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Abstract
The gaming industry has started to look for so-
lutions in the Artificial intelligence (AI) research
community and work has begun with common
standards for integration. At the same time, few
robotic systems in development use already de-
veloped AI frameworks and technologies. In this
article, we present the development and evalua-
tion of the Hazard framework that has been used
to rapidly create simulations for development of
cognitive systems. Implementations includes for
example a dialogue system that transparently can
connect to either an Unmanned Aerial Vehicle
(UAV) or a simulated counterpart. Hazard is
found suitable for developing simulations support-
ing high-level AI development and we identify and
propose a solution to the factors that make the
framework unsuitable for lower level robotic spe-
cific tasks such as event/chronicle recognition.

1 Introduction
When developing or testing techniques for artificial intelli-
gence, it is common to use a simulation. The simulation
should as completely as possible simulate the environment
that the AI will encounter when deployed live. Sometimes,
it is the only environment in which the AI will be deployed
(as is the case with computer games). As there exist many
more types of environments than AI techniques, there is a
need to reuse existing implementations of AI techniques with
new environments. AI frameworks often come bundled with
an environment to test the AI technique against and the envi-
ronments are often not as easy to modify as a developer would
want, nor is it easy to evaluate the framework in new environ-
ments without developing time-consuming middleware. In
the case of robotics, there is an extended development period
to develop low-level control programs. The AI then devel-
oped is often tailored to the low-level control programs and it
is hard, if at all possible to reuse.

The Player-Stage project [Gerkey et al., 2003] develops
low-level drivers for robotic architectures and gives the de-
veloper an interface that can either be used together with the
stand-alone simulator to evaluate the configuration or to con-
trol the actual robotic hardware. This kind of interface en-

courages focus on the high-level control of the robot, but
since there are no wrappers to high-level AI frameworks, it
does not encourage reuse of existing AI techniques. By de-
veloping a high-level interface between Player-Stage and AI
frameworks, we will also allow AI researchers to take advan-
tage of the Player-Stage project.

The Robocup initiative [Kitano et al., 1997] uses both ac-
tual robotic hardware and simulation in competition. Yet,
there exists no common interface for using simulation league
AIs with robotic league robots. This can mean that the sim-
ulation interface is unintuitive for actual robotics, or that AIs
developed with the simulation are not usable with actual ro-
bots. In either case it is a problem worth investigating.

The WITAS Unmanned Aerial Vehicle project [Doherty
et al., 2000] uses several simulators in their research, both
for hardware-in-the-loop simulation of the helicopter hard-
ware and for development of dialogue interaction with an ac-
tual UAV. A middleware translating actions and events from
WITAS protocol to other protocols would allow experimen-
tation with for example SOAR [Laird et al., 1987] as a high-
level decision system. It would also allow the application of
developed agent architecture to other environments and prob-
lems.

By creating a middleware framework that can mediate be-
tween low-level drivers and high-level decision system, we
hope to be able to alleviate the problems for AI researchers
presented above and inspire researchers in both artificial intel-
ligence and robotics to reuse existing implementations. Ro-
botic researchers can reuse AI techniques that exist and AI
researchers can test their AI implementation in off-the-shelf
simulators before building an expensive robotic system. It
would also allow separate research groups to work with low-
level control and high-level decision issues.

As a step towards proposing an interface and middleware
for connecting AI and robotics, we have designed and imple-
mented a framework for developing agents and environments
where we focus on the distinction between agent and envi-
ronment. The design iterations and various implementations
with the framework have allowed us to gain valuable experi-
ence in designing both interface and framework. The work
is presented here together with an evaluation of the strengths,
weaknesses and limitations.



Figure 1: Agents and Environments.

