
Ebba: An Embedded DSL for
Bayesian Inference

Linköping University, 17 June 2014

Henrik Nilsson

School of Computer Science

University of Nottingham

Joint work with Tom Nielsen, OpenBrain Ltd

Ebba: An Embedded DSL for Bayesian Inference – p.1/42



Baysig and Ebba (1)

• Baysig is a Haskell-like language for
probabilistic modelling and Bayesian
inference developed by OpenBrain Ltd:

www.bayeshive.com

Ebba: An Embedded DSL for Bayesian Inference – p.2/42



Baysig and Ebba (1)

• Baysig is a Haskell-like language for
probabilistic modelling and Bayesian
inference developed by OpenBrain Ltd:

www.bayeshive.com

• Baysig programs can in a sense be run both
“forwards”, to simulate probabilisitic processes,
and “backwards”, to estimate unknown
parameters from observed outcomes:

coinFlips = prob
p ∼ uniform 0 1
repeat 10 (bernoulli p)

Ebba: An Embedded DSL for Bayesian Inference – p.2/42



Baysig and Ebba (2)

• This talk investigates:

- The possibility of implementing a
Baysig-like language as a shallow
embedding (in Haskell).

- Semantics: an appropriate underlying
notion of computation for such a language.

Ebba: An Embedded DSL for Bayesian Inference – p.3/42



Baysig and Ebba (2)

• This talk investigates:

- The possibility of implementing a
Baysig-like language as a shallow
embedding (in Haskell).

- Semantics: an appropriate underlying
notion of computation for such a language.

• The result is Ebba, short for Embedded Baysig.

Ebba: An Embedded DSL for Bayesian Inference – p.3/42



Baysig and Ebba (2)

• This talk investigates:

- The possibility of implementing a
Baysig-like language as a shallow
embedding (in Haskell).

- Semantics: an appropriate underlying
notion of computation for such a language.

• The result is Ebba, short for Embedded Baysig.

• Ebba is currently very much a prototype and
covers only a small part of what Baysig can do.

Ebba: An Embedded DSL for Bayesian Inference – p.3/42



Why Embedded Languages?

• For the researcher/implementor:

- Low implementation effort

- Ease of experimenting with design and
semantics

Ebba: An Embedded DSL for Bayesian Inference – p.4/42



Why Embedded Languages?

• For the researcher/implementor:

- Low implementation effort

- Ease of experimenting with design and
semantics

• For the users:

- reuse: familiar syntax, type system, tools . . .

- facilitates programmatic use
• use as component
• metaprogramming

- interoperability between DSLs

Ebba: An Embedded DSL for Bayesian Inference – p.4/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]]

Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]] = [1, 1, 1, . . . [[+]] [2, 2, 2, . . .

Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]] = [1, 1, 1, . . . [[+]] [2, 2, 2, . . .

= [1 + 2, 1 + 2, 1 + 2, . . .

Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (1)

The nub of embedding is repurposing of the
host-language syntax one way or another.

Example: Embedded language for working with
(infinite) streams where:

• integer literal stands for stream of the integer

• arithmetic operations are pointwise
operations on streams.

[[1 + 2]] = [1, 1, 1, . . . [[+]] [2, 2, 2, . . .

= [1 + 2, 1 + 2, 1 + 2, . . .

= [3, 3, 3, . . .
Ebba: An Embedded DSL for Bayesian Inference – p.5/42



Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:

Ebba: An Embedded DSL for Bayesian Inference – p.6/42



Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:

• Deep: Embedded language constructs
translated into abstract syntax tree for
subsequent interpretation or compilation.

Ebba: An Embedded DSL for Bayesian Inference – p.6/42



Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:

• Deep: Embedded language constructs
translated into abstract syntax tree for
subsequent interpretation or compilation.
1 + 2 interpreted as:
Add (LitInt 1) (LitInt 2)

Ebba: An Embedded DSL for Bayesian Inference – p.6/42



Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:

• Deep: Embedded language constructs
translated into abstract syntax tree for
subsequent interpretation or compilation.
1 + 2 interpreted as:
Add (LitInt 1) (LitInt 2)

• Shallow: Embedded language constructs
translated directly into semantics in host
language terms.

