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We present AutoTutor and Affective AutoTutor as examples of innovative 21st century interactive 

intelligent systems that promote learning and engagement. AutoTutor is an intelligent tutoring system 

that helps students compose explanations of difficult concepts in Newtonian physics, computer literacy, 

and critical thinking by interacting with them in natural language with adaptive dialogue moves similar 

to those of human tutors. AutoTutor constructs a cognitive model of students’ knowledge levels by 

analyzing the text of their typed or spoken responses to its questions. The model is used to dynamically 

tailor the interaction toward individual students’ zones of proximal development. Affective AutoTutor 

takes the individualized instruction and human-like interactivity to a new level by automatically detecting 

and responding to students’ emotional states in addition to their cognitive states. Over 20 controlled 

experiments comparing AutoTutor with ecological and experimental controls such reading a textbook have 

consistently yielded learning improvements of approximately one letter grade after brief 30-60 minute 

interactions. Furthermore, Affective AutoTutor shows even more dramatic improvements in learning than 

the original AutoTutor system, particularly for struggling students with low domain knowledge. In 

addition to providing a detailed description of the implementation and evaluation of AutoTutor and 

Affective AutoTutor, we also discuss new and exciting technologies motivated by AutoTutor such as 

AutoTutor-Lite, Operation ARIES, GuruTutor, DeepTutor, MetaTutor, and AutoMentor. We conclude this 

paper with our vision for future work on interactive and engaging intelligent tutoring systems. 

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer Uses in Education 

General Terms: Intelligent Tutoring Systems, Affective Computing, Natural Language Understanding, 

User Modeling 

Additional Key Words and Phrases: constructivism, deep learning, affect detection and synthesis, student 

modeling 

ACM Reference Format: 

D’Mello, S. K., Graesser, A. C.. 2012. AutoTutor and Affective AutoTutor: Learning by Talking with a 

Cognitively and Emotionally Intelligent Computer that Talks Back. ACM Trans. Interactive Intelligent. 

Syst. X, X, Article XX (Month 2011), X pages. 

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000 

1. INTRODUCTION 

About a decade ago, the idea of a student learning difficult technical content, such as 

Newtonian physics and computer operating systems, by typing or speaking to a 
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computer in natural language would be considered by most to be a mere fantasy. A 

computer that gauges the student’s level of knowledge by asking probing questions, 

analyzes the student’s responses to those questions, proactively identifies and 

corrects misconceptions, and even responds to the student’s own questions, gripes, 

and comments, would also have been considered to be no more than a seductive 

vision. Similarly, a decade ago, most would consider the idea that a computer could 

someday sense when a student is bored or frustrated and dynamically change its 

strategies to help the student conquer these negative emotions to be plainly absurd. 

Therefore, the fact that a computer system with these and many more capabilities 

has, in fact, been developed is an example of progress made over the last decade. In 

this paper, we present an overview of the design, implementation, and evaluation of 

two such systems called AutoTutor and Affective AutoTutor as examples of 21st 

century innovation in the field of Intelligent Interactive Systems. 

AutoTutor is an Intelligent Tutoring System (ITS) that helps students learn 

complex technical content in Newtonian physics, computer literacy, and critical 

thinking by (a) holding a conversation in natural language, (b) simulating the 

pedagogical and motivational strategies of human tutors, (c) modeling students’ 

cognitive states, (d) using its student model to dynamically tailor the interaction to 

individual students, (e) answering students’ questions, (f) identifying and correcting 

misconceptions, and (g) keeping students engaged with images, animations, and 

simulations. In addition to these capabilities, Affective AutoTutor adds affect-

sensitive capabilities by (h) detecting students’ affective states by monitoring facial 

features, body language, and conversational cues, (i) regulating negative affective 

states such as frustration and boredom, and (j) synthesizing emotions via the content 

of its verbal responses, speech intonation, and facial expressions of an animated 

pedagogical agent. Much like a gifted human tutor, AutoTutor and Affective 

AutoTutor attempt to keep the student balanced between the extremes of boredom 

and bewilderment by subtly modulating the pace, direction, and complexity of the 

learning task. 

The design of AutoTutor was inspired by explanation-based constructivist theories 

of learning [Aleven and Koedinger 2002; Bransford et al. 1991; Chi et al. 1994; Piaget 

1952; Rogoff 1990; VanLehn et al. 1992; Vygotsky 1978] and by previous empirical 

research that has documented the collaborative constructive activities that routinely 

occur during human tutoring [Chi et al. 2001; D'Mello et al. 2010a; D'Mello et al. 

2010e; Fox 1993; Graesser and Person 1994; Graesser et al. 1995; Moore 1995; Shah 

et al. 2002; VanLehn et al. 2007]. Constructivist approaches have shaped the 

standards for curriculum and instruction in the United States during the last decade. 

According to this approach, students need to actively construct coherent, 

explanation-based meanings and knowledge by interacting with the world and other 

people. Simply put, students learn by telling and doing. Learning environments 

should stimulate active construction of knowledge and provide feedback and 

explanations on these constructions rather than being mere information delivery 

systems. AutoTutor adheres to these constructivist principles because it was 

designed to simulate the dialogue moves of human tutors who coach students in 

constructing explanations to difficult problems.  

Although the principles underlying AutoTutor strongly adhere to the cognitive 

elements of constructivism, it is important to note that constructivism is not entirely 

limited to cognition, discourse, action, and the environment because emotions 

(affective states) are inextricably bound to the learning process [Boekaerts 2007; 

Calvo and D'Mello 2011; D’Mello and Graesser 2012; Pekrun and Stephens 2012; 

Schutz and Pekrun 2007]. An agile learning environment that is sensitive to a 

student’s affective states presumably enriches learning, particularly when learning is 

accompanied by confusion, frustration, boredom, interest, excitement, and insight. 



Therefore, in addition to modeling and responding to students’ cognitive states, 

Affective AutoTutor also detects and helps regulate negative emotional states such as 

boredom and frustration in order to increase engagement, task persistence, and 

learning. 

AutoTutor and Affective AutoTutor fill an important societal need because it is 

widely acknowledged that the one-size-fits-all approach of most classrooms is not 

conducive to learning at deeper levels of comprehension. Information transmission 

via lecturing, which is a major classroom activity, typically fosters factual and rule-

based thinking (e.g., memorizing facts and definitions), but rarely facilitates model-

based reasoning and deep thinking (e.g., problem solving, analyzing causal 

relationships, making bridging inferences). Therefore, students turn to one-on-one 

human tutoring when they are having difficulty in their STEM (Science Technology 

Engineering and Mathematics) courses. One-on-one human tutoring does have a 

payoff because there is considerable empirical evidence showing that human tutoring 

is extremely effective when compared to typical classroom environments [Bloom 

1984; Cohen et al. 1982; Corbett 2001; Fletcher 2003]. However, the cost associated 

with providing each student with a human tutor makes the adoption of widespread 

tutoring programs unfeasible, and as a consequence, many students are left behind. 

