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Background

Lead-lag relationship
▶ Two time series are cross-correlated with each other at certain lags;

“leader” and “lagger”

Lead-lag relationships may occur perhaps because new information is
absorbed into each security at different speeds

▶ Across different assets
▶ Across different trading venues

Ex.: Stock index vs index futures (e.g. Kawaller et al., 1987)
▶ A stock index consists of many individual stocks; it may be lagging

behind the index futures
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Lead-lag analysis with high-frequency data

Timestamps are very important in high-frequency data, necessarily to
be modeled

▶ Discretely observed continuous-time processes are appropriate

Price series based analysis
▶ continuous semimartingale based model, utilizing the Hayashi-Yoshida

estimator (Hayashi and Yoshida, 05)
⋆ Hoffman, Rosenbaum and Yoshida (13), Huth and Abergel (14)

▶ multivariate Hawkes processes based model
⋆ Bacry, Delattre, Hoffmann Muzy (11), Da Fonseca and Zaatour (14)

Timestamp based analysis
▶ based on the counts of the co-occurrent “events”

⋆ Dobrev and Schaumburg (16)
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Background: HRY model
Hoffmann, Rosenbaum & Yoshida (2013)

Suppose that the log-price processes of two assets are given by{
X 1
t = σ1W

1
t ,

X 2
t = σ2ρW

1
t−ϑ + σ2

√
1− ρ2W 2

t−ϑ,
(1)

where
▶ σ1, σ2 > 0, ρ ∈ [−1, 1] and ϑ ∈ (−δ, δ) are constants
▶ W 1,W 2 are independent Brownian motions

0 ≤ tν1 < tν2 < · · · < tνnν ≤ T : observation times for X ν

▶ could be different across two assets (non-synchronous observations)

Idea to estimate the time-lag ϑ
▶ The returns of (X 1

t1i
)n1i=0 and (X 2

t2j
)n2j=0 are (significantly) cross-correlated

only at the lag ϑ
▶ Maximizer of their (empirical) CCF will be a good estimator for ϑ
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Background: HRY estimator

How to compute the CCF ?
⇒ time-lagged version of the HY estimator:

UHRY (θ) =
∑
i ,j

∆iX
1∆jX

21{(t1i−1,t
1
i ]∩(t

2
j−1−θ,t2j −θ] ̸=∅},

where ∆iX
ν = X ν

tνi
− X ν

tνi−1
for ν = 1, 2

Hoffmann et al. (2013) have shown that

θ̂HRY = argmax
θ∈G

|UHRY (θ)|

is a consistent estimator for ϑ under some regularity conditions while
one appropriately takes the finite set G ⊂ (−δ, δ)

▶ The method works for more general diffusion processes
▶ The R package yuima contains the function llag to implement θ̂HRY
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Background: HRY estimator

Figure 1: The Hayashi-Yoshida method: We sum up cross-products of returns
with overlapping observation intervals
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Background: DS estimator
Dobrev & Schaumburg (2016)

For ν = 1, 2 and t ≥ 0, we set

I νt =

{
1 if the ν-th asset is observed at the time t,
0 otherwise

We count the co-occurrent observations with the time lag θ ∈ R by

UDS(θ) =
1

min{n1, n2}

⌊T/τN⌋∑
k=1

I 1kτN I
2
kτN+θ,

where τN is the finest time resolution in analysis (0.1ms in our case)

The DS estimator θ̂DS is defined as a maximizer of UDS(θ) over a
grid G:

θ̂DS = argmax
θ∈G

UDS(θ).

Y. Koike (U. of Tokyo, CREST JST) Lead-lag analysis with wavelet methods December 1, 2020 8 / 34



Background: An empirical illustration
Lead-lag analysis of the NASDAQ-100 assets: NASDAQ vs BATS

There are 13 major stock exchanges in the U.S. stock market, and
one can send orders to any exchanges

▶ A single asset may have different prices at each exchange
⇒ A lead-lag relationship could appear between different exchanges

We examine lead-lag relationships between the NASDAQ and BATS
exchanges for each component stock of NASDAQ-100 in 2015
(totally 108 assets)

▶ Period: All the trading days in August, 2015 (totally 21 days)
⋆ Between 9:45 and 15:45 (the first and the last 15 min are discarded to

exclude abnormal behaviors at the opening and closing)