2 Interface
The framework is designed around action theory and based
on the agent-environment concept as found in [Russel and
Norvig, 1995], see figure 1. The framework is thus divided
into three parts; interface layer, agent module and environ-
ment module. The agent uses actuators to communicate its
intention to the environment, the environment delivers the
sensor impressions back to the agent. In this interface the
actuation is handled by actions. Each action and sensor has
an owning agent to which all data is passed. The interface
encourages multi-threaded applications where the agent de-
cision loop is in one thread and where the environment is in
another. This design has been helpful when building con-
tinuous, asynchronous environments such as simulations of
robotic vehicles.

Figure 2: How actions are used.

Actions
When an agent has decided on using a certain action, it
configures the action and notifies the environment that it
wants to “register” the action. If the action is applicable
in the current state of the environment, it is accepted and
execution starts. The action contains its own executable
code and is thus defined in the environment module. Ac-
tions are bundled with their own event recognition and
execution monitoring. At each execution interval, they
update the state of their owner in the environment. If
applicable, they can send “checkpoint” reports back to
the owner. When the action has reached its end criteria,

it sends a “success” message. If it fails during execu-
tion, it sends a “fail” message. If it is an action to which
success/fail has no meaning (for actions without an ex-
plicit goal), the action can send a “stop” message. All
these messages are implemented as callback methods in
the agent interface. The implementation is visualized
in the sequence diagram in figure 2. Since actions are
implemented in the environment, the agent must have
knowledge of the environment to be able to use the ac-
tions. Actions are considered to be executed in contin-
uous time, can be concurrent and are either discrete or
durative regarding the end criteria.

Sensors
Sensors are permanent non-invasive actions that can be
registered in the environment. Sensors contain their
own executable code and should not modify the environ-
ment. A sensor analyzes the environment and stores the
extracted information. When it has new data, the sensor
can notify the owner which in turn can fetch the new
data from the sensor. What kind of data that is passed
between sensor and agent is not defined by the interface.

3 Framework
Together with the interface a framework has been designed.
The framework has been named Hazard and helps develop-
ers to rapidly create new environments and agents. It can
also be used to design wrappers for other environments or
agents, thus allowing other implementations using Hazard to
be quickly modified to use that agent implementation or en-
vironment. The design has been developed iteratively with
several simulations as reference implementations. The ex-
perience from developing each simulator has given a simpler,
more robust and better designed framework ready for the next
project.

The goal of the framework has been both to allow devel-
opment of new environments and agents, and to use it as a
middleware between already existing frameworks. The de-
sign focus has been on forcing developers to make important
design decisions at an early stage of the project and to leave
simpler issues in the hands of the framework.

3.1 Environments

Figure 3: General structure of the environment module.



The environments in Hazard are based upon two main
classes; Environment and Map. An environment can contain
several maps and thus allowing for large environments. The
environment also handles execution of actions and sensors.
Each map can contain a number of objects, where agents are
a subset of the objects. The framework has a number of de-
fault types of maps that can be used by developers. Each of
these maps is data-driven and can be subclassed or used as
is. All objects on the maps are derived from a GenericObject
class. This class contains basic properties and methods for vi-
sualization. The environment module also implements a basic
graphics engine that can handle two dimensional graphics.

3.2 Agents

Figure 4: General structure of the agent module.

All things that are controlled by either AI or a user imple-
ments the interface “Controller”. A controller can control one
or more objects in the environment. Controllers implements
methods for registering/unregistering actions and sensors in
the environment. They implement the callbacks for actions
and sensors, but have otherwise no limitations. A Generi-
cObject that implements the Controller interface is called an
agent. The Agent module contains classes and methods for
class reuse, action and sensor design and abstract classes for
different types of controllers.

4 Iterations of Design and Implementation
The strength of a design proposal may be measured in term of
its development history. Designs that have undergone several
iterations under different conditions are much more mature
than designs without practical grounding. The Hazard frame-
work was derived from the Haphazard Role-Playing Game
project. The derivation was redesigned and reimplemented
to form the first version of the framework. The Haphazard
project was redesigned to use the new framework and expe-
rience from that work was used to implement the traffic sim-
ulator. The framework was redesigned again, and was used
to implement a development support simulator for a dialogue
system, leading to the present Hazard framework. The Hap-
hazard Online Role-Playing Game and the Simulator for Sup-
port of Dialogue System Development are currently using the
latest version of the Hazard framework while the Subsump-
tion Simulator is using an older version.

