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1 Introduction

This report is a concise introduction to decision trees and causal networks,
also known as Bayes nets. It differs from most other texts by using formal
representations for these trees and networks whereas other texts usually
only use diagrams. The formal representation can be used immediately for
input to the Leonardo software platform. The report is intended both as a
tutorial text in a course in artificial intelligence, and as an introduction to
the Leonardo implementation of decision trees and causal networks.

The present section will address decision trees; causal networks will be ad-
dressed in Section 2.

1.1 Deterministic Interpretation of Decision Trees

Let X be a set of terms and V be a function from terms to a range for
each term, where the range is a sequence or an implicitly ordered set of
possible values . Furthermore let v (the value function ) be a function from
terms to specific values such that v.x is a member of V.x for each x in X
. Common cases for a range is: a finite sequence of symbolic values, for
example <red, green, amber> ; an action that may be performed by an
autonomous agent; a botanical species; a real number representing a reward
e.g. in monetary terms.

Furthermore let @ be a similarly ordered set of possible outcomes .
A decision element is a record of the form
[x? r1 r2 ... rn]

where x is a member of X and V.x is a sequence of length n so that there is
a one-to-one correspondence between arguments in the record and elements
in V.x . Each argument ri must be either a member of @ or another decision
element. If all arguments are members of @ then the decision element is said
to be terminal .

The outcome of a terminal decision element for a given value function v is
that argument in the decision element that corresponds to the value of v.x

Example. Let (pedx-signal 12) be a term representing the current state
of the pedestrian crossing signal number 12 in a particular city scenario.
This signal may show ”green man” allowing pedestrians to cross, ”red man”
requesting them to stop, or ”off” meaning neither red nor green is shown.
Let @= {stop, walk, walk-if-clear} , representing the possible actions
that a pedestrian may take when seeing the signal. Then

V. (pedx-signal 12) = <red-man, green-man, off>

Furthermore, at a moment where v. (pedx-signal 12) = green-man , the
outcome of the decision element

[(pedx-signal 12)7 stop walk walk-if-clear]
is the entity walk .

In some particular situations we shall use decision elements that are records
of the more general form



[x? r1 r2 ... rn :range < ... >]

The symbol :range and the sequence following it are not considered as
arguments and are not affected by the above definition.

A decision tree is a twotuple [@, D] where @ is a set of outcomes, like
before, and D is a decision element (usually not a terminal one) where all the
arguments in all the decision elements on all levels in D are either members
of @ , or themselves decision elements.

The outcome of a decision tree for a given value function v is obtained by
recursive application of the definition of the outcome of a terminal decision
element. For a given decision element

[x? r1 r2 ... rn]

on some level, if the element ri that corresponds to v.x is another decision
element, then the outcome of that element is also the outcome of the given
decision element.

A decision tree with a finite set of outcomes is called a classification tree
whereas a decision tree whose set of outcomes is a continuous set of values
is called a regression tree .

Decision trees are widely used in operations research, and the reader is
recommended to consult the following wikipedia pages for additional infor-
mation:

http://en.wikipedia.org/wiki/Decision_tree
http://en.wikipedia.org/wiki/Decision_tree_learning

Some of the important techniques in the context of decision trees are reor-
ganization of decision trees and acquisition of decision trees from empirical
information. They are also important in artificial intelligence systems, in
particular in the contexts of data interpretation, decision-making and learn-
ing.

1.2 Probabilistic Interpretation of Decision Trees

Probabilistic interpretation of decision trees differs from the above in the
sense that the value function v does not produce a single outcome for each
term, but instead a probability distribution over the term’s range. This is
appropriate for representing situations with incomplete information.

For simplicity we restrict the presentation to the case of discrete ranges, in
which case the value of v(x) can always be written as a sequence of prob-
abilities whose sum is 1, and which correspond one-by-one to the elements
in the range of x represented as a sequence.

Normally there is a mixed situation so that some terms have probabilistic
values and some are deterministic. Then it is natural to identify the case
where v.x is a member of V.x with the case where v.x is a probability
vector where one element is 1 and the others are 0. The actually written-
out function v can then mix probabilistic and deterministic values, but for
the purpose of defining the outcome one can assume that all values of v are
probabilistic.