Ebba: An Embedded DSL for Bayesian Inference – p.6/42



Why Shallow Embedding for Ebba? (2)

Two main types of embeddings:

• Deep: Embedded language constructs
translated into abstract syntax tree for
subsequent interpretation or compilation.
1 + 2 interpreted as:
Add (LitInt 1) (LitInt 2)

• Shallow: Embedded language constructs
translated directly into semantics in host
language terms. 1 + 2 interpreted as:
zipWith (+) (repeat 1) (repeat 2)

Ebba: An Embedded DSL for Bayesian Inference – p.6/42



Why Shallow Embedding for Ebba? (3)

Shallow embedding:

Ebba: An Embedded DSL for Bayesian Inference – p.7/42



Why Shallow Embedding for Ebba? (3)

Shallow embedding:

• More direct account of semantics: suitable for
research into semantic aspects.

Ebba: An Embedded DSL for Bayesian Inference – p.7/42



Why Shallow Embedding for Ebba? (3)

Shallow embedding:

• More direct account of semantics: suitable for
research into semantic aspects.

• Easier to extend and change than deep
embedding: suitable for research into
language design.

Ebba: An Embedded DSL for Bayesian Inference – p.7/42



Why Shallow Embedding for Ebba? (3)

Shallow embedding:

• More direct account of semantics: suitable for
research into semantic aspects.

• Easier to extend and change than deep
embedding: suitable for research into
language design.

(Long term: for reasons of performance, maybe
move to a mixed-level embedding.)

Ebba: An Embedded DSL for Bayesian Inference – p.7/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?

• Is it perhaps biased towards heads? How much?

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (1)

A common scenario across science,
engineering, finance, . . . :

Some observations have been made.
What is/are the cause(s)?
And how certain can we be?

Example: Suppose a coin is flipped 10 times,
and the result is only heads.

• Is the coin fair (head and tail equally likely)?

• Is it perhaps biased towards heads? How much?

• Maybe it’s a coin with two heads?

Ebba: An Embedded DSL for Bayesian Inference – p.8/42



Bayesian Data Analysis (2)

Bayes’ theroem allows such questions to be
answered systematically:

P(X |Y ) =
P(Y |X)× P(X)

P(Y )

where

• P(X) is the prior probability

• P(Y |X) is the likelihood function

• P(X |Y ) is the posterior probability

• P(Y ) is the evidence
Ebba: An Embedded DSL for Bayesian Inference – p.9/42



Bayesian Data Analysis (3)

Assuming a probabilistic model for the observations
parametrized to account for all possible causes

P(data | params)

and any knowledge about the parameters,
P(params), Bayes’ theorem yields the probability
for the parameters given the observations:

P(params | data) =
P(data | params)× P(params)

P(data)

Ebba: An Embedded DSL for Bayesian Inference – p.10/42



Bayesian Data Analysis (3)

Assuming a probabilistic model for the observations
parametrized to account for all possible causes

P(data | params)

and any knowledge about the parameters,
P(params), Bayes’ theorem yields the probability
for the parameters given the observations:

P(params | data) =
P(data | params)× P(params)

P(data)

I.e., exactly what can be inferred from the obser-
vations under the explicitly stated assumptions.

Ebba: An Embedded DSL for Bayesian Inference – p.10/42



Thomas Bayes, 1702–1761

Ebba: An Embedded DSL for Bayesian Inference – p.11/42



Thomas Bayes, 1702–1761

Ebba: An Embedded DSL for Bayesian Inference – p.11/42



Fair Coin (1)

A probabilistic model for a single toss of a coin is
that the probability of head is p (a Bernoulli
distribution); p is our parameter.

If the coin is tossed n times, the probability for h
heads for a given p is:

P(h | p) =

(

n

h

)

ph(1− p)n−h

(a binomial distribution).