AutoTutor and Affective AutoTutor provide a technological solution to this problem 

by simulating the pedagogical and motivational aspects of human tutors in a scalable 

and cost-effective way. 

We consider AutoTutor and Affective AutoTutor to be systems that exemplify the 

innovative research in Interactive Intelligent Systems that have emerged over the 

last decade for the reasons elaborated below:  

 AutoTutor and Affective AutoTutor are unique because they were designed to 

closely model the pedagogical styles, dialogue patterns, language, and 

gestures of human tutors [Graesser et al. 1999]. They are also one of the few 

ITSs that help learning by engaging the students in natural language 

dialogues that closely mirror human-human tutorial dialogues. 

 They are complex intelligent systems encompassing cutting-edge research in 

computational linguistics, discourse processing, affective computing, machine 

learning, embodied conversational agents, cognitive science, and the learning 

sciences [Graesser et al. 2005]. 

 AutoTutor has been tested on over a thousand students and produces 

learning gains of approximately one letter grade. AutoTutor’s learning gains 

outperform novice human tutors and almost reach the bar of expert human 

tutors [VanLehn, Graesser, Jackson, Jordan, Olney and Rose 2007]. 

 Affective AutoTutor is one of the few fully-automated ITSs that detects and 

responds to students’ affective states in addition to their cognitive states 

[D'Mello and Graesser 2010]. It was the first system that demonstrated the 

positive effects of affect sensitivity on deep learning [D'Mello et al. 2010d]. 

 These systems were designed by an interdisciplinary research team spanning 

Computer Science, Engineering, Psychology, Cognitive Science, Linguistics, 

Physics, and Education. Such interdisciplinary endeavors are essential for 

developing innovative artifacts ranging from entertainment to educational 

games. 

 The AutoTutor and Affective AutoTutor research program has contributed to 

both the science of how people learn as well as towards engineering solutions 

to increase learning. 

 These systems have inspired a number of next-generation systems that: (a) 

are scalable and can be rapidly deployed on web-based platforms (AutoTutor-

Lite), (b) help students regulate cognitive and metacognitive processes during 

learning (MetaTutor), (c) process student responses at deeper levels of 



analysis (DeepTutor), (d) implement alternate pedagogical strategies such as 

reciprocal teaching and vicarious learning in game-based environments 

(Operation ARIES), (e) provide automated mentorship during learning with 

serious game-based environments (AutoMentor), and (f) model the strategies 

and dialogue patterns of expert human tutors (Guru Tutor). 

 

The remainder of the paper is organized as follows. Section 2 provides a brief 

overview of the history of ITSs, discusses some of the successful ITS systems, and 

summarizes recent research on the role of emotions during learning with ITSs. 

Section 3 provides a sufficiently detailed (but not comprehensive) description of 

AutoTutor with an emphasis on its dialogue structure, student model, interface, and 

architecture. Section 4 provides a synthesis of studies on evaluations of AutoTutor 

along dimensions such as conversational smoothness, ability to understand the 

student, accuracy of its student model, and its efficacy in promoting learning gains. 

While Sections 3 and 4 focus on the cognitive aspects of AutoTutor, Sections 5 and 6 

describe affect-sensitive versions of AutoTutor. In Section 5, we describe how 

Affective AutoTutor detects and responds to student emotions, while Section 6 

evaluates the accuracy of automated affect detection and discusses experiments that 

compare affective vs. non-affective versions of AutoTutor. Section 0 discusses some of 

the other versions of AutoTutor that were not emphasized in this paper as well as 

novel learning environments that are based on the AutoTutor technology. Finally, 

Section 8 concludes the paper with a discussion on some of the issues arising from 

the design of ITSs. 

2. BACKGROUND AND RELATED WORK 

2.1 From Computer-based Training (CBT) to Intelligent Tutoring Systems (ITSs) 

The Intelligent Tutoring Systems enterprise was launched in the late 1970s and 

christened with the edited volume aptly entitled Intelligent Tutoring Systems 

[Sleeman and Brown 1982]. The goal was to develop computerized learning 

environments that had powerful intelligent algorithms that would optimally adapt to 

the student and formulate computer moves that optimized learning for the individual 

students.  

ITSs were viewed as a generation beyond computer-based training (CBT). A 

prototypical CBT system involves mastery learning, such that the student (a) studies 

material presented in a lesson, (b) gets tested with a multiple choice test or another 

objective test, (c) gets feedback on the test performance, (d) re-studies the material if 

the performance is below threshold, and (e) progresses to a new topic if performance 

exceeds the threshold. The order of topics presented and tested can follow different 

pedagogical models that range in complexity from ordering on prerequisites [Gagne 

1985] to knowledge space models and Bayesian models that attempt to fill learning 

deficits and correct misconceptions [Doignon and Falmagne 1998] and to other 

models that allow dynamic sequencing and navigation [O'Neil and Perez 2006]. Meta-

analyses show effect sizes of 0.39 sigma1 compared to classrooms [Dodds and Fletcher 

2004]. 

These CBT systems are an important class of learning environments that can 

serve as tutors. However, the next generation of ITSs went a giant step further that 

enhanced the adaptability, grain-size, and power of computerized learning 

 

1 An effect-size measures the strength of a relationship between two variables. Cohen’s d is a common 

measure of the effect in standard deviation units (sigma) between two samples with means     and     

and standard deviations    and    [Cohen 1992]. According to Cohen (1992) effect sizes approximately 

equal to .3, .5, and .8 represent small, medium, and large effects, respectively.          √   
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environments [Woolf 2009]. The processes of tracking knowledge (called user 

modeling) and adaptively responding to the student incorporates computational 

models in artificial intelligence and cognitive science, such as production systems, 

case-based reasoning, Bayesian networks, theorem proving, constraint satisfaction 

algorithms, and educational data mining [Anderson et al. 2005; Baker and Yacef 

2009; Corbett and Anderson 1994; Romero and Ventura 2007; Woolf 2009].  

The ITSs that have been successfully implemented and tested have produced 

learning gains with an average effect size of one sigma, which is roughly equivalent 

to one letter grade [Corbett 2001; VanLehn, Graesser, Jackson, Jordan, Olney and 

Rose 2007]. When compared to classroom instruction and other naturalistic controls, 

the 1.0 effect sizes obtained by ITSs is superior to the 0.39 effect for computer-based 

training, 0.50 for multimedia, and 0.40 effect obtained by novice human tutors 

[Cohen, Kulik and Kulik 1982; Corbett 2001; Dodds and Fletcher 2004; Wisher and 

Fletcher 2004]. It is, however, less than the 2 sigma effect obtained by expert tutors 

for mathematics in naturalistic contexts [Bloom 1984]. The naturalistic setting is 

important because ITSs and accomplished tutors have produced equivalent learning 

gains when face-to-face communication is replaced with computer-mediated 

communication [VanLehn, Graesser, Jackson, Jordan, Olney and Rose 2007]. Indeed, 

ITSs are highly effective in helping students learn. 