▶ Data source: Best quote data from the Daily TAQ Database
⋆ The precision of timestamps is in micro-seconds, but we set the finest

time resolution in analysis as τN = 0.1ms due to the reasons explained
later
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Background: An empirical illustration
Lead-lag analysis of the NASDAQ-100 assets: NASDAQ vs BATS

Best quote data contains the following information:
▶ Best ask price pa and its volume va (the lowest price accepted by a

seller)
▶ Best bid price pb and its volume vb (the highest price accepted by a

buyer)

We construct price processes from these data by computing the
so-called micro-price (cf. Gatheral & Oomen (2010)):

qv :=
pa/va + pb/vb
1/va + 1/vb

=
vbpa + vapb
vb + va

We set G = {−10.0ms,−9.9ms, . . . , 9.9ms, 10.0ms} and compute the
HRY and DS estimators for each asset on each trading day
⇒ We get totally 21× 108 = 2268 estimates for these two estimators
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Figure 2: Histograms of the daily lead-lag time estimates for the NASDAQ-100 assets
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θ > 0 indicates that the NASDAQ leads the BATS.

Y. Koike (U. of Tokyo, CREST JST) Lead-lag analysis with wavelet methods December 1, 2020 11 / 34



Background: An empirical illustration
Lead-lag analysis of the NASDAQ-100 assets: NASDAQ vs BATS

Most DS estimates concentrate at θ = +0.3ms, suggesting that the
NASDAQ consistently leads the BATS with the lag 0.3ms.

In contrast, the HRY estimates are negatively skewed, suggesting the
BATS tends to lead the NASDAQ

As explained below, the DS estimates 0.3ms would come from a
geographical reason:

▶ Transit time btw the NASDAQ and BATS (≈ 0.1ms)
+ Reporting latency from the BATS (≈ 0.2ms)
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Background: An empirical illustration
A geographical consideration

Dobrev & Schaumburg (2016) argued that the DS estimator captures
the transit time of information btw two venues in cross-market
analysis

In our situation,
▶ Servers of the NASDAQ @ Carteret, NJ
▶ Servers of the BATS @ Secaucus, NJ
▶ The minimum transit time btw Carteret and Secaucus (in the speed of

light) ≈ 0.09ms (Tivnan et al., 2020, Table 2)

Our DS estimate = 0.3ms ⇒ Where does the extra 0.2ms come
from？
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Source: (Tivnan et al., 2020, Table 2)
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Background: An empirical illustration
A geographical consideration

In U.S. stock market, all orders are consolidated into a single data
feed by Securities Information Processors (SIPs)

The Daily TAQ database provides timestamps when the
corresponding orders are processed by SIPs rather than exchanges
⇒ We need to take account of time-lags to send orders from
exchanges to SIPs

For NASDAQ-listed stocks, the corresponding SIP is located at
Carteret, yielding around 0.2ms reporting latencies from the BATS
compared with the NASDAQ (Bartlett & McCrary, 2019)
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Sourse: (Tivnan et al., 2020, Figure 1)
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Background: An empirical illustration
Fact or Failure ?

These considerations would suggest the relevance of the DS estimator

If the time-lag is caused by a purely geographical reason, we may
naturally expect θ̂HRY should be close to 0.3ms as above
⇒ Does the HRY model fail to capture right relationships?

We conjecture that the “failure” of the HRY model is due to the
market heterogeneity

▶ “Heterogenous market hypothesis” (Müller et al., 1997): Market
participants act with different time scales

▶ Different lead-lags can coexist at different time scales
▶ The HRY model would capture lead-lag relationships coming from

different time scales
▶ Wall street is closer to Secaucus than Carteret, so the BATS receives

orders of “slow” traders faster than the NASDAQ
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Source:
https://www.nytimes.com/2013/05/14/technology/

north-jersey-data-center-industry-blurs-utility-real-estate-boundaries.

html

Y. Koike (U. of Tokyo, CREST JST) Lead-lag analysis with wavelet methods December 1, 2020 18 / 34

https://www.nytimes.com/2013/05/14/technology/north-jersey-data-center-industry-blurs-utility-real-estate-boundaries.html
https://www.nytimes.com/2013/05/14/technology/north-jersey-data-center-industry-blurs-utility-real-estate-boundaries.html
https://www.nytimes.com/2013/05/14/technology/north-jersey-data-center-industry-blurs-utility-real-estate-boundaries.html