4.1 Haphazard - An Online Role-Playing Game
The Haphazard Role-Playing Game [Andersson and Beskid,
2003] started as an open-source project for creating a simple
online role-playing game with focus on AI implementations.
It was from this game project that the first version of Hazard

was extracted. The framework was then redesigned and Hap-
hazard was reimplemented to use the new framework. Hap-
hazard has the most complex environment of all implemen-
tations up to date, but only rudimentary AI. The Haphazard
project was the most prominent project when designing the
framework for environments.

Environment
The environment in Haphazard is a grid-based model using
tiles for visualisation. Objects in the world are either static
or dynamic. Static objects include houses, trees and other
scenery. Dynamic objects are the objects that can be manipu-
lated by the player. Haphazard includes a novel inventory sys-
tem, environment specific enhancements to the Hazard frame-
work that include minor agent interaction and a dynamic en-
vironment system. Players can roam between different maps
which allows for a distributed environment. The environment
is visualized by an isometric tile-based graphics engine. The
environment is data-driven. Both environment and graphics
can be changed at run-time.

Agents
The main focus is on the agent that allows the user to interact
with the environment. It implements a graphical user inter-
face which allows the user to have direct control of the agent.
The user interface implements movement control, skill man-
agement and inventory management. The agent does not have
complete vision of the world, but has a small field of vision
that is represented by grayed out tiles in the user interface.
Some small AI agents have been implemented, for example
roving barbarians that hunt the player on sight. All agents are
data-driven and can be added or removed from the environ-
ment at run-time.

4.2 Simulator for Evaluating the Subsumption
Architecture

An implementation of the subsumption architecture [Brooks,
1985] was introduced to the agent part of the framework as
part of the work towards evaluation the subsumption archi-
tecture for use in obstacle avoidance systems for cars [Wolt-
jer and McGee, 2004]. This implementation allowed us to
evaluate the agent part of the framework and enhance it. The
subsumption architecture was integrated with an editor which
allowed the user to change the subsumption network during
simulation runs to experiment with new behaviours.

Environment
The subsumption agent was used in two environments. The
architecture was developed and tested in the Haphazard en-
vironment, but mainly used in a traffic simulator. The traffic
simulator used a straight road without any static obstacles. It
used an approaching car as a dynamic obstacle and the user’s
input was merged with the subsumption architecture to get
user driven obstacle avoidance.

Agents
The user controlled a car with acceleration and turning and
the agent modified the user’s input with a subsumption net-
work before it was actuated. Another agent was also imple-
mented, a car travelling with constant speed in the opposite
direction.



4.3 Simulator for Dialogue System Development
Support

Within the WITAS Unmanned Aerial Vehicle (UAV) project
[Doherty et al., 2000], the Hazard framework was used in
implementing a simulator that supports development of a dia-
logue system for command and control of one or more UAVs.
The new simulator replaced an old simulator that had been in
development by several persons totalling approximately one
man year. The implementation achieved about the same func-
tionality (more in visualization, less in camera control) but
better integration by one person in three weeks.

Environment
The environment consists of a three-dimensional map con-
taining roads and buildings. The roads consist of several seg-
ments, intersections and dead ends. All roads have a name.
Buildings are visualized as polygons and have a height. All
buildings also have a name, color, material and one or more
windows which can be observed by sensors. The environment
is fully data-driven and new environments using these types
of objects can easily be constructed.

