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Baysig and Ebba (1)

• Baysig is a Haskell-like language for
probabilistic modelling and Bayesian
inference developed by OpenBrain Ltd:

www.bayeshive.com
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Baysig and Ebba (1)

• Baysig is a Haskell-like language for
probabilistic modelling and Bayesian
inference developed by OpenBrain Ltd:

www.bayeshive.com

• Baysig programs can in a sense be run both
“forwards”, to simulate probabilisitic processes,
and “backwards”, to estimate unknown
parameters from observed outcomes:

coinFlips = prob
p ∼ uniform 0 1
repeat 10 (bernoulli p)
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Baysig and Ebba (2)

• This talk investigates:

- The possibility of implementing a
Baysig-like language as a shallow
embedding (in Haskell).

- Semantics: an appropriate underlying
notion of computation for such a language.
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Baysig and Ebba (2)

• This talk investigates:

- The possibility of implementing a
Baysig-like language as a shallow
embedding (in Haskell).

- Semantics: an appropriate underlying
notion of computation for such a language.

• The result is Ebba, short for Embedded Baysig.

• Ebba is currently very much a prototype and
covers only a small part of what Baysig can do.
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Why Embedded Languages?

• For the researcher/implementor:

- Low implementation effort

- Ease of experimenting with design and
semantics
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Why Embedded Languages?

• For the researcher/implementor:

- Low implementation effort

- Ease of experimenting with design and
semantics

• For the users:

- reuse: familiar syntax, type system, tools . . .

- facilitates programmatic use
• use as component
• metaprogramming

- interoperability between DSLs
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Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
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Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]]
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Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]] = [1, 1, 1, . . . [[+]] [2, 2, 2, . . .
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Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]] = [1, 1, 1, . . . [[+]] [2, 2, 2, . . .

= [1 + 2, 1 + 2, 1 + 2, . . .
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Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]] = [1, 1, 1, . . . [[+]] [2, 2, 2, . . .

= [1 + 2, 1 + 2, 1 + 2, . . .

= [3, 3, 3, . . .
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Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:
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Why Shallow Embedding for Ebba? (2)
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translated into abstract syntax tree for
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Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:

• Deep: Embedded language constructs
translated into abstract syntax tree for
subsequent interpretation or compilation.
1 + 2 interpreted as:
Add (LitInt 1) (LitInt 2)

• Shallow: Embedded language constructs
translated directly into semantics in host
language terms. 1 + 2 interpreted as:
zipWith (+) (repeat 1) (repeat 2)
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Why Shallow Embedding for Ebba? (3)

Shallow embedding:
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Why Shallow Embedding for Ebba? (3)

Shallow embedding:

• More direct account of semantics: suitable for
research into semantic aspects.

• Easier to extend and change than deep
embedding: suitable for research into
language design.

(Long term: for reasons of performance, maybe
move to a mixed-level embedding.)
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Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :
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Bayesian Data Analysis (1)

A common scenario across science,
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Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.
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Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?
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Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?
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Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?

• Is it perhaps biased towards heads? How much?

• Maybe it’s a coin with two heads?
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Bayesian Data Analysis (2)

Bayes’ theroem allows such questions to be
answered systematically:

P(X |Y ) =
P(Y |X)× P(X)

P(Y )

where

• P(X) is the prior probability

• P(Y |X) is the likelihood function

• P(X |Y ) is the posterior probability

• P(Y ) is the evidence
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Bayesian Data Analysis (3)

Assuming a probabilistic model for the observations
parametrized to account for all possible causes

P(data | params)

and any knowledge about the parameters,
P(params), Bayes’ theorem yields the probability
for the parameters given the observations:

P(params | data) =
P(data | params)× P(params)

P(data)
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Bayesian Data Analysis (3)

Assuming a probabilistic model for the observations
parametrized to account for all possible causes

P(data | params)

and any knowledge about the parameters,
P(params), Bayes’ theorem yields the probability
for the parameters given the observations:

P(params | data) =
P(data | params)× P(params)

P(data)

I.e., exactly what can be inferred from the obser-
vations under the explicitly stated assumptions.
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Thomas Bayes, 1702–1761
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Thomas Bayes, 1702–1761
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Fair Coin (1)

A probabilistic model for a single toss of a coin is
that the probability of head is p (a Bernoulli
distribution); p is our parameter.

