
3

FDA125
Advanced Parallel Programming:Models, Languages,
Algorithms (CUGS)

Lectures:
32 hours.

Recommended for
Graduate (CUGS, ECSEL, …) students interested in the areas of parallel computer architecture,
parallel programming, compiler construction, or algorithms and complexity.
Interested undergraduate students are also welcome.

The course was last given:
This is a new course. It complements the existing graduate course FDA101 on Parallel
Programming (4p), which is aliased to the undergraduate course TDDB78.

Goals
The course emphasizes fundamental aspects of parallel programming such as parallel architec-
tures and programming models, performance models, parallel complexity classes, parallel
algorithmic paradigms, parallelization strategies, and the design and implementation of parallel
programming languages. Practical exercises help to apply the theoretical concepts of the course
to solve concrete problems in different parallel programming models.

Prerequisites
Data structures and algorithms (e.g. TDDB57) are absolutely required; knowledge in
complexity theory and compiler construction is useful. Processprogramming (e.g. TDDB63/68/
72) and Parallel Programming (e.g. TDDB78 or TANA77) are useful but not required. Most of
the contents of FDA101, i.e. TDDB78, will be summarized during this course.
Programming in C is necessary for the practical exercises.

Organization
Lectures, student presentations of research papers, programming exercises.

Contents
I. General introduction: Parallel computer architectures (*).

II. Basic theory of parallel computation: PRAM model. Time, work, cost. NC. Speedup and
Amdahl’s Law (*), Self-simulation and Brent’s Theorem, Scalability and Gustafssons Law (*).
Fundamental PRAM algorithms (reduction, parallel prefix, list ranking). PRAM variants,
simulation results and separation theorems.

III. PRAM emulations on distributed-memory architectures: Hashed address space, Pipelining
and Multithreading. Ranade’s Fluent Machine and its cost-effective massively parallel reali-
zation in hardware. Low-level synchronization mechanisms.

IV. Message passing models: Delay model, classical BSP model of Valiant, BSP-model of
McColl, LogP, LogGP.

V. Distributed shared memory realizations in CC-NUMA architectures and software DSM
emulations. Memory consistency models.



4

VI. Parallel programming languages and environments: Fork, BSPlib, MPI (*), OpenMP (*),
HPF (*), Split-C, NESL, ZPL, Linda, …

VII. Parallel algorithmic paradigms and programming techniques, with example problems:
Parallel loops, static and dynamic loop scheduling. Data parallelism (*). Parallel divide-and-
conquer, recursive doubling. Synchronization mechanisms in asynchronous computations and
parallel data structures. Parallel task queues. Synchronous and asynchronous pipelining.
Domain decomposition and irregular parallelism.

VIII. Generic parallel programming with skeletons. Skeleton-based programming environ-
ments.

IX. Compiling for parallel computers: Dependence analysis, loop transformations, loop paral-
lelization, idiom recognition. Code generation from dataparallel languages for message-passing
architectures. Message agglomeration. Optimization of data layout. Static and dynamic
remapping of arrays. Prefetching and fuzzy barriers. Dynamic parallelization. Instruction-level
parallelism and software pipelining. Granularity. Clustering and scheduling algorithms for
various models.

X. More parallel algorithms: Multiprefix computations. Searching, merging and sorting. Integer
sorting in constant time. List ranking. Lowest common ancestors and tree contraction.
Connected components of graphs.

XI. Other issues as time permits.

Literature
Keller, Kessler, Träff: Practical PRAM Programming. Wiley Interscience, 2000. ISBN 0-471-
35351-5.

Further literature to be annonced later.

Teachers
Christoph Kessler, Welf Löwe.

Examiner
Christoph Kessler.

Schedule
Spring 2003.

Examination
MUN1 Oral examination (4p) (3p in connection with FDA101/TDDB78)
PRE1 Presentation with written summary (1p)
UPG1 Programming exercise (1p).

Credit
6 credits (5p in connection with FDA101/TDDB78).

Comments
There is a partial overlap in contents with FDA101 Parallel Programming / TDDB78 that corre-
sponds to about 1 point. This means that we can give only 5 points (3p for MUN1, 1p for PRE1,
1p for UPG1) to those who got points for FDA101 / TDDB78 earlier. Accordingly, some of the



5

lectures are optional for those students; these are marked by an asterisk (*) in the Contents
section above.

A main difference to FDA101 / TDDB78 / TANA77 is not only in depth but also in scope: While
FDA101 emphasize scientific computing and numerical applications, this course focuses on
theory and non-numerical algorithms.