The outcome of a decision tree for a probabilistic value function v is a
probability distribution over @ , that is, a function that assigns a probability
to each member of @ such that the sum of the probabilities is 1. It is defined
recursively as follows, assuming that @ is

<ol 02 ... ok>
The outcome of a terminal decision element
[x? r1 r2 ... rn]

when v.x = (pl p2 ... pn) is a probability distribution (q1 q2 ...
gk) over the elements of @ where each qj is the sum of those pi for which
ri = oj.

This is straightforward. It is then also straightforward to see the generaliza-
tion to non-terminal decision elements: the outcome the decision element

[x? r1 r2 ... rn]

when v.x = (pl p2 ... pn) is obtained by first calculating the outcome
of each of the elements ri which will be a probability distribution

(uil ui2 ... uik)

over the elements of @ . The outcome of the given record is then a probability
distribution (q1 q2 ... qgk) where each qj is the sum of pi * uij where
i ranges from 1 to n . This is essentially a matrix-vector multiplication.

In matrix algebra terms this can be expressed somewhat more concisely as
follows. The outcome is defined both for a term and for a decision element;
in both cases it is a vector of length k (i.e. the size of @ ) representing a
probability distribution. The outcome of a term xk in @ is a unit vector
with 1 in its k’th element and 0 in the others. The outcome of a decision
element

[x? r1 r2 ... rn]

is formed by first forming a k x n matrix U where the i’'th column equals
the outcome of ri , and then forming the product of U and the vector v.x

We have made the distinction between deterministic and probabilistic in-
terpretations of a decision tree, but the tree itself has the same structure
in both cases. Some presentations, e.g. the wikipedia pages for decision
trees actually turn this into a distinction in the trees themselves, by using
square items in the graphical representation of a decision tree to represent
“decision nodes” (deterministic) and circular items to represent “chance
nodes” (probabilistic). This is useful from a practical point of view and for
readability of the representation, but it has no formal significance.

1.3 Terminal Element Probability Distributions

[c? blue white] | [b? [c? white red] [¢? green blue] |]

If it is given that a has the value true and the other two terms have the
value false then the outcome of this decision tree is white. If some of
the terms have probabilities assigned (probability for true or false, in
this case) then the outcome from this decision tree will be a probability



distribution over the colors. The use of terminal element probabilities is a
generalization where the decision-tree itself assigns probabilities even if all
the terms being used assign specific values. The following is a modification
of the example using this generalization:

[txt
[a? [b? [c? red green]
[c? blue <0.12 0.02 0.09 0.77>] ]
[b? [c? white red]
[c? green blue] 1]

In order to interpret this tree one must also have access to the order defined
for the outcome set @. Suppose that it is

<red green blue white>

Then the outcome of the tree, still given that a has the value true and the
other two terms have the value false will be the probability distribution
where red occurs with probability 0.12, green with probability 0.02, and
so forth. This generalization will be used in Section 2 for the topic of causal
nets.

1.4 Partial Interpretation of Decision Trees

We have described how decision trees can be interpreted when values have
been set for all the terms, either as a specific value, or as a probability dis-
tribution. One important generalization occurs if values are entirely missing
for a few of the terms. In this case the result of the interpretation is not a
specific value or probability distribution, but a set of alternative values or
distributions, namely, one for each possible combination of values for the
unassigned terms. This is called partial interpretation.

Consider again the decision tree used above:

[a? [b? [c? red green]
[c? blue white] ]

[b? [c? white red]
[c? green blue] 1]

If it is given that a has the value true and the other two terms have the
value false then the outcome of this decision tree is white. However, if the
value of b is not known then one must consider two cases: b is true, and
b is false. In the former case the outcome is green, in the second case it
is white. If several terms are unassigned then one obtains a case for every
combination of their values.