Agents
There exist three types of agents:

WITAS UAV
The WITAS UAV agent mainly consists of a socket in-
terface which can receive commands from the dialog
system, execute these and report their progress. The
agent has a camera sensor and can detect cars and build-
ings that come within the camera’s field of vision. A
WITAS UAV can take off, land, hover, fly around, fol-
low cars and follow roads to accomplish it’s mission. It
is an interactive agent that can build plans and follow
the commands of a user.

COMETS UAV
The COMETS UAV agent was implemented as an ex-
periment together with the COMETS project [Ollero et
al., 2004]. It implements an interface to the COMETS
Multi-Level Executive [Gancet et al., 2005] and uses
the same set of actions as the WITAS UAV agent. Since
the WITAS project and the COMETS project deal with
approximately the same environment and agents, the in-
terface could reuse most of the WITAS UAV implemen-
tation. The integration of the COMETS UAV into the
simulation was made in about 12 man hours.

Car
Cars drive along roads with a set speed. They can ei-
ther drive around randomly or follow a preset route, but
can’t detect or interact with other Car agents. Cars are
completely autonomous agents.

All agents are data-driven and can be added to the envi-
ronment before the start up. They cannot be added during
run-time (at present). The simulation is transparent and can
be fully or partly substituted by a connection to a real world
UAV. The visualization is 2D, but current work is extending
both camera view and world view to three dimensions.

5 Evaluation
The evaluation of the framework is based on our own experi-
ence in developing simulations. It is focused on development
and how suitable the framework is for use as middleware and
as a framework for development of high-level and low-level
AI for robotic applications.

5.1 Strengths
Clear design guidelines

The framework gives clear design guidelines due to its
structure. The flow for developing is generally:

• What type of environment (discrete-continuous)
shall I use?

• What important objects exist in the environment?
• What actions are available?
• What information do agents need that is not avail-

able through success/fail information for actions?
(i.e. what sensors are needed?)

• What agents do we need?

Rapid development
The different implementations have shown that the
framework rapidly gives a working system. The only
comparison that has been done on development time is
with the replacement of the Simulator for Dialogue Sys-
tem Development Support. The implementation using
the Hazard framework cut the development time radi-
cally.

Scalability
The framework is very scalable in the form of develop-
ing new agents or objects for an environment. It has not
been tested how scalable it is in regard to the number of
existing objects/agents in an environment.

5.2 Weaknesses
Agents are tightly linked to the environment

Since the framework was extracted from an integrated
system, the agents are tightly linked to the environment
and can have complete knowledge of the world without
using sensors. This is a big drawback as it allows devel-
opers to “cheat” and use information that shouldn’t be
available to the AI implementation. The agent module
should be completely separate from the environment.

Agent to agent interaction
Since the design does not distinguish between suc-
cess/fail messages for an action and sensor data, it is
hard to develop agent to agent interactions. A solution
for this problem could be to remove the success/fail no-
tion from the environment side of the action and let the
agent side sensor interpreter decide when an action has
been successful or failed. This solution would also al-
low research into event/chronicle recognition.

New developers
The system is well documented, but lacks examples and
tutorials. This makes it harder for new developers to use
the framework.



5.3 Limitations
Mid-level functionality

Since the framework only supports high-level actions
and is confusing on the part of sensor data, mid-
level functionality is not intuitively supported. By
mid-level functionality is meant functionality such as
event/chronicle recognition, symbol grounding and sim-
ilar robotic tasks. This is a disadvantage if the system is
used for developing AI techniques for robotic systems
since a developer can easily “cheat” with constructed
events instead of having to identify them from sensor
data.

Pre-defined set of actions
Since the actions are pre-defined in the environment,
both with regard to execution and evaluation of the exe-
cution (success/fail), an agent cannot learn new actions
or interpret the result in new ways. Also, since the ac-
tions can be of different level of abstraction, it is hard to
combine actions concurrently.