Our contribution

We propose a model taking account of “heterogeneity” of the market
▶ Modeling with multiple time scales
⇒ Wavelets !! (cf. Gençay et al., 2002)

The existing literature on applications of wavelet to lead-lag analysis
is based on discrete-time modeling (mainly established in Whitcher
et al. (1999, 2000) and Serroukh & Walden (2000a,b))

Contribution of this work
▶ Providing a modeling framework validating wavelet analysis for

investigating lead-lag relationships with multiple time scales in a
continuos-time setting

▶ Proposing an estimation procedure for the lead-lag parameters on a
scale-by-scale basis
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Model

Idea Characterize the lead-lag relationship of two BMs in the
frequency domain

▶ The theoretical CCF of dB1 and dB2 is not a proper function
▶ The cross-spectral density of dB1 and dB2 always exists as a proper

function (Hayashi and K. (2018), Proposition 2)

The HRY model (1) has the cross-spectral density given by

f (λ) = σ1σ2ρe
−
√
−1λϑ, λ ∈ R

We split the frequency domain into “octave” bands:

Λj := [−2j+1π,−2jπ) ∪ (2jπ, 2j+1π], j = 0, 1, . . .
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Model

From the spectral/wavelet analysis perspective, Λj is regarded as the
component corresponding to the time scale [2−j , 2−j+1)

⇒ We wish to consider the cross-spectral density of the form

fN(λ) =
N+1∑
j=1

Rje
−
√
−1λθj1ΛN−j+1

(λ), (2)

where
▶ N is the finest resolution level (j = 1 corresponds to this level)
▶ Rj is a non-zero number (the correlation at the frequency band ΛN−j+1)
▶ θj is the lead-lag time parameter at the frequency band ΛN−j+1

▶ Taking T appropriately, we let τN := 2−N+1 correspond to the finest
time resolution in analysis
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Model

In fact, we can construct a bivariate Gaussian process Bt = (B1
t ,B

2
t )

with stationary increments such that

(i) The respective marginal processes B1
t and B2

t are standard BMs
(ii) Bt has the cross-spectral density given by (2)

▶ See Hayashi and K. (2018, Proposition 2)

We suppose that the log-price processes of two assets are given by2

X 1
t = σ1B

1
t , X 2

t = σ2B
2
t

We wish to estimate the time-lag parameters θj from the observation
data (X 1

t1i
)n1i=0 and (X 2

t2j
)n2j=0

2Extension to the stochastic volatility case is possible; see our working paper
arXiv:1708.03992v4
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Estimation: Wavelet decomposition of the CCF

Let UN(θ) be the inverse Fourier transform of fN(λ)
▶ UN(θ) corresponds to the theoretical CCF of dB1 and dB2

UN(θ) admits the following decomposition:

UN(θ) =
N+1∑
j=1

σ1σ2Rj2
N−j+1ψLP(2N−j+1(θ − θj)),

where
ψLP(s) := (πs)−1(sin(2πs)− sin(πs))

is known as the Littlewood-Paley wavelet
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Estimation: Wavelet decomposition of the CCF

Using the property of the LP wavelet, we have

ρ(j)(θ) : =

∫ ∞

−∞
UN(θ − s)ψLP(2N−j+1s)ds

= σ1σ2Rjψ(2
N−j+1(θ − θj))

▶ We shall regard ρ(j)(θ) as a “CCF at the level j”
▶ θj is the unique maximizer of |ρ(j)(θ)| as long as Rj ̸= 0

The expression of ρ(j)(θ) naturally suggests the following estimator:

ρ̂(j)(θ) =

Lj−1∑
l=−Lj+1

UHRY (θ − lτN)Ψj(l),

where Ψj(l) is an approximation of ψLP(2N−j+1lτN)
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Estimation: Approximation of LP wavelets

We may directly use Ψj(l) = ψLP(2N−j+1lτN), but there is a
mathematically preferable alternative