If the coin is tossed n times, the probability for h
heads for a given p is:

P(h | p) =

(

n

h

)

ph(1− p)n−h

(a binomial distribution).
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Fair Coin (2)

If we have no knowledge about p, except its
range, we can assume a uniformly distributed
prior:

P(p) =

{

1 if 0 ≤ p ≤ 1

0 otherwise

Ignoring the evidence, which is just a
normalization constant, we then have:

P(p |h) ∝ P(h | p)× P(p)
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Fair Coin (3)

Distribution for p given no observations:
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Fair Coin (4)

Distribution for p given 1 toss resulting in head:
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Fair Coin (5)

Distribution for p given 2 tosses resulting in 2 heads:
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Fair Coin (6)

Distribution for p given many tosses, all heads:
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Fair Coin (7)

Distribution for p once finally a tail comes up:
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Fair Coin (8)

After a fair few tosses, observing heads and tails:
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Fair Coin (9)

Distribution for p after even more tosses:
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Fair Coin (10)

As the number of observations grow:
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Fair Coin (10)

As the number of observations grow:

• the distribution for the parameter becomes
increasingly sharp;

• the significance of the exact shape of the
prior diminishes.

Thus, if we trust our model, Bayes’ theorem tells
us exactly what is justified to believe about the
parameter(s) given the observations at hand.
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Probabilistic Models

In practice, there
are often many
parameters (dimen-
sions) and intricate
dependences.

Here, the nodes are
random variables
with (conditional)
probabilities P(A),
P(B |A), P(X |A),
P(Y |B,X).
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Parameter Estimation (1)

According to Bayes’
theorem, a function
proportional to the
sought probability
density function
pdfA,B|X,Y is obtained

by the “product” of
the pdfs for the
individual nodes
applied to the
observed data.
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Parameter Estimation (2)

pdfA : TA → R

pdfB|A : TA → TB → R

pdfX |A : TA → TX → R

pdfY |B,X :

(TB, TX)→ TY → R

Given observations x, y:
pdfA,B|X,Y a b ∝

pdfY |B,X (b, x) y

× pdfX |A a x

× pdfB|A b a

× pdfA a
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Parameter Estimation (3)

Problem: We only get a function proportional to
the desired pdf as the evidence in practice is
very difficult to calculate.
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Parameter Estimation (3)

Problem: We only get a function proportional to
the desired pdf as the evidence in practice is
very difficult to calculate.

However, MCMC (Markov Chain Monte Carlo)
methods such as Metropolis-Hastings allow
sampling of the desired distribution. That in turn
allows the distribution for any of the parameters
to be approximated.
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Probabilistic Langauges and Estimation

It is straightforward to turn a general-purpose
language into one in which probabilistic
computations can be expressed:

• Imperative: Call a random number generator

• Pure functional: Use the probability monad:

coinFlips :: Int → Prob [Bool ]

coinFlips n = do

p ← uniform 0 1

flips ← replicateM n (bernoulli p)

return flips
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Probabilistic Langauges and Estimation

However, for estimation, the static unfolding of the
structure of a computation must be a finite graph.
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Probabilistic Langauges and Estimation

However, for estimation, the static unfolding of the
structure of a computation must be a finite graph.

But an imperative language/monad allows the
rest of a computation to depend in arbitrary ways
on result of earlier computation. E.g.:

foo n = do
x← uniform 0 1
if x < 0.5 then
foo (n+ 1)

else . . .
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Probabilistic Languages and Estimation

Maybe something like arrows would be a better fit?

arr f f ≫ g

f &&& g

Describes networks of interconnected
“function-like” objects.
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Probabilistic Languages and Estimation

• Arrows offer fine-grained control over
available computational features
(conditionals, feedback, . . . )
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Probabilistic Languages and Estimation

• Arrows offer fine-grained control over
available computational features
(conditionals, feedback, . . . )

• Static structure of an arrow computation can
be enforced

• Arrows make the dependences between
computations manifest.