2.2 Examples of Intelligent Tutoring Systems that Monitor Cognitive States 

Successful systems have been developed for mathematically well-formed topics, 

including algebra, geometry, programming languages, i.e., the Cognitive Tutors, 

[Aleven et al. 2006; Anderson et al. 1995; Corbett 2002; Koedinger and Corbett 2006], 

physics such as AutoTutor, Andes, Atlas, and Why/Atlas [VanLehn, Graesser, 

Jackson, Jordan, Olney and Rose 2007; VanLehn et al. 2005], electronics [Lesgold et 

al. 1992], and information technology [Mitrovic et al. 2007].  

Of particular interest is a subset of these ITSs that implement natural language 

dialogue that is comparable to the conversations that occur in human tutoring. It 

appears that there are two different mechanisms that potentially explain the 

effectiveness of one-on-one tutoring [Corbett et al. 1999; Graesser, Person and 

Magliano 1995]. The first is the sophisticated tutoring strategies that have been 

identified in the ITS literature [Psotka et al. 1988; Sleeman and Brown 1982; Woolf 

2009]. The second is the dialogue patterns and natural language that help human 

tutors scaffold the student to new levels of mastery [Chi et al. 2008; Graesser, Person 

and Magliano 1995]. According to Graesser et al. [1995], there is something about 

discourse and natural language (as opposed to sophisticated pedagogical strategies) 

that to some extent explains the effectiveness of novice human tutors. They arrive at 

this conclusion because most novice human tutors are effective, but they use very few 

(if any) sophisticated pedagogical strategies. Perhaps a combination of sophisticated 

tutoring strategies and conversational patterns will produce the ideal tutoring 

system.  

Some of the successful dialogue based ITSs include AutoTutor [Graesser et al. 

2004; VanLehn, Graesser, Jackson, Jordan, Olney and Rose 2007], why-Atlas 

[Graesser et al. 2001b; VanLehn et al. 2002], ITSPOKE [Litman and Silliman 2004], 

CIRCSIM-Tutor [Shah, Evens, Michael and Rovick 2002], DC-Trains [Pon-Barry et 

al. 2004], Mission Rehearsal [Swartout et al. 2006], Tactical Language and Culture 

System [Johnson and Valente 2008]. These different computer tutors vary in the 

extent to which they simulate human dialogue mechanisms, but all of them attempt 

to comprehend natural language, formulate adaptive responses, and implement 

pedagogical strategies to help students learn. The present focus on AutoTutor 

represents an example of one dialogue-based ITS. 



2.3 Beyond Cold Cognition: The Emergence of Affect-Sensitive ITSs 

The late 1990s and the early 2000s witnessed an exciting infusion of ITSs that 

implemented sophisticated tutoring strategies such as error identification and 

correction, building on prerequisites, frontier learning (expanding on what the 

student already knows), student modeling (inferring what the student knows and 

using that information to guide tutoring), building coherent explanations, and 

natural language dialogues [Aleven and Koedinger 2002; Anderson, Douglass and 

Qin 2005; Gertner and VanLehn 2000; Koedinger et al. 1997; Lesgold, Lajoie, Bunzo 

and Eggan 1992; Sleeman and Brown 1982; Woolf 2009]. It was around this time that 

Affective Computing was beginning to emerge as a new and exciting research area. 

Affective Computing focuses on creating technologies that can monitor and 

appropriately respond to the affective states of the user [Picard 1997; Picard 2010]. 

Affective computing is a subfield of human-computer interaction (HCI), where the 

affective states of a user (feelings, moods, emotions) are incorporated into the 

decision cycle of the interface in an attempt to develop more effective, user-friendly, 

and naturalistic applications. 

Affective computing is particularly relevant to ITSs because the ITSs that were 

developed prior to 2000 primarily focused on students’ cognitive states and 

sometimes motivational levels [del Soldato and du Boulay 1995; du Boulay 2011]. 

This is a critical limitation because learning and problem solving are rife with 

emotional experiences [Calvo and D'Mello 2011; D’Mello and Graesser 2012; Meyer 

and Turner 2006; Pekrun et al. 2010; Pekrun and Stephens 2012]. The inextricable 

link between affect and learning suggests that ITSs can be more than mere cognitive 

machines, and they should be affective processors as well. Affect-sensitivity is 

important for ITSs that aspire to model human tutors because it has been claimed 

that expert teachers are able to recognize a student’s emotional state and respond in 

an appropriate manner that has a positive impact on the learning process [Goleman 

1995; Lepper and Woolverton 2002]. An affect-sensitive ITS would incorporate 

assessments of students’ cognitive and affective states into its pedagogical and 

motivational strategies in order to keep students engaged, boost self-confidence, 

heighten interest, and presumably maximize learning [Calvo and D'Mello 2011]. 

A number of research groups have recently focused on building learning 

environments that detect and respond to affective states such as boredom, confusion, 

frustration, and anxiety [Afzal and Robinson 2011; Burleson and Picard 2007; 

Chaffar et al. 2009; Conati and Maclaren 2009; D'Mello and Graesser 2010; D'Mello, 

Lehman, Sullins, Daigle, Combs, Vogt, Perkins and Graesser 2010d; Forbes-Riley et 

al. 2008; Robison et al. 2009; Woolf et al. 2010]. These systems use state-of-the art 

sensing technologies and machine learning techniques to automatically detect 

student affect by monitoring facial-features, speech contours, body language, 

interaction logs, language, and peripheral physiology (e.g., electromyography, 

galvanic skin response) (see [Calvo and D’Mello 2010] for an overview). These affect-

sensitive systems then alter their pedagogical and motivational strategies in a 

manner that is dynamically responsive to the sensed affective states. Some of the 

implemented responses to student affect include affect mirroring [Burleson and 

Picard 2007], empathetic responses [Woolf, Arroyo, Muldner, Burleson, Cooper, 

Dolan and Christopherson 2010], and a combination of empathy, encouragement, and 

incremental challenge [D'Mello, Lehman, Sullins, Daigle, Combs, Vogt, Perkins and 

Graesser 2010d]. Section 5 describes one such system, namely the affect-sensitive 

AutoTutor or Affective AutoTutor. 

3. AUTOTUTOR 

AutoTutor simulates a human tutor by holding a conversation with students in 

natural language. Students type in their contributions through a keyboard in most 



applications. However, we have developed a version that handles spoken input from 

the student through the Dragon Naturally Speaking ™ (version 6) speech recognition 

system (See Section 7.1). AutoTutor communicates through an animated 

conversational agent with speech, facial expressions, and some rudimentary gestures 

(see Section 0 below). 

