basic design goal that all information in the system
shall be organized in the same way, so that it can be processed using the

29

same routine. Then it is undesirable to have certain startup files that differ
from all other files in the system.

The solution to this problem is obtained using a method that also serves
some other purposes at the same time, namely, the use of compiled entity-
files. A compiled entityfile is a file that contains the same information as an
ordinary entityfile, but expressed using commands in the host programming
language, so that it can be loaded directly by its interpreter. Compiled en-
tityfiles are much more cumbersome to read than standard entityfiles, so
they are not suitable for human use, but they serve an important purpose
during startup.

Compiled entityfiles are produced by the entityfile save operation, so that
when it writes an entityfile it may do so both in standard form and in
compiled form. These are then two separate files with the same file name
but different extensions: .leo for the standard form and .leos for the Lisp-
compiled form. However, the compiled form is only needed for a minority
of the entityfiles, so it would not be meaningful to produce them for all
files. Instead, entityfiles have an attribute has-savestyle which specifies
the saving policy. If the value of that attribute is leo-savestyle then only
the standard file is produced, if it is empty then both standard and compiled
files are produced. There are also other options.

The startup sequence for a session is defined so that it first loads a number
of compiled entityfiles, and then proceeds to loading ordinary entityfiles.
The has-savestyle attribute controls this choice. However, the loadfil
command which the user can issue during a session will load the standard
representation and not the compiled one. Therefore, if one wishes to change
something in the session startup procedures, this is done simply as follows:
(1) text-edit the entityfile in question to obtain the desired changes, (2) load
that file, (3) save it, thereby producing a revised version of the compiled
file.

Another aspect of compiled entityfiles is that they load much faster than the
corresponding standard form. In those cases where one has to deal with very
large entityfiles that change infrequently, it is therefore convenient to store
them in both standard and compiled form, usually load the compiled form
into sessions, and only use the standard form when some of the contents
have to be changed by text-editing. Furthermore, if changes are done using
a graphic user interface to the session, so that the dynamic manifestation of
the data is modified directly, then one can dispense with the standard form
altogether and use only the compiled form.

To give some idea about what data volumes can be supported with this
approach, the largest application of the Leonardo system is the Common
Knowledge Library which contains more than 60.000 entities, and where the
largest entityfile alone contains around 8.000 entity descriptions, each with
a number of attributes. The compiled form of this entityfile loads in 5 - 10
seconds depending on the computer used.

5.6 Entityfile Attached Facilities

The basic structure for entityfiles is designed for, and defined by the inter-
play between the textual and the dynamic manifestation of a knowledge-

30

base, as implemented by a processor in the KRF sense. In addition there
is a large and growing reportoire of additional services that are attached to
the entityfile machinery. The following are some examples in order to give
a first idea of what can be done there. For details, please refer to the report
“Facilities in Leonardo.”

• Each entityfile entity has an attribute latest-written whose value
is a timestamp that is reassigned each time the file is saved.

• An entityfile may contain entities whose type is section. The effect
of doing this is that the following entities, up to the next section
entity or the end of the file are grouped together as a section within
the file. Sections can be referred to, and for ease of reading the save
operation shows them separated by lines made of equality signs rather
than dash signs, for increased emphasis.

• There is an operation that sorts the entities in an entityfile alphabeti-
cally, but if the file has sections then the sorting is applied separately
to each section.

• Each entity may have an attribute in-categories whose value is a
set of symbols. These symbols may be assigned freely and can be
used for putting “flags” on the entity.

• The entityfile load operation checks the value of the in-categories
attribute of the entity representing the entityfile, and for each ele-
ment in that set it checks if that element has a particular attached
procedure, and executes it if so. This makes it possible to specify
operations that are to be done after a particular entityfile has been
loaded.

• It is possible to attach a loading procedure to property names, for
example a procedure that parses the corresponding property value
according to a particular syntax.

• A property assignment beginning with the a line containing Log but
preceded by two at-signs has the effect that when the entityfile is
loaded, the corresponding property is accumulated to a separate log
file for changes in that particular entity, and then the property is
removed. This is convenient for making notes about software changes:
one can write the note near to where the change was made, but one
does not have to be bothered by long change logs in the files one is
working with.

