Data, their shape, and what we can learn from it

Paweł Dłotko

Dioscuri Centre for Topological Data Analysis, Mathematics, PAS

Linkoping 21 Nov. 2023

Topology! The stratosphere of human thought! In the twenty-fourth century it might possibly be of use to someone..., but for the present... for the present...

Aleksander Sołżenicyn - In the First Circle

Classical algebraic topology

By Mathieu Rémy and Sylvain Lumbroso

Applied algebraic topology

Gunnar Carlson at al. PNAS

The essence of topology

Invariance to continuous deformations
Mug and torus, Wikipedia

Invariance to continuous deformations, takeaway

Topologist cannot tell apart torus from a coffee mug

Invaraince to continuous deformations $=$ robustness to noise

Ali Bati, unfinished horse

Data have shape, shape has meaning, meaning brings value.

We all know this story

Data of a shape of a line (segment) \rightarrow linear regression works

Zoology of shapes

What is the shape of our data? How not to overfit?

Summary statistics do not suffice, always visualize!

Anscombe's Quartet; Same statistics, different shapes
Anscombe, "Graphs in Statistical Analysis", American Statistician, 1973.

Datasaurus Dataset

Same statistics, different shapes
Alberto Cairo, https://itsalocke.com/datasaurus/

Topology and statistics, together

- Visualizing data brings a new level of undentstanding,
- Descriptors of shapes open up standard statistics and Machine Learning to new types of inputs.
- What if it is high dimensional, complex, not a point cloud?
- Topological invariants come to the rescue!

Quick schedule for today

- Persistent homology
- Mapper (visualization)
- ECC (descriptors)
- Topotests (blend of two dyscyplines)
- Some applications

Persistent homology and learning

Quantification of a shape

Spinodal decomposition in alloys

Persistent homology (sublevel sets of function)

So what?

Dynamics f(proportion of mass, time)

How can we use it in practice?

- Comparison of different models
- Comparison to the to real data.

Phase separation everywhere

CTFC in cells

Ball mapper

Ball Mapper algorithm

Preservation of local neighborhood, shape up to continuous deformation

Network based landscapes of data

Meet the Lucky Cat

Network based landscapes of data

$128 \times 128=16384$ dimensional space

From a gray scale image to a point

Gray scale images converted to vectors in high dimensional space

Network based landscapes of data

$128 \times 128=16384$ dimensional space

Support for Brexit in the 2016 referendum

Labour vs Brexit

This is why we do not see Jeremy Corbyn anymore...

NKI, Carlson and coauthors

High dimensional noisy data

Ambient space

(~2000 dimension)

Lower dimensional representation

(~ 400 dimension)

NKI, ambient dimension, BM

NKI, umam projection, BM

NKI, MoBM

\bigcirc

Initial collaboration with National Cancer Institute

Euler curves (and profiles)

How to encapsulate information about shape?

- Classical - homology, persistent homology,
- New - Euler characteristic curves and profiles,
- New - Characteristics of merging structure of points,...

Answer: the Euler Characteristic!

$$
\chi(P)=V-E+F
$$

Euler characteristics, point clouds

(a) $\chi=9$

(c) $\chi=9-4=5$

(b) $\chi=9-1=8$

(d) $\chi=9-6+1=4$

Euler Characteristic Curve - Example

Distance between ECCs

Definition

Let K_{1} and K_{2} be two filtered cell complexes. The L_{1} distance between their Euler Characteristic Curves is
$\left\|E C C\left(K_{1}, t\right)-E C C\left(K_{2}, t\right)\right\|_{1}=\int_{\mathbb{R}}\left|E C C\left(K_{1}, t\right)-E C C\left(K_{2}, t\right)\right| d t$.

Two Euler Characteristic Curves in red and green. The absolute value of their difference is highlighted in shaded gray.