AutoTutor has been implemented and tested for the domains of Newtonian 

physics, computer literacy (the Internet, operating systems, and hardware), and 

scientific methods (see Section 0 for alternate versions of AutoTutor). AutoTutor’s 

tutorial sessions are typically geared to promote conceptual thinking and deep 

reasoning rather than memorization of definitions and facts. However, there is 

nothing in its design to prevent AutoTutor from helping students with the acquisition 

of domain-specific facts. In essence, it is possible to create tutorial problems that 

differentially map onto taxonomies of cognitive difficulty [Bloom 1956; Wakefield 

1996]. For example, there are the three levels of difficulty (easy, medium, difficult) 

for AutoTutor’s computer literacy problems (see [Person et al. 2003] for details). 

As with most ITSs, AutoTutor’s behavior can be characterized by an outer and an 

inner loop [VanLehn 2006]. The outer loop of AutoTutor consists of a series of 

didactic lessons and challenging problems or main questions (such as why, how, 

what-if). An example main question is “When you turn on the computer, how is the 

operating system first activated and loaded into RAM?” The order of lessons, 

problems, and questions can be dynamically selected based on the profile of student 

abilities, but the order is fixed in most versions of AutoTutor we have developed. The 

interactive dialogue occurs during the construction of an answer to a main question 

but not during the didactic delivery of information (e.g., reading text, viewing a 

diagram). The answer to a question (or solution to a problem) requires several 

sentences of information in an ideal answer. AutoTutor assists the student in 

constructing the answer after the student enters an initial response.  

The inner loop of AutoTutor consists of this collaborative interaction while 

answering a question (or solving a problem). It is this inner loop that is the 

distinctive hallmark of AutoTutor. The tutor draws out more of the student’s 

knowledge (through hints and prompts), helps fill in missing information, repairs 

misconceptions, and answers student questions. The inner loop dialogue between 

AutoTutor and the student takes approximately 100 dialogue turns to answer a 

single challenging question, approximately the length of a conversation with a 

human tutor [Graesser, Person and Magliano 1995].  

3.1 What does AutoTutor do?  

Perhaps the best way to convey what AutoTutor does in the inner loop is through an 

example conversational dialogue. The excerpts below were extracted from an actual 

conversation with a student on the topic of conceptual physics. The conversation 

begins with a main question selected by AutoTutor.  

   

AutoTutor: When a car without headrests on the seats is struck from behind,  

the passengers often suffer neck injuries. Explain why. (main question) 

 

Student: I don't know. (metacognitive speech act: This expression by the 

student is classified as a metacognitive speech act because it conveys what 

the student knows about his/her own knowledge.)  

 

AutoTutor: Could you at least try to give me an answer? That way, we'll have 

something as a starting place to work from. (pump: This indirect dialogue 

move encourages the student to say more, but does not direct the student to 

express particular information.) 



 

As the dialogue continues, AutoTutor detects that an important expected piece of 

information is missing (i.e., the impact of the collision on the neck). 

  
AutoTutor: Let's try this together. (discourse marker: This is a 

discourse marker that introduces or connects dialogue moves within a turn.)  

 

When the collision provides a large force to accelerate the head, what could 

happen to the neck? (hint: This dialogue move leads the student to articulate 

a particular sentence, clause, or proposition.) 

 

At one point in the dialogue, the student asks a question, so AutoTutor needs to 

provide an answer. AutoTutor can answer some classes of questions (such as 

definitional questions), but not all questions, so AutoTutor needs to productively 

manage the dialogue surrounding student question asking.  

 

Student: What is a force? 

 

AutoTutor: I'll take a crack at answering your question. (discourse 

marker) 

 

Force is any influence that tends to accelerate an object; a push or pull; 

measured in newtons. Force is a vector quantity. (answer: AutoTutor answers 

the student’s direct question. Answers are either accessed from electronic 

glossaries or a paragraph is dynamically selected from a textbook.) 

 

Was that what you were looking for? (question solicitation: AutoTutor 

allows the student the opportunity to rephrase his question.) 

 

As the dialogue continues AutoTutor believes it has detected a misconception.  

 

AutoTutor: See if you know the answer to this. (discourse marker:  

AutoTutor prepares the student for a direct question.)  

 

When the head and body are moving at the same acceleration, they are moving 

at the same ________? (prompt: This more direct dialogue move encourages 

the student to fill in a particular word or phrase of information, in this case 

the word “rate.” Prompts are frequently needed for students who have low 

verbal fluency in order to elicit a particular noun, verb, or adjective that is 

missing in an answer.) 

 

Student: distance 

 

AutoTutor: Moving at the same rate. (prompt completion: AutoTutor 

splices in the correct information if the student provides an incorrect answer 

to its prompt. The misconception is eventually corrected with an assertion as 

the dialogue advances.) 

 

At this point, the dialogue continues until all of the relevant expected answers are 

covered in the conversation. The conversation then ends with a summary answer by 

the tutor, or the tutor might prompt the student to construct a summary. 

The example illustrates the mixed-initiative dialogue of AutoTutor. AutoTutor 

attempts to interpret or otherwise handle any question, assertion, comment, or 



extraneous speech act that the student expresses. Each turn of AutoTutor requires 

the generation of one or more dialogue moves that adaptively respond to what the 

student expresses, that advance the conversation in a constructive manner, that 

cover good answer information, or that correct misconceptions. The tutor’s dialogue 

moves within a turn are connected by discourse markers, as illustrated in the 

example. Some dialogue moves are responsive to the student’s preceding turn, such 

as short feedback (positive, neutral, versus negative), answers to student questions, 

and corrections of student misconceptions. Other dialogue moves push the dialogue 

forward in an attempt to cover the expected answers to the main question.  

3.2 Dialogue Structure  

The dialogue structure of AutoTutor is similar to the dialogue patterns of human 

tutors. Graesser and Person analyzed dialogue patterns of typical human tutors in 

middle school and in college [Graesser and Person 1994; Graesser, Person and 

Magliano 1995]. Similar analyses have been conducted by other researchers on 

naturalistic tutoring corpora [Chi et al. 2004; D'Mello, Olney and Person 2010e; 

Evens and Michael 2006; Litman et al. 2006; VanLehn et al. 2003]. The following 

dialogue structures are prominent in human tutors and are implemented in 

AutoTutor: (a) a curriculum script with didactic content and problems (i.e., difficult 

tasks or questions), (b) a 5-step Tutoring Frame, (c) Expectation and Misconception 

Tailored (EMT) dialogue, and (d) Conversational Turn Management.  

 

Curriculum script. The tutor covers a curriculum with didactic content and a set of 

questions or problems that address the content. Didactic content can be presented in 

a mini-lecture, hopefully at the appropriate time for each individual student. The 

questions/problems require the student to actively apply their knowledge. The 

curriculum script includes expected answers, misconceptions, hints, prompt 

questions, and other inner loop information.  
 