Ebba: An Embedded DSL for Bayesian Inference – p.12/42



Fair Coin (2)

If we have no knowledge about p, except its
range, we can assume a uniformly distributed
prior:

P(p) =

{

1 if 0 ≤ p ≤ 1

0 otherwise

Ignoring the evidence, which is just a
normalization constant, we then have:

P(p |h) ∝ P(h | p)× P(p)

Ebba: An Embedded DSL for Bayesian Inference – p.13/42



Fair Coin (3)

Distribution for p given no observations:

Ebba: An Embedded DSL for Bayesian Inference – p.14/42



Fair Coin (4)

Distribution for p given 1 toss resulting in head:

Ebba: An Embedded DSL for Bayesian Inference – p.15/42



Fair Coin (5)

Distribution for p given 2 tosses resulting in 2 heads:

Ebba: An Embedded DSL for Bayesian Inference – p.16/42



Fair Coin (6)

Distribution for p given many tosses, all heads:

Ebba: An Embedded DSL for Bayesian Inference – p.17/42



Fair Coin (7)

Distribution for p once finally a tail comes up:

Ebba: An Embedded DSL for Bayesian Inference – p.18/42



Fair Coin (8)

After a fair few tosses, observing heads and tails:

Ebba: An Embedded DSL for Bayesian Inference – p.19/42



Fair Coin (9)

Distribution for p after even more tosses:

Ebba: An Embedded DSL for Bayesian Inference – p.20/42



Fair Coin (10)

As the number of observations grow:

Ebba: An Embedded DSL for Bayesian Inference – p.21/42



Fair Coin (10)

As the number of observations grow:

• the distribution for the parameter becomes
increasingly sharp;

Ebba: An Embedded DSL for Bayesian Inference – p.21/42



Fair Coin (10)

As the number of observations grow:

• the distribution for the parameter becomes
increasingly sharp;

• the significance of the exact shape of the
prior diminishes.

Ebba: An Embedded DSL for Bayesian Inference – p.21/42



Fair Coin (10)

As the number of observations grow:

• the distribution for the parameter becomes
increasingly sharp;

• the significance of the exact shape of the
prior diminishes.

Thus, if we trust our model, Bayes’ theorem tells
us exactly what is justified to believe about the
parameter(s) given the observations at hand.

Ebba: An Embedded DSL for Bayesian Inference – p.21/42



Probabilistic Models

In practice, there
are often many
parameters (dimen-
sions) and intricate
dependences.

Here, the nodes are
random variables
with (conditional)
probabilities P(A),
P(B |A), P(X |A),
P(Y |B,X).

Ebba: An Embedded DSL for Bayesian Inference – p.22/42



Parameter Estimation (1)

According to Bayes’
theorem, a function
proportional to the
sought probability
density function
pdfA,B|X,Y is obtained

by the “product” of
the pdfs for the
individual nodes
applied to the
observed data.

Ebba: An Embedded DSL for Bayesian Inference – p.23/42



Parameter Estimation (2)

pdfA : TA → R

pdfB|A : TA → TB → R

pdfX |A : TA → TX → R

pdfY |B,X :

(TB, TX)→ TY → R

Given observations x, y:
pdfA,B|X,Y a b ∝

pdfY |B,X (b, x) y

× pdfX |A a x

× pdfB|A b a

× pdfA a

Ebba: An Embedded DSL for Bayesian Inference – p.24/42



Parameter Estimation (3)

Problem: We only get a function proportional to
the desired pdf as the evidence in practice is
very difficult to calculate.

Ebba: An Embedded DSL for Bayesian Inference – p.25/42



Parameter Estimation (3)

Problem: We only get a function proportional to
the desired pdf as the evidence in practice is
very difficult to calculate.

However, MCMC (Markov Chain Monte Carlo)
methods such as Metropolis-Hastings allow
sampling of the desired distribution. That in turn
allows the distribution for any of the parameters
to be approximated.

Ebba: An Embedded DSL for Bayesian Inference – p.25/42



Probabilistic Langauges and Estimation

It is straightforward to turn a general-purpose
language into one in which probabilistic
computations can be expressed:

• Imperative: Call a random number generator

• Pure functional: Use the probability monad:

coinFlips :: Int → Prob [Bool ]

coinFlips n = do

p ← uniform 0 1

flips ← replicateM n (bernoulli p)

return flips
Ebba: An Embedded DSL for Bayesian Inference – p.26/42



Probabilistic Langauges and Estimation

However, for estimation, the static unfolding of the
structure of a computation must be a finite graph.

Ebba: An Embedded DSL for Bayesian Inference – p.27/42



Probabilistic Langauges and Estimation

However, for estimation, the static unfolding of the
structure of a computation must be a finite graph.