• Conditional probabilities, a → Prob b are an
arrow through the Kleisli construction.
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The Conditional Probability Arrow (1)

Central abstraction: CP o a b

• a: The “given”

• b: The “outcome”

• o: Observability. Describes which parts of the
given are observable from the outcome; i.e.,
for which there exists a pure function mapping
(part of) the outcome to (part of) the given.

Observability does not mean “will be observed”.
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The Conditional Probability Arrow (2)

Observability:

• Determined by type-level computation.

• Dictates how information flows in the network
in “reverse mode”.
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The Conditional Probability Arrow (2)

What kind of arrow?
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The Conditional Probability Arrow (2)

What kind of arrow?

• Clearly not a classic arrow . . .

• Probably a Constrained, Indexed,
Generalized Arrow.

(∗∗∗) :: CP o1 a b → CP o2 c d → CP (o1 ∗∗∗ o2 ) (a, c) (b, d)

(≫) :: Fusable o2 b

⇒ CP o1 a b → CP o2 b c → CP (o1 ≫ o2 ) a c

( &&& ) :: Selectable o1 o2 a

⇒ CP o1 a b → CP o2 a c → CP (o1 &&& o2 ) a (b, c)
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Implementation Sketch

type Parameters = Map Name ParVal

data CP o a b = CP {

cp :: a → Prob b,

initEstim :: a → a → b

→ Prob (b, a,Double ,Parameters ,E o a b)

}

data E o a b = E {

estimate :: Bool → a → a → b

→ Prob (b, a,Double,Parameters ,E o a b)

}
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Example: The Lighthouse (1)
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Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)
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Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)

The mean and variance of a Cauchy distribution
are undefined!
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Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)

The mean and variance of a Cauchy distribution
are undefined!

Thus, even if we’re only interested in α, attempting
to estimate it by simple sample averaging is futile.
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Example: The Lighthouse (3)

The main part of the Ebba lighthouse model:

lightHouse :: CP U () [Double ]
lightHouse = proc () do

α← uniformParam "alpha" (−50) 50−≺ ()
β ← uniformParam "beta" 0 20−≺ ()
xs ← many 10 lightHouseFlash −≺ (α, β)
returnA−≺ xs

Note:

• Arrow-syntax used for clarity: not supported yet.

• Ebba needs refactoring to support data and
parameters with arbitrary distributions.

Ebba: An Embedded DSL for Bayesian Inference – p.36/42



Example: The Lighthouse (4)

Actual code right now:

lightHouse :: CP U () [Double ]

lightHouse = (uniformParam "alpha" (−50) 50

&&& uniformParam "beta" 0 20)

≫ many 10 lightHouseFlashes
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Example: The Lighthouse (5)

To test:

• A vector of 200 detected flashes was
generated at random from the model for
α = 8 and β = 2. (the “ground truth”).

• The parameter distribution given the outcome
sampled 100000 times using Metropolis-
Hastings (picking every 10th sample from the
Markov chain to reduce correlation between
samples).
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Example: The Lighthouse (6)

Resulting distribution for α:

 0

 0.5

 1

 1.5

 2

 2.5

 7  7.2  7.4  7.6  7.8  8  8.2  8.4  8.6  8.8
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Example: The Lighthouse (7)

Resulting distribution for β:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3
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What’s Next? (1)

• Testing on larger examples, including
“hierarchical” models (nested use of many).

• Refactoring and the design, in particular:

- General data and parameter combinators
parametrised on the distributions.

- Framework for programming with
Constrained, Indexed, Generalised Arrows:
• Type classes CIGArrow1 , CIGArrow2
• Syntactic support through preprocessor

implemented using QuasiQuoting?
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What’s Next? (2)

• More robust implementation of Metropolis
Hastings

• Move towards a deep embedding for
estimation?

Idea: route a variable representation (name)
through the network in place of parameter
estimates.

• Support for gradient-based methods thorugh
automatic differentiation using similar
approach?
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