5-Step tutoring frame. When a challenging main question (or problem) is selected 

to work on, the question is answered through an interaction that is structured by a 5-

Step Tutoring Frame. The 5 steps are: (1) the tutor presents a main question, (2) the 

student gives an initial answer, (3) the tutor gives short feedback on the quality of 

the student’s initial answer, (4) the tutor and student collaboratively improve on the 

answer in a turn-by-turn dialogue that may be lengthy, and (5) the tutor evaluates 

whether the student understands (e.g., asking “Do you understand?” or testing with a 

follow-up task). In the spirit of constructivism, this 5-step tutoring frame involves 

collaborative discussion, joint action, and encouragement for the student to construct 

knowledge rather than merely receiving knowledge.  

 

Expectation and misconception tailored (EMT) dialogue. Human tutors 

typically have a list of expectations (i.e. anticipated good answers or steps in a 

procedure) and a list of anticipated misconceptions (incorrect information) associated 

with each main question. They want the expectation content covered in order to 

handle the main question that is selected. The tutor guides the student in 

articulating the expectations through a number of dialogue moves, namely pumps 

(“What else?”), hints (“What about X?”), prompt questions to extract specific 

information from students (“X is a type of what?”), assertions that capture particular 

expectations (“X is a type of Y”), and answers to students’ questions.  

As the dialogue progresses, tutors tend to lead more while trying to get the 

student to articulate an expectation. They start with a pump and then move to a hint 

if the pump fails, followed by a prompt question and an assertion if students fail to 

articulate the expectation. The pump → hint → prompt → assertion cycle is 



implemented by AutoTutor to encourage the student to articulate the answer and 

cover expectations. The correct answers are eventually covered and the 

misconceptions are hopefully corrected. 

 

Conversational turn management. Human tutors structure their conversational 

turns systematically. Nearly every turn of the tutor has three information slots. The 

first slot of most turns is feedback on the quality of the student’s last turn. This 

feedback is either positive (e.g., “very good”, “yeah”), neutral (e.g., “uh huh”, “I see”), 

or negative (e.g., “not quite”, “not really”). The second slot advances the interaction 

with a prompt for specific information, a hint, an assertion with correct information, 

a correction of misconceptions, or an answer to the student’s question. The third slot 

is a cue for the floor to shift from the tutor as the speaker to the student. For 

example, AutoTutor ends each turn with a question or a gesture to cue the student to 

do the talking. Otherwise the student and AutoTutor are at a standstill waiting for 

the other to take the next turn.  

3.3 Monitoring Students’ Cognitive States 

One of the central questions is how well the tutor can track the psychological states 

of the student as the tutor implements tutoring strategies. Available evidence 

suggests that novice human tutors are not able to conduct student modeling at a fine-

grained level [Chi, Siler and Jeong 2004; Graesser et al. 2009; Person et al. 1994]. 

They are limited to performing approximate assessments rather than fine-grain 

assessments. On the other hand, there is evidence to suggest that some of the more 

accomplished (or expert) human tutors perform fine-grained student modeling 

because they are quite adept at assessing student knowledge [D'Mello et al. 2010c; 

Lepper and Woolverton 2002]. Computers can potentially show advantages over 

novice human tutors to the extent that artificial intelligence algorithms can be used 

to accurately conduct student modeling and generate intelligent responses.  

 

Semantic matching algorithms. Student modeling in the inner loop is executed 

after each turn and consists of comparing what the student expresses in language 

with the list of expectations and misconceptions associated with a main question. 

This requires semantic matching algorithms that compare the student input with 

AutoTutor’s expectations and misconceptions. It is widely accepted that natural 

language is imprecise, fragmentary, vague, ungrammatical, and elliptical, so it would 

not be prudent to rely entirely on semantically well-formed semantic matches. 

AutoTutor therefore incorporates several semantic evaluation algorithms when 

performing these matches, but notably Latent Semantic Analysis [Landauer et al. 

2007], regular expressions, content word overlap metrics (that have higher weight for 

low frequency words than high frequency words) [D'Mello et al. 2010b], and 

occasionally logical entailment [Rus and Graesser 2007]. LSA is a statistical 

technique that measures the conceptual similarity of two text sources. In this 

similarity matching algorithm, a vector representing the semantic content of the 

contribution is created and compared to vectors that represent the semantic content 

of expectations and misconceptions. The cosine between the two vectors is calculated 

to produce a match similarity score from 0 to 1 (negative cosines are rare and are 

converted to 0 in AutoTutor). 

 

Covering an expectation and detecting a misconception. Early versions of 

AutoTutor relied exclusively on LSA in their semantic evaluation of student input. 

The LSA algorithm in AutoTutor computed the extent to which the information 

within the student turns (i.e., an individual turn, a combination of turns, or collective 

sequence of turns) semantically matches each expectation in the ideal answer. 



Expectation Ei is considered covered if the content of the student’s cumulative set of 

turns meets or exceeds a threshold T in its LSA cosine value (which varies from near 

0 to 1). That is, Ei is covered if the cosine match between Ei and the student input I 

(including turns 1 though N) is high enough: cosine (Ei, I) ≥ T. The threshold has 

varied between .40 and .75 in previous instantiations of AutoTutor. 

Each expectation Ei has an associated family of prompts and hints to get the 

student to fill in most or all of the content words and propositions in Ei. Prompts and 

hints are selected to maximize an increase in the LSA cosine match score (hereafter 

called the match score) when answered successfully. Stated differently, hints and 

prompts are selected to maximize pattern completion. Sometimes the student 

expresses misconceptions during the dialogue. This happens when the student input 

I matches a misconception M with a sufficiently high match score. At that point 

AutoTutor corrects the misconception and goes on.  

 

Selecting the next expectation to cover. During the course of the dialogue and 

student modeling, the system periodically identifies a missing expectation and posts 

the goal of covering the expectation. When expectation Ei is missed (and therefore 

posted), AutoTutor attempts to get the student to articulate it by generating hints 

and prompts affiliated with Ei to help the student fill in missing words and 

propositions. The selection of the next Ei to cover follows the principle of the zone of 

proximal development or what some call frontier learning [Brown et al. 1998; 

Vygotsky 1986]. That is, AutoTutor builds on what the student has managed to 

articulate. More formally, AutoTutor selects the next Ei from the set of expectations 

that (a) has the highest match score and (b) has a subthreshold match score (i. e., the 

expectation has not yet been covered). This subthreshold expectation selection 

algorithm assumes that the expectations should not be covered in a prescribed 

sequential order. However, ordering constraints may also be considered in a 

sequential expectation selection algorithm. Some subject matters have ordering 

constraints but others do not. 

