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I: Optimal subsampling designs



Introduction

Consider dataset {(x i , y i )}Ni=1 and a parameter θ0 defined as the solution to an estimating

equation
N∑
i=1

ψi (θ) = 0.

ψi (θ) is a function of the parameter θ and data vector (x i , y i ).

Examples: least squares regression, generalised linear models, maximum likelihood estimation,

quasi-likelihood methods, M-estimation.

Assume that full data {(x i , y i )}Ni=1 cannot be utilised (e.g., some components of (x i , y i ) too

expensive to observe) → θ0 cannot be evaluated.

This is what we call a measurement-constrained experiment.

Related problem in Big Data: parameter θ0 computationally too expensive to calculate.

2



Subsampling method

We assume that complete data can be observed and utilised for a subsample of size n ≪ N.

Subsampling method:

▶ Select subsample using unequal probability sampling.

▶ Each instance has a unique and strictly positive probability of selection.

Estimation using sample weighting / importance weighting / inverse probability weighting:

find θ̂ such that
∑
i

wiψi (θ̂) = 0.

wi = Si/µi ,

Si is the number of times an instance i is selected by the sampling mechanism, and

µi = E[Si ] the corresponding expected number of selections.
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Asymptotic properties

Under suitable conditions, the estimator θ̂ converges (at parametric rate) to a multivariate

normal distribution with mean θ0 covariance matrix

Γ(µ;θ0) = H(θ0)
−1V(µ;θ0)H(θ0)

−1 (sandwich formula)

as the sample size increases.

Result derived by first-order Taylor expansion around θ0 (Binder, 1983).

▶ This holds under mild assumptions on the sampling mechanism (selection probabilities

suitably bounded away from zero).

▶ No assumptions on the data distribution (only mild moment conditions).
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Optimal design

The statistical properties of the estimator θ̂ are determined by choice of sampling design and

mean inclusion vector (sampling scheme) µ = (µ1, . . . , µN).

Choose

µ∗ = argmin
µ

Φ(Γ(µ;θ0))

for some suitable function Φ. Optimisation over all (feasible) values µ such that
∑N

i=1 µi = n,

where n is the desired sample size.

Examples:

Optimality criterion Description Objective function Φ(Γ)

A-optimality Minimise average variance tr(Γ)

D-optimality Minimise generalised variance (determinant) det(Γ)

E-optimality Minimise largest eigenvalue λmax(Γ)

L-optimality Minimise average variance of lin. comb. LTθ̂. tr(ΓLLT)
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Lagrange multiplier method

Assume that solutions with µi > 1 are allowed (i.e., sampling is with replacement).

The constrained stationary points of Φ(Γ(µ;θ0)) are obtained as the critical points of the Lagrangian

Λ(µ, λ) = Φ(Γ(µ;θ0)) + λg(µ), g(µ) =
∑
i∈D

µi − n.

Taking the derivatives with respect to µ and λ, we obtain the system of equations

∇Λ(µ, λ) = 0 ⇔

g(µ) = 0 (feasability)

−∇µΦ(Γ(µ;θ0)) = λ∇g(µ) (stationarity).

If sampling is without replacement we have N additional inequality constraints 0 < µi ≤ 1. Lagrangian

slightly more involved. Solution must satisfy the Karush-Kuhn-Tucker conditions.

Need the derivatives of Φ(Γ(µ;θ0)) with respect to µ.
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The chain rule

Lemma 1

Whenever it exists, the partial derivative of Φ(Γ(µ;θ0)) with respect to µi is given by

∂Φ(Γ(µ;θ0))

∂µi
= tr

(
ϕ(Γ(µ;θ0))

T ∂Γ(µ;θ0)

∂µi

)
,

where ϕ(U) = ∂Φ(U)
∂U is the p × p matrix derivative of Φ with respect to its matrix argument,

and ∂Γ(µ;θ0)
∂µi

is the elementwise derivative of Γ(µ;θ0) with respect to µi .

This is the chain rule in matrix differential calculus (see, e.g., Petersen and Pedersen, 2012).
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The chain rule (cont’d)

Lemma 2

Assume that

1. Γ(µ;θ0) decreases monotonically with µ1, . . . , µN in the Loewner order sense, i.e.,

Γ(µ1;θ0)− Γ(µ2;θ0) is positive semi-definite (PSD) for every pair of vectors

µ1,µ2 ∈ RN
>0 such that µ1 ≤ µ2 (elementwise), and

2. Φ is monotone for Loewner’s ordering, i.e., that

Φ(U)− Φ(V) is PSD for all PSD matrices U,V such that U− V is PSD.