For such situations it is natural to consider the outcome, in a generalized
sense, as a simplified decision tree only using the unassigned terms. In our
example this generalized outcome would be the following simple decision
tree:

[b? green whitel

Partial interpretation of decision trees can be used when one wishes to
analyze the consequences of several alternative courses of action. The alter-
natives are characterized as one or a few unassigned terms, the step-by-step
analysis of the entire situation is represented as a decision tree, partial



interpretation is done for this tree, and one obtains a summary of the con-
sequences for each of the alternatives being considered.

The concept of partial interpretation originates from the theory of program-
ming languages, where one may partially interpret a function definition or
a procedure where some but not all the arguments are known. The result
is then a simplified function or procedure.

1.5 Hierarchical Decision Trees

The following is an example of a hierarchical decision tree:

[?[a? [b? [c? red bluel
[c? blue white] ]
[b? [c? white red]
[c? red blue] 1]
rose bluebell waterlily
:range <red blue white>]

It is similar to the following decision tree:
[color? rose bluebell waterlilyl]

except for two things: the line beginning with :range , and the fact that
there is a composite expression instead of the single term color?. In fact,
this composite expression is itself a decision tree that is embedded inside the
main one. We write the question-mark before the subordinate decision-tree
rather than after it since this makes the expression easier to read.

This structure is called hierarchical because it is intended as follows: given
assignments of values to a, b and c, first obtain the outcome of the sub-
decision-tree that uses these terms. The possible outcomes are red, blue
and white, depending on the values of a, b and c. When that outcome has
been obtained, use it in the top-level decision tree for obtaining the choice
between rose, bluebell and waterlily.

Notice that the subordinate decision tree does not need to have the same
outcome set as the main tree; in fact there is no reason why it should. On
the other hand it is necessary to have a specification of the ordering of the
possible outcomes of the sub-tree in order to interpret the top-level tree, and
this is the reason for including the :range parameter which uses a facility
in the Leonardo notation that is being used here.

A hierarchical decision tree can always be rewritten as an ordinary, flat
one, but often at the expense of obtaining a much larger tree. Consider the
following modification of the example:

[7[a? [b? [c? red bluel
[c? blue white] ]
[b? [c? white red]
[c? red bluel 1]
[choice? red-rose poppy pelargonia]
[choice? bluebell forget-me-not violet]
[choice? waterlily lily-of-the-valley white-rose]
:range <red blue white>]



When this decision tree is interpreted, there is first a decision in the sub-
decision-tree for the choice of color, and then a second decision according
to the term choice between several available flowers having the color in
question. In order to flatten this tree one has to replace the entities for the
colors ( red, blue, etc) with the appropriate subexpression beginning with
choice?. The result will be that there are eight occurrences of choice?
-expressions, instead of three in the original tree. The use of hierarchical
decision trees is therefore a way of modularizing the tree.

We shall see an additional use of hierarchical decision trees in the next main
section, which addresses causal nets.

1.6 Modes of Use

There are many examples of simple, deterministic decision trees in ordinary
life. Large and complex decision trees are used in several disciplines and they
have been extensively studied both in operations research and in artificial
intelligence.

A well-known, practical use of decision trees is for debugging or error iden-
tification in machines for personal use, such as automobiles or washing-
machines. They are usually represented in graphical form as flowcharts
where each decision element is represented as a node containing a question,
corresponding to a term in the notation used here, and arrows from one
node to the next indicate how to proceed depending on the answer to the
question.

A related use is for error identification “wizards” in many computer pro-
grams or computer-attached devices, where the decision tree is represented
in software and the “wizard” asks the user successive questions as it inter-
prets the decision tree.

A classical use of decision trees has been for schemata for identifying the
genus and species of plants, as published in botanical books. The terms
in the decision tree refer to various physical characteristics of the plant,
and in particular its reproduction-related parts, and the tree leads to the
identification of the species provided that the user is successful. Decision
trees of this kind were introduced in the pioneering work Systema Naturae
by Carolus Linnaeus.

Professional use of decision trees often make use of probabilistic and/or
partial interpretation. Their use for evaluation of alternative courses of
action has already been described.