 

Student modeling across turns. The above specification for a single student-tutor 

turn pair does not tell the whole story, however. If the student model was completely 

rebuilt on each student turn, the semantic matches would wildly vary, representing 

the vicissitudes of the student’s ability to provide content in response to different 

tutor dialogue moves. Additionally, the student’s responses to AutoTutor’s pumps 

and hints are typically only a few words in length. This relatively low verbosity 

introduces problems with the fidelity of the semantic matching algorithms, especially 

LSA. Therefore, the semantic match is calculated using both the current student 

response alone (local assessment) and the current response concatenated with all 

previous student responses for the current problem (global assessment). This global 

assessment represents AutoTutor’s model of student knowledge across turns for a 

particular main problem. It moves beyond short student responses and helps 

AutoTutor maintain continuity of the student model between turns. 

3.4 AutoTutor Interface 

AutoTutor’s interface varies across versions, but most versions have the five major 

windows shown in Figure 1. Window 1 (top of screen) is the main question that stays 

on the computer screen throughout the conversation about the question. Window 2 

(left middle) is the animated conversational agent that speaks the content of 

AutoTutor’s turns. Window 3 (right middle) is either blank or has auxiliary 

diagrams. Window 4 (right bottom) displays the students’ answers as they type them 

in. Window 5 (left bottom) displays the dialogue history of the student and the tutor.  

 



 
 

Figure 1. AutoTutor interface 

3.5 AutoTutor Architecture 

The major components of AutoTutor’s architecture are presented in Figure 2. 

AutoTutor operates as a distributed client-server application implementing a 

transient asynchronous mode of communication. The client and the server are 

written in the C# language within the Microsoft .NET framework. The subsequent 

discussion provides a very brief overview of the architecture. Additional details can 

be found in Graesser et al. [2005]. 

 

Speech act classification. The bottom left of the figure depicts the student 

entering information via the user interface. The information in each student turn is 

segmented into speech acts, based on punctuation and (in some systems) a syntactic 

parser. Each speech act is assigned to one of approximately 20 speech act categories. 

These categories include assertions, 16 different categories of questions, short 

responses (e.g., “yeah”, “right”), metacognitive expressions (e.g., “I don’t understand”, 

“I see”), and metacommunicative expressions (e.g., “What did you say?”). The 

accuracy of classifying the student speech acts into categories varies from 0.87 - 0.96 

percent [Olney et al. 2003]. 

 



 
 

Figure 2. AutoTutor’s architecture 

 

Conversational management and response generation. The speech acts 

expressed by the student on any given turn N constrain AutoTutor’s conversation 

management of turn N+1. If the student asks a question, AutoTutor needs to answer 

it if it has an answer, or otherwise it (a) generates dialogue moves to put the onus on 

the student to find an answer (e.g., “Good question. How would you answer it?”) or (b) 

generates dialogue moves that evade getting an answer (e.g., “Good question, but I 

cannot answer it now. Let’s move on.2”). If the student provides a metacognitive 

response (e.g., “I’m lost, I don’t know”), then AutoTutor acknowledges this and 

presents a hint to advance the dialogue in productive avenues. Most of the student 

responses are answers to the tutor’s hints, prompts, and pumps. These are evaluated 

on quality (see Section 3.3) and this evaluation drives the pump → hint → prompt → 

assertion cycles.  

The Conversation Manager is sensitive to the student’s speech acts and is 

generally responsible for keeping track of the tutorial dialogue. The Conversation 

Manager can be represented by a set of “if <state> then <action>” production rules 

[Anderson and Gluck 2001] or of a finite state transition network [Graesser et al. 

2001a]. The Conversation Manager passes information to the Response Generator, 

which generates the actual text of the dialogue moves and adds appropriate discourse 

markers. This content is expressed either via text or by an animated conversational 

agent that is displayed on the interface (see Section 0). 

 

Data structures and databases. As depicted in the figure, AutoTutor has a 

repository of different static data structures that can be created and updated with 

authoring tools. First, most versions of AutoTutor represent world knowledge as LSA 

spaces, but some versions of AutoTutor or its progeny have incorporated other forms 

of world knowledge representation, such as textbooks, glossaries, and conceptual 

graph structures. Second, there are Conversation Rules that are represented as 

production rules, finite-state transition networks, or recursive augmented state 

transition networks. Third, there are different categories of Frozen Expressions that 

have different discourse functions. For example, there are different ways for 

AutoTutor to express positive feedback (e.g., “yes”, “yeah”, “good”, “great”, “fantastic”, 

 
2 AutoTutor does not revisit the student’s question, although the question sometimes naturally gets 

answered over the course of the dialogue. 



“right on”) and different ways that the student can express metacommunicative 

speech acts (e.g., “What did you say?” “Please repeat. I did not hear that”).  

The Curriculum Script, as briefly described in Section 3.2, is a critical component 

of the AutoTutor architecture. Each script contains the content associated with a 

question or problem. For each, there is (1) the ideal answer, (2) a set of expectations, 

(3) families of potential hints, correct hint responses, prompts, correct prompt 

responses, and assertions associated with each expectation, (4) a set of 

misconceptions and corrections for each misconception, (5) a set of key words and 

functional synonyms, (6) a summary, and (7) markup language for the speech 

generator and gesture generator for components in (1) through (6) that require 

actions by the animated agents. AutoTutor is equipped with a Script Authoring Tool 

[Susarla et al. 2003] to enable subject-matter experts to easily create the content of 

the curriculum script. The complete Curriculum Script for one computer literacy 

question in published in the Appendix of [Person, Graesser, Kreuz and Pomeroy 

2003]. 

All of the information collected during the AutoTutor-student interaction is stored 

in Log files. These files are fed into the Log Analyzer that can be inspected by the 

researcher and can inform the lesson planner or knowledge engineer who uses the 

Authoring Tools to create new content or edit existing content. These modules are, of 

course, standard for all learning management systems.  

4. EVALUATIONS OF AUTOTUTOR 

AutoTutor has been evaluated along a number of dimensions such as the quality of 

its dialogue, the accuracy by which it evaluates student responses, its student model, 

and most importantly its efficacy in promoting learning gains. This section provides a 

synthesis of the major finding along each of these four dimensions. 

4.1 Evaluating AutoTutor’s Conversational Smoothness 

We performed a bystander Turing test to evaluate the naturalness of AutoTutor’s 

dialogue moves [Person and Graesser 2002]. We randomly selected 144 tutor moves 

in the tutorial dialogs between students and AutoTutor. We asked six human tutors 

to fill in what they would say at these 144 points. So, at each of these 144 tutor turns, 

we had what the human tutor generated and what AutoTutor generated. We 

subsequently tested whether a group of students could discriminate between dialogue 

moves that were generated by a human versus a computer; half in fact were 

generated by the human tutors and half were by AutoTutor. We found that the 

bystander students were unable to discriminate whether particular dialogue moves 

had been generated by a computer versus a human; the d’ discrimination scores were 

actually a bit negative (-.08), but not significantly. This rather impressive outcome 

supports the claim that AutoTutor is a good simulation of human tutorial dialogue.  

