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Abstract 
Multiple time series of environmental quality data with similar, but not necessarily identical, trends 

call for multivariate methods for trend detection and adjustment for covariates. Here, we show how an 

additive model in which the multivariate trend function is specified in a nonparametric fashion (and the 

adjustment for covariates is based on a parametric expression) can be used to estimate how the human 

impact on an ecosystem varies with time and across components of the observed vector time series. More 

specifically, we demonstrate how a roughness penalty approach can be utilized to impose different types of 

smoothness on the function surface that describes trends in environmental quality as a function of time and 

vector component. Compared to other tools used for this purpose, such as Gaussian smoothers and thin 

plate splines, an advantage of our approach is that the smoothing pattern can easily be tailored to different 

types of relationships between the vector components. We give explicit roughness penalty expressions for 

data collected over several seasons or representing several classes on a linear or circular scale. In addition, 

we define a general separable smoothing technique. 

1 Introduction 
Deterioration of an ecosystem is usually a slow process, and mathematical functions that 

describe the impact of humans on the environment will presumably vary smoothly over time. 

Furthermore, in many cases, a substantial fraction of the temporal variability in the measured 

state of the environment can be attributed to random fluctuations in weather conditions or other 

types of natural changeability. Consequently, there is an obvious need for statistical methods that 

enable simultaneous extraction of smooth trends and adjustment for covariates. 

The approaches most often used to detect trends in environmental quality in the presence of 

covariates have been reviewed by Thompson and coworkers (2001). Regression methods 

predominate and several investigators have employed nonparametric or semiparametric 

techniques because they enable unprejudiced inference about the shape of the trend curves 

(Shively & Sager, 1999; Gardner & Dorling, 2000 a,b; Stålnacke & Grimvall, 2001; 

Giannitrapani et al., 2004, 2005). In particular, it has been emphasized that generalized additive 



models (GAMs) provide a suitable framework for such inference (Giannitrapani et al., 2004, 

2005).  

Our research group has focused on applications in which the collected data represent 

several classes of observations, and the models are estimated using a roughness penalty approach 

that allows the smoothness conditions to be selected just as carefully as other model features. 

Two papers have addressed time series of riverine load data collected over several seasons 

(Stålnacke & Grimvall, 2001; Hussian et al., 2004), and Libiseller and Grimvall (2005) have 

recently presented a method for trend analysis and normalization of atmospheric deposition data 

representing several wind sectors. Both the riverine loads by season and the deposition by wind 

sector can be regarded as vector time series of annual data for which a joint analysis of temporal 

trends would be desirable. Additional examples of such multivariate data are observations from 

several sampling sites along a gradient or several congeners of an organic pollutant.  

Here, we show how an additive model in which the multivariate trend function is specified 

in a nonparametric fashion (and the adjustment for covariates is based on a parametric 

expression) can be used to estimate how the human impact on the ecosystem of interest varies 

with time and across components of the observed vector time series. More specifically, we 

demonstrate how a roughness penalty approach can be utilized to impose different types of 

smoothness on the function surface describing the trends in environmental quality as a function of 

time and vector component. 

2 Basic semiparametric model 
Let 

ntyy m
ttt ...,,1,)'...,,( )()1( ==y  

denote an m-dimensional vector time series representing the observed state of the environment at 

n equidistant time points, and let  
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be a matrix that includes contemporaneous values of p explanatory vectors representing natural 

fluctuations in yt. Further, assume that 
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where the sequence of vectors  represents a deterministic 

temporal trend, 
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 is a matrix of time-independent regression coefficients, and the error terms , j = 1, …, m, t = 

1, …, n, are independent of each other and of the explanatory variables.  
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In principle, there is no relationship between the m components of the vector time series yt 

in formula 1, because all error terms are assumed to be statistically independent and each series 

has its own set of intercept and slope parameters. However, estimation of this semiparametric 

model requires that smoothness conditions be introduced to make the degrees of freedom 

(effective dimension) of the model less than the number of observations, which imposes 

constraints on the variation across components. In addition, we note that smoothness conditions 

for the intercept parameters are introduced in a more natural manner, if we reformulate the 

model so that the intercepts represent the expected response values when the covariates are equal 

to their expectations, that is 
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The following discussion considers how the roughness penalty expressions can be tailored to 

achieve different smoothing patterns. The smoothing over time (years) is identical for all variants, 

whereas the smoothing across vector components differs. For example, when data represent 

different wind sectors, it is natural to introduce constraints that force the trend levels (intercepts) 

of adjacent sectors to be similar. Likewise, when data represent several seasons, it is natural to 

force the trend levels for the last season in one year and the first season in the following year to 



be close to each other. We use the terms circular and sequential smoothing for these types of 

constraints on the intercept parameters (Figures 2.3a, b). Data collected along a gradient may also 

require tailored smoothing in two directions: over time and along the sampled gradient (Figure 

2.3c). 
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Figure 1. Different types of smoothing patterns for the intercept of the basic semiparametric 
model. The three graphs show circular smoothing for data representing several sectors (a), 
sequential smoothing for data collected over several season (b), and gradient smoothing for data 
collected at different sites along a gradient (c). 