• The phrase facility arranges that phrases that are to be printed at a
point in the program that is defined by some entity, can be written
as properties of that entity, rather than in-line in the code itself.
This facility gives support for defining each phrase in several natural
languages, so that the entire system can be switched easily from one
language to another.

Chapter 6

Some Knowledge
Representation Issues

This chapter will briefly discuss a few issues relating to the representation of
knowledge in the KRF framework. A more extensive coverage of this subject
is provided in the lecture notes “Knowledge Representation for Intelligent
Autonomous Agents” which is one of the continuations of the present report,
as well as other and more specialized documents.

6.1 Ontologies and Types

As defined in Chapter 5, each entity in an information state must have
a value for the attribute type . The value of this attribute shall in turn
be an entity, which means that it also must have a type, and so on. The
Knowledge Representation Framework does not allow any exceptions to the
rule that every entity shall have a type, but the resulting chain consisting
of types of types is never very long since one arrives quickly at a supertype
that has itself as its type.

The purpose of the type information is syntactic rather than semantic: it
is used for specifying restrictions on the choice of and the values of at-
tributes, but it does not say very much about the meaning of the entity.
However, each type entity (and some others) may also have an attribute
subsumed-by whose value is an entity for another, more general concept.
For example, a simple knowledgebase might contain one entity for the type
swedish-person and another one for scandinavian-person. Both of these
types may in turn have the type person-type, but in addition there is a
subsumption relation between the two person types. This subsumption re-
lation is expressed by assigning scandinavian-person as the value of the
subsumed-by attribute of swedish-person. Subsumption chains can be
significantly longer than subtype chains, and are likely to change more of-
ten in the lifetime of a system, for example by insertion of intermediate
nodes in the chain from time to time.

The information in the subtype and subsumption hierarchies represent the
beginnings of an ontology. Each Leonardo system contains and maintains
an ontology that consists of at least two parts: a self-description ontology for

31

32

organizing the types of entities that make up the software of the Leonardo
system itself, and a cognitive ontology which defines abstract and general
concepts on the top level of the subsumption and subtype chains. In addition
there is an on-line resource called the Common Knowledge Library which
provides a library of ontology modules that can be downloaded to, and
imported into a Leonardo system in order to provide it with domain-specific
information.

The subsumption structure is the more expressive one from the application
point of view, but the type structure serves an important purpose as a
way of defining and checking the formal correctness of information sets of
nontrivial size. In particular, the Common Knowledge Library is organized
as a collection of knowledge modules that are checked for formal correctness
by special software. Just like each entity has a type, so also each knowledge
module has a supermodule which specifies the correct form of the contents
in the given module, and the supermodule has its supermodule in turn, until
arriving at a module that is its own supermodule. The software checks that
knowledge modules that are published in the CKL are consistent with the
requirements of their respective supermodules.

A separate report, “The Leonardo Ontology” describes these matters in
more depth.

6.2 Uses of Logic Expressions

Chapter 3 defined the syntax for condition expressions which are formed
starting with positive and negative literals, and combining them using propo-
sitional (“boolean”) connectives and quantifiers. Condition expressions can
be used for the condition part of if expressions and those expressions, for
example, but they have also other uses. In particular, although information
about an application can in principle always be encoded using entities and
attribute-values, it is sometimes more convenient to describe an application
as a set of propositions, that is, expressions formed using literals and com-
bining them just like condition expressions. In fact, we shall use the term
“proposition” as the general term and we will consider “condition” simply
as a synonym that is preferred when the proposition in question occurs in
an expression that is used computationally.

A further use of propositions, or conditions, is for expressing the precondi-
tions of command verbs and other verbs. Please recall that the definition of
a command verb will often be an if-then-else- expression where the con-
dition (the if part) checks whether the desired operation is possible and
appropriate, the then part performs the desired operation, and the else
part explains to the user (or to surrounding code) why the operation could
not be performed.

