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Abstract

Regular measurements of the state of the environowrstitute a cornerstone
of environmental management. Without the supportlooiy time series of
reliable data, we would know much less about cheniig@t occur in the
environment and their causes. The present resesmbd to explore how
improved techniques for data analysis can helpaleflawed data and extract
more information from environmental monitoring pragimes. Based on our
results, we propose that the organization of suadbnitoring should be
transformed from a system for measuring and cafigaiata to an information
system where resources have been reallocated ta daalysis. More
specifically, this thesis reports improved methéatsjoint analysis of trends in
multiple time series and detection of artificialéé shifts in the presence of
smooth trends. Furthermore, special consideratomiven to methods that
automatically detect and adapt to the interdeperelenn the collected data. The
current work resulted in a road map describingpitoeess of proceeding from a
set of observed concentrations to arrive at commtigsabout the quality of the
data and existence of trends therein. Improvememtsexisting software

accompanied the development of new statisticalquiores.
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Introduction

1 Introduction

1.1 Motivation and scientific context

Regular measurements of the state of the environmake up the foundation of
evidence-based environmental management. Witheuexistence of long time
series of reliable data collected in local, reglpr@ national monitoring
programmes, we would know much less about the @wtigat occur in the
environment and their causes. Also, it would besaerably more difficult to
assess the efficacy of measures taken to combaletieeioration of ecosystems.
However, the fact that monitoring is an indispemsgmart of environmental
management does not necessarily imply that it isrdipated in an optimal
manner. In almost all organizations, there is aswutial risk that views and
methodologies are not being updated to meet nevadésnand take advantage
of novel technologies.

At the time many of the existing monitoring prograss were devised, it
was not unusual to address important questionsebfpnming simple surveys
and very basic data analyses. Hot spots and plariizyulnerable environments
were successfully delineated, and the impact obx@ng major point emissions
was often readily documented in a convincing fashithe environmental issues
that are now receiving the most attention are mooenplex and involve
evaluation of much larger datasets. Regional obalahange is usually in
focus, and understanding long-term alterationshen gtate of the environment
represents a priority. In addition, the human inighat a monitoring system is
intended to detect is often relatively small comgplato both the natural
interannual variation at the monitored sites aredrdndom measurement errors
that influence the individual observations. The esbye of the research

underlying this thesis was to explore how improt@chniques for data analysis
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can help reveal flawed data and how more informatian be extracted from
environmental monitoring programmes. The examplssudsed here originate
from water quality monitoring, but the major corstins are valid for a much
larger class of monitoring programmes.

On a more general level, the current results ugstions about the need for
new paradigms in environmental monitoring. Over st decade, it has
gradually become more apparent that science aridgsional work increasingly
entail collection, organization, transformationdgsresentation of information.
Together, powerful computers with almost unlimitdrage capacity and the
Internet and its efficient search engines congtitubuch more than a
technological revolution. Dramatic changes are alsccurring in the
organization and performance of science and priofieslswork. In a recently
published issue of the journidhture it was stressed that “important discoveries
are made by scientists and teams who combine elifeskill sets—not just
biologists, physicists and chemists, but also cdempscientists, statisticians and
data-visualization experts” (Szalay & Gray, 2006,4@3). Moreover, another
author in that issue claimed that “It will be a yetifferent way of thinking,
sifting through the data to find patterns” (Butl@Q06, p. 403). It was even
stated that “applied computer science is now ptaye role which mathematics
did from the seventeenth through the twentieth wreésd: providing an orderly,
formal framework and exploratory apparatus for otbaences” (Foster, 2006,
p. 19). The discussion here deals with how the imeet development can and
should influence the extraction of information framvironmental monitoring
programmes. In particular, the focus is on the dblstatistical methods that are
sufficiently simple so as to be easy to comprehgatsufficiently advanced to
capture the key features of the collected data.

From a statistical point of view, our work hasni®ts in a visionary article
by Tukey (1962). Long before the width of the presevolution of computer
science and technology could be anticipated, Talssgrted the following:
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» Data analysis is a larger and more varied fie&htstatistical inference in
a given probability model.

* There is a need for free use of ad hoc and irdbprocedures in seeking

indications—listening to the data.”

* Model building is an iterative procedure.

Tukey also emphasized that the simple graph hasghtanore information to
the mind of the data analyst than has any othepatetional device.

Nowadays, iterative methods for data analysis adelwused, because they
enable data-driven procedures that automaticalgptatb the structure of the
collected data. We believe that assessment ofqieiity should also be treated
as an iterative process. It is not unusual tha thadt are considered to be correct
at the time of the sampling are deemed erraticr aftere data have been

collected and new analytical procedures have hapteimented.

1.2 Study objectives and methods

As indicated in the above-mentioned motivation tloe present research, the
work had two major objectives:
() to facilitate the detection of trends and assent of data quality in
environmental monitoring;
(if) to demonstrate the need for reallocating reses from data collection to
data analysis.
Detection of trends in the state of the environmeguires adequate methods to
handle outliers, artificial level shifts, temporahd spatial correlation in the
collected data, missing values, and observatiotmabthe limit of detection or
guantification. We investigated how multiple timeries of data can be analysed
in the presence of such peculiarities. Specialnatte was paid to non- and
semiparametric approaches for joint evaluation oftiple time series. Joint

evaluation of data representing many locations tand points is crucial when
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examining regional and large-scale trends. Non-samiparametric models are
well suited for data-driven and interactive apptacthat help the user “listen
to the data.”

At the onset of our studies, we focused on exwactif smooth trends that
could be interpreted as human impact on the enwiemt. However, as our work
progressed, we observed that artificial level shiiot related to actual changes
in the environment were a major source of long-temporal variation in the
analysed data. This triggered development of sitalsmethods and software
for joint assessment of smooth trends and artifiereel shifts in vector time
series.

In any discussion of environmental monitoringsiaiso necessary to address
the balance between process-based modelling ancbiieetion and analysis of
observational data. Hence, this thesis providesed Account of how the two
activities can support each other and how stagilséinalysis of model inputs and
outputs can provide valuable information for enmim@ntal management.

To be more precise, the description covers theldpmeent and application
of three main methods:

(i) Extended Mann-Kendall tests for monotonic trends

Mann-Kendall tests for monotonic trends have loegrbamong the major

instruments used to detect temporal trends in enmental data (Hirsch &

Slack, 1984). We examine how such tests can b@@ateto simultaneously

handle serial correlation, covariates, and censatath. In addition, to

support such analyses, we modify existing software.

(i) Semiparametric regression for the detection of gmawends and

artificial level shifts in vector time series

In this work, we generalize models that had presipieen used to assess

smooth trends in multiple time series of data (larsst al, 2004; Stalnacke

& Grimvall, 2001). In particular, we examine howtifeial level shifts can

be estimated in the presence of smooth trends awl &n existing

4
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resampling technique for uncertainty assessments & modified to
accommodate data that are correlated in time avsaccoordinates in the
analysed vector time series.
(i) Ensemble runs for extracting the essence of complexess-based
models
Management objectives are typically expressedragilerm spatial averages,
whereas process-based models operate on spatidieambral scales that
facilitate mechanistic interpretation of equati@m& model parameters. The
text here briefly describes how multiple runs opracess-based model of
nitrogen flows in catchments can be used to extrapbrtant features of
temporally aggregated model outputs and how suathehmmins can support
assessment of trends in observational data.
An important aim of this thesis is to integrate fivst two methods into a
roadmap for trend detection and assessment of glahty. In addition, we
develop two software packages (Multitest and Mwtit) to support this
roadmap. Multitest aims to achieve a preliminargathof trends in the observed
time series, whereas Multitrend is devoted to rlwgasynchronous increases
and decreases and to separating smooth trendsafsaupt level shifts.

1.3 Outline of the thesis

This summary is based on five papers (designatell Ixhich are appended at
the end of the dissertation.

Paper | is dedicated to semiparametric smoothimgtiae major ideas behind
Multitrend. In the next study (Paper Il, publish@dEnvironmentalScience &
Policy 11, pp. 115-124), Multitrend is used to investigagter quality trends in
Swedish water courses and to scrutinize the qualitpllected data. Thereafter
(Paper Ill), Multitest and Multitrend are used tovestigate Swedish

groundwater data and to demonstrate how trendsbeaextracted from large
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datasets involving temporally and spatially cotedlaobservations. During the
work underlying Papers Il and lll, serious dataliygroblems were revealed.
In particular, we found that artificial level slifhad a marked impact on long-
term trends. Therefore, we conducted an additishady (Paper IV) in which
Multitrend was extended to enable detection andhasibn of abrupt changes in
vector time series. Paper V (published in Breceedings of the International
Environmental Modelling and Software Society Caariee Osnabrck,
Germany, 14-17 June, 2004) provides an examplehefneed for better
integration of process-based modelling and steéistlata analysis.

The final chapter of this thesis summarizes theclummons drawn from our
research and addresses the need for a paradigrm ishiénvironmental

monitoring.



Testing for trends in multiple time series

2 Testing for trends in multiple time series

Assessment of temporal trends in data represerdingetwork of stations
requires statistical methods that can accommodatdtiphe, statistically
dependent time series. In addition, it is highlysiceble that the selected
methods are easy to comprehend, are robust tejthnd can accommodate
missing values. This makes the Mann-Kendall (Mkstdeadvocated by Hirsch
and Slack (1984) an attractive choice. Such nompetrec techniques also have
the advantage of being less demanding for the csempared to parametric
methods that require detailed modelling of probgbildistributions and
dependencies.

The aim of statistical trend testing is to distiisubetween deterministic and
stochastic changes over time, and thus the charamftethe stochastic
components is always a key issue. In particulars ihecessary to take into
account the presence of serial correlation. Hiesath Slack (1984) showed how
dependence across seasons can be handled. Hotheveris no ideal method to
adjust for serial dependence over time intervatgéo than a year, and existing
methods are also restricted to univariate timeesgiftfamed & Rao, 1998; Yue
& Wang, 2004). Here, we examined a simple procetased on reorganization
of the given data into a larger number of timeesewith longer time steps. In
addition, we clarified that censored data can gds#l handled in all kinds of
MK tests, including partial MK tests involving cavates (Libiseller &
Grimvall, 2002).