Then the derivative matrix ϕ(Γ(µ;θ0)) is PSD and there exists a real matrix L(µ;θ0) such

that L(µ;θ0)L(µ;θ0)T = ϕ(Γ(µ;θ0)).
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Examples

1. D-optimality criterion: log det(Γ(µ;θ0)) is differentiable with respect to µ and

ϕ(Γ(µ;θ0)) = Γ(µ;θ0)−1, provided that Γ(µ;θ0) is of full rank.

2. L-optimality criterion: tr(Γ(µ;θ0)LLT) is differentiable with respect to µ, and

ϕ(Γ(µ;θ0)) = LLT.

3. Γ(µ;θ0) is differentiable with respect to µ and
∂Γ(µ;θ0)

∂µi
= −µ−2

i H(θ0)
−1ψi (θ0)ψi (θ0)

TH(θ0)
−1, provided that µi > 0 for all i .

4. With L(µ;θ0) as on the previous slide,

∂Φ(Γ(µ;θ0))

∂µi
= −µ−2

i c2i , ci =
∣∣∣∣L(µ;θ0)TH(θ0)

−1ψi (θ0)
∣∣∣∣2
2

whenever the derivative exists.

See, e.g., Petersen and Pedersen (2012).
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L-optimality

Assume that

▶ the derivative matrix ϕ(Γ(µ;θ0)) is constant with respect to µ (this is true for linear

optimality criteria),

▶ sampling is with replacement (e.g., according to a Multinomial sampling design).

Then the optimal sampling scheme for a given size n is obtained as

µ∗
i = n

√
ci∑N

i=1
√
cj

i = 1, . . . ,N.

For sampling with replacement: may need simple correction to ensure that µ∗
i ≤ 1.

For non-linear optimality criteria: apply iterative procedure by local approximation as a linear

optimality criterion until convergence to a fixed-point (local optimum).
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II: Expected-distance-minimising

designs



Criteria of optimality

Desirable properties of an optimal subsampling design:

▶ Tractability: should be computationally and analytically tractable.

▶ Invariance: should not depend on the choice of parameterisation, nor on the

measurement-scale of the data or coding of the data prior to modelling.

▶ Appropriateness: should address the scientific question of interest and/or be an

appropriate measure for the overall performance of the estimator.

A-optimality D-optimality E-optimality L-optimality ???

Tractable? ✓ X X ✓ ✓
Invariant? X ✓ X ? ✓
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Problem with D-optimality

D-optimality is often considered the gold standard in traditional experimental design problems.

We evaluate the performance of optimal subsampling under the D-optimality criterion for a

quasi-binomial logistic regression model with ∼200 parameters and ∼40,000 observations.

▶ Fitting the model to the full dataset takes 8.46 sec on a desktop computer.

▶ Computation time for finding a D-optimal subsampling design is 27.69 sec. 3-fold increase!

▶ Finding an A-optimal subsampling design takes only 1.16 sec.

Can we find a class of optimality criteria with

▶ Computational complexity like the A-optimality criterion,

▶ Performance and invariance properties like the D-optimality criterion?
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Expected-distance-minimising designs

Aim of data subsampling: obtain estimate θ̂ for unknown full-data parameter θ0.

Natural target for optimal design: minimise the expected distance E[d(θ̂)] of θ̂ from θ0.

Examples: Kullback-Leibler divergence, empirical risk distance (deviance), Mahalanobis

distance.

By linearisation, minimising the expected distance corresponds a linear optimality criterion.

▶ Convex optimisation problem with a simple, closed-form solution.

For the statistical distance functions above, the optimal sampling scheme is also invariant:

▶ Does not depend on the choice of parameterisation, nor on the measurement-scale of the

data or coding of the data prior to modelling.

In experiments: performance like D-optimality with 10–20 times lower computational demand.
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III: Active sampling and

martingale CLT



Practical implementation: active sampling

Problem: optimal design depends on unknown full-data characteristics (x i , y i ,θ0).

Solution:

Active Sampling

Initial sample

Retrieve data

Estimate characteristics

Train machine

learning algorithm

Select new instance(s)

Output

Terminate or continue?