3 Circular smoothing 

Circular smoothing is desirable when the collected data represent different classes on a circular 

scale. The previously mentioned example of deposition data for different wind sectors can be 

used to illustrate this situation. The expected responses are similar for adjacent classes, but the 

first and last classes are also closely interrelated. 

To introduce circular smoothing in our semiparametric model, we estimate the parameters by 

minimizing the sum 
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where λ1 and λ1 are roughness penalty factors, 
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is the residual sum of squares, 
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represents smoothing of the multivariate temporal trend over time, and 
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stands for smoothing across components of this trend. As usual, .ix depicts a mean value and, to 

simplify the notation for the circular smoothing, we introduce the symbols 
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4 Sequential smoothing 
When data are collected over several seasons, there is an obvious relationship between the 

observations for adjacent seasons. This feature can be incorporated into the smoothing pattern by 

letting  represent the sequential order of the observations and setting jmts +−= )1(
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5 Gradient smoothing 
Gradient smoothing can be suitable if the collected data come from sampling sites located 

along a transect or along a gradient of elevation, temperature or precipitation. Such smoothing 

can also be appropriate for data representing measured concentrations of chemical compounds, 

which can be ordered linearly with respect to, for instance, volatility, polarity, or lipophilicity. 

Regardless of how the linear ordering is defined, smoothing across coordinates can be 

accomplished by setting 
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6 Separable smoothing 
The circular and gradient smoothing are special cases of more general smoothing patterns 

that can be defined by setting 
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where W comprises all triplets in which the coordinates are distinct integers between 1 and m, and 

the (nonnegative) weight w(j1, j2, j3) represents a measure of the proximity of the coordinate j1 to 

the coordinates j2 and j3. We refer to this as separable smoothing, because the expression that is 

minimized during the parameter estimation contains a weighted sum of two roughness penalty 

terms, S1 and S2, which represent smoothing in two different directions (over time and across 

coordinates, respectively). The inverse Euclidean distance may be a suitable measure of 

proximity when the analyzed vector time series of data come from measurements made at 

permanent plots in a sampling area or at different stations in a monitoring program. However, any 

proximity measure in any space can be used to define the weights w in formula 9. 

7 Smoothing and normalization 
The models discussed in this article can be used to produce two different types of outputs. 

First, we can estimate the temporal trend  by suppressing all types 

of random variation in the collected data. Secondly, we can normalize the observed data by 

removing the variation that can be attributed to the covariates, that is, by forming 
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where  is the estimated regression coefficient for the jth component of the ith covariate. 

Figure 2 illustrates the results obtained when gradient smoothing was used to summarize the 

trends in mean annual concentrations of mercury in muscle tissue from flounder (Platichthys 

flesus) caught in the German Bight at five stations located at varying distances from the mouth of 

the Elbe River, which was heavily polluted until the beginning of the 1990s. Figure 3 illustrates 

the difference between the smooth trend surface and the considerably rougher surface of 

normalized values for monthly loads of nitrogen carried by the Rhine River. 
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Figure 2. Trend assessment of the concentration of mercury in muscle tissue from flounder 
(Platichthys flesus) caught in the German Bight at five stations (53o 53’ N, 9o 11’ E; 53o 52’ N, 8o 

52’ E; 53o 56’ N, 8o 38’ E; 53o 57’ N, 8o 30’ E; 53o 45’ N, 8o 2’ E) in or outside the mouth of the 
Elbe River. The two graphs show observed annual means and a trend surface obtained by 

gradient smoothing (λ1 = 2, λ2 = 0.5).  
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Figure 3. Trend assessment of the total nitrogen load in the Rhine River at Lobith on the border 
between Germany and The Netherlands. The three graphs show observed monthly nitrogen loads 

and water discharge values (a), the estimated trend function (b), and flow-normalized monthly 
loads (c). 

8 Computational aspects 
For fixed values of the smoothing factors λ1 and λ2, the semiparametric models described 

in this article can be estimated by using back-fitting algorithms in which estimation of the slope 

parameters for fixed intercepts is alternated with estimation of the intercepts for fixed slopes. 

More specifically, ordinary regression algorithms can be used to estimate the slope parameters, 

whereas a system of linear equations with nm unknowns must be solved to estimate the intercepts. 