Inasmuch as the collected data usually represergshike several seasons,
stations, regions, or sampling methods, it is ofiemterest to test for trends in
several subgroups of data. This calls for softwarghich multiple tests are
automatically undertaken. The software Multiteshich we modified in the

present work, provides such features for both amimnd partial MK tests.
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2.1 The ordinary univariate MK-test

The classical MK method is a nonparametric testionotone trend in a single
time seriesy, ..., ¥n. It is based on pairwise comparisons of obsermatiand

the test statistic can be written

T =§89n®j = Y)
where
1if x>0
sgnik) =<0,if x=0
-1, if x<O0

Under the assumption that there is no trend ird#ta (i.e., that all permutations
of the observed values are equally likely), thetrdigtion of T can be
approximated by a normal distribution with mean ozeand variance
n(n-1)(2n +5)/18. When missing values or ties occur, the variascemaller,
and the formulae presented by Hirsch and Slack4)L88tomatically adjust for

such events.

2.2 Partial MK-tests

The ordinary MK test can be generalized to enabstirig for a trend while
simultaneously adjusting for a trend in a covaridiet T andS denote the test
statistics for trend in the response and covariaspectively. Then, the test
statistic of the partial MK test can be written
_ T-p. ¢S

NMa- 2

where V(T) denotes the estimated variance ©f and 2. represents the

U

estimated correlation of andS (El-Shaarawi & Niculescu, 1992; Libiseller &
Grimvall, 2002). Under the null hypothesis thatréhés no trend that can be
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attributed to factors other than a trend in theacae, the test statistic is

approximately normal with mean zero and varianaa on

2.3 Multivariate MK-tests

When investigating a geographical region, differesmtpling sites often exhibit
similar, albeit not identical, trends. This calts tests in which the evidence of
trends is pooled according to user-defined groumnigria. Hirsch and Slack
(1984) considered test statistics of the form

T=T,+..+T,
whereTy, ..., T, denote the ordinary MK statistics for the indivaditime series.
If the collected data are organized in a matrixtlsat each row represents a
sampling occasion, and each column signifies a bagpite, a season, or some
other group of observations, the null hypothesisplies that all row
permutations are equally likely. The columns aneally statistically dependent,
and Hirsch and Slack (1984) showed how the variavfc& under the null
hypothesis can be estimated in the presence ofdeméndencies.

If the collected data can be grouped according tactors (e.g., sampling
sites, seasons, or regions), there are a totdl-bfs?im tests in which univariate
test statistics are summed over all levels of asasubf factors. However, many
of these tests can be redundant. For instance, atiomover regions for a given
station will create redundant tests, because etatiors belongs to a single
region. In our Multitest software, tests are auttcadly performed for all non-

redundant sum tests.

2.4 Multivariate partial MK tests

Multivariate partial MK tests have been developeddssessing the presence of
joint trends in several groups of data. LettihgndS denote test statistics from

sum tests for trends in the response and covarespectively, the analytical
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expression of the test statistic is identical tattbf the univariate test. Further
details about partial MK tests have been reportgd.ibiseller and Grimvall
(2002).

2.5 MK-tests and censored data

Observations below the limit of detection or quiicdiion carry information
that can and should be exploited in trend testds@ie2005). In the present
studies, we simply regarded all observations aservats. If the measured
response could be quantified, both the lower ardughper end of the interval
were set to this observed response. If the respwase below the limit of
guantification, the interval ranged from zero tatthimit. Furthermore, we
introduced a generalized sign function

1if b < a,

sgn@,b,a,b)=1-1if b <a

0, otherwise
where B, b] and fg;, bj] denote the intervals assigned to a pair of olzgams.
Using this generalized sign function, the testisias in ordinary and partial
MK tests could be computed as usual. Analogouséy/defined the Theil slope

aj—b

b —a
of the trend as the median of all ratie's— and ——
J 1 J 1

fori <j.

2.6 Adjustment for serial correlation

The methods currently used to accommodate serratlation in MK tests are
based on estimation of autocorrelations and adpustiof the variance of the test
statistics (Hamed & Rao, 1998; Yue & Wang, 2004)cIStechniques perform
satisfactorily when tested on artificial data gewed by an autoregressive
model, but they also have substantial weaknessepailticular, it should be

noted that the estimates of autocorrelations amcection factors are strongly

10
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influenced by outliers and trends in the measursd,cand removal of outliers
and trends prior to the estimation of autocorretatiis a difficult task.

We created a method that is a simple extensioheoptocedure proposed by
Hirsch and Slack (1984) to handle correlations sxrgeasons. First we
considered a dataset comprising observatygns., y,, made on & consecutive
years. Then we regarded it as observations frortwo-year periods, and

reorganized the data in the following matrix:

Two- year period First response Secondesponse

1 Ya Y
2 Y, Y,
n y2n—1 y2 n

Finally, we substituted the ordinary MK test foswam test based on the two new
columns that were formed. Analogously, one cangaoize m columns of
responses intord columns of responses with doubled time steps.ekample,
monthly data given in twelve columns with time stepe year can be
reorganized into 24 columns with time step two geddf course, it is also
possible to reorganize data into periods of thiessgs/or more.

Figures 2.1 and 2.2 show how our procedure perfdrmeen the original
data were observations of a first order autoregreg®&R) model with normally
distributed error terms. As expected, there wa®msiderable loss of power
when the new matrices contained a small numberowfsr(less than ten).
However, the two diagrams also show that our proeedan increase the
robustness to serial dependence without any seleggf power. In addition, it
is easy to comprehend, and it can be applied ttyadéls of MK and partial MK

tests, which makes it an attractive techniquerfmd assessments.

11
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Dk=1mk=20k=4
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Figure 2.1 Power functions of MK tests when the original 20-year data series was split into k
series with a time step of n/k. Raw data comprised independent normal random variables

with variance one and linear slope from 0 to 0.2. The nominal significance level was 5%

(one-sided).
mk=1mk=20k=4
18%
16% -
14% -
T 1205
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Figure 2.2 Actual significance levels of MK tests based on original and reorganized data
when the original series were generated according to AR(1) processes with p= 0, 0.1, 0.2,
0.3, and 0.4. The parameter k refers to the time step in the reorganized data series, and the

nominal significance level was 5% (one-sided).
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3 Trend assessment using response surface

methodologies

Significance tests for trends provide informatidooat the presence or absence
of systematic changes over time. A more detaileddrassessment also requires
information about both the shape of the observeddircurves and whether the
trends in different groups of data are synchrondéiexe, we show how such
information can be obtained by fitting responsdagies to vector time series in
which the coordinates are ordered according to sase-defined criterion.
Figure 3.1 illustrates a trend surface fitted toogghorus concentrations
observed at the mouths of a set of rivers that wedered with respect to their

average phosphorus level.

Normalized Tot-P
conc. (ug/l)

Indalsélven R.

1989
1992

n
[e2]
(<]
—

1998
2001
2004

Figure 3.1 Trend surface fitted to normalized annual summaries of total phosphorus (Tot-P)
concentrations in fifteen Swedish rivers flowing into the Bothnian Bay and Bothnian Sea. The
normalization was based on water discharge and the amount of particulate matter, measured
as the difference in absorbance between unfiltered and filtered samples. All investigated

rivers along with sampling sites are listed in Paper I

13



Chapter 3

3.1 A basic semiparametric regression model

The origin of our trend surface methodology wasmiparametric regression
model developed by Stalnacke and Grimvall (2001) ldussian and co-workers
(2004). This model assumes that all observatiomsbeasorted into a matrix,
where the columns correspond to sampling years, taedrows represent
sampling sites, seasons, or other groupings ofd#a. Furthermore, it is
assumed that the observed response can be decahmptusthe following three
components:

() a deterministic response surface indicating kthenan impact on the

environment;

(i) a regression expression describing the impdiatovariates representing

meteorological variability or other measured ndttivetuations;

(iif) random fluctuations caused by unobservabtidis.
Let us first assume that we have exactly one obsiervfor each combination of
year and group. Then the observed state of thea@ment an equidistant time

points will define aimm-dimensional vector time series

yt :(yt(l),---,yfm))T,t =ZL...,n
and the observations g@f covariates representing natural fluctuations @& th

investigated system can be summarized in a matrix

® ®
U

(m) (m)
X .. Xpt

Furthermore, our response surface model can beessgul as an equation

system

y =g +é,8i“’(>gi” - E(xii”))+£t“), j=1...m t=1..n

14
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where the sequence of vectors =(a”,...,a!™)",t=1...,n represents a

deterministic temporal trend,

gY . . . BY

Al B
is a matrix of time-independent regression coedfits, and the error ternss”
j=1,..mt=1, ...,nare identically distributed with mean zero.

The model parameters were estimated by using alipetideast squares
technique. For given smoothing factotsand A,, and measures of roughness
Li(a) andL,(a) of the intercepts, the parameters were estimagadinimizing

S(a, B, 2) + AL (a) + A,L,(a)

where

£y -a -4 -x"))

j=1

S(a, 8, 4) =

_.
i M:
i

represents the residual sum of squares. Normallyseed the expression
— a(]) t+1
e |

to impose smoothing over time wherdaéa) had different forms for different
types of data. When the coordinates of the veator series were ordered along

some gradient, we computed

where

15
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and

was used for circular smoothing. Data representiifterent seasons were

smoothed sequentially by setting

where

and
s=t(m-21) + |
defines the sequential order of the observations.
The gradient, circular and sequential smoothirey svecial cases of more
general smoothing patterns introduced in Papemhlly, it can be noted that a

small change of the notation if(a,f,4) is sufficient to handle the more

general case when the number of observations vauiils sampling year or
coordinate of the analysed vector time series (lduss al, 2004).

The methods described above were implemented irs@itware Multitrend
(LiU, 2008). An advantage of our methods over otsaroothing methods
(mainly Gaussian smoothers and thin plate spliseg, Hastieet al, 2001,
Hardle, 1997) is that the smoothing pattern camablered to take into account
almost any relationship between the vector compisneiihe numerical
algorithms in Multitrend were based on a backsfgtiiechnique suggested by
Stalnacke and Grimvall (2001).

3.2 A new resampling technique

Resampling techniques are widely used to estimageprecision of sample

statistics. The basic idea behind such techniqaethat the distribution of

16
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estimators or predictors can be explored by penfagraimulations or theoretical
calculations in which an unknown cumulative disitibn function (c.d.f.) is
substituted for its empirical c.d.f. The tetmwotstrapis frequently used when
new datasets are created by drawing with replacerfmem a given set of
statistically independent observations or modelpoments.

We undertook residual resampling (Mammen, 2000ag®ess the precision
of parameter estimates in semiparametric regressaels. To be more precise,
we first computed model residuals

_ I RPN _ o _
et(n - yt(n _at(n _éﬁi(n(xiin _)—(i(.n) — yt(n _yt(n’ t=1..n j=1..m
and then assigned new response values to the gredictors by setting
yt(i)* — yt(i) _q(j) +q(i)*
wheree”",t=1...,n, j =1 ...,m denotes resampled residuals.

