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Topology! The stratosphere of human
thought! In the twenty-fourth century
it might possibly be of use to
someone..., but for the present...
for the present...

Aleksander Sołżenicyn - In the First Circle
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The essence of topology

Invariance to continuous deformations
Mug and torus, Wikipedia



Invariance to continuous deformations, takeaway

Topologist cannot tell apart torus from a coffee mug



Invaraince to continuous deformations = robustness to noise

Ali Bati, unfinished horse



The credo

Data have shape,
shape has meaning,

meaning brings value.



We all know this story

Data of a shape of a line (segment) → linear regression works



Zoology of shapes

, , ,

What is the shape of our data?
How not to overfit?



Summary statistics do not suffice, always visualize!

Anscombe’s Quartet; Same statistics, different shapes
Anscombe, ”Graphs in Statistical Analysis”, American Statistician, 1973.



Datasaurus Dataset

Same statistics, different shapes
Alberto Cairo, https://itsalocke.com/datasaurus/

https://itsalocke.com/datasaurus/


Topology and statistics, together

▶ Visualizing data brings a new level of undentstanding,
▶ Descriptors of shapes open up standard statistics and Machine

Learning to new types of inputs.
▶ What if it is high dimensional, complex, not a point cloud?
▶ Topological invariants come to the rescue!



Quick schedule for today

▶ Persistent homology
▶ Mapper (visualization)
▶ ECC (descriptors)
▶ Topotests (blend of two dyscyplines)
▶ Some applications



Persistent homology and
learning



Quantification of a shape



Spinodal decomposition in alloys

50/50 60/40 75/25
(Joint with Thomas Wanner)



Persistent homology (sublevel sets of function)



So what?
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How can we use it in practice?

▶ Comparison of different models
▶ Comparison to the to real data.



Phase separation everywhere

CTFC in cells



Ball mapper



Ball Mapper algorithm



Ball Mapper algorithm



Ball Mapper algorithm



Ball Mapper algorithm



Ball Mapper algorithm

Preservation of local neighborhood, shape up to continuous
deformation



Network based landscapes of data

Meet the Lucky Cat



Network based landscapes of data

128 × 128 = 16384 dimensional space



From a gray scale image to a point

(p1,…,p1        )16384

(p2,…,p2        )16384

(p3,…,p3        )16384

(p4,…,p4        )16384 (p6,…,p6        )16384

(p5,…,p5        )16384

Gray scale images converted to vectors in high dimensional space



Network based landscapes of data

128 × 128 = 16384 dimensional space



Support for Brexit in the 2016 referendum
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Labour vs Brexit
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This is why we do not see Jeremy Corbyn anymore...



NKI, Carlson and coauthors



High dimensional noisy data

Ambient space 
(~2000 dimension) 

Diffusion 
embedding

Lower dimensional representation 
(~400 dimension) 

Understanding structure
of projection



NKI, ambient dimension, BM



NKI, umam projection, BM



NKI, MoBM

Initial collaboration with National Cancer Institute



Euler curves (and profiles)



How to encapsulate information about shape?

▶ Classical - homology, persistent homology,
▶ New - Euler characteristic curves and profiles,
▶ New - Characteristics of merging structure of points,...



Answer: the Euler Characteristic!

χ(P) = V − E + F

Image source: Wikipedia

https://en.wikipedia.org/wiki/Euler_characteristic


Euler characteristics, point clouds



Euler Characteristic Curve - Example



Distance between ECCs
Definition
Let K1 and K2 be two filtered cell complexes. The L1 distance
between their Euler Characteristic Curves is

||ECC (K1, t)−ECC (K2, t)||1 =

∫
R
|ECC (K1, t)−ECC (K2, t)|dt .

Filtration

χ

Two Euler Characteristic Curves in red and green. The absolute value of
their difference is highlighted in shaded gray.