The latter can be achieved by Cholesky factorization of the coefficient matrix and sequential 

determination of the unknowns (Silverman & Green, 1994). In the case of sequential smoothing, 



Stålnacke and Grimvall (2001) demonstrated that the coefficient matrix is a positive definite 

symmetric band matrix with lower and upper bandwidth 2m. The other smoothing techniques 

described here give rise to symmetric band matrices that have the same bandwidth. Also, it can be 

noted that, for a given bandwidth, the computational burden is proportional to the number of time 

points n. 

The smoothing factors λ1 and λ2 that control the effective dimension of the estimated 

models can be determined by cross-validation. However, it should be noted that conventional 

leave-one-out cross-validation may lead to over-fitting if the error terms are correlated (Shao, 

1993; Libiseller & Grimvall, 2003).  Hence, we propose block cross-validation in which the 

observed response values are divided into n blocks, each composed of p contemporaneous 

components of yt.  

9 Further generalizations 

9.1 Time-varying slope parameters 
The model introduced in formula 2 has time-dependent intercepts, whereas the slope 

parameters are not dependent on time. Models in which the intercepts are time independent and 

the time-dependence of the slope parameters is controlled by roughness penalty expressions can 

be specified and estimated in a similar manner (Stålnacke & Grimvall, 2001). However, for 

computational reasons, it is not feasible to handle more than one explanatory variable in such 

semiparametric models. Furthermore, it is not practicable to let both the intercept and the slope 

parameters vary with time due to following: back-fitting algorithms for such models may have 

convergence problems, and the computational burden increases dramatically with the number of 

roughness penalty factors determined by cross-validation. 

9.2 Missing and multiple values 
To keep the notation as simple as possible, thus far we have assumed that we have exactly 

one observation of the response variable and the p explanatory variables for each combination of 

time point (year) and vector component. As pointed out by Hussian et al. (2004), the algorithms 

used to estimate the semiparametric models can easily be adapted to accommodate missing values 

by changing the diagonal elements of the above-mentioned band matrix. More generally, our 

approach can handle data sets of the type 
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where t(k) and j(k) respectively denote the time point and the vector component of the kth 

observation. 

9.3 Nonparametric analogues 
The nonparametric specification of the intercepts can be justified by a desire to make 

unprejudiced inference about the shape of the trend surface. Similar arguments might rationalize 

the use of models in which both the trend and the influence of covariates are specified 

nonparametrically, for example, those of the type 
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where  are smooth functions. Furthermore, this generalization is 

easy to program when a back-fitting algorithm is used to estimate the model parameters, because, 

with such an approach, the estimation of for given intercepts can be 

reduced to mp nonparametric univariate regressions. However, it should be noted that models 

with very few structural constraints may lead to problems with over-fitting and slow convergence 

of the back-fitting algorithm. 
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10 Discussion 
The current techniques for detecting trends in time series of environmental quality data are 

dominated by approaches in which the collected data are analyzed separately for each site and 

response variable. The major exceptions to this rule are the widespread use of multivariate linear 

models and the growing interest in spatio-temporal geostatistical models. In this article, we have 

demonstrated that roughness penalty approaches to the estimation of semiparametric regression 

models constitute a very flexible group of techniques for simultaneous detection of temporal 

trends and adjustment for covariates in vector time series of environmental quality data.  

In contrast to ARIMAX models and other classical multivariate time series models, which 

are based on stationarity or very simple forms of nonstationarity, our method enables careful 

modeling of the nonstationary features of the collected data. This property, it shares with a large 

class of methods that can be referred to as smoothing techniques for response surfaces. Thin plate 

splines, vector generalized additive models (GAMs), and kernel smoothers (Wahba, 1990; Yee & 

Wild, 1996; Härdle, 1997; Hastie et al., 2001) can all be appropriate for estimating nonlinear 

trends. However, this article shows that our roughness penalty approach has the advantage that 



the smoothing pattern can be tailored to take into account almost any relationship between the 

different components of the observed random vectors. Furthermore, the degree of smoothing can 

be fine-tuned in two directions without making the computational burden insurmountable. 

Dynamic factor analysis (DFA) represents another promising approach to assessment of 

trends in vector time series data (Zuur et al., 2003). Inasmuch as DFA is a latent variable 

technique, it is particularly useful when the dimension of the analyzed vector time series is high. 

Nonetheless, it might be worth considering our method for such data. This is particularly true 

when then there is considerable prior knowledge about the interrelationship between the vector 

components or the proximity of the vector components can be modeled. 

Finally, it is worth noting that, although some of the computational aspects of parameter 

estimation in semiparametric models may require special attention (Schimek, 2001), the basic 

principles of such models are easy to communicate to a wide audience. 
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