In ordinary residual resampling, new residualsdreavn randomly from the
original model residuals, and, consequently, thex@dure generates statistically
independent error term&lock resamplinghas been proposed as a means of
preserving short-term correlations in time serieatad (Lahiri, 1999).
Furthermore, it has been shown how block resampliogedures can be refined
by concatenating with higher likelihood those bledkat match at their ends
(Carlsteinet al, 1998; Srinivas & Srinivasan, 2005). Howeversitnclear how
two-dimensional blocks should be selected and nedtdio achieve optimal
results. Therefore, we developed a new form of wamed resampling, in
which an ordinary bootstrap sample of the origirediduals was modified to
restore important dependencies over time and aseIgss.

Constrained residual resampling implied that treamapling favoured those
combinations of the original residuals that hadirdete auto- and cross-

correlations. In the case of gradient smoothingfive& computed all the model
residuals and their total variation
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and

where the first sum was used as a measure of trételhm temporal variation
of the residuals, and the second one was introdtedpture variation across
series. Finally, we formed the ratios

_R(®)
T (e) = —2\*/
AANE
and
T (0=
Ro(8)

that were subsequently used as targets for a stespebp modification of
ordinary bootstrap residuals. Targets for other atimiag patterns are formed
analogously (Paper I).

The modification of bootstrap residuat¥ was based on an iterative
proposal-rejection algorithm in which pairs of cegls were swapped to restore
desirable statistical dependencies. At each itarata pair of residuals was

randomly selected, and the ratios

T(e) = o)
R..(€)
and
T(e) =)
R.(€%)
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were computed before and after swapping the seleptar. If the swap

decreased the Euclidean distance

JT(€) —T,(e)* +(T,(e") - T,(e))’

to the target it was accepted, otherwise it wasctef. The swapping was

stopped after a predefined number of proposed saapsnsecutive rejections.
Figures 3.2 and 3.3 illustrate how the swapping certify the statistical
features of the bootstrap residuals. The upperhgmphe first figure shows
residuals with a strong correlation across seriBse ordinary bootstrap
subsequently destroyed that correlation, but it gatored by the swapping. The
upper graph in the second figure demonstrates sstaliy independent
residuals. Ordinary bootstrap then produced a new & statistically
independent residuals, and that configuration wésalmost unchanged during

the swapping.
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Figure 3.2 Constrained resampling of residuals that are strongly correlated across stations.
The three graphs show the original data (a), an ordinary bootstrap sample of that dataset (b),
and the same bootstrap sample after 100,000 proposed swaps ().
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Figure 3.3 Constrained resampling of statistically independent residuals. The three graphs
show the original data (a), an ordinary bootstrap sample of that dataset (b), and the same

bootstrap sample after 100,000 proposed swaps (c).

The resampling procedure just presented was dekifprethe case of one
observation per cell. For the general case witaArging number of observations
per cell, we introduced the random effect model

eV =0"+nll, t=1..,n j=1...m k=1..,n(,j)
where € denotes thekth residual of thgth series at time. First, the cell-
specific random effects” were predicted using expressions of the form
5(1) - ,0 (1 e(J)
where
V()
V(3) +V(m)/n(t, j)

(j) =
pt -

and\7(5 ) and\7(n ) denote the estimated variances of the two typesmmdom
effects (Hall & Maiti, 2006). Thereafter thg') were predicted by subtracting

the predicted cell-specific components from thegioal residuals. Finally,
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constrained resampling was used to sample iﬁ'é whereas the ordinary
bootstrap was applied to thg)’ representing variation within cells.

In Multitrend, we normally repeated the resamp@@f times and computed
the empirical standard deviation of the estimatensder consideration.
Furthermore, we examined the sample standard damviatf the resampled
residuals and compared it with the sample standakdation of the residuals
obtained when our model was fitted to resampled.dahe ratio of the two
sample standard deviations was used to adjustrtipgrieal standard deviations

for the degrees of freedom of the semiparametgoession model.

3.3 Determination of smoothing factors using block cros-

validation

Cross-validation is a widely used technique toneste the predictive power of a
model and to select models of suitable complexytygplitting the entire dataset
into training sets and test sets. In its simplesinf cross-validation comprises
three steps (Shao, 1993): (i) the model is fitied ttraining set; (ii) the fitted
model is used to predict the observed responses test set containing all
remaining data; (iii) the prediction error sum qglares jpresg is computed for
the selected test seBlock cross-validationrefers to methods in which the
original dataset is split into non-overlapping Wecand the three steps listed
above are repeated for all test sets consistirtat from a single block. Leave-
one-out cross validation refers to block size one.

In this thesis, we used block cross-validation étest suitable smoothing
factorsA; and A, in the semiparametric regression model. The cvasidation
was repeated for different levels of these smogthactors, and a simple search
algorithm was employed to determine the levels thakimized the predictive
power of the model. Blocks were formed by joinidgabservations made the

same year. A simulation study has indicated thathshlocks represent a
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reasonable compromise between statistical effigie@nd robustness to

correlation among the observed responses (Libisgll@rimvall, 2003).

3.4 Normalization with respect to covariates

Environmental data often exhibit substantial ndtwaiability caused by the
weather conditions at or prior to the sampling scma Our semiparametric
regression model enables normalization (or adjusth&f observed responses
for the levels of a set of user-defined covariatest example, the observed
concentrations of substances in river water sampdes be normalized to an
average runoff. If successful, such operations resmove or reduce irrelevant
variation in the collected data and thereby alswifgl the impact of human
interventions on the environment. Meteorologicalrmalization and other
statistical adjustments are often used for trersessment of environmental
quality, in particular when considering data onand water (e.g., Clarét al,
2000; Hussiaret al, 2004; Libiseller & Grimvall, 2003; Thompsat al,, 2001).

The normalization formula in our semiparametric elozhn be written
~ - P~ - : .
7=y - £ -X0), J=heam t=1.0n
and further details can be found in previous puablons from our group
(Hussiaret al, 2004; Libiseller & Grimvall, 2003; Stalnacke &i@vall, 2001).
Figure 3.4 illustrates how the influence of varigpin runoff and amount of
particulate matter was removed from observed flosighted mean

concentrations of total phosphorus in the Angerrivamé River, which

discharges into the Bothnian Sea.
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Figure 3.4 Flow-weighted annual mean concentrations of total phosphorus (Tot-P) in the

Angermanalven River before or after normalization with respect to runoff and amount of
particulate matter.
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4 Change-point detection

In climate research, a time series of observatiodala is said to be
homogeneous its temporal variation is caused solely by afions in weather
and climate. However, many such series are contednwith artificial level
shifts, which can, for example, be due to modifarad in measurement devices,
relocation of sampling sites, or changes in the ediate vicinity of the
measurement station. To enable correct interpogtaif observed trends, it is
obviously necessary to develop efficient techniqueesdetect change points in
and homogenization of the collected data seriesna@blogists have played a
leading role in that context (Peterseiral, 1998).

Normalized Tot-P conc. ( pg/l)

Figure 4.1 Smooth trend surface augmented with a discontinuity between 1995 and 1996
fitted to total phosphorus (Tot-P) levels in surface water at Dagskéarsgrund in Lake Véanern.
Samples were collected at depths of 0.5, 10, and 20 m.

This chapter begins by reviewing some existing washfor detecting
change points and then goes on to show how theomespsurface model

described in Chapter 3 can be augmented with a cpem representing abrupt
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level shifts. Figure 4.1 illustrates how such a elathn highlight a discontinuity
in observed water quality data.

4.1 Review of some existing methods

As already mentioned, climate research has beampaortant driving force in

the development of methods for detection of chgmmets and homogenization
of long time series. In general, a climate seriesws substantial short-term
variability but only a weak or very weak long-tetnend. If two time series
represent the same region, and the difference letwbe two series is
computed, it might even be assumed that the clirsgieal will be practically

eliminated. Accordingly, change-point detectionoiten based on models in
which the mean is constant if there are no aréfilgvel shifts.

The presence of a shift in the mean of a normatiligion at some unknown
instant can be tested with a likelihood ratio t@dsawkins, 1977; Worsley,
1979), and a multivariate extension of that tesals available (Sristava &
Worsley, 1986). Scientists have embedded the t#std in procedures in which
the climate signal of a candidate series is remdwedubtracting a reference
series. Furthermore, they have addressed the pnobiedetecting an unknown
number of change points in multiple time seriesm&oof the major

achievements are described in the following sestion

4.1.1 The standard normal homogeneity test for a singlehange point

The gandard _wrmal lomogeneity ést (SNHT) is a likelihood ratio test
proposed by Alexandersson (1986). It is appliedn® series dataz, ..., z,},

which are obtained by first subtracting a homogen@ierence series from the
time series to be scrutinized and then standaglithe series of differences to

mean zero and variance one. The null hypothesisearSNHT implies that the
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mean is zero for all time points, and the altex@ahiypothesis involves a single

shift in the mean. The test statistic is the maxmuof
T, =v(z) +(n-v)z)

wherez is the mean of; to z, z, is the mean o, toz, and 1< v<n.

4.1.2 A fixed-effect model for simultaneous detection afultiple change

points

Caussinus and Mestre (2004) have developed a prozdd determine an
unknown number of change points in a vector timgese For a given set of
change points the measured values are given byearlimodel with fixed
effects. One group of these effects defines thenmnesponse and the artificial
level shifts in the measured data. Another grouypreagents annual weather
effects common to all stations in the investigatedion. A stopping rule
determines the number of change points.

To enable a more precise definition of the outlipeacedure, let the vector

M AT AR AL 4 AL |

denote observations made rat stations during a period of years, and let
u=(u,...,u)" be a vector of annual weather effects. FurtherKle ..., K,
indicate the number of segments defined by the giguoints in each of tha
data series, and let the vector.

u=(u® U 4 4™y
ARFRY 7 ha Ry /)y T
represent segment-specific effects. Then, the vexdtobserved responses can
be written on the form
Y=Su+Tu+g
where

e=(ED, ™ gD gm)T

n
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Is a vector of noise components, &@ndT are incidence matrices in which
each row consists of zeros and a single one. Tleeof& is to assign a segment
to each observation, afdis used to indicate the year of each observakitmre

specifically, the two matrices can be written

s 0 . 0 10...0
0 s® .
o . 0 s™ 10...0
S=| 77 landT =

ST 0 0 0 1
0 S® )

0
0 o sS™ 0 01

where s is a vector of lengtK; with K;-1 zeros and a single one indicating the

segment of thgh series to whicly,"” belongs. The constraint

g = (u +...+u) -0
n
Is introduced to make the parameters identifiable.
For a given number of change poiis K; + ...+ K, the model parameters
are estimated using a least squares algorithm inhwthe optimal combination
of time points and sizes of the level shifts isedetined. The number of change

points can be estimated using a penalized likelh@approach. Letting

E(Y"(K)) denote the least square estimate&E¢Y (K  in)the optimal model
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with a total ofK change points an&”  (@he least square estimate®f’  (0)

a model without change points

ii{(é(th(K))z _(ét(i)(O))z} oK
C(Y)=In1-=———— o + In(nm)
ZZ{Yt(” — E(J)(O)} nm-m-n+1

j=1t=1

is computed for alK, andK* = argmin {C, (Y)} is the estimated number of

change points.