The Fourier inversion formula yields

ψLP(2N−j+1lτN) = 2j
∫ π

−π
e
√
−1lλ1Λ−j

(λ)dλ

▶ The transfer function of (ψLP(2N−j+1lτN))l∈Z is 2j1Λ−j (λ)
▶ Ψj(l) well approximates ψLP(2N−j+1lτN) if the transfer function of

(Ψj(l))
Lj−1
l=−Lj+1 well approximates 2j1Λ−j (λ)

We utilize Daubechies’ wavelet filters to construct such Ψj(l)’s

Y. Koike (U. of Tokyo, CREST JST) Lead-lag analysis with wavelet methods December 1, 2020 25 / 34



Estimation: Approximation of LP wavelets

Let hj ,0, hj ,1, . . . , hj ,Lj−1 be Daubechies’ wavelet filters with length L

at the level j (Lj = (2j − 1)(L− 1) + 1)
▶ L = 2 corresponds to the Haar wavelet filters

The power transfer function Hj ,L(λ) = |
∑Lj−1

p=0 hj ,pe
−
√
−1λp|2 well

approximates 2j1Λ−j
(λ) as L → ∞ (Lai, 1995)

This suggests us to set

Ψj(l) =

Lj−1−|l |∑
p=0

hj ,phj ,p+|l |, l = 0,±1, . . . ,±(Lj − 1) (3)

▶ This is known as the autocorrelation wavelets (cf. Nason et al., 2000)
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Estimation

Since θj is the unique maximizer of |ρ(j)(θ)| (if Rj ̸= 0), we naturally
estimate it by

θ̂j := arg max
θ∈GN

j

∣∣ρ̂(j)(θ)∣∣
To avoid boundary issues, we take

GN
j = {lτN : l ∈ Z, |lτN | < δ − LjτN}

The following result ensures the consistency of our estimators

Theorem 1 (Hayashi and K. (2020), Theorem 2)

Suppose that L → ∞ and τNL log L → 0 as N → ∞. Under some
regularity conditions on the observation times, we have θ̂j →p θj as
N → ∞ for every j with Rj ̸= 0.
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Empirical application
Lead-lag analysis of the NASDAQ-100 assets: NASDAQ vs BATS

Cross-market, single-asset analysis

Venues: NASDAQ and BATS

Micro price (inverse-volume weighted mid-quote)

Stocks: Component stocks of NASDAQ-100 in 2015

Source: Daily TAQ Database

The data are recorded in micro-secs, but we set τN = 0.1ms due to a
clock synchronization issue

Period: All the trading days in August, 2015

Between 9:45 and 15:45 (the first and the last 15 min are discarded)

Search grid: GN
j = {−10.0ms,−9.9ms, . . . , 9.9ms, 10.0ms}

L = 20 (length of Daubechies’ wavelet filters)
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Figure 3: Histograms of the daily lead-lag time estimates for the NASDAQ-100 assets
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θ > 0 indicates that the NASDAQ leads the BATS.
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Empirical application

We find that
▶ the estimates of θ̂j at the levels j = 1, 2, 3 have sharp peaks at small

positive values
▶ the estimates of θ̂j at the levels j = 4, 5, 6, 7 have two peaks located at

positive and negative values, respectively

These observations suggest that
▶ the estimates of θ̂j at the finer levels might be related to those of θ̂DS

(corresponding to the time scales between 0.1ms and 0.8ms)
▶ the negative estimates of θ̂j at the coarser levels j = 4, 5, 6, 7 might

have some links with those of θ̂HRY (corresponding to the time scales
between 0.8ms and 12.8ms)

See our working paper arXiv:1708.03992v4 for more detailed
analysis
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Conclusions

We have introduced a new framework to model and estimate multiple
lead-lag relationships in high-frequency data on a scale-by-scale basis

In the empirical application, we have identified two types of lead-lag
relationships at finer and (relatively) coarser time scales, respectively

This talk is based on the following two papers:
▶ T. Hayashi, Y. Koike (2018). “Wavelet-based methods for

high-frequency lead-lag analysis”, SIAM J. Financial Math. 9, 1208 ‒
1248.

▶ T. Hayashi, Y. Koike (2020). “Multi-scale analysis of lead-lag
relationships in high-frequency financial markets”, Working paper.
Available at https://arxiv.org/abs/1708.03992v4

The R package yuima contains the function wllag to implement θ̂j
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