A particularly important case arises in probabilistic interpretation of de-
cision trees where the outcomes are numerical quantities, typically repre-
senting a profit or loss in a business enterprise. Since the interpretation
is probabilistic, one obtains a set of possible, numerical outcomes, each of
them with an associated probability. The expected outcome of the deci-
sion tree is then, as one can expect, the sum of the alternative outcomes,
weighted with their respective probabilities. In combination with partial
interpretation as already described, one obtains one expected outcome for
each of the alternatives being produced, which can then serve as the basis
for making a decision.



With respect to artificial intelligence, there are two major applications of
decision trees, namely, for perception and for decision-making. In the case
of perception the framework of use may be as follows: incoming sensory
data are first analyzed through processes that reduce them to a limited
number of features. Then these features are fed into a decision tree in order
to obtain a classification of the object being seen or otherwise perceived.

The use of decision trees for decision-making in autonomous agents is similar
to their use in operations research and in commercial contexts as described
above. For example, the main computational cycle of the SOAR architecture
[*] contains, among others, one step whose role is to generate a number of
alternative courses of action, and a next step for making a choice between
the suggested alternatives. A decision tree is a possible and natural device
in that step.

It is not practical to engineer large decision trees by hand, even in the de-
terministic case, and it is entirely unrealistic to identify probability settings
manually for their probabilistic interpretation. Automatic acquisition of
these structures and quantities is therefore an important topic in the area
of machine learning.

1.7 Implementation and Examples

A simple implementation of decision-trees and their interpretation is avail-
able for the Leonardo system and can be used in the Leordo distribution
[¥] . The decision-tre module can also be downloaded from the Leordo web-
page. It uses the same notation as has been used here, except that the V
and v operators are done differently.

The following is a brief summary of how the implementation works. Con-
sider first the following excerpt from the demonstration example.

[: type decitree-term]
[: has-range <a b c>]

[: type decitree-term]
[: has-range <x y>]

[: type term-assignment]
[: det-mapping {
[: term-1 Db]
[: term-2 x] }]
[: prob-mapping {
[: term-1 <0.1 0.8 0.1>]
[: term-2 <0.2 0.8>] }]

1See e.g. our separate tutorial article about autonomous agents.
2 http://www.ida.liu.se/ext/leordo/



—- decitree-1

[: type decision-tree]
[: has-outcomes <H J K>]
[: has-tree
[term-17 :range <a b c>
[term-27 H K]
[term-27 H J]
[term-27 J K] 1]

Three types are used: decitree-term for terms that are used in decision
trees, term-assignment for entities that name an assignment of values to
terms, and decision-tree for entities that name a decision tree. Entities
of the second kind correspond to a v function in the present text.

The use of the has-range attribute is evident. The use of the ordered set
@ in the present text is replaced by the use of the has-outcomes attribute
of each decision-tree identifier. Each term assignment entity can have both
a deterministic mapping and a probabilisitic mapping from decision-tree
terms to their values or distributions, as the example shows. Probabilistic
mappings may contain deterministic assignments when appropriate, but not
vice versa. For example, one could have

[: prob-mapping {
[: term-1 <0.1 0.8 0.1>]
[: term-2 x] }]

Two commands have been implemented for the interpretation of decision
trees in this notation, called dede for deterministic interpretation and prode
for the probabilistic one. They are invoked like in

dede decitree-1 termas-1

and similarly for prode, the difference being that dede uses the det-mapping
attribute of its second argument, and prode uses its prob-mapping at-
tribute.

The use of the range parameter in decitree-1 is only informative since the
term term-1 already has an attribute specifying its range, but it may facil-
itate reading the definition to have it there: it specifies that the expressions
in the following lines apply for a, b and ¢ in that order.

Terminal-entity probability distributions are supported, but not partial in-
terpretation or hierarchical decision trees.

1.8 Integration in Larger Systems

A decision tree in an artificial intelligence application will typically be used
repeatedly with different assignments of values for the terms, that is, for
different choices of the v function. This is true both in the case of interpret-
ing or classifying incoming data, and in the case of making a decision given
some alternative choices. For the formal presentation in the present text it is
sufficient to say that one has different choices of the function v, and our tu-
torial implementation uses multiple instances of the type term-assignment



for the same purpose.