4.1.3 A mixed linear model for sequential detection of cange points

Another method used to detect multiple change poisitdesignated MASH
(multiple analysis of _sries for _lemogenization; Szentimrey, 2000). The
underlying probability model is a mixed linear mbde&hich implies that, in
contrast to Caussinus and Mestre’s model, MASH e&ke into account the
covariance structure of data representing diffes¢ations. On the other hand, it
does not include any procedure to simultaneoudisnate all change points.

In matrix form, the model behind MASH can be writte

Y=Su+TU +¢

whereU =(U,,...,U )" and¢ =(¢,,...,£,. )" denote zero mean Gaussian random

vectors,u is a vector of segment-specific fixed effects, &dnd T play the
same role as mentioned in section 4.1.2. In gendral coordinates of the
vector are assumed to be independent, whetéasan have an arbitrary
covariance matrix.

The parameter estimation is based on a procedurehioch an optimal
reference is constructed for each candidate sehtse specifically, each
reference series is a weighted sum of all serirerdhan the candidate series,
and the weights are selected so that the variamaha candidate-reference
differences is minimized. Significance tests aifkzetd to determine the number

of change points.
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4.1.4 A general procedure for simultaneous detection of mitiple change
points

Picard and co-workers (2007) have developed a gkesegmentation method
for a sequence of Gaussian vectors with an unknmaymber of level shifts. The
number of segments and their length can differ faoardinate to coordinate,
but the mean is always constant in each segmeiaiddition, it is worth noting
that the cited method seems to combine importavaradges of MASH and the
procedure suggested by Caussinus and Mestre. LikBH&Ricard’s technique
is based on a linear model
Y=Su+TU +¢

with both fixed and random effects, and, as in Gaussand Mestre’s method,
all change points are estimated simultaneously. latier is achieved by using
an expectation-maximization (EM) algorithm (Hasdteal, 2001) to estimate all

model parameters, including the covariance matfrix.o

4.2 Detection of change points in the presence of smbadtrends

When the trends in the different coordinates of exter time series are
significantly different, the above-mentioned methaalith piecewise constant
means are not appropriate. In particular, ther@ meed for techniques that are
easy to comprehend, yet capable of detecting chpogws in the presence of
smooth trends that may differ from coordinate tordmate. In the current work,
we developed such methods by extending the resgumtce models presented

in Chapter 3. More specifically, we introduced mieds the form
W= + 500 - ERP )y + €0, j=Liam, t=Lon

where 7y, :( t”,...,;/t”‘))T, t = 1, ..., n defines contemporaneous abrupt level

shifts in all the investigated series.
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The detection and estimation of artificial leveifshwas based on several

different adjustment functiong, t = 1, ...,n. In the case of a single level shift

that occurred simultaneously at all stations, weduasdjustment functions of the

form

o = wift<t
O+ 6()),if t>t

whered) denotes the level shift in thih coordinate between timégsandt;+1.

Furthermore, we introduced simple parameterizatisnsh as
6(j))=6,, j=1..,m
or
6(j))=6,+6,j, j=1..m

Because the parametgiis not identifiable in the presence afit was normally
selected so that the average adjustment was zero.
Adjustment functions involving two change pointsrevdefined analogously.

In particular, we used the parameterization

Y = uif t<t ort>t,
* u+6(j),if t <t<t,

when we searched for a period when the measuredewvalere biased.
Moreover, when a change point occurred in the neidifl a year and, hence,

influenced two consecutive response vectors, waatdd functions of the form

wif t<t
yO =3 u+56(j),if t=t +1
u+o(j),ift>t +1

where0<9d<1.
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In our software Multitrend, the parameters werengsied by using a back-
fitting algorithm in which estimation odr alternated with estimation ¢ and y.

Further details are given in Paper IV.
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5 Assessing data quality and trends in surface water

records

Time series representing a network of station®otesn analysed one by one, but
the work reported in this chapter demonstratedatieeed value of performing a
joint analysis of multiple data series. In partaryit was noted how synchronous
increases and decreases in water quality can bealssl/ without utilizing
complex space-time modelling. The response surfaethodology employed
has already been described in Chapters 3 and 4.

The aim at the onset of this study was to extragbmong-term trends from
a water quality database that was considered td hegh quality. However, the
results obtained made it necessary to focus onglathty issues and detection
of artificial level shifts. Substantial parts oktinesults provided by the methods
discussed in Chapter 3 were published in Papenid, our analysis of change
points presented in the following sections was thasethe information given in

Paper IV.

5.1 Investigated data

Concentration data from major rivers and the twgdat lakes in Sweden were
acquired from the Swedish University of Agricultugeiences (SLU, 2008), and
runoff data were provided by the Swedish Meteonalmigand Hydrological
Institute. Figure 5.1 and Tables 5.1 and 5.2 cantaformation about the

sampling sites and water quality parameters tha¢ werestigated.
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Figure 5.1 Map of Sweden with location of sampling sites in the investigated rivers and
lakes.

Table 5.1 Water quality parameters and number of observations for the investigated water

bodies
Water quality parameter Time span No. of
observations*

Total nitrogen (persulphate digestion) 1988-2005 200-222
Kjeldahl nitrogen 1980-2005 282-312
Sum of nitrite and nitrate nitrogen 19802005 283-312
Ammonium nitrogen 19802005 283-312
Total phosphorus 19802005 283-312
Phosphate phosphorus 19802005 283-312
Total organic carbon 1987-2005 205-228
Chemical oxygen demand (permanganate 19802005 283-323
consumption)

pH 1980-2005 283-323
Absorbance (420 nm, 25 °C, filtered and unfiltered 19802005 283-323
samples)

*Sampling was done more often in the Skivarpsan River and less frequently in the Gidean
River and Alsteran River than in the other watercourses.
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Table 5.2 Recipients, sampling sites, and runoff area for the investigated rivers and sampling

sites in Lakes Vanern and Véattern

Recipient Nr River Sampling site Runoff area (km  ?)

Bothnian Bay 1 Torne Alv Mattila 34,441
2 Kalix Alv Karlsborg 23,845
3 Rane Alv Niemisel 3,781
4 Lule Alv Luled 25,225
5 Pite Alv Bolebyn 11,285

Bothnian Sea 6 Ume Alv Stornorrfors 26,567
7 Ore Alv Torrbole 2,860
8 Gide Alv Gidedbacka 3,442
9 | Angermanalven Sollefted 30,638
10 Indalséalven Bergeforsen 25,767
11 Ljungan Skallbdleforsen 12,085
12 Delangersan Iggesund 1,992
13 Ljusnan Ljusne Strommar 19,820
14 Gavlean Gavle 2,453
15 Dalélven Alvkarleby 28,921

Southern Baltic | 16 Nykopingsan Spanga 3,589

17 Motala Strém Norrképing 15,387
18 Botorpstrom Brunnso 975
19 Eman Emsfors 4,441
20 Alsteran Getebro 1,333
21 Ljungbyan Ljungbyholm 735
22 Lyckebyan Lyckeby 810
23 Morrumsan M&rrum 3,365
24 Helgean Hammarsjon 4,144
25 Skivarpsan Skivarp 102
26 R&an Helsingborg 166

Kattegat and 27 Ronnean Klippan 963

Skagerrak 28 Lagan Laholm 6,133

29 Nissan Halmstad 2,677
30 Atran Falkenberg 3,340
31 Viskan Asbro 2,160
32 Gota Alv Trollhattan 47,035
33 Orekilsélven Munkedal 1,335
34 | Enningdalsélven N. Bullaren 631

Lake Vanern 35 Megrundet
36 Dagskarsgrund

Lake Vattern 37 Jungfrun
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5.2 Examples of synchronous temporal changes

5.2.1 Total phosphorus

Simple scatter charts of observed phosphorus ctratiems versus time
indicated that, in the majority of the investigataders, the concentrations
decreased from 1980 to 1983 and then increasedhane also seemed to be a
drop around 1996. This temporal pattern emergedenwearly when the
response surface methodology presented in Chapteas3used to fit smooth
trend surfaces to annual normalized concentrafimnselected groups of rivers.
Figure 5.2 illustrates the results obtained fote&h rivers flowing into the
Bothnian Bay and Bothnian Sea when the observedslefeiotal phosphorus
were normalized with respect to water discharge amwbunt of particulate
matter (the latter measured as the difference sorlance between unfiltered

and filtered water samples).

A —

NI Y,

Normalized Tot-P
conc. (ug/l)
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Figure 5.2 Trend surface fitted to normalized annual summaries of total phosphorus (Tot-P)
concentrations in fifteen Swedish rivers flowing into the Bothnian Bay and Bothnian Sea
(Table 5.2). The normalization was done with respect to water discharge and the amount of
particulate matter, measured as the difference in absorbance between unfiltered and filtered
samples.
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Closer examination of the data underlying Figure mdicated that the
synchronous decrease around 1996 actually was p sekange. This
discontinuity emerged even more clearly when theyains was restricted to the
four rivers that had the lowest frequency of owulieBecause a change in
laboratory practice took place in the middle of 89&e used a model in which
the discontinuity was split between two consecuywars. Furthermore, we used
water discharge as a covariate and allowed thedfilee discontinuity to vary
with the average phosphorus concentration in tladyaed river (see Paper V).
Figure 5.3 shows the fitted trend surface, with det¢ected discontinuity, for
those four rivers and Table 5.3 presents the estomkevel shifts and their
standard errors. In particular, it can be noted kel shifts also occurred in
rivers where the measured phosphorus concentratieresfar above the limit of

detection of the analytical procedure.