The separate handling of conditions/propositions in the KRF framework
makes it possible to define command verbs in such a way that the if part
and the then part are defined separately from each other, and the else part
is omitted or greatly reduced. The if part is called a precondition and is
expressed as a proposition, with exactly the same syntax as was described
for conditions in Chapter 3.

The Leonardo processor uses this technique in some parts of the system and

33

the intention is to introduce it throughout. When it receives a command
whose verb has been defined in this way, it first checks whether the pre-
condition is satisfied for the given arguments and in the session’s current
information state. If this is the case then the separate then part is executed,
otherwise the system will take appropriate action based on its knowledge of
which part of the precondition was not satisfied. If the appropriate action is
to explain the problem to the user, then the evaluation of the precondition
and information that is associated with each predicate makes it possible for
the system to give reasonable “error” information.

Another possible response from the system, if the precondition is not satis-
fied, is to try to fix the problem by taking autonomous action in order that
the precondition shall be satisfied. Yet another response may be to look for
a substitute action, by first trying to identify what was the user’s goal when
requesting the action question, and then finding another action that would
achieve that goal instead. These are classical topics in the field of Artificial
Intelligence. Our point here is that by organizing a software system in the
way described here, it becomes possible to bring down these A.I. techniques
to the level of common and mundane computer use.

6.3 Using Logic for Knowledge Representa-
tion

The use of predicate logic for knowledge representation purposes is a large
topic, and it is a major topic in the textbook “Knowledge Representation
for Intelligent Autonomous Agents.” Here we shall only say a few words
about how the use of logic fits into the various aspects of the Knowledge
Representation Framework.

The basic idea in the Framework is to organize the knowledgebase in terms
of entities and their attributes and properties. The basic idea in Logic is to
organize known facts as one single set of propositions, each of which makes
a true statement about the world. However, in practical use it is anyway
convenient to organize large numbers of propositions into groups, partly to
facilitate their management, but sometimes also because one wishes to only
use a subset of the known facts or “axioms” for the purpose of drawing
conclusions or answering questions.

The natural way to place logic-expressed information in a KRF framework
is therefore to make natural groupings of the given information, to asso-
ciate each such grouping with a suitable entity, and to write it either as an
attribute value or as a property value of the chosen entity.

The use of logic also calls for procedures or ‘mechanisms’ (in the sense of
the word from Chapter 1) for drawing conclusions, finding the answers to
queries, and other logic-based tasks. The development and incorporation of
such mechanisms is an ongoing task in the Leonardo system.

6.4 Using the Expressiveness of KRE and CEL

A few notes about how Knowledge Representation Expressions and the
Common Expression Language can be used.

34

6.4.1 Forms vs Composite Entities

The KRE syntax makes a distinction between forms and composite entities
which is useful both for use in attribute-value representations and logic-
based representations of a domain. Suppose for example that father: is
an entity composer, while father is a formant that is associated with an
evaluation rule mapping the entity for a person to the entity for that person’s
father, and suppose also that lars represents the father of per . Then
the data expressions to the left in the following table evaluate to the data
expressions to the right:

(father: per) => (father: per)
(father per) => lars
(father: (father per)) => (father: lars)
(father (father: per)) can not be evaluated
<(father: per) (father: maria)> evaluates to itself
<(father: per) (father per)> => <(father: per) lars>

It is intended that an expression such as (father: per) can be used to
represent the concept of Per’s father, and that it can be used for example as
a component when expressing ”Gunnar knows who is Per’s father”. That
is why an expression such as (father (father: per)) does not make
sense. The introduction of entities such as (father: per) is known as
reification.

6.4.2 Parameters in Command Expressions

Since commands are expressed as KRE records, they may contain both argu-
ments and parameters. The use of parameters has already been exemplified
in some of the command composers in Chapter 3. However, parameters
may also be used for a variety of purposes in simple commands. Sometimes
it is useful to use parameters instead of arguments, for example in order to
have a mnemonic tag on the argument, or if an argument is optional.

Additional uses occur when parameters are used for indicating how or for
what reason an action is performed, similar to the use of adverbials in natural
language. Consider the following example.

