
CASL Single Lecture Notes

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping university, Sweden

SLN - AIB - 05

2006-12-05

Erik Sandewall

Planning Using the Situation Calculus

Subject Area: Artificial Intelligence Basic

Date of lecture: 2006-11-09

”Single Lecture Notes” are notes corresponding to one lecture.

Related information can be obtained via the following WWW pages:

Linköping university:

This course:

CASL Group:

The author:

http://www.liu.se/

http://www.ida.liu.se/∼TDDA23/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/∼erisa/

1

1 Introduction

Given: histories of the world (’robotic histories’), characterized by a number
of state variables as functions of time. Each state variable may be discrete
(take one of a finite number of values) or piecewise continuous (continuous
except for a limited number of discontinuities).

We have previously defined a situation in such a history and for a given set
of state variables as a period of time during which:

• if all state variables are discrete: they keep the same value within the
interval

• if piecewise continuous state variables are also included: there is no
discontinuity within the interval. (Change of value of a discrete vari-
able counts as a discontinuity).

Previously we characterized histories using the predicate H (also written
Holds) where H(t, f, v) says that the value of state variable f at time t is v.

State variables are also called fluents, or features.

Situation calculus (sitcalc for short) is an alternative approach that is de-
signed for the case of discrete fluents (not obvious how to generalize to
continuous ones) and which works as follows.

There is a predicate H(s, f, v) that says that the fluent f has the value v in
situation s. If v can only be ’true’ or ’false’ then one writes H(s, f, true) as
H(s, f).

Actions are thought of as transitions from one situation to a successor. Each
kind of action is represented as a function with one situation argument, and
possibly other arguments, that has a new situation as its value. The value
of a(s) is intended as the new situation that is obtained as a successor of
situation s by performing the action a.

In some variants of the sitcalc one writes do(a, s) instead of a(s).

In its basic form this approach has a number of limitations with respect to
expressivity. Some of them can be removed by additional conventions. We
shall return to that later, but first show the situation calculus approach at
work.

An example

Like in some of the earlier lecture notes in this series, we shall write formulas
in typewriter font, with the following, natural conventions:

-> implication
& and
v or
- not

Consider a situation domain with one single fluent, called P, that specifies
the position of the agent. The value of P shall be either of the following:

2

H Home
LT Linkoping travel center
SC Stockholm central railway station
SS Stockholm/Skavsta airport
SA Stockholm/Arlanda airport
LS London/Stanstead airport
LH London/Heathrow airport

In addition there is the following base information:

H(s0, P, H) where s0 is the initial situation
(this is a standard convention in sitcalc)

Near(LS, London)
Near(LH, London)

and the following statement that we wish to prove:

∃ x ∃ s [H(s, P, x) & Near(x,London)]

For example, if we are able to prove

H(flyto-ls(busto-ss(walkto-lt(s0))), P, LS) & Near(LS,London)

then we are done. The second half (the Near-expression) is already one of
the axioms, so it is only required to prove the first part. It constitutes the
plan, with the understanding that

walkto-lt(s) is the situation that arises if one is in
situation s and changes it by walking to LT

busto-ss(s) is the situation that arises if one is in s
and changes it by taking the bus to SS

flyto-ls(s) is the situation that arises if one is in s
and changes it by flying to LS

However these actions have preconditions: in order to do flyto-ls one has
to be at SS, and so on. The preconditions and the effects are expressed as
follows:

H(s,P,H) -> H(walkto-lt(s), P, LT)
H(s,P,LT) -> H(busto-ss(s), P, SS)
H(s,P,LT) -> H(trainto-sc(s), P, SC)
H(s,P,SC) -> H(busto-sa(s), P, SA)
H(s,P,SC) -> H(trainto-sa(s), P, SA)
H(s,P,SS) -> H(flyto-ls(s), P, LS)
H(s,P,SA) -> H(flyto-lh(s), P, LH)

with the obvious meaning for each of these. For example, the last axioms
says (is intended to say) that if you are at Stockholm Arlanda airport and
perform the action of flying to London Heathrow then you will be at London
Heathrow.

Somewhat more realistically one would wish to make the destination an
argument, for example

H(s,P,d) -> H(flyto(s,d), P, d)

but this requires the introduction of additional preconditions so we keep the
first representation for the purpose of showing how deductions are made.