Normalized Tot-P conc. ( pg/l)

2005 Indalsélven R.

Figure 5.3 Trend surface with discontinuities fitted to total phosphorus (Tot-P) levels in four
major rivers in northern Sweden. The statistical model and the sampled rivers were the same
as in Table 5.3.
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Table 5.3 Estimated level shifts in total phosphorus concentrations recorded in four rivers in
northern Sweden. The model had level shifts that were equally split between 1995-1996 and

1996-1997, and the size of the level shifts was allowed to vary with the sampled river

River Level shift ( pg/l) Standard error ( pg/l)
Indalsélven —2.90927 1.130746

Rane —2.61134 0.774648
Dalélven -3.26740 1.115243

Gide —2.89887 1.348316
Average —2.92172 0.875484

In search of further evidence of synchronous chsnge phosphorus
concentrations, we also analysed data from LakeeWédand Vattern (Paper Il).
Figure 5.4 shows that the temporal changes in pluysp concentrations at
Dagskéarsgrund in Lake Vanern were almost identaicalepths ranging from 0.5
to 20 m. In addition, the trough in the early 1988 the drop around 1996 that
we had found in the data from rivers in northerne8en were also observed
here.

Normalized Tot-P conc. ( ug/l)

=
©
[e5]
o

2005 0.5m

Figure 5.4 Trend surface fitted to temperature-normalized concentrations of total phosphorus
(Tot-P) at Dagskéarsgrund in Lake Vanern. The samples included in this analysis were
collected at three different depths (0.5, 10, and 20 m).
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Because the response surface methodology used &am dbe diagram in
Figure 5.4 may have smoothed out step changeotupe gradual changes, we
also plotted the individual concentration recordeng with trends fitted
separately to data from 1980-1995 and 1996-200juk&i5.5). This graph
strongly indicated that the decrease around 1996 acdually a step change,
whereas the decrease in the early 1980s seemeditmlé changes spread out

over several years.

¢ Normalized Tot-P ug/l —m—Trend in Tot-P pg/l
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Figure 5.5 Trend curve for temperature-normalized concentrations of total phosphorus
(Tot-P) shown along with individual concentration records of that element in samples

collected at different depths (0.5, 10, and 20 m) at Dagskéarsgrund in Lake Vénern.

To quantify the step change between 1995 and 1986itted the change point
model described in Chapter 4 to data from 1991 andhods, and the results are
illustrated in Figure 5.6. The size of the discouily was estimated to 3ydg/I,
and residual resampling showed that the standaodt ef the estimated level

shift was much smaller (0.44ig/l). Possible causes of these surprisingly

synchronous level shifts are scrutinized in secidnl.
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Normalized Tot-P conc. ( pg/l)

Figure 5.6 Smooth trend surface (augmented with a discontinuity between 1995 and 1996)

fitted to total phosphorus (Tot-P) concentrations at Dagskarsgrund in Lake Vanern.

5.2.2 Total nitrogen

Statistical analyses of total nitrogen measuremdrdsed on persulphate
digestion Tot-N(ps)) revealed a pronounced downward trend that stani¢he
mid 1990s. Figure 5.7 shows the trend observedivers discharging into the
Kattegat and Skagerrak, and a similar pattern wasd for rivers flowing into
the Baltic Sea. In northern Sweden, where the aeenégogen concentration is
lower, the downward trend was weaker.

Total nitrogen levels can also be determined by mdmng the sum of
Kjeldahl nitrogen, nitrite, and nitrate nitrogem kheory, these computed
concentrations Tot-N(Kj)) should be strongly correlated with tAet-N(p9)
values. However, simple scatter charts revealecese@markable discrepancies.
Firstly, there was a small subsetTaft-N(ps) records that indicated levels that
were twice as high as they should have been, asdctiuld be ascribed to
calculation or dilution errors in the chemical aysed (Paper Il). Secondly, there

was an unexpectedly strong downward trend in theusanof organically bound
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nitrogen Org-N(ps)), which was estimated by computing the differebetwveen
the Tot-N(psg) value and the sum of the measured concentrabbmsorganic
nitrogen species (ammonium, nitrite, and nitrate).

Normalized Tot-N conc. ( pg/l)

_Viskan
Orekilsélven R.
Lagan
Enningdalsilv R.

1996

Sy <
L 8
N N

Figure 5.7 Trend surface fitted to flow-normalized concentrations of total nitrogen (Tot-N(ps))

in seven rivers (the Lagan, Nissan, Atran, Viskan, Gota, Orekilsalven, and Enningdalsalven

Rivers) discharging into the Kattegat and Skagerrak.

Figure 5.8 shows a smooth response surface fitt€drd-N(ps) records for
the major Swedish rivers discharging into the Kgdteand Skagerrak. It seems
that the computedOrg-N(ps values started to decline in the mid 1990s.
Furthermore, this decrease was remarkably synchsyneven though the
hydraulic residence times in lakes upstream ofstln@pling sites ranged from
less than a year to almost ten years in the GatarMasin. A similar analysis of
organic nitrogen records obtained by subtractiregghm of nitrite and nitrate

concentrations from Kjeldahl nitrogen did not revaay clear temporal trends.

42



Assessing data quality and trends in surface watards

Normalized Org-N conc. ( pg/l)

_Lagan
Orekilsalven R.
Viskan

Gota R.

o
o
o
N

2002
2004

Figure 5.8 Trends in flow-normalized concentrations of organic nitrogen (Org-N(ps)) in rivers

discharging into the Kattegat and Skagerrak. The investigated rivers were the same as in
Figure 5.7.

Figure 5.9 provides further evidence that the ah@t measure of the nitrogen
content had a dramatic effect on the conclusioasd¢hn be drawn about recent

temporal trends.
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Figure 5.9 Trend lines and associated 95% confidence bands for the arithmetic mean of
flow-normalized concentrations of Tot-N(ps) and Tot-N(Kj) in rivers discharging into the

Kattegat and Skagerrak. The investigated rivers were the same as in Figure 5.7.
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5.2.3 Organic matter

At all of the studied sites, the amount of orgazacbon in the collected water
samples has long been measured as chemical oxygeand by means of
potassium permanganate titrati€@dD(KMnQy,)). Since 1987, the samples have
also been analysed for total organic carbb@@ using a TOC analyzer. Due to
substantial interannual variation in both the TOQ &0OD records, it was
difficult to extract any clear temporal trends fréime original time series of data.
However, simple plots of TOC-to-COD ratios reveakslreral patterns that
called for further attention. Figure 5.10 showst it values recorded in 1997
were clearly elevated, and that there was an upwemdency in the ratios
calculated for 1987-1990. Moreover, almost idehtteanporal patterns were
found when the entire dataset was split into ssbsepresenting different
regions in Sweden. Figure 5.11 shows the dataHerriverine input to the
Bothnian Bay and Bothnian Sea.

Using the methods described in Chapter 4 and Pl&fenve undertook an
entirely data-driven search for a time period wilese average TOC-to-COD-
ratio differed from the general trends in the d#a.expected, our algorithm
identified 1997 as a period with abnormal data (Sge 5.12). Furthermore, the
estimated level shift that year was 0.062 unit¢haistandard error of 0.0038.
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Figure 5.10 TOC-to-COD ratios calculated for all

investigated (Table 5.2). The vertical lines indicate change points.
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Figure 5.11 TOC

and Bothnian Sea (Table 5.2). The vertical lines indicate change points.
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TOC/COD
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Figure 5.12 Trend surface with discontinuities fitted to the data given in Figure 5.11. Two
level shifts of equal size but with different signs were assumed to be present during the

period 1990-2005. The timing of the shifts was determined by an unprejudiced search.

5.3 Interpretation of observed patterns

Our study of water quality data provided numerowanaples of remarkably
synchronous temporal changes in rivers represenangvide range of
hydrogeological conditions and anthropogenic pnessuTheoretically, there
were four plausible explanations for such coingydiluctuations: (i) large-scale
human interventions; (ii) large-scale variation \weather conditions; (iii)
intentional or inadvertent alterations in samplangd laboratory practices; (iv)
artefacts in the statistical procedures used ttys@dhe collected data.
Inasmuch as the data from different regions had laealysed separately, we
could rule out the fourth explanation, namely, plossibility that the remarkably
synchronous changes in water quality were merelgréagfact of the statistical
procedures used. Moreover, we noticed that the afskndesired smoothing
across sampling sites in our response surface wohelibgyy was generally small,

because the smoothing factors were selected tonzgtithe predictive power of
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the underlying regression model. In the sectiora fbllow, the other three

explanations are considered separately for eackrwgatlity parameter.

5.3.1 Total phosphorus

It is indisputable that, around 1996, the phospbotavels decreased
simultaneously in water bodies representing a wigege of anthropogenic
pressures and hydraulic residence times ranging fess than a year to about
80 years. In addition, our change point analyse® gavery strong indication
that the decreases that were detected in both Vakern and Lake Vattern, as
well as in several of the investigated rivers, haxturred rather abruptly.
Considering the magnitude and spatial distributidrth@ observed drops in
phosphorus in 1996, we ruled out the possibiligt tihose decreases could have
been largely due to anthropogenic interventions.

Internal loading triggered by specific weather dtods can occasionally
cause relatively rapid changes in phosphorus caratems in a body of water.
However, inspection of water discharge and tempegadata did not reveal any
events that could explain why the decline in tqthbsphorus in 1996 was
greater than all other interannual changes duhegpist fifteen years, and why
the same pattern was found in both northern andhsou Sweden in 1996.
Accordingly, we also excluded the idea that theeolsd step change was a
purely natural phenomenon.

Thus the only plausible explanation remaining casgal changes that had
occurred in the sampling methods, sample handlorgchemical analyses.
Notably, a report from the laboratory that condddfee chemical analyses did
describe changes in the methods used to determmecdncentrations of the
substances of interest (Sonesten & Engblom, 20BbWwever, our analysis
strongly indicated that the size of the artificiavel shift was larger than
reported by the cited authors, and also that cdretemns far above the limits of

detection were influenced.
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Possible explanations for the trough in the eaf@8ds were discussed in
Paper Il. By the process of elimination, we coneldidhat this pattern in the
reported data was also strongly influenced by charig sampling or laboratory

practices.

5.3.2 Total nitrogen

The dramatic decrease in the computed levels @amcgritrogen Qrg-N(p9) is
an indisputable fact. Let us for a moment assura¢ lboth the total nitrogen
measurements based on persulphate digestion andblberved levels of
inorganic nitrogen were correct. Then there mustehaeen an unprecedented
change in the composition of organic matter in Sgreavatercourses (Paper II).
More precisely, an almost 50% decrease in the atrmiuorganic nitrogen that
could have been digested by persulphate would baweided in time with a
general increase in the amount of organic mattar ¢buld have been oxidized
with permanganate. We regarded this as very imjmieba

In search of plausible explanations for the downlmaend inTot-N(ps), it
came to our knowledge that the laboratory condgadtwe chemical analysis had
informed some clients about incomplete digestiorihef organic matter in the
analysed samples. Our statistical analysis of tii®gen data revealed the

magnitude and duration of those problems.