When this technique is to be integrated in a larger system one may need
different conventions in order to adapt to the representation of the terms
— and their values — that is already used in the larger system. In general,
a decision tree is a device for inferring and aggregating information about
one particular object each time it is interpreted, and repeated use of the
decision tree is worthwhile if one addresses a new object, or if some of the
properties of the object may have changed since the previous use.

For the purpose of system integration one must therefore start from the
actual representation of the objects being considered and their associated
information, and adjust the implementation of decision trees so that it com-
bines without problems with the main system.

1.9 Integration in a Leonardo-based Application

In the particular case of systems that are built on the Leonardo platform, ob-
jects for the purpose of decision-tree interpretation are likely to be Leonardo
entities, and the terms to be considered may simply be attributes of those
entities. However there are also other possibilities:

e One may wish to obtain an attribute of an attribute of the given
entity

e One may wish to pre-process an attribute of the given entity with
some computational transformation

e Our household example (see our main lecture notes in knowledge rep-
resentation) introduced the use of features for representing proper-
ties of an object that change over time. A term in a decision tree may
therefore need to be defined as the current value of a feature of the
entity at hand

A general way of accomodating these possibilities as well as several others, in
the Leonardo context, is to generalize the decision trees so that the terms in
them (the symbols ending with a question-mark) are allowed to be arbitrary
Leonardo terms where the variable . obj is defined and is bound to the entity
that is subject to interpretation. In this way one will be able to write e.g.
the following decision tree when the object .obj represents a particular door
that an autonomous agent wishes to pass:

[(get .obj requires-access-card)?
[(I-have (card-for .obj))?
[soact [insert-card .obj] [pass-door .objl]
[faill ]
[(is-locked .obj)?
[(I-have (key-for .obj))?
[soact [unlock-door .obj][pass-door .objl]
[fail] ]
[pass—door .obj] 1]

For a given value of .obj, for example door-19, this decision tree returns
either the fail message [faill or one of the following proposed actions or
action sequences:
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[soact [insert-card door-19] [pass-door door-19]]
[soact [unlock-door door-19] [pass-door door-19]]
[pass-door door-19]

The operator soact stands for “sequence of actions.” One will assume that
the entity door-19 has a truth-valued attribute for requires-access-card
since this is a fairly permanent property of the door. One also assumes that
card-for and key-for are functions whose values are reifications [¥] of the
properties of being an access card for the door in question and being a key
for the same door, and finally one assumes that the function I-have takes
such a reification as its argument and produces a truth-valued feature whose
value at each point in time is either true or false depending one whether
the agent currently possesses an object with the specified property.

2 Causal Nets

A causal net consists of a set of independent terms, a set of dependent
terms, and the assignment of a dependency expression to each dependent
term. Like in the case of decision trees, there must also be a mapping V
from terms (both dependent and independent ones) to a range for each
term. The dependency expression for a dependent term specifies a set of
other terms that the given term depends on, called its dependees, and a
way of calculating the value of the given term in terms of the values of its
dependees. The graph that is defined by the links from dependent terms to
their dependees must not contain any cycles.

2.1 Propositional Probabilistic Causal Nets

The case of deterministic causal nets is the simplest one, but we shall pro-
ceed directly to the case of probabilistic nets. On the other hand we begin
by making the assumption that all the ranges consist of merely two val-
ues, true and false, which simplifies the treatment. The generalization to
ranges of more than two values follows in the next subsection.

Probabilistic causal nets are often called Bayes nets since some of the im-
portant and nontrivial operations on them are based on Bayes’ rule in prob-
ability theory. We prefer to use the term “causal nets” since it expresses
what the nets are intended to represent, and since not all of the operations
on these nets are based on Bayes’ rule.