3

To prove the desired conclusion it is negated and combined with the axioms
on clause form:

-H(s, P, x) v -Near(x,London)

1 H(s0, P, H)
2 Near(LS, London)
3 Near(LH, London)

4 -H(s,P,H) v H(walkto-lt(s), P, LT)
5 -H(s,P,LT) v H(busto-ss(s), P, SS)
6 -H(s,P,LT) v H(trainto-sc(s), P, SC)
7 -H(s,P,SC) v H(busto-sa(s), P, SA)
8 -H(s,P,SC) v H(trainto-sa(s), P, SA)
9 -H(s,P,SS) v H(flyto-ls(s), P, LS)

10 -H(s,P,SA) v H(flyto-lh(s), P, LH)

However, before we start the deduction process, using resolution, we also
add an auxiliary literal called an answer literal to the negated desired con-
clusion, so that instead of the above one writes

11 -H(s, P, x) v -Near(x,London) v Answer(s)

This is a pure technicality and its purpose will soon become clear.

Now we can use the resolution operator, in ways similar to what we did in
the previous lecture:

12 -H(s, P, LS) v Answer(s) 2,11
(substituting LS for x in 11)

13 -H(s, P, SS) v Answer(flyto-ls(s)) 12,9
(substituting flyto-ls(s) for s)

14 -H(s, P, LT) v Answer(flyto-ls(busto-ss(s))) 13,5

15 -H(s, P, H) v Answer(flyto-ls(busto-ss(walkto-lt(s)))) 14,4

16 Answer(flyto-ls(busto-ss(walkto-lt(s0)))) 15,1

The final clause contains the answer: given the situation s0, do the actions
walkto-lt, busto-ss, and flyto-ls in succession. Answer Remember now
that the Answer literal was added technically. If we do the proof without
it then clause 16 is the contradiction (empty clause) since 1 and 15 then
are each other’s negation (after substitution). In other words, the desired
conclusion of the existence of a plan has been obtained, but as a side-effect
and from the Answer literal we obtain the plan itself. We do not only prove
the existence of a plan, we also construct it.

Actually the method of the Answer predicate is oldfashioned, and mod-
ern systems achieve the same purpose by extracting the solution from the
proof itself, but that method is more difficult to follow. We use the Answer
predicate here because it is very easy to understand.

4

Q-A and Discussion

1. If one has more than one fluent, then what are the effects on them
(compare the Yale shooting problem)?
Answer: You have to use some of the methods from the previous
lecture, that is, use frame axioms, reverse frame axioms, or the like.
However, systematic methods for doing this have been developed in
the sitcalc framework.

2. What are the effects of an action if its preconditions are not satisfied?
Answer: If the effects of the action are conditional on some aspect of
the starting situation then you simply write several effect axioms, one
for each case. For those cases where there is no effect axiom (which
happens in the above example) then the answer for the previous ques-
tion applies.

3. How do I represent the effects of nondeterministic actions?
Answer: In basic sitcalc you cannot do that.

4. The proof above seems to determine the plan in reverse order, that
is, it first finds the action flyto-ls, and then proceeds backwards.
Is this always the case?
Answer: Not necessarily, since you can do the resolutions in several
different orders and get to the same result. However if you use the
rule-of-thumb of always trying to use a clause containing the Answer
predicate as one of the two clauses to resolve (which is a reasonable
strategy), then this effect is obtained.

5. What about other restrictions on the expressivity of this method?
Answer: No concurrent actions, no continuous state variables, not
well suited for representing time, among other things.

6. What does ”not well suited for representing time” mean?
Answer: well, you can introduce fluents that obtain the starting time
and the ending time of a situation as metric properties, but since
actions have to be deterministic you will be bound to actions always
taking the same number of time units, which is not realistic.

7. In the representation with H and D and time on the time axis as an
argument, which we used in previous lectures, each interpretation of
the logic formulas is a history of the world. What are the interpreta-
tions of sitcalc formulas?
Answer: Not one timeline, but a tree of situations with s0 at the root,
and successors formed using the various actions which are situation-
valued functions. In other words, all possible action sequences are
included in one and the same interpretation.

8. Suppose I have the action opendoor(s) with the effect of opening
a particular door, and closedoor(s) that closes the door. What is
the relation between s and closedoor(opendoor(s)) if the door is
closed in situation s?
Answer: different varieties of sitcalc take different stands on that, but
in the major variant (Toronto sitcalc) they are considered as different
situations although of course they are such that every fluent has the
same value in one as in the other. In Toronto sitcalc, situations are
isomorphic to (correspond 1-1 to) finite sequences of actions.

5

Some other variants of sitcalc consider situations to be the same as
states of the world, so that each mapping from fluents to their values
is a situation.