4.2 Evaluating AutoTutor’s Semantic Matching Algorithms 

We have analyzed the accuracy of the match evaluation scores by comparing 

AutoTutor’s scores to judgments of subject matter experts [Graesser et al. 2007b; 

Graesser et al. 2000]. For example, we have analyzed the complete answers that 

students gave as an answer to one of the challenging physics questions, recorded 

AutoTutor’s match evaluation score for each expectation/misconception, and collected 

ratings from 5 expert physicists as to whether each expectation/misconception was 

present in the student answers. The correlations between these match evaluation 

scores and expert ratings have varied between 0.35 and 0.50, depending on the 

criterion, semantic algorithm, and other details that need not be considered here.  

One expert physicist rated the degree to which particular speech acts expressed 

during AutoTutor training matched particular expectations. These judgments were 



made on a sample of 25 physics expectations and 5 randomly sampled student 

answers per expectation, yielding a total of 125 pairs of expressions. The question is 

how well the expert ratings correlate with match evaluation score for the relevant 

expectation. We found that the correlation between an expert judge’s rating and the 

match evaluation score was modest (r = .29), but significant in accounting for the 125 

items.  

4.3 Evaluating AutoTutor’s Student Modeling 

The accuracy of the student model algorithms have been evaluated over the years. In 

one analysis of conceptual physics, we collected pretest scores on a psychometrically 

validated test called the Force Concept Inventory [Hestenes et al. 1992]. If AutoTutor 

is performing effective user modeling, then the dialogue moves selected by AutoTutor 

should be correlated with the students’ prior knowledge of physics. Such predictions 

held up when we analyzed the dialogue moves of AutoTutor as a function of students’ 

prior knowledge [Jackson and Graesser 2006]. For example, the short feedback that 

AutoTutor provides after the students’ turns is either positive, neutral, or negative. 

The students’ physics knowledge had a significant positive correlation with positive 

feedback moves (r = .38) and a negative correlation with negative feedback (r = -.37). 

Another example applies to the corrections that AutoTutor made when identifying 

student errors and misconceptions. The correlation between prior knowledge and 

corrections was negative (r = -.24), and marginally significant.  

Yet another example pertains to the four dialogue move categories that attempt to 

cover the content of the expectations in the curriculum script: Pumps, hints, prompts, 

and assertions. The proportion of dialogue moves in these categories should be 

sensitive to the student’s knowledge of physics. There is a continuum from the 

student-provided information to tutor-provided information as we move from pumps, 

to hints, to prompts, to assertions. The correlations with student knowledge reflected 

this continuum perfectly, with values of 0.49, 0.24, -0.19, and -0.40, respectively. 

Thus, for students with more knowledge of physics, all AutoTutor needs to do is 

primarily pump and hint, thereby encouraging or nudging the student to supply the 

answer to the question and articulate the expectations. For students with less 

knowledge of physics, AutoTutor needs to generate prompts for specific words or to 

assert the correct information, thereby extracting knowledge piecemeal or telling the 

student the correct information. These results support the claim that AutoTutor 

performs user modeling with some degree of accuracy and adaptively responds to 

students’ knowledge levels. 

4.4 Learning Gains Produced by AutoTutor 

Perhaps the most important question is whether AutoTutor helps students learn. 

The learning gains of AutoTutor have been evaluated in over 20 experiments since its 

inception. Training times in these studies varied from 30 minutes to 4 hours and 

tutorial sessions were sometimes split across multiple days. Assessments of 

AutoTutor on learning gains have shown effect sizes of approximately 0.8 sigma in 

the areas of computer literacy [Graesser, Lu, Jackson, Mitchell, Ventura, Olney and 

Louwerse 2004] and Newtonian physics [VanLehn, Graesser, Jackson, Jordan, Olney 

and Rose 2007]. These effect sizes place AutoTutor somewhere between an untrained 

human tutor [Cohen, Kulik and Kulik 1982] and an ITS with ideal tutoring 

strategies [Corbett 2001]. Some of the hypothesized ideal tutoring strategies include 

Socratic teaching, delayed feedback, motivational support [Lepper and Chabay 1988; 

Lepper and Woolverton 2002]. AutoTutor improves learning between 0 and 2.1 sigma 

(a mean of 0.8), depending on the learning performance measure, the comparison 

condition, the subject matter, and the version of AutoTutor.  



Measures of learning have varied in scope, depth, difficulty, and open-endedness. 

They have included: (1) multiple choice questions on shallow knowledge that tap 

definitions, facts and properties of concepts, (2) multiple choice questions on deep 

knowledge that tap causal reasoning, justifications of claims, and functional 

underpinnings of procedures, (3) essay quality when students attempt to answer 

challenging problems, (4) a cloze task that has students fill in missing words of texts 

that articulate explanatory reasoning on the subject matter, and (5) performance on 

problems that require problem-solving.  

Assessments of learning gains obviously depend on the comparison conditions. 

The learning gains are approximately 0.8 for AutoTutor compared to a do-nothing 

control or a condition of reading from a textbook on the same topics for an equivalent 

amount of time. The learning gains are approximately the same for AutoTutor and 

an expert human tutor who interacts with the student by computer-mediated 

communication (as opposed to face-to-face). 

The largest learning gains from AutoTutor have been on deep-reasoning measures 

rather than measures of shallow knowledge [VanLehn, Graesser, Jackson, Jordan, 

Olney and Rose 2007]. AutoTutor is most effective when there is an intermediate gap 

between the student’s prior knowledge and the ideal answers of AutoTutor; 

AutoTutor is not particularly effective in facilitating learning in students with high 

domain knowledge, nor when the material is too much over the student’s head.  

4.5 Limitations and Potential Areas for Improvement 

The assessments point to the successes of AutoTutor, but it is important also to 

acknowledge some of its limitations. One limitation is that the conversational 

dialogue may have minimal incremental gains on learning when the exchange is 

time-consuming and the knowledge covered is shallow rather than deep. The 

conversational interaction is tedious for some students and even irritating for a small 

percentage. A second limitation is that students lose patience with AutoTutor when 

the conversation breaks down. Such breakdowns occur when the student modeling is 

imperfect, the curriculum script is incomplete, student speech acts are misclassified, 

and AutoTutor is viewed as being unresponsive to what the student is saying. A third 

limitation is that AutoTutor can correctly answer only a modest proportion of student 

questions so students eventually stop asking them3.  

One important future direction is to improve the student modeling and 

conversational facilities of AutoTutor in order to minimize some of its persistent 

blemishes. This can be accomplished in a number of ways. For example, there can be 

checks in the authoring tools to make sure that the content is complete when it is 

prepared by the author of the curriculum scripts. Another direction is to develop 

more sophisticated question answering facilities so that AutoTutor can answer a 

broad diversity of questions. This would contribute to mixed-initiative dialogue and 

put more control in the hands of the student. 