Medical applications - Histology

Lawson, Sholl, Brown et al. Persistent Homology for the Quantitative Evaluation of Architectural Features in Prostate Cancer Histology. 2019

Full image

Hematoxylin

Eosin

Euler Characteristic Profiles

Euler Characteristic Profiles

$$
\begin{array}{c|c}
\text { hematoxylin ECC } & \text { hematoxylin \& eosin ECP } \\
\hline 0.765 \pm 0.001 & 0.826 \pm 0.001
\end{array}
$$

Mean test accuracy for the Gleason 3 vs Gleason 4 classification using ECCs or ECPs as input to an SVM classifier.

Topological goodness of fit tests (topotests)

Introduction

One- and two-sample tests

- One-sample problem: We are given a data sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and cumulative distribution function $F: R^{d} \rightarrow[0,1]$. Does the data X follow the distribution $F: X \sim F$?

$$
H_{0}: X \sim F \text { vs. } H_{1}: X \nsim F
$$

- Two-sample problem: We are given two samples $X_{1} \sim F_{1}$ and $X_{2} \sim F_{2}$ and want to test hypothesis that X_{1} and X_{2} were drawn from the same (unknown) distribution

$$
H_{0}: F_{1}=F_{2} \text { vs. } H_{1}: F_{1} \neq F_{2}
$$

Testing

Available methods depend on the data dimension (for one-sample problem)

- 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling, Chi-squared, Shapiro-Wilks
- 2-D: theoretical results for Kolmogorov-Smirnov and Cramer-von Mises, some implementations available in python and R
- d-D: Kolmogorov-Smirnov should work but no implementation available, critical values of test statistics unknown, impractical in higher dimensions
Kolmogorov-Smirnov test

Here, K-S will be used as benchmark

- one-sample: $D_{n}=\sup _{x}\left|F_{n}(x)-F(x)\right|$
- two-sample:

$$
D_{n, m}=\sup _{x}\left|F_{1, n}(x)-F_{2, m}(x)\right|
$$

One sample TopoTests

Input: sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and CDF
$F: R^{d} \rightarrow[0,1]$.
Step 1: $E_{F}(\chi(n, r))$, the Blueprint of F

- draw n-element samples $X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{M}^{\prime}$ from F
- for each sample X_{i}^{\prime} compute its ECC $\chi\left(C_{r}\left(X_{i}^{\prime}\right)\right)$

$$
\frac{1}{M} \sum_{i=1}^{M} \chi\left(C_{r}\left(X_{i}^{\prime}\right)\right) \xrightarrow[M \rightarrow \infty]{\text { a.s. }} E_{F}(\chi(n, r))
$$

One sample TopoTests

Input: sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and CDF
$F: R^{d} \rightarrow[0,1]$.
Step 2: variation form $E_{F}(\chi(n, r))$

- draw a new set of m-element samples $Y_{1}^{\prime}, Y_{2}^{\prime}, \ldots, Y_{m}^{\prime}$ from F
- Calculate sup distance between $\chi\left(C_{r}\left(Y_{i}^{\prime}\right)\right), i=1, \ldots, m$ and average ECC
- determine the threshold value t_{α} as a $(1-\alpha)$ 'th quantile of $\left\{d_{i}\right\}_{i=1}^{m}$, where α is required level of statistical significance

TopoTests

Input: sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, x_{i} \in R^{d}$ and CDF
$F: R^{d} \rightarrow[0,1]$.

Step 3: Actual testing

- compute the ECC for sample data X : $\chi\left(C_{r}(X)\right)$
- compute the I_{∞} between
$\chi\left(C_{r}(X)\right)$ and $E_{F}(\chi(n, r))$
$D=\sup _{r \in \mathbb{R}}\left|\chi\left(C_{r}(X)\right)-E_{F}(\chi(n, r))\right|$
- reject H_{0} if $D>t_{\alpha}$
- it is possible to get p-value as well

For the two-sample problem the procedure is slightly different but the idea remains.