6 Related Work
Currently, the International Game Developers Association
(IGDA) is pushing towards AI standard interfaces for com-
puter games and is in the process of publishing the first drafts
of a proposed standard. These standards are geared towards
enabling game AI developers to reuse existing AI middleware
and to concentrate on higher level AI tasks. IGDA is working
on interfaces for common AI tasks and has currently work-
ing groups on interface standards for world interfacing, path
planning, steering, finite state machines, rule-based systems
and goal-oriented action planning. The work presented here
is closest to the work on world interfacing, but since the draft
was not available at the time of writing, it was impossible to
compare.

The Testbed for Integrating and Evaluating Learning Tech-
niques (TIELT) [Aha and Molineaux, 2004] is a free software
tool that can be used to integrate AI systems with (e.g., real-
time) gaming simulators, and to evaluate how well those sys-
tems learn on selected simulation tasks. TIELT is used as
a configurable middleware between gaming simulators and
learning systems and can probably be used as a middleware
between general environments and agent frameworks with
some modification. The middleware philosophy of TIELT
differs from our implementation, TIELT sits as a black box
between environment and agent while Hazard is only meant
as a transparent interface without any real functionality, ex-
cept if the framework is used on either side. The black box
functionality would hide event/chronical recognition, symbol
grounding, etc. . . in a robotic system. This means that special
care has to be taken if the system is to be used with actual
robotics.

The System for Parallel Agent Discrete Event Simulator
(SPADES) [Riley and Riley, 2003] is a simulation framework
with approximately the same concept as the Hazard frame-
work with regards to the separation between agents and envi-
ronments. It focuses on repeatability of simulations and uses
a concept of Software-in-the-Loop. Software-in-the-Loop in

SPADES measures the actual time an agent executes. Us-
ing this technology, it can give a large number of agents the
same time-share by slowing down the simulation without sac-
rificing simulation detail and repeatability. SPADES is a dis-
crete event simulator and uses a sense-think-act loop for the
agents which limits its deliberation time to the time between
receiving events until it has decided what to do. This limi-
tation is minimized by allowing agents to tell the simulation
that it wants to receive a time notification which works as
a sense event. Our framework on the other hand sacrifices
repeatability and agent timesharing to obtain a continuous,
asynchronous time model which is more inline with robotic
architectures than a discrete model. The agent developer can
then decide to translate into a discrete time model or keep the
continuous one.

There is also research on modules and frameworks that can
be used in conjunction with a set of interfaces for cognitive
systems, in particular DyKnow [Heinz and Doherty, 2004], a
framework to facilitate event and chronicle recognition in a
robotic architecture.

7 Conclusions and Future Work
The iterative development of framework and interfaces has
enabled us to gain valuable experience in designing interfaces
that are adequate for both robotic systems and simulated en-
vironments without sacrificing detail or ease of use. Our goal
is to develop an architecture for connecting AI and robotics
with the following characteristics:

• Rapid environment/agent development

• Connects agents and environments

• Able to reuse both existing agents and environments

• Capable of acting as middleware between existing
frameworks

• Usable in research of both simulations and actual ro-
botic systems

Hazard is a mature system which has undergone several
design iterations. It allows rapid development and reuse of
agents and environments. It contains intuitive interfaces be-
tween agent and environment and can be used as middleware
between existing frameworks. But Hazard has been found
unsuitable for development of AI or simulations for actual
robotic systems due to its inherent limitation in event recogni-
tion and actuator control. To be usable in a robotic AI imple-
mentation, the interfaces need to be layered to allow both for
high-level AI frameworks and middle-level event and chron-
ical recognition on the agent side. The framework for agents
and environments also need to be structured in layers to sup-
port both discrete event and continuous time simulations with
action/event and actuator/sensor interfaces.

Currently, work has been started on a new generation of
interfaces and framework. This work is called CAIRo (Con-
necting AI to Robotics) and a first implementation with the
framework has already been done. The development will fo-
cus on first validating the new framework with the current im-
plementations and then continue the validation with middle-
ware functionality and implementations of robotic systems.
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