Medical applications - Histology
www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |          (2019) 9:1139  | https://doi.org/10.1038/s41598-018-36798-y

a score of 6 or less generally receiving more conservative treatment, while those with a score of 7 or above receiv-
ing more aggressive treatment. While the Gleason grading system currently remains the most powerful predic-
tor of prognostic outcome in PCa, it suffers from high intra and inter-observer variability due to the subjective 
nature of the grading scheme6–12. In a review of grading reliability in PCa, intra-observer agreement on Gleason 
grade was reported in only 43–78% of cases12. In addition, inter-observer variability was high with concordance 
between 50–60% in most cases12. The Gleason grading system also lacks granularity. In some cases, such as the 
NCCN nomogram, only the overall score is considered, despite an understanding that, for example, 3 + 4 = 7 and 
4 + 3 = 7 scores are prognostically distinct, and it has been shown that 4 + 3 = 7 has significantly worse prognostic 
outcomes13. Increasing prevalence of Gleason pattern 4 is associated with an increased risk of biochemical recur-
rence and cancer specific mortality. Prognostically, a patient’s outcome is intermediate between the two scores, 
evidence that Gleason scores should be considered as a continuum, not as discrete scores14. This failure, in part, of 
the Gleason grading system to stratify by the relative contribution of Gleason patterns has resulted in the develop-
ment of a new grading system, Grade Groups, adopted in the 2014 International Society of Urological Pathology 
(ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma15. Grade Groups allow for more accu-
rate Gleason pattern stratification by treating 3 + 4 as prognostically distinct from 4 + 3. In a follow-up validation 
study, after radical prostatectomy, Gleason Grade Group 2 (3 + 4) patients had a four year biochemical recurrence 
(BCR) free rate of 74% whereas Gleason Grade Group 3 (4 + 3) patients had a 63% BCR free rate16. The difference 
in BCR free rates by Grade Group is evidence that further stratification by relative contribution of architectural 
subtypes is necessary to better correlate to patient prognostic outcomes. Grade Groups are limited to primary 
and secondary Gleason patterns and do not account for tertiary Gleason patterns which have been shown to 
have a risk of recurrence that lies between existing Gleason scores17. While Grade Groups have addressed prob-
lems associated with insufficient granularity in the Gleason score, they cannot address the inherent variability in 
reviewers due to the subjective nature of the pattern evaluation. In addition, some studies have indicated varying 
prognostic outcomes for the architectural subtypes that exist within single Gleason patterns, as shown in Fig. 2. 
Work by Dong et al.18 indicated that within patients with Gleason 4 PCa, the dominant architectural patterns 
of Gleason 4 that are present (i.e., poorly formed, fused, or cribriform) is associated with significantly different 
prognostic outcomes, with patients exhibiting all architectures having poorer BCR free rates than those exhib-
iting any one pattern (66% vs. 76%). In addition, the presence of cribriform pattern in Gleason 4 patients was 
correlated to lowered BCR free rates, whereas the presence of fused pattern was associated with higher BCR free 
rates in Gleason 4 patients19. Grade Groups and Gleason scores are not mutually exclusive, but instead are often 
used in conjunction. The International Collaboration on Cancer Reporting (ICCR) official guidelines require 
the reporting of both Grade Groups 1–5 (or ISUP Grade 1–5 in ICCR notation) and Gleason score. Reporting of 
both Grade Groups and Gleason score is also accepted practice at Tulane Medical Center. Despite the use of both 
Grade Groups (ISUP Grades) and Gleason scores, an increase in granularity of grading architectural patterns may 
be better predictive of patient outcomes20.