Consider now the following example, as shown in Figure 1. We have three
independent terms, b, e, and f, and three dependent terms, d, c, and a.
The value of d depends on the values of e and £ in a way that is defined by
the following dependency expression for d:

[e? [£f7 <0.4 0.6><0.7 0.3>]
[£f? <0.1 0.9><0.3 0.7>]]

We notice that the dependency expression is a decision tree with terminal-
entity probability distributions. It is to be read as follows. If the value of
both e and £ is true then the probability is 0.4 that the value of d is true
and, consequently, the probability is 0.6 that the value of d is false. If e is

3See our KR lecture notes for an explanation of this concept.
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true and f is false then the probability is 0.7 that the value of d is true,
and so on.

The example specifies both a probability p and the complementary proba-
bility 1—p which is a bit tedious, and we introduce the abbreviated notation
where e.g. 40% represents the tuple <0.4 0.6>. The same example can
then be written as follows:

[e? [£f?7 40% 70%]
[£? 10% 30%1]

Notice that this is a nonstandard notation, and that we will not write e.g.
40% to signify 0.4, only to signify <0.4 0.6>.

If a propositional probabilistic causal net is given, let v be an assignment
of probabilities for the independent terms of that net. Then the probability
for a dependent term in the net is defined as the outcome of its dependency
expression using the outcomes of its dependees, as defined in the previous
section. This is well-defined since the dependency graph is assumed not to
have any cycles.

2.2 An Example

The following example is originally due to Eugene Charniak, in his article in
the AI Magazine in 1991. It has also been used by C.R. Dyer in his on-line
lecture note on Reasoning under Uncertainty [4] and I quote from Dyer’s
note:

“Consider the problem domain in which when I go home I want to know if
someone in my family is home before I go in. Let’s say I know the following
information: (1) when my wife leaves the house, she often (but not always)
turns on the outside light. (She also sometimes turns the light on when
she’s expecting a guest). (2) When nobody is home, the dog is often left
outside. (3) If the dog has bowel-troubles, it is also often left outside. (4)
If the dog is outside, I will probably hear it barking (though it might not
bark, or I might hear a different dog barking and think it’s my dog).”

This information is represented using the following terms: noone-home,
lights-are-on, dog-outside, dog-sick, and I-hear-dog. The last of
them shall be understood as “I hear a dog and I think it’s mine.” Of these
terms, noone-home and dog-sick are independent terms since we do not
have any information about how they could depend on any of the other
terms, in the sense of being caused by any of them. The other three terms
are dependent ones and we posit the following dependency expressions for
them:

lights-are-on  [noone-home? 70% 20%]

dog-outside [noone-home? [dog-sick? 80% 70%]
[dog-sick? 70% 30%]11]

I-hear-dog [dog-outside? 80% 10%]

For example, if someone is home and the dog is not sick then the probability
is stated as 0.3 that the dog will be outside and 0.7 that it will not.

4 http://pages.cs.wisc.edu/~dyer/cs540/notes/uncertainty.html
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Consider now a function v that assigns probabilities to the independent
terms, for example v.noone-home = 0.6 and v.dog-sick = 0.05. It is
straightforward to calculate the probabilities for the dependent terms.

Practical examples will of course be very much larger. Anyway, one natural
way of using this representation is if both a causal network and an a priori
definition of the v function are given, but in a particular situation one has
some additional information that overrides some parts of the v function. If
my wife has said that she would maybe go and see a movie with a friend
this evening, but she was not sure if this friend was able to join, then
I would adjust the value of v.noone-home and recalculate the dependent
probabilities. This is an example of direct evaluation of a probabilistic causal
net.

Notice by the way that there is no such thing as the “probability” or the
“outcome” of the entire causal net. The net makes it possible to calculate
the probability for each dependent term in the net. Sometimes maybe one
of the dependent terms is the one that one is particularly interested in, so
that the probability for it is the useful output, but this is merely a question
of how the causal network is used.

2.3 Inverse Evaluation in a Causal Net

Although direct evaluation of probabilistic causal nets is sometimes useful,
a much more important application occurs if values are known for some of
the dependent terms and one wishes to infer revised values for some of the
independent ones. In the example above, if I am approaching home and 1
hear the dog bark, how should I then revise my a priori probabilities for
noone-home and dog-sick in view of this additional information? This is
in line with the quoted problem statement above.