5.3.3 Organic matter

Cycles in the meteorological forcing and water patys can be responsible for
considerable temporal changes in the amount ofnoczgaatter in surface water
samples, and it cannot be excluded that changkesithuse may be responsible
for long-term trends in such data. However, mucthefvariability is suppressed
by calculation of TOC-to-COD ratios, and hence itréggnarkable that the

computed average level of those ratios suddenhgased by about 30% in 1997
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and then returned to the previous level. In lighthe finding that this temporary
level shift occurred simultaneously in differentrggsaof Sweden and in water
bodies representing a wide range of hydrogeologicahditions and

anthropogenic pressures, it seemed very improbtiae there were natural
explanations for this abrupt change. Accordinglg @oncluded that artificial

level shifts had also influenced the reported cotregions of organic matter in
Swedish rivers. However, we were unable to ascemtdiether such artefacts
had primarily affected the TOC or the COD records.

5.4 Implications for surface water monitoring

The results of our analysis of Swedish surface madada challenge the present
priorities in water quality monitoring. According Figures 5.6 and 5.9 and the
associated discussion, the temporal trends in pdtasphorus and total nitrogen
(Tot-N(pg)) concentrations reported over the past fifteearyavere influenced
to a greater extent by artificial level shifts thay actual changes in the
environment. Furthermore, Figure 5.12 indicate$ thaords of organic matter
were also strongly contaminated by artificial legéifts. This situation is, of
course, unsatisfactory. Moreover, it is very uniodte that the current
monitoring system has incomplete information ab&abwn measurement
errors, and no attempts have been made to remetensgtic errors that affect
large amounts of data.

Individual records that are obviously flawed cande¢ected and removed by
methods for process control or by using more spetols for water quality
monitoring (Clemenet al, 2007). However, both our analysis of water gyalit
data and the current efforts to extract tempogaids from observational climate
series show that the major problems in interpretivgycollected data are related
to relatively small systematic errors that affeda@e number of observations.

Such data problems may not emerge until the whig®ny of measurements
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from an entire network of sampling sites is sciatd. Hence, there is a strong
need for a monitoring system in which conventiogalality assurance is

complemented with thorough statistical follow-upreported values. Regarding
the statistical tools that are needed, we notedofleving:

() Visual inspection of scatter charts containoh@ta from many sampling

sites is an important element in any statisticall@ation of monitoring data.

(i) Noise reduction by adjustment for covariatesfarmation of ratios or

differences between interrelated water quality pet@rs can greatly

facilitate the detection of trends and data qualigblems.

(i) Fitting of trend surfaces to data represegtan ordered set of stations

enables detection of synchronous (artificial orl)rdavel shifts without

utilizing complex space-time modelling.

(iv) Models combining smoothing and change-pointedion in multiple

time series of data provide a useful tool for giiginy synchronous level

shifts and correcting historical data.
Visual inspection and noise reduction have longnbesed within the field of
data analysis. However, our response surface melibgids to estimate smooth
trends and change points at an ordered set obmsatonstitute a new and
powerful tool. In addition, our new technique foesampling statistically
dependent data enabled realistic calculations affidence intervals and
assessment of the statistical significance of deteevel shifts.

The mentioned data quality problems also highlitjet difference between
an environmental information system and a monitpsgstem that is focused
almost exclusively on data collection. Our study ltemonstrated that it is
possible to supplement the present raw data witerdd datasets in which
obviously flawed data have been removed and o#wards have been adjusted
for known systematic errors.
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6 Assessing data quality and trends in groundwater

records

The data on groundwater quality scrutinized in therk described in this
chapter proved to have a number of features thHkgdctor special attention: (i)
they were relatively scattered in space and tinig; serial correlation of
observed concentrations might have been responiiblepurious trends; (iii)
the evidence of anthropogenic trends varied styofgim station to station.
Accordingly, the statistical analysis focused oe firoblem of achieving an
overview of a fairly large dataset. The resultssprged in this chapter are

primarily based on Papers Il and IV.

6.1 Investigated data

The Geological Survey of Sweden (SGU) is respoasitor the national

monitoring of groundwater quality. A relatively ¢@ number of groundwater
bodies are normally sampled 2-6 times a year, dmd physico-chemical

analysis of the collected samples includes detextain of major inorganic ions,
pH, conductivity, and temperature (SGU, 2008). \Weestigated data from a
total of 77 sites in ten hydrogeological regiongy(F6.1) where sampling has
been conducted regularly at least since 1980. hicpéar, we examined the
concentration of sulphate and the buffering cagaoieasured as alkalinity and
acid-neutralizing capacity (ANC), and the ANC lewslsre computed according
to

ANC =|Ca? |+[Mg* |+|Na’|+|K*|+|NH; |-|cI|-[sT |- |NoO; |
It is worth noting that, since July 1992, the sdatmratory has been responsible

for the chemical analysis of both surface water @mdundwater samples

collected in the national Swedish environmental ioosimg programme. Before
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that time, the groundwater samples were analysetivatother laboratories
under contract from May 1980 to June 1984 and fdohy 1984 to June 1992,

respectively.

Region Number of stations

] I A 9
B 19

G C 4

H D 2
E 19

F 1

H G 4

F H

| 11

J 3

A 277

Figure 6.1 Sweden divided into ten geographical regions based on bedrock, hydrology, and

position relative to the highest coastline.

6.2 Detection and interpretation of trends and change gints

6.2.1 Alkalinity and ANC

A search for outliers in the reported concentraiohmajor cations and anions
revealed that a small fraction of the samples (@4tBof 5,557) had at least one
obviously erroneous recorded concentration, andl#ta on those samples were
omitted from the statistical analysis. MoreoverthbMK statistics for temporal
trends and visual inspection of the collected ddéarly indicated that local
pollution, presumably from road salt, had influesh@@ven of the 77 sites. All
data from these sites were excluded, because we prenarily interested in

regional trends and the possible response to desxtescid deposition.
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In an attempt to detect major patterns in the setedata, ordinary univariate
MK tests were employed to examine the presenceeafls in alkalinity levels.
When the achieved significance levelp-values) were assembled only
according to hydrogeological region, there was bai@us pattern in the results
that were obtained. However, after tpheralues were sorted with respect to
median alkalinity, a striking pattern emerged. As be seen in Figure 6.2, there
were significant downward trends at sites with lalkalinity, and there were
significant upward trends at sites with high alk&li. This was unexpected
because (i) the acid deposition in Sweden has deedeconsiderably over the
past two decades (Miljomal, 2008), and (i) low aikity groundwaters are
found primarily in aquifers with relatively shoggsidence times. In addition, the
downward trends in groundwater were contradictedupward trends in river
water. Notably, we observed the strongest upwambs in low-alkalinity rivers
and sampling sites located in catchments that mediqusly been exposed to
high sulphur deposition.

To further elucidate the existence of acidificattoends in groundwater, we
also examined time series of ANC levels. Figure st®ws the achieved
significance levels. In contrast to the results dtkalinity, the most significant
upward trends in ANC were discerned for groundwavetk low to medium
buffering capacity. In addition, we noted that #thewas generally good
agreement between the ANC trends in groundwaterigadwater (not shown).
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Figure 6.2 Achieved significance levels in MK tests for trends in alkalinity at 70 sites ordered
according to median alkalinity. Symbols: +++, ++, and + indicate positive trends significant at
levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative trends. The station
labels refer to the national Swedish groundwater monitoring programme. Three-star
significances (positive and negative) were noted for (from left to right) stations 58 4, 13 107,
33.202,19 15,20 1,75 2,70 14,3 14,3.53,29 8,3 _49,and 9_1.

+++

Figure 6.3 Achieved significance levels in MK tests for trends in ANC at 70 sites ordered
according to median ANC. Symbols: +++, ++, and + indicate positive trends significant at
levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative trends. Three-star
significances (positive) were noted for (from left to right) stations 54 18, 16 101, 37_56,
14_15, and 23_11.
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Considering that both alkalinity and ANC are intéye measures of
buffering capacity, we expected the two parameténs be strongly
intercorrelated. However, visual inspection of waatcharts of reported
alkalinity and ANC levels revealed a shift in tlosvest alkalinity levels in 1984,
at which time a new laboratory was engaged to conthe chemical analysis
(Paper III). After developing our new technique &brange-point detection (see
Chapter 4), we re-analysed the alkalinity and ANCords. More specifically,
we examined the difference between alkalinity ardiCAIn samples with low
ANC levels (less than 0.3 but greater than 0.05 mdegure 6.4 illustrates how
the annual mean of the estimated trend surfacéudlimg discontinuities) was
stabilized after 1984, when a new analytical procedwas introduced.
Consequently, we concluded (i) that the alkalinigwdls recorded during
different time periods were not fully comparableddii) that the ANC levels
computed in the present study constituted a mdiabte indicator of trends in
buffering capacity.
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Alkalinity-ANC (meg/l)

0,02 Y. e S
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Figure 6.4 Annual means of trend levels (including discontinuities) fitted to differences
between alkalinity and ANC in low-ANC samples for all groundwater stations investigated.
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Further analysis of the ANC data revealed pronouseeidl correlation at many
of the investigated sites. Therefore, we also cdetbwachieved significance
levels in MK tests in which the effect of serialr@ation was suppressed by
reorganizing the data into biannual time serieswel@r, as can be seen in
Figure 6.5, there was still clear evidence of umlvérends in ANC. The
strongest trends prevailed in waters with low tadimm alkalinity in southern

Sweden, whereas the trends in northern Swedenwesk or nonexistent.

+ + + 1

5418
16_103
e .
=
13 107 |
70_102
33 202 -
68 9
37 54 7
5 14
201 1
131
17.10 1
39_116 |
471"
3 14
29 8
601
9.1

Figure 6.5 Significance in MK tests for trends in ANC at 70 sites ordered according to
median ANC, showing levels achieved when the data were reorganized into time series of
biannual data. Symbols: +++, ++, and + indicate positive trends significant at levels of 0.1%,
1%, and 5%, respectively; ---, --, and - signify negative trends. Three-star significance

(positive) was noted for station 16_101.

Chloride is sometimes used as an indicator of satewmovement, because,
correctly or not (Bastvikeat al, 2007; Schlesinger, 1997), it is considered to be
inert in soil. Accordingly, we undertook partial Mi€sts of ANC levels, using
chloride as a covariate. Furthermore, we computli€CAo-chloride ratios that
we tested for trends. Compared to the ordinary Mgistethe partial tests

produced results that were almost the same, algiitly less significant. There
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were considerably fewer significant trends in th&lGkto-chloride ratios,
because the formation of those ratios increaseddggicient of variation of the
data that were analysed for trends.