But an imperative language/monad allows the
rest of a computation to depend in arbitrary ways
on result of earlier computation. E.g.:

foo n = do
x← uniform 0 1
if x < 0.5 then
foo (n+ 1)

else . . .

Ebba: An Embedded DSL for Bayesian Inference – p.27/42



Probabilistic Languages and Estimation

Maybe something like arrows would be a better fit?

arr f f ≫ g

f &&& g

Describes networks of interconnected
“function-like” objects.

Ebba: An Embedded DSL for Bayesian Inference – p.28/42



Probabilistic Languages and Estimation

• Arrows offer fine-grained control over
available computational features
(conditionals, feedback, . . . )

Ebba: An Embedded DSL for Bayesian Inference – p.29/42



Probabilistic Languages and Estimation

• Arrows offer fine-grained control over
available computational features
(conditionals, feedback, . . . )

• Static structure of an arrow computation can
be enforced

Ebba: An Embedded DSL for Bayesian Inference – p.29/42



Probabilistic Languages and Estimation

• Arrows offer fine-grained control over
available computational features
(conditionals, feedback, . . . )

• Static structure of an arrow computation can
be enforced

• Arrows make the dependences between
computations manifest.

Ebba: An Embedded DSL for Bayesian Inference – p.29/42



Probabilistic Languages and Estimation

• Arrows offer fine-grained control over
available computational features
(conditionals, feedback, . . . )

• Static structure of an arrow computation can
be enforced

• Arrows make the dependences between
computations manifest.

• Conditional probabilities, a → Prob b are an
arrow through the Kleisli construction.

Ebba: An Embedded DSL for Bayesian Inference – p.29/42



The Conditional Probability Arrow (1)

Central abstraction: CP o a b

• a: The “given”

• b: The “outcome”

• o: Observability. Describes which parts of the
given are observable from the outcome; i.e.,
for which there exists a pure function mapping
(part of) the outcome to (part of) the given.

Observability does not mean “will be observed”.

Ebba: An Embedded DSL for Bayesian Inference – p.30/42



The Conditional Probability Arrow (2)

Observability:

• Determined by type-level computation.

• Dictates how information flows in the network
in “reverse mode”.

Ebba: An Embedded DSL for Bayesian Inference – p.31/42



The Conditional Probability Arrow (2)

What kind of arrow?

Ebba: An Embedded DSL for Bayesian Inference – p.32/42



The Conditional Probability Arrow (2)

What kind of arrow?

• Clearly not a classic arrow . . .

Ebba: An Embedded DSL for Bayesian Inference – p.32/42



The Conditional Probability Arrow (2)

What kind of arrow?

• Clearly not a classic arrow . . .

• Probably a Constrained, Indexed,
Generalized Arrow.

Ebba: An Embedded DSL for Bayesian Inference – p.32/42



The Conditional Probability Arrow (2)

What kind of arrow?

• Clearly not a classic arrow . . .

• Probably a Constrained, Indexed,
Generalized Arrow.

(∗∗∗) :: CP o1 a b → CP o2 c d → CP (o1 ∗∗∗ o2 ) (a, c) (b, d)

(≫) :: Fusable o2 b

⇒ CP o1 a b → CP o2 b c → CP (o1 ≫ o2 ) a c

( &&& ) :: Selectable o1 o2 a

⇒ CP o1 a b → CP o2 a c → CP (o1 &&& o2 ) a (b, c)

Ebba: An Embedded DSL for Bayesian Inference – p.32/42



Implementation Sketch

type Parameters = Map Name ParVal

data CP o a b = CP {

cp :: a → Prob b,

initEstim :: a → a → b

→ Prob (b, a,Double ,Parameters ,E o a b)

}

data E o a b = E {

estimate :: Bool → a → a → b

→ Prob (b, a,Double,Parameters ,E o a b)

}

Ebba: An Embedded DSL for Bayesian Inference – p.33/42



Example: The Lighthouse (1)

Ebba: An Embedded DSL for Bayesian Inference – p.34/42



Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)

Ebba: An Embedded DSL for Bayesian Inference – p.35/42



Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)

The mean and variance of a Cauchy distribution
are undefined!

Ebba: An Embedded DSL for Bayesian Inference – p.35/42



Example: The Lighthouse (2)

An analysis of the problem shows that the light-
house flashes are Cauchy-distributed along the
shore with pdf:

pdf lhf =
β

π(β2 + (x− α)2)

The mean and variance of a Cauchy distribution
are undefined!