Simulation results (one-sample)

average power at $\alpha=0.05$:
$d=3, n=250$ TT:0.9016, KS : 0.8087
$d=5, n=500$ TT:0.8465, KS : ---

Test Power: probability that H_{0} is correctly rejected when H_{1} is true

- Samples sizes 100-5000 data points
- test power estimated using 1000 MC replications
- power compared with KS $(d \leq 3)$
- α on diagonal is expected
- TopoTests yielded higher power than KS in most of the cases

Simulation results (one-sample)

average power at $\alpha=0.05$:
$d=3, n=250$ TT:0.9016, KS : 0.8087
$d=5, n=500$ TT:0.8465, KS : ---

Test Power: probability that H_{0} is correctly rejected when H_{1} is true

- Samples sizes 100-5000 data points
- test power estimated using 1000 MC replications
- power compared with KS $(d \leq 3)$
- α on diagonal is expected
- TopoTests yielded higher power than KS in most of the cases

Simulation results (one-sample)

Test Power: probability that H_{0} is correctly rejected when H_{1} is true

- Samples sizes 100-5000 data points
- test power estimated using 1000 MC replications
- power compared with KS $(d \leq 3)$
- α on diagonal is expected
- TopoTests yielded higher power than KS in most of the cases

Simulation results (one-sample)

So what? Do I really need to know the cumulative distribution function?

Damage identification with

 TopoTests
Problem statement

Alpha stable noise: intact machine

Alpha stable noise + cyclic impulses: malfunctioning machine

Pipeline

Figure: Flow chart of our testing procedure.

Results: simulated data

TDA - CVB Power

Figure: Comparison state of the art (conditional variance band selector, left) our approach (first Betti curve, middle), and their difference (right). High test power means low frequency of identifying an actually faulty machine as intact.

Results: lab measurement (test bench)

Figure: PCA from Betti curves.

Results: real world measurements (idler)

	Industrial data
CVB	87.6 ± 7.16
TDA	92.0 ± 5.61
CVB +TDA	96.1 ± 4.50

Table: Mean accuracy of SVM classifier [\%] and standard deviation.
Figure: The idler.

Shapes of neurons (and trees, and graphs)

Shape \rightarrow function

(I) cat, (II) dragonfly, (III) fruit fly, (IV) mouse and (V) rat

Shapes of rooted trees in \mathbb{R}^{3}

- Neurons are particular instance of trees in \mathbb{R}^{3}.
- Root is the soma.
- Morphological descriptors : number of leafs, total occupied volume, polarity, ... (classical)
- Sholification of morphological descriptors (with Khalil, Kallel, Farhad) - descriptor as a function of distance from the somma.
- Branching structure of a tree - mergegrams, TMD and other invariants.

Sholl descriptor

Invriant as a function of distance from soma

How to get a descriptor of a shape of a tree?

- Cut the tree into branches
- Compute invariants of branches

Mergegram branch decomposition
Cut all branching nodes.

TMD Branch decomposition

Let the longest branch to continue towards the root

From branches to diagrams

From branches to diagrams

From branches to diagrams

From branches to diagrams

TMD descriptors of trees

Is a single descriptor sufficient?

- Variety of tree structures is huge,
- Each descriptor is capturing a single aspect of it.
- Not sufficient to capture the complexity of possible trees.
- Solution: Combine different descriptors into a single one.

Multiple descriptors for labeled data

- For labeled data, combine them into single distance

$$
d=\alpha_{1} d_{1}+\alpha_{2} d_{2}+\ldots+\alpha_{n} d_{n}
$$

and optimize $\alpha_{1}, \ldots, \alpha_{n}$ for best separation,

- Use Metric Learning and Mahalanobis distances

$$
D(x, y)=\sqrt{(L x-L y)^{T}(L x-L y)}
$$

to obtain best separation.

Some classification results

Some classification results

Euclidean vs Metric Learning-transformed space.

Wrap up

- Data points, images, physical phenomena often have some intrinsic shape,
- Understanding this shape is important to understand the underlying process,
- Topological data analysis provides tools to understand the shape of data.

The TDA-Team

Dioscuri Centre in Topological Data Analysis

Thank you for your time

Dioscuri Centre in Topological Data Analysis

DIOSCURI
 CENTRE IN TOPOLOGICAL DATA ANALYSIS

> Paweł Dłotko
> pdlotko @ impan.pl
> pdlotko @ gmail
> pawel_dlotko @ skype