In summary, our trend assessment provided stromgese of upward ANC
trends in the areas where acid deposition has aeedeover the past decades.

However, the results varied substantially betwéensampling sites.

6.2.2 Potassium

Considering Figure 6.6, which illustrates potasslawels in groundwater from
region B (see map in Fig. 6.1), the presence anatitwt of discontinuities is

less obvious.
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Figure 6.6 Potassium levels in groundwater sampled 1985-2007 at 19 sites in region B.
Samples were normally collected on 2—6 occasions per site each year, but some longer gaps

were also present in the dataset.

Because the measured potassium levels varied sgrdmggween sampling
occasions and the potential discontinuities welatively small, our study
focused on average level shifts at all 19 sites weae investigated. Figure 6.7

illustrates the annual means of the estimated tilemdls when the model
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contained a discontinuity that was equally spliws®n two consecutive years.
One of the solid lines with attached error mardi& standard errors) contained
level shifts specified by the user to occur in :98802, because the analytical
procedure was altered in the middle of 1991. Tlemsolid line was obtained
in a purely data-driven search for the most sigaifit discontinuity in the

investigated time interval. As can be seen, the cqwwes differed slightly with

respect to the timing of the discontinuity, whertdessize of the level shifts was
practically the same in the two model runs. Thisvgh that our change point
model can also detect minor level shifts, provitleat the number of sampling

sites is large.
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Figure 6.7 Annual means of potassium trends, including discontinuities, at 19 sites in region
B. The two solid lines represent two modes of the model runs: predefined change points and

unprejudiced search for discontinuities.

6.2.3 Sulphate

Figure 6.8 illustrates the results of MK testsdalphate trends.
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Figure 6.8 Achieved significance levels in MK tests for sulphate trends at 70 sites ordered
according to median sulphate concentration. Symbols: +++, ++, and + indicate positive
trends significant at levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative
trends. Three-star significances (positive and negative) were noted for (from left to right)
stations 23 23, 19 15, 74 1, 58 6, 70_13, 23 11, 33 104, 16_28, 16_101, 14 15, 5 14,
54 103, 16_71, 65 7, 70_14, 16 102, 54 18,17 10,84 1,13 1,84 4,12 1,23 26,69 1,
60 42,69 10,3 14,21 9,41 1,75 2,20 10, and 41_5.

Apparently, there were many downward trends buy enfew upward trends.
Closer examination of the test results revealed tihare were several
statistically significant downward trends in southeéSweden, particularly in
hydrogeological region B (see Fig. 6.1), whereastittieds in northern Sweden
were weak or nonexistent. The trends detected gmomeB were expected,
because (i) the sulphur deposition in that partSefeden has decreased
significantly over the past decades, and (ii) slvallmoraines on a primary
bedrock enable rapid response to changes in depodiurthermore, the results
of our analysis were concordant with the pronourd@anward trends that were

revealed when we analysed river water data fronsdmee region.
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Further examination of the sulphate levels in regl® showed that the
average concentration in that area decreased ait #he same rate over the
entire study period. However, there was substamaiation between sites,
which is illustrated by the trend surface in Fig@re.

\ipny .
[ RGL R rly

Y

S04 conc. (meg/l)

Figure 6.9 Trend surface fitted to observed sulphate concentrations at the 19 investigated
stations in hydrogeological region B.

Inasmuch as repeated assessments of data qualgiitate an important part
of our analysis, we also searched for inexplicdblel shifts in the reported
sulphate concentrations. We noted that the majangés in sulphate levels
seemed to be caused by natural dilution procedsssause they normally
coincided temporally with natural fluctuations ionductivity and other major
ions. However, inspection of raw data and deviaitmom the fitted response
surfaces also indicated a substantial serial crosl in the analysed time series.
Consequently, we repeated the MK tests on datahthtbeen reorganized in
series with longer time steps. Figure 6.10 presem@sesults obtained when the
impact of serial correlation for up to two yearssvgppressed. As can be seen,
many significant downward trends remained.
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Figure 6.10 Significance in MK tests for trends in sulphate at 70 sites ordered according to
median sulphate concentration, showing levels achieved when the data were reorganized
into time series of biannual data. Symbols: +++, ++, and + indicate positive trends significant
at levels of 0.1%, 1%, and 5%, respectively; ---, --, and - signify negative trends. Three-star
significances (positive and negative) were noted for (from left to right) stations 58 6, 70_13,
16_101, 14_15, 16 71, 54 18, 17_10, 84_1, 13 1, 84 4, 23 26, 69_1, 3_14, 75_2, and
20_10.

Using chloride as a covariate had approximately shme effect on the
sulphate trends as on the ANC trends. Compared tortlirary MK tests, the
partial tests produced results that were almostsdrae, although slightly less
significant, and there were considerably fewer ificgmt trends in the ANC-to-
chloride ratios.

To summarize, the sulphate data produced strongeewe of downward
trends, especially in region B. However, there wasimple explanation for the

spatial pattern of all downward and upward trends.
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6.3 Implications for groundwater monitoring

Groundwater monitoring programmes aim to detect ithpacts of human
activities, which can be rather small comparedch®weather-driven fluctuations
and random measurement errors that influence itdali observations. In
addition, the relationships between causes andatsffan be obscured by time
lags and spurious trends. These circumstances imwplyhings:

() that assessments of regional trends must bedbas relatively large

networks of stations;

(i) that the data analysis requires statisticathods for joint analysis of

multiple interrelated time series.
Our assessment of Swedish groundwater data indith#t MK tests can play a
key role in both exploratory data analyses and nfiormal tests for temporal
trends. In particular, we noted that MK tests axtegnely useful if they are
carried out in a software package equipped witHfdahewing features:

(i) automated testing for joint trends in numerauwdbgroups of sampling

sites;

(i) adjustment for serial correlation;

(iif) adjustment for trends in covariates (PMK &st

(iv) convenient handling of censored data.
Furthermore, our study demonstrated that evaluatioa relatively large and
complex dataset requires efficient integration iffiedent statistical tools. Most
importantly, we found that our response surfacehowtlogy was an almost
ideal complement to MK tests. Such tegpt®ved to be efficient tools for
detecting relatively small upward or downward shift substantial amounts of
data, and our response surface methodology prowvigdgiable information
about the timing of water quality changes at ddfersites and the presence of

artificial level shifts.
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Our alkalinity and ANC study also illustrated theedefor repeated
assessment of data quality and the importance rbdrp@ing such assessments
on data from a whole network of stations. None loé¢ tata series from
individual sites indicated any serious problemsatesl to the quality of the data.
As reported in Paper Ill, it was not until the MKsts had indicated
unanticipated alkalinity trends that extensive fohgt of observed data provided
some clues. The final evidence of data quality |[mmis was then provided by
response surfaces and trend lines fitted to alikglirecords for low-ANC
samples.

Serial correlation is another issue that must besicered in any assessment
of temporal trends in environmental data. It is lwiehown that even a
moderately large autocorrelation can make the hctignificance level
considerably higher than the nominal level (Yue &My, 2004). We found that
a simple generalization of the idea behind Hirsod &lack’s trend test for
seasonal data is a viable alternative to the tecisi currently in use. Of
particular interest, our method has the advanthgeitt can be applied to any of
the MK tests proposed in this thesis.

Chapter 5 emphasized the need for transforming theemt system for
monitoring surface water into an information marmaget system. That
conclusion also applies to groundwater monitoriAg. national databases are
merged into international databases, it will becaneeasingly important to
remove clearly erroneous observations and to camgrié raw data with
information about data quality in the past and pussible impact of local
pollution. Because a single time series providde lihformation about regional
trends, it would be an advantage if such an inféionasystem could also

provide outputs from joint analyses of multiple ¢irseries of data.
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7 Using process-based models to assess

observational data

A thesis devoted to statistical evaluation of emwmental monitoring data
would not be complete without mentioning processeblamodels and their
relation to observational data. Obviously, obseovetl data are needed for
calibration and validation in process-based maudiglliand it is also clear that
such models can be employed for spatial or tempantdrpolation of
observational data. However, it is not equally atee that process-based
models can contribute to assessing the quality ldeovational data and
temporal trends therein. Neither is it widely reczgd that statistical analysis of
inputs and outputs from process-based models csatecmew roles for such
models in environmental management.

This chapter briefly summarizes the relevance otess-based modelling in
statistical evaluations of observational data. TREA-N model of nitrogen
flows through catchments (Wadg al, 2002) is used as an example, but the
conclusions are more general in nature. Partseotlitbcussion here are based on
Paper V, and consideration is also given to comefegary material derived

from a research proposal coordinated by our gr@rpr{vall et al, 2008).

7.1 The INCA-N model of nitrogen in catchments

Numerous process-oriented deterministic models hbgen developed to
explain and predict the flow of nitrogen throughctenents (e.g., Arheimer &
Brandt, 1998; Refsgaaret al, 1999). The INCA-N model simulates the key
factors and processes that affect the amount of @ NH, stored in soil and
groundwater systems, and it feeds the output fioesd systems into a multi-

reach river model. The input fluxes that are takd@on account in this model
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include the following: atmospheric deposition of manium and nitrate (wet
and dry), application of NQand NH, fertilizers, mineralization of organic
matter (yielding NH), nitrification (yielding NQ), and nitrogen fixation. From
these data, various output fluxes (plant uptake maimlization, and
denitrification) are subtracted before the amouwilable for stream output is
calculated. The final output of INCA-N consists ddilgh estimates of water
discharge and N9and NH, concentrations in stream water at discrete points

along the main channel of the river.

7.2 Model-assisted normalization and trend assessment

Trend assessment of water quality data is a matteseparating random
(weather-driven) fluctuations from more persistaftanges over time. In
Chapter 5, observed concentrations of total nitrogeme normalized with

respect to monthly runoff by using the latter valgaas a covariate in the
semiparametric model described in Chapter 3. Inrotfeeds, it was assumed
that the average runoff during the month the sams collected captured a
substantial part of the influence of past and aurmeeather conditions on the
observed concentrations. Statistical analyses miitioutput relationships in a
process-based nitrogen model can suggest more arglesovariates. For
example, such analyses can be used to judge thearmle of normalizing
observed concentrations with respect to differenbmiginations of

contemporaneous or time-lagged runoff records.

Another approach to model-assisted normalization observed
concentrations is based on decomposing the outpat process-based model
into one weather-dependent and one weather-nomada(izeather-independent)
component. Figure 7.1 shows how such decomposiiaa achieved in the
study reported in Paper V. First, an observed tgages of meteorological

inputs to the INCA-N model was resampled to proca@®llection of synthetic
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meteorological inputs representing the climate ha investigated catchment.
More precisely, we used a form of block resamplingt preserved both the
seasonal pattern and the autocorrelation struafitbe observed time series.
Thereafter, the mean output for all synthetic ispwias regarded as weather-
normalized, and the weather-specific componentig@ated by subtracting this
mean from the model output obtained with the abtuaiserved meteorological

forcing.