Topological Data Analysis. Persistent homology (PH), a tool from topological data analysis (TDA), serves 
as the basis for this work. In general, TDA comprises a series of methods and tools for evaluating qualitative 
geometric and topological properties of data. PH evaluates the “shape” of data, as captured by connected compo-
nents, loops, voids, and other higher-dimensional features that exist within the data at varying scales. The features 
that we are interested in are the homology groups, which are an algebraic representation of those components, 

Gleason Grade 3 Gleason Grade 4 Gleason Grade 5

    Loosely Packed

Tightly Packed

Fused

Ill-Defined

Cribriform

Glomeruloid

Solid

Single Cell

Solid

Single Cell

Fused

Ill-Defined

Cribriform

Glomeruloid

Figure 2. Key Common Architectures. Gleason grade 3 corresponds to Gleason 3 glandular patterns, both 
loosely packed, characterized by well-circumscribed glands, and crowded glands, characterized by minimal 
stromal space between glands. Gleason grade 4 corresponds to four common Gleason 4 patterns, fused, 
cribriform, ill-defined, and glomeruloid glands. Gleason grade 5 corresponds to two common Gleason 5 
patterns, single-cell infiltrating and solid cell types.

Lawson, Sholl, Brown et al. Persistent Homology for the Quantitative Evaluation
of Architectural Features in Prostate Cancer Histology. 2019
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Full image Hematoxylin Eosin



Euler Characteristic Profiles

hematoxylin ECC hematoxylin & eosin ECP
0.765 ± 0.001 0.826 ± 0.001

Mean test accuracy for the Gleason 3 vs Gleason 4 classification using
ECCs or ECPs as input to an SVM classifier.



Euler Characteristic Profiles

hematoxylin ECC hematoxylin & eosin ECP
0.765 ± 0.001 0.826 ± 0.001

Mean test accuracy for the Gleason 3 vs Gleason 4 classification using
ECCs or ECPs as input to an SVM classifier.



Topological goodness of fit tests
(topotests)



Introduction

One- and two-sample tests
▶ One-sample problem: We are given a data sample

X = {x1, x2, . . . , xn}, xi ∈ Rd and cumulative distribution
function F : Rd → [0, 1]. Does the data X follow the
distribution F : X ∼ F?

H0 : X ∼ F vs. H1 : X ≁ F

▶ Two-sample problem: We are given two samples X1 ∼ F1
and X2 ∼ F2 and want to test hypothesis that X1 and X2 were
drawn from the same (unknown) distribution

H0 : F1 = F2 vs. H1 : F1 ̸= F2



Testing
Available methods depend on the data dimension (for one-sample
problem)
▶ 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,

Cramer-von Mises, Anderson–Darling, Chi-squared,
Shapiro-Wilks

▶ 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

▶ d-D: Kolmogorov-Smirnov should work but no implementation
available, critical values of test statistics unknown, impractical
in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark
▶ one-sample: Dn = supx |Fn(x)− F (x)|
▶ two-sample:

Dn,m = supx |F1,n(x)− F2,m(x)|



One sample TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].
Step 1: EF (χ(n, r)), the Blueprint of F
▶ draw n-element samples X ′

1,X
′
2, . . . ,X

′
M from F

▶ for each sample X ′
i compute its ECC χ(Cr (X

′
i ))

▶

1
M

M∑
i=1

χ(Cr (X
′
i ))

a.s.−−−−→
M→∞

EF (χ(n, r))



One sample TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].
Step 2: variation form EF (χ(n, r))

▶ draw a new set of m-element samples Y ′
1,Y

′
2, . . . ,Y

′
m from F

▶ Calculate sup distance between χ(Cr (Y
′
i )), i = 1, . . . ,m and

average ECC
▶ determine the threshold value tα as a (1 − α)’th quantile of

{di}mi=1, where α is required level of statistical significance



TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].

Step 3: Actual testing
▶ compute the ECC for sample

data X : χ(Cr (X ))

▶ compute the l∞ between
χ(Cr (X )) and EF (χ(n, r))

D = sup
r∈R

|χ(Cr (X ))−EF (χ(n, r))|

▶ reject H0 if D > tα
▶ it is possible to get p-value as

well
For the two-sample problem the
procedure is slightly different but the
idea remains.