[to-achieve [insert key-4 lock-12]
[turn-clockwise key-4]
[remove key-4]

:goal (not [locked lock-12])]

This expression is intended to specify a goal – the lock called lock-12
should be in an unlocked state – and a method for achieving the goal.
Notice that the goal is a proposition; this is yet another example of the
use of propositions in the system. In many cases it is natural to write the
parameters before the arguments, and in such cases they are by convention
separated using the uparrow or circumflex character, as follows:

[to-achieve :goal (not [locked lock-12]) ^
[insert key-4 lock-12]
[turn-clockwise key-4]
[remove key-4]]

Appendix: Notational
Details

This Appendix describes notational details that have practical and technical
relevance, and is intended for reference if specific questions should come up
in these respects.

6.5 Reserved Morphologies for Entity Names

The basic rule for entity names is that they may consist of any (finite and
non-empty) sequence of printable characters except those that are used as
delimiters in composite expressions (the double quote, the parentheses, the
square and curly brackets, and the less-than and greater-than characters)
and also excepting the colon, the comma, and the backquote. The last three
are excluded due to the special treatment of these characters in Common-
Lisp. This is an effect of having used it as the host language in the first
implementation. An exception to this rule is made for having a colon as the
first character in a tag.

The phrase “printable character” excludes of course the space character, the
tab, the carriage-return and new-line characters, and others that are even
more obviously excluded.

Some additional restrictions must also be imposed. Any sequence that can
naturally be interpreted as a number can not be used for an entity, for
example 3.14 or 666 can not be used for entities.

The use of CommonLisp as an implementation language means that there
may be occasions where the system is requested to print out a datastructure
that is not a correct encoding of a Leonardo structure, although it is still
correct from the Lisp point of view. In such cases the system will write, for
example

[$ (this is a lisp list) $]

Insert paragraph signs instead of dollar signs here. The KRE parser will
accept such an input and will produce the equivalent Lisp list structure
again. If the paragraph character is used in an application, it should make
sure not coming in conflict with this convention.

All constructs that satisfy these restrictions should be able to pass the
Leonardo parser for KRE expressions. Some additional conventions are
implemented in the parsing process and therefore become obligatory. Any

35

36

entityname that begins with a full stop, and that has not already been
classified as a number and not an entity, will be considered as a variable by
the KRE parser, and should only be used in that way, for example in GSL
scripts and in quantified propositions.

The symbol consisting only of the circumflex character ˆ should not be
used in applications, since it is used in the extended syntax for records as
a separator between parameters and arguments in those cases where one
wishes to write the parameters before the arguments.

A notation for typed entitynames is described below.

Besides these restrictions that are imposed by the KRE parser in the present
system, there are also a few conventions that are imposed by various appli-
cations on the internal representation that they receive after parsing. The
following is the current list of such special conventions.

• The special meaning of preceding a predicate symbol with a dash
in order to indicate negation has already been described. It is not
implemented in the KRE parser, but is applied afterwards by the
facility for evaluating and reasoning with propositions.

• An implementation of decision-trees assigns a special meaning to en-
titynames having the question-mark as their last character.

• Symbols of the form dddd-dd-dd, such as 2010-02-18 are reserved
for being used to represent dates in the Christian Era (Anno Do-
mini) chronology, Gregorian variant. Other chronologies may be rep-
resented as e.g. BE-2542-02-18 for the Buddhist Era.

• Symbols such as w.Frankfurt having a short prefix that is attached
using a full stop are used in information analysis facilities for marking
a symbol as used by another party. For example, the prefix w. ex-
presses that it is the entity that is called Frankfurt in the Wikipedia.

• Symbols such as Andersson.Sven or variants thereof are used for
representing persons. The variants include using a postfix for distin-
guishing between several persons having the same name, for example
Andersson.Sven.3 and having a prefix separated using a slash char-
acter for indicating a domain of some kind where the naming and
the numbering is applied, for example se/Andersson.Sven.3 show-
ing that the numbering is done in the Swedish domain.

It is advisable to keep morphological rules such as these to a minimum, and
to use composite entities instead if at all possible. However, these examples
show that the use of composite entities is not always convenient.