Weather-dependent

Observed forcing model output

| | Weather-specific
(random)

_ component of the

Synthetic forcing m?ggltr(])%ttlgut model output

= \
L = | M %aather-normalized

it mean output

PR L1y
A M A

Figure 7.1 Principle of generating synthetic meteorological inputs and decomposing the
output of a process-based model into a weather-specific (random) component and a
weather-normalized mean function representing the effects of human interventions and

normal seasonal variation.

If the process-based model were perfect, and tivere no measurement errors
in the chemical analysis of the water samples, a@dcremove the random
fluctuations in an observed time series of wateali data simply by

subtracting the weather-specific component deriaedording to Figure 7.1
from our observational data. In practice, no modeperfect. However, the
weather-specific component derived from a proceseth model may

nonetheless function well as a covariate in theipamametric models described
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in Chapters 3 and 4. Consequently, it can also lexeal trends or data quality
problems that might otherwise be overlooked.

7.3 Judging the plausibility of detected trends

The statistical tests and response surface metbgigés| described in this thesis
can reveal and quantify temporal trends and otha&tisscal patterns in the
observed data. However, identification of causesuzh patterns is a matter of
plausibility, which gives process-based models lagoitmportant role in trend
assessments. Figure 7.2 shows how our techniqugetwerate synthetic
meteorological inputs and weather-independent modgbuts can clarify the
possible effects of specific anthropogenic intetv@s, such as increased
fertilizer application or atmospheric depositiomdgpresent them in a manner
that is easy to comprehend and use in a discussgarding plausibility. In
particular, such calculations can help to judgeptaisibility of the magnitude

and timing of temporal trends detected by staasticethods.
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b)

O Forest m Arable land

0.6

0.5

0.4

0.3

0.2

Cumulated response

0.1

Year

Figure 7.2 Delay in response of riverine loads of inorganic nitrogen to impulses in fertilizer
inputs on arable land and atmospheric deposition on forests during the first year of the study
period. The first diagram (@) illustrates the distribution of travel times for the fraction of the
applied nitrogen fertilizer that is leached to water, and the second diagram (b) shows the ratio

of the cumulated increase in riverine loads to the magnitude of the impulse.

The discussion of data quality problems in Chaptepitained a judgment of
the likelihood that natural phenomena can be resiptmn for synchronous
changes in water quality in catchments represenéingery wide range of
geohydrological conditions. We deemed that hightyikely because: (i) the
meteorological forcing was not synchronous in mllestigated catchments, and
(i) the current process-based modelling is basedthe premise that water
residence time has a strong impact on water qudityamics. If large-scale
weather phenomena play a more important role thawiqusly assumed, it
should also be noted that the monitoring stratetiiasare currently in use need
to be drastically revised. It is relatively easyseparate the impacts of human

interventions from statistically independent, pyredndom errors in the data,
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whereas it is an extremely difficult task to digtinsh between seemingly

persistent weather effects and the influence ofdruattivities.

7.4 Implications for water quality monitoring

The brief examples in this chapter clearly show tieed for a two-way
interaction between process-based modelling and #ssessment of
observational data. In short, not only do obseoveti data constitute support for
process-based modelling, but such modelling cam @y a decisive role in the
interpretation of observational data. More spealfic our investigations
showed the potential of the following forms of feadk:

() reduction of noise in observational data;

(i) estimation of the magnitude of human intervens;

(i) judgment of the plausibility of synchronouscreases and decreases in

water quality.
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8 Conclusions and final remarks

The research underlying this thesis has contributed more efficient
environmental monitoring in three respects:
() by providing several examples of technical ioy@ments of statistical
methods and accompanying software;
(i) by integrating different elements of data ass& into a roadmap for
retrospective analysis of multiple time series;
(i) by drawing attention to the need for new phgms in environmental

monitoring.

8.1 Technical improvements

The technical improvements presented here aimedhdet the demand for
statistical methods that can accommodate the compemuliarities of time
series of environmental data and that are also teasymprehend without being
simplistic.

The MK (Mann-Kendall) tests that we refined and leggpto water quality
data make the family of such tests more completecd®lures that can handle
censored data were incorporated into both ordiremg partial MK tests.
Furthermore, a simple method to handle serial tiroms extending over more
than one year was presented (Paper Ill), and amgzanying software package
enabled automated testing of trends in variousggai user-defined data.

A versatile smoothing algorithm that can be usese@arch for smooth trends
and synchronous increases and decreases in ventoseries of data was also
reported (Paper I). In particular, it can be ndteat this smoothing algorithm is
equipped with a new resampling procedure that eardle error terms that are
correlated over time and/or across coordinatehénimvestigated vector time

series.
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A new method for the detection and estimation atipblevel shifts in the
presence of smooth trends in vector time seriesalsas described (Paper V).
This technique unified existing approaches focusorg change points or
smoothing alone.

Finally, we showed how repeated runs of proceseéanodels can be
undertaken to extract important features from tenaiho aggregated model
outputs (Paper V). This provided an example ofrtbed for a better integration
of process-based modelling and statistical datdysisa Additional examples

were briefly outlined in Chapter 7.

8.2 The importance of listening to the data

Following the device lfsten to the datd we integrated our methods into a
roadmap for the entire pathway extending from aogebserved concentrations
to conclusions about the quality of the data andtemce of trends therein.

Figure 8.1 shows that we made assessment of dalidyquirecurrent element in

our analysis. The figure also illustrates how wpleited the fact that hypothesis
testing and fitting of response surfaces compleraanh other and play different
roles at different stages in the data analysis€PH)).

At the initial stage of the analysis, the univagiaMK tests and the
nonparametric smoothing techniques were used agutive exploratory tools.
More specifically, we performed the following:

() visual inspection op-values for trends in time series ordered with eesp

to sample means or other user-defined station ctearstics;

(ii) tests for joint trends in groups of samplededmined by user-defined

factors or classes;

(i) visual inspection of response surfaces inrsleaf synchronous trends

and level shifts in multiple data series.
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After each step, data quality was assessed, andezus data were removed or

corrected (Paper Ill).

Univariate MK tests

Univariate and
multivariate MK tests

Estimation of response

surfaces using

nonparametric smoothing

Trend detection and fitting

of response surfaces
involving covariates

Trend detection in

statistically dependent data

Trend detection in

data with change points

Outlier
filtering

Detection of
individual trends

Data quality
assessment

L,

Detection of
joint trends

Data quality
assessment

L,

Exploration of
synchronous level
shifts and trends

Data quality
assessment

Introduction
of covariates

Adjustment for
serial correlation

Adjustment for
change points

Figure 8.1 Roadmap for trend detection and assessment of data quality.

Next, we made a more formal trend analysis in wiwehascertained whether

the detected trends remained significant when ogproved MK-tests and

response surface methodologies were used to cofogctcovariates and

correlated error terms. Finally, the presence difi@al level shifts was

assessed, and, if necessary, a corrected respofseesvas computed.

To facilitate repeated analysis of multiple timeie® and to emphasize that

data analysis is a much broader task than meréiyasg parameters in given

probability models, we also modified and extendeaftwsare previously
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developed by our group. Practical work with the tidlest and Multitrend tools
demonstrated that simultaneous analysis of multijphe series of data, and
integration of visual inspection and more formaltistical analyses, constituted

the key to both trend assessment and detectidawéd data.

8.3 The need for new paradigms

The datasets that were analysed in the curreniestueere selected to represent
the best of environmental monitoring in Sweden,oantry with a very long
tradition of regular measurements of water qualitye records on surface water
and most of the information on groundwater that examined came from a
highly reputable laboratory that has long practistdte-of-the-art quality
assurance. Moreover, the analytical proceduressanipling methods applied
have been in use for many years, and the samplieg Isave been essentially
the same since the 1980s. Together, this implieg the conditions for
producing excellent observational data are bettewater quality monitoring
than in most other fields of environmental suregile. Nevertheless, our
research revealed several remarkable problemsias=mbevith the quality of the
reported data.

The level shift in potassium in groundwater (Papér may be of minor
practical importance. However, it is more troublitittat none of the most
significant temporal changes in total nitrogen (swad by persulphate
digestion), total phosphorus, and TOC-to-COD raitiosurface water data from
the past fifteen years could be attributed to hunmterventions in the
environment (Papers Il and V). On the contrary, presented strong evidence
that the detected trends and level shifts weretdumeasurement or sampling
problems. Likewise, it is less satisfactory thagading to our assessments, the
strongly significant downward trends in alkalinity acidic groundwaters were

an artefact caused by poor data quality in theyd®80s (Papers Il and 1V).
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Increased efforts to refine conventional qualitguaance of reported data
may reduce the problems that have been revealadt ould be unwise to
claim that such efforts can completely eliminateseslvational data of low
quality. In addition, it is of great interest toscele as much as possible of the
information that can be extracted from existingdiseries of environmental
guality data that obviously have artificial levéiifss. This calls for a change in
priorities. In Paper IV, we pointed out that climlaigists have long been
working on methods to detect and remove artifi@akl shifts in observational
data (Alexandersson, 1986) and that these endeavVoave recently been
intensified. Similar efforts could be initiated water quality monitoring and
several other fields of environmental monitorindieTresults reported in this
thesis show that appropriate homogenization teclasigare indeed available
(Paper IV).

The dramatic advances in computer science and aémiy have made it
feasible to make even more profound changes inmii@toring system and its
interaction with the users of the collected datestFit would be an easy task to
provide more information about known or suspectata djuality problems and
the procedures used in the post-control of theectdd data. Second, it would be
possible to make available not only the originalbserved data, but also various
filtered datasets that have been homogenized toe ncorrectly show the
dominating overall trends.

The interaction between process-based modellinghefenvironment and
monitoring based on data collection is anotherdsthat deserves increased
attention. Observational data are widely used iaate the former approach,
but the feedback from such modelling to conventiamanitoring is poorly
developed. As shown in Chapter 7, both trends atiice level shifts can be
more efficiently identified if process-based modal® used to estimate and
remove the weather-driven fluctuations in the meadustate of the
environment. Finally, it should also be noted ttiestre is substantial room for
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better coordination of environmental monitoring ahé production of official
statistics regarding the pressure on the envirohmanconclusion, it is both
feasible and desirable to transform the currentrenmental quality monitoring
from a system for gathering and storing observatiatata to an information

system that provides adequate support for envirotahenanagement.
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