Thus, even if we’re only interested in α, attempting
to estimate it by simple sample averaging is futile.

Ebba: An Embedded DSL for Bayesian Inference – p.35/42



Example: The Lighthouse (3)

The main part of the Ebba lighthouse model:

lightHouse :: CP U () [Double ]
lightHouse = proc () do

α← uniformParam "alpha" (−50) 50−≺ ()
β ← uniformParam "beta" 0 20−≺ ()
xs ← many 10 lightHouseFlash −≺ (α, β)
returnA−≺ xs

Note:

• Arrow-syntax used for clarity: not supported yet.

• Ebba needs refactoring to support data and
parameters with arbitrary distributions.

Ebba: An Embedded DSL for Bayesian Inference – p.36/42



Example: The Lighthouse (4)

Actual code right now:

lightHouse :: CP U () [Double ]

lightHouse = (uniformParam "alpha" (−50) 50

&&& uniformParam "beta" 0 20)

≫ many 10 lightHouseFlashes

Ebba: An Embedded DSL for Bayesian Inference – p.37/42



Example: The Lighthouse (5)

To test:

• A vector of 200 detected flashes was
generated at random from the model for
α = 8 and β = 2. (the “ground truth”).

• The parameter distribution given the outcome
sampled 100000 times using Metropolis-
Hastings (picking every 10th sample from the
Markov chain to reduce correlation between
samples).

Ebba: An Embedded DSL for Bayesian Inference – p.38/42



Example: The Lighthouse (6)

Resulting distribution for α:

 0

 0.5

 1

 1.5

 2

 2.5

 7  7.2  7.4  7.6  7.8  8  8.2  8.4  8.6  8.8

Ebba: An Embedded DSL for Bayesian Inference – p.39/42



Example: The Lighthouse (7)

Resulting distribution for β:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

Ebba: An Embedded DSL for Bayesian Inference – p.40/42



What’s Next? (1)

• Testing on larger examples, including
“hierarchical” models (nested use of many).

• Refactoring and the design, in particular:

- General data and parameter combinators
parametrised on the distributions.

- Framework for programming with
Constrained, Indexed, Generalised Arrows:
• Type classes CIGArrow1 , CIGArrow2
• Syntactic support through preprocessor

implemented using QuasiQuoting?

Ebba: An Embedded DSL for Bayesian Inference – p.41/42



What’s Next? (2)

• More robust implementation of Metropolis
Hastings

• Move towards a deep embedding for
estimation?

Idea: route a variable representation (name)
through the network in place of parameter
estimates.

• Support for gradient-based methods thorugh
automatic differentiation using similar
approach?

Ebba: An Embedded DSL for Bayesian Inference – p.42/42


	Baysig and Ebba (1)
	Baysig and Ebba (2)
	Why Embedded Languages?
	Why Shallow Embedding for Ebba? (1)
	Why Shallow Embedding for Ebba? (2)
	Why Shallow Embedding for Ebba? (3)
	Bayesian Data Analysis (1)
	Bayesian Data Analysis (2)
	Bayesian Data Analysis (3)
	Thomas Bayes, 1702--1761
	Fair Coin (1)
	Fair Coin (2)
	Fair Coin (3)
	Fair Coin (4)
	Fair Coin (5)
	Fair Coin (6)
	Fair Coin (7)
	Fair Coin (8)
	Fair Coin (9)
	Fair Coin (10)
	Probabilistic Models
	Parameter Estimation (1)
	Parameter Estimation (2)
	Parameter Estimation (3)
	Probabilistic Langauges and Estimation
	Probabilistic Langauges and Estimation
	Probabilistic Languages and Estimation
	Probabilistic Languages and Estimation
	The Conditional Probability Arrow (1)
	The Conditional Probability Arrow (2)
	The Conditional Probability Arrow (2)
	Implementation Sketch
	Example: The Lighthouse (1)
	Example: The Lighthouse (2)
	Example: The Lighthouse (3)
	Example: The Lighthouse (4)
	Example: The Lighthouse (5)
	Example: The Lighthouse (6)
	Example: The Lighthouse (7)
	What's Next? (1)
	What's Next? (2)