This is an example of an inverse problem: the direct evaluation of a proba-
bilistic causal net is simple, but if some of the outputs of the direct problem
are instead going to be inputs, then it is more complicated. This is where
Bayes’ rule from probability theory comes in.

At this point, please proceed by reading the on-line articles by Dyer that
was mentioned above.

2.4 Non-propositional Probabilistic Causal Nets

We have first addressed the case where the range of each term is the set of
the two truth-values true and false. We have mentioned the “probability
for” a particular term, meaning the probability that the value of the term
is true.

In many cases it is desirable to use a larger range for some of the terms.
This does not change anything in essence, but it leads to somewhat larger
dependency expressions. Let us first rewrite the above example without the
percent notation so as to represent the two values of each range explicitly:

lights-are-on  [noone-home? <0.7 0.3><0.2 0.8>]

dog-outside [noone-home? [dog-sick? <0.8 0.2><0.7 0.3>]
[dog-sick? <0.7 0.3><0.3 0.7>]]
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I-hear-dog [dog-outside? <0.8 0.2><0.1 0.9>]

To read this out, one notices that if noone-home is true then the proba-
bility is 0.7 that lights-are-on is true and it is 0.3 that 1ights-are-on
is false. Suppose now that the term noone-home is generalized to the
term someone-home with three possible values, namely none, wife, and
someone-else, but the value of 1ights-are-on is still just true or false.
Then the first dependency rule might become:

lights-are-on [someone-home? <0.2 0.8><0.7 0.3><0.8 0.2>]

Notice that there are three sublists after the term someone-home since its
range has three elements, and that each of those three sublists has two ele-
ments since the range of 1ights-are-on has two elements. If there are more
than two values for lights-are-on, for example for indoors and outdoors
lights, then the number of elements in the sublists would have to change
accordingly.

2.5 The Implementation

The implementation of decision trees for Leordo which was described above
contains also a facility for direct evaluation of probabilistic causal nets. The
following is the representation of Charniak’s example for this implementa-
tion:

—- noone-home

[: type causal-net-node]
[: has-range <true false>]

-- lights-are-on

[: type causal-net-node]
[: has-range <true false>]
[: dependency-expression [noone-home? 757 20%]]

-- dog-outside

[: type causal-net-node]
[: has-range <true false>]
[: dependency-expression
[noone-home? [dog-sick? 80% 70%]
[dog-sick? 70% 30%] 1]

-- dog-sick

[: type causal-net-node]
[: has-range <true false>]

-- I-hear-dog

[: type causal-net-node]
[: has-range <true false>]
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[: dependency-expression [dog-outside? 80% 10%]]

-- termas-3

[: type term-assignment]
[: prob-mapping {

[: noone-home 60%]

[: dog-sick 5% 1 }]

Most of this is self-explanatory. The type term-assignment is used like
before, and there is a new type called causal-net-node that is used for both
dependent and independent terms in a causal net. They are distinguished
since the former have a value for the attribute dependency-expression
which shall have the same structure as the value for has-tree that was
used above. The percent notation can be used with the same meaning as
has been used in the present report.

The command caev is used for evaluation of a node in a causal net, like in
for example

caev I-hear-dog termas-3

This operation will interpret the dependency-expression of its first argu-
ment. If, in the course of that interpretation, it encounters an entity that
is not assigned a value by the term assignment at hand (namely, the one
that was given by the second argument) but which does have a value for
dependency-expression then it will call itself recursively for that expres-
sion, and proceed from there on the return. The implementation therefore
does not preserve and reuse the values from the interpretation of a partic-
ular dependency-expression; it recalculates the outcome every time it is
needed.

Notice, by the way, that what happens during such an evaluation process
is essentially a case of hierarchical decision trees, except that the subordi-
nate trees are not physically embedded in their superiors; they are merely
mentioned by name there.

3 Conclusion

If the reader is a participant in my present Al course, he is encouraged to
return to the course webpage at this point and to continue with the other
links for the general area of uncertainty in reasoning systems.