This list may be extended at later times.

6.5.1 Typed Entitynames

There is often a need to distinguish in a systematic way between different
meanings of the same word in natural language. Typical examples are for
orange as a fruit or as a color, or for china as a country or a material.

None of the possible approaches to this problem is ideal, and the present
Leonardo system does not contain a definite solution. One possible solution

37

is to specify the existence of separate namespaces and to prefix every symbol
with an identifier for the namespace where it belongs. For each namespace
there must be a coordinator that takes responsibility for the assignment of
symbols in that space. In particular, the XML community uses Internet
URL’s as namespace identifiers, as a way of assuring the uniqueness of each
such identifier. This approach has advantages in the construction of very
large systems that include many stakeholders, but it has the disadvantage
that expressions tend to be large and difficult to read, and we prefer not to
use this approach.

We make instead the assumption that Leonardo knowledgebases will be de-
veloped in distinct, small communities and that each such community can
organize its naming conventions for itself although within the Knowledge
Representation Framework with suitable adaptations. Communication of
knowledgebase contents between such communities willl then sometimes
require some systematic transformations, for example with respect to enti-
tynames, but we believe this can be managed easily.

Even within such a user community there is the problem of how to select
entitynames when the English-language word has several distinct meanings
all of which are of interest for the knowledgebase, like in the examples above.
This calls for a choice between two approaches: one can either require that
distinct names are to be introduced and used in all textual data, for example
in entityfiles, or one can arrange that the same name is used for all the
meanings and the disambiguation is done by the parser of the textual data.

The proposed textual representation in the first case is to use entities of the
form

orange[color]
orange[fruit]

as part of the basic syntax. These will then be distinct entities both in-
ternally and externally, and the type assignment to each of them shall be
implicit in the entityname. However, the present Leonardo parser does not
support this convention.

If the disambiguation is to be done by the parser then there must be some
surrounding information that makes this possible. An obvious way of doing
this, although it will not work for all cases, is to use type information for
entities and attributes. Consider for example the following entity description

--
-- orange

[: type fruit]
[: has-colors {red orange yellow}]

--

in a system where it is previously known that the name orange can refer
both to a fruit and to a color. If this entity description is loaded into that
system, for example because it is included in an entityfile that is reloaded
in its entirety after some editing, then it is clear that the first occurrence
of orange can immediately be disambiguated. Furthermore, if there is type
information to the effect that the value of the attribute has-colors shall
be a set of entities whose type is color then the second occurrence can

38

immediately be disambiguated as well.

The current Leonardo parser contains a facility for disambiguating entity
names in the way that is shown in this example. It uses an internal rep-
resentation where the disambiguated entities are called orange#fruit and
orange#color in the example. The corresponding printing (serialization)
facility produces the untyped name. This facility is in experimental use, in
particular in the system for the Common Knowledge Library, and it is still
too early to evaluate the experience from using it.

As long as neither of these approaches is in regular use, the remaining possi-
bility is for each application to introduce its own conventions for situations
such as these. An obvious choice is to use symbols such as orange.fruit
or orange/fruit while recognizing that these are unrelated symbols from
the system point of view, so that it is the responsibility of the application
to implement any synonym management and any disambiguation that may
be needed.

6.6 Whitespace Requirements and Restrictions

Whitespace characters are defined as the ordinary space character, the
comma, and the carriage-return and newline “characters” The tab char-
acter is not a whitespace character, and it may not be used anywhere in
input or in entityfiles. Whitespace characters are by definition ignored in
input, except inside strings and properties. They must however be used in
some particular positions.

The first line of an entity-description, immediately following the line of
dashes, shall consist of exactly two dashes, followed by exactly one space
character, followed by the entity being defined there. There must not be
any character, whitespace or otherwise, before the two dashes.

Within KRE expressions, and except for inside strings, it is necessary to
have a least one whitespace character for separating two atomic items that
appear in immediate succession. Atomic entities, numbers and strings count
as atomic entities.

Furthermore, in maplets there must be at least one whitespace character
between the introductory : and the following entity.