Asymptotic properties (consistency, asymptotic normality, variance estimators) are established

using martingale central limit theory. 14



Martingale CLT

Theorem 3 (Brown, 1971)
Consider a sequence {Xj}∞j=1 of random variables such that E[Xj ] = E[Xj |X1, . . . ,Xj−1] = 0 and

E[X 2
j ] < ∞ (i.e., {Xj} is a zero-mean martingale with finite variance).

Let σ2
j = E[X 2

j |X1, . . . ,Xj−1], Uk =
∑k

j=1 Xj , V
2
k =

∑k
j=1 σ

2
j , and u2

k = E[U2
k ] = E[V 2

k ].

Assume that

1. V 2
k u

−2
k

p→ 1 as k → ∞
(ratio of total conditional variance to total variance converges in probability to 1),

2. The Lindeberg-Feller condition holds:

u−2
k

k∑
j=1

E[X 2
j I (|Xj | > εuk)] → 0 as k → ∞ for all ε > 0.

(uniform asymptotic negligibility).

Then Uk/uk
d→ N (0, 1)as k → ∞.
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Martingale CLT (cont’d)

In our case:

▶ Construct sequence of conditionally unbiased estimators (martingale).

▶ Assume total variance tends to infinity (variance in each sampling stage not allowed to

approach zero too fast).

▶ Assume conditional variance approaches total variance (correlation between sampling

stages is asymptotically negligible).

▶ Show that Lindeberg-Feller condition holds if Si/µi have uniformly bounded second

moments (sampling probabilities properly bounded away from zero).

Variance estimation using martingale estimator, pooling of classical survey sampling variance

estimators, or bootstrap. Requires some additional moment conditions to ensure consistency.
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IV: Application and experiments



Application

▶ Safety benefit evaluation of an advanced driver

assistance system (e.g., an automatic emergency

braking system) using virtual simulations.

▶ Computer simulation tool takes input x i (e.g.,

vehicle kinematics, driver behaviour) and returns

output y i (e.g., collision impact speed).

▶ Want to understand characteristics of y i (given x i )

for a large number of experiments.

▶ Observing y i comes with high computational cost.

▶ Can we reduce computational load through

subsampling?
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Empirical results

Sample size reductions of 7–48% compared to traditional importance sampling methods.
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Verification of theoretical results

Confidence interval coverage rates approach the nominal 95% confidence level quickly.
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Discussion and outlook

▶ Subsampling methods have seen a huge increase in popularity over the past few years.

Our work contributes to this development by presenting a framework for optimal design in

general subsampling problems using active sampling and sequential optimal design.

▶ Asymptotic properties are established using a martingale central limit theorem, assuming

that the number of sampling stages tends to infinity. Properties when the number of

sampling stages is fixed requires further attention.

▶ The method is limited to regular asymptotically linear estimators. It would be interesting

to study optimal subsampling methods in high-dimensional and non-parametric settings,

for instance for kernel generalised linear models.

20



Acknowledgements

Supervisors

Marina Axelson-Fisk and Johan Jonasson

Department of Mathematical Sciences, Chalmers University of Technology

Collaborators

Xiaomi Yang and Jonas Bärgman

Division of Vehicle Safety, Chalmers University of Technology

Carol Flannagan

University of Michigan Transportation Research Institute

Industry partners

Malin Svärd and Simon Lundell at Volvo Car Corporation for sharing data.



D. A. Binder (1983).

On the Variances of Asymptotically Normal Estimators from Complex Surveys.

International Statistical Review, 51:279–292.

B. M. Brown (1971).

Martingale Central Limit Theorems.

The Annals of Mathematical Statistics, 42:59–66.

K. B. Petersen and M. S. Pedersen (2012).

The Matrix Cookkook.

Technical University of Denmark.



H. Imberg (2023).

Optimal Subsampling Designs Under Measurement Constraints.

PhD thesis, Chalmers University of Technology, Gothenburg.

H. Imberg, M. Axelson-Fisk, and J. Jonasson (2023).

Optimal subsampling designs.

arXiv:2304.03019 [math.ST].

H. Imberg, X. Yang, C. Flannagan, and J. Bärgman (2022).

Active sampling: A machine-learning-assisted framework for finite population

inference with optimal subsamples.

arXiv:2212.10024 [stat.ME].

H. Imberg, J. Jonasson, and M. Axelson-Fisk (2020).

Optimal sampling in unbiased active learning.

Proceedings of the Twenty Third International Conference on Artificial Intelligence and

Statistics, in Proceedings of Machine Learning Research, 108:559–569.



Thank you for listening!
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