Simulation results (one-sample)
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KS 3D n=250 alpha=0.05 
 Average Power: 0.8087

0.0

0.2

0.4

0.6

0.8

1.0

average power at α = 0.05:

d = 3,n = 250 TT:0.9016, KS : 0.8087

d = 5,n = 500 TT:0.8465, KS : −−−

Test Power: probability that H0
is correctly rejected when H1 is
true
▶ Samples sizes 100–5000 data

points
▶ test power estimated using

1000 MC replications
▶ power compared with KS

(d ≤ 3)
▶ α on diagonal is expected
▶ TopoTests yielded higher

power than KS in most of
the cases



Simulation results (one-sample)
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Simulation results (one-sample)
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is correctly rejected when H1 is
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▶ Samples sizes 100–5000 data

points
▶ test power estimated using

1000 MC replications
▶ power compared with KS

(d ≤ 3)
▶ α on diagonal is expected
▶ TopoTests yielded higher

power than KS in most of
the cases



Simulation results (one-sample)
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So what? Do I really need to
know the cumulative
distribution function?



Damage identification with
TopoTests



Problem statement

Alpha stable noise:
intact machine

Figure: Crusher, source: Wikipedia

VS.

Alpha stable noise + cyclic
impulses: malfunctioning
machine

=

+



Pipeline

Figure: Flow chart of our testing procedure.



Results: simulated data
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Figure: Comparison state of the art (conditional variance band selector,
left) our approach (first Betti curve, middle), and their difference (right).
High test power means low frequency of identifying an actually faulty
machine as intact.



Results: lab measurement (test bench)

Figure: The test
bench.
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Figure: PCA from Betti curves.



Results: real world measurements (idler)

Figure: The idler.

Industrial data
CVB 87.6 ± 7.16
TDA 92.0 ± 5.61

CVB +TDA 96.1 ± 4.50

Table: Mean accuracy of SVM
classifier [%] and standard deviation.



Shapes of neurons
(and trees, and graphs)



Shape → function

(I) cat, (II) dragonfly, (III) fruit fly, (IV) mouse and (V) rat



Shapes of rooted trees in R3

▶ Neurons are particular instance of trees in R3.
▶ Root is the soma.
▶ Morphological descriptors : number of leafs, total occupied

volume, polarity, ... (classical)
▶ Sholification of morphological descriptors (with Khalil, Kallel,

Farhad) – descriptor as a function of distance from the somma.
▶ Branching structure of a tree – mergegrams, TMD and other

invariants.



Sholl descriptor

Invriant as a function of distance from soma



How to get a descriptor of a shape of a tree?

▶ Cut the tree into branches
▶ Compute invariants of branches



Mergegram branch decomposition
Cut all branching nodes.



TMD Branch decomposition
Let the longest branch to continue towards the root



From branches to diagrams



From branches to diagrams



From branches to diagrams

d1
d2



From branches to diagrams

d1
d2

[d1,d2]



TMD descriptors of trees



Is a single descriptor sufficient?

▶ Variety of tree structures is huge,
▶ Each descriptor is capturing a single aspect of it.
▶ Not sufficient to capture the complexity of possible trees.
▶ Solution: Combine different descriptors into a single one.



Multiple descriptors for labeled data

▶ For labeled data, combine them into single distance

d = α1d1 + α2d2 + . . .+ αndn

and optimize α1, . . . , αn for best separation,
▶ Use Metric Learning and Mahalanobis distances

D(x , y) =
√

(Lx − Ly)T (Lx − Ly)

to obtain best separation.



Some classification results



Some classification results

Euclidean vs Metric Learning–transformed space.



Wrap up

▶ Data points, images, physical phenomena often have some
intrinsic shape,

▶ Understanding this shape is important to understand the
underlying process,

▶ Topological data analysis provides tools to understand the
shape of data.
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