5. AFFECTIVE AUTOTUTOR 

AutoTutor is quite effective in helping students learn by modeling and responding to 

their cognitive states. However, this is only one part of the story because learning 

consists of a complex interplay between cognition, emotions, and learning [Snow et 

al. 1996]. We have recently developed two new versions of AutoTutor that detect and 

respond to students’ affective and cognitive states [D'Mello et al. 2008b; D’Mello et al. 

2009]. These affect-sensitive versions of AutoTutor, called the Supportive and 

 
3 Some of these communication failures were systematically tracked in a study that compared the 

traditional typed input version of AutoTutor with a spoken-input version of the tutor. Please see [D'Mello, 

King and Graesser 2010b] for details. 



Shakeup tutors, are collectively referred to as Affective AutoTutor. They have a set of 

production rules that were designed to map dynamic assessments of the student’s 

cognitive and affective states with tutor actions to address the presence of boredom, 

confusion, and frustration. 

The achievement of an affect-sensitive tutorial interaction engages the tutor and 

student in an affective loop [Conati et al. 2005]. This loop includes the real-time 

detection of the affective states that are relevant to learning, the selection of 

appropriate tutor actions that maximize learning while influencing the student’s 

affect, and the synthesis of emotional expressions by the tutor as it attempts to 

engage the student in a more human-like, naturalistic manner.  

The affective loop in an integrated system can be viewed from the perspective of 

either the student or the tutor. The student-centric view consists of analyzing the 

prominent affective states in the student, assessing their potential impact on 

learning, identifying how these states are manifested in the student, and developing 

an automatic affect detection system. The tutor-centric view explores how good 

human tutors or theoretical ideal tutors adapt their instructional agenda to 

encompass the emotions of the student. This expert knowledge is then transferred to 

computer tutors such as Affective AutoTutor. Embodied conversational agents that 

simulate human tutors are programmed to synthesize affective elements through the 

generation of facial expressions, the inflection of speech, and the modulation of 

posture. 

5.1 Identifying Affective States 

There is the important issue of identifying the affective states that students 

experience during interactions with AutoTutor and other learning environments. One 

possibility is that the basic emotions (anger, sadness, fear, disgust, happiness, and 

surprise) [Ekman 1992] constitute students’ primary emotional reactions. 

Alternatively, the so called academic emotions or learning-centered emotions (e.g., 

anxiety, boredom) might be relevant in learning contexts [Pekrun and Stephens 

2012; Schutz and Pekrun 2007]. We addressed this fundamental question by 

conducting a number of studies that aimed at identifying the affective states that 

students typically experience while interacting with AutoTutor, with the expectation 

that these findings will generalize to other learning environments [Baker et al. 2010; 

D'Mello in review]. 

In the Observational study, five trained judges observed the affective states 

(boredom, confusion, frustration, eureka, flow/engagement, versus neutral) of 34 

students who were learning introductory computer literacy with AutoTutor [Craig et 

al. 2004]. In the Emote-Aloud study, seven college students verbalized their affective 

states while interacting with AutoTutor [D'Mello et al. 2006]. The Multiple-Judge 

study consisted of 28 students completing a 32-minute session with AutoTutor, after 

which their affective states were judged by the students themselves, untrained peers, 

and two trained judges. Judgments were based on videos of students’ faces and 

computer screens which were recorded during the tutorial session [Graesser et al. 

2006]. The Speech Recognition study was similar to the multiple-judge study with the 

exception that students spoke their responses to the AutoTutor system instead of 

typing them (see Section 7.1). Retrospective self-reports by the students constituted 

the primary affect measure in this study [Graesser et al. 2007a]. The Physiological 

study also implemented the retrospective affect judgment procedure, but  the 

students were 27 engineering students from an Australian University [Pour et al. 

2010] instead of the undergraduate psychology students from the U.S. who comprised 

the samples in the previous four studies. 

When averaged across studies, flow/engagement was the most frequent state, 

comprising 24% of the observations. Boredom and confusion were the second most 



frequent states (18% and 17%, respectively) followed by frustration (13%). Neutral 

was reported for 19% of the observations, while delight (6%) and surprise (3%) were 

rare. Indeed, boredom, flow/engagement, confusion, and frustration are more 

frequent affective states that students experience during interactions with 

AutoTutor. 

Although the present set of studies did not directly compare the occurrence of 

these learning-centered affective states with the basic emotions, we are currently in 

the process of conducting a meta-analysis of 21 studies that have tracked the 

incidence of both the learning-centered (e.g., boredom, confusion, flow/engagement, 

frustration) and basic emotions [D'Mello in review]. Preliminary results of the meta-

analysis indicate that with the exception of happiness, which occurs with some 

frequency, the remaining basic emotions were considerably rare when compared to 

the learning-centered affective states. The basic emotions have claimed center-stage 

of most emotion research in the last four decades, but these results suggest that they 

might not be relevant to learning, at least for the short learning sessions (30 minutes 

– 1.5 hours) of the studies that were analyzed. In contrast, confusion, frustration, 

flow/engagement, and boredom were the prevalent emotions, indicating that it is 

critically important for Affective AutoTutor to respond to these states. 

5.2 Detecting Affective States 

Our affect detection system monitors conversational cues [D'Mello, Craig, Sullins and 

Graesser 2006; D'Mello et al. 2008a], gross body language [D'Mello and Graesser 

2009; D’Mello et al. 2007], and facial features [D'Mello et al. 2007; McDaniel et al. 

2007] (see Figure 3). The classifier was trained on data obtained in a study that 

involved synchronization and data recording of the sensors while 28 students 

interacted with AutoTutor [D'Mello and Graesser 2010]. Manually annotated affect 

labels, which are required for the supervised learning systems, were obtained by 

multiple human judges including the student (self judgments), an untrained peer, 

and two trained judges (see Multiple-Judge study in Section 5.1 and [D'Mello and 

Graesser 2010] for additional methodological details).  

 

 
Figure 3. Automated affect sensing 

 



Conversational cues (dialogue features). A one-on-one tutoring session with 

AutoTutor yields a rich trace of contextual information, characteristics of the 

student, episodes during the coverage of the topic, and social dynamics between the 

tutor and student. These conversational cues cover a broad and deep feature set that 

includes assessments of deep meaning, world knowledge, and pragmatic aspects of 

communication. Therefore, several conversational features and discourse markers 

(collectively called dialogue features) were extracted from AutoTutor’s log files and 

were utilized to infer the student’s affect. The dialogue features were computed for 

each student-tutor turn (i.e. student submits response, tutor provides feedback, tutor 

presents next question). They included temporal features (e.g. time on problem, 

response time), assessments of response verbosity (e.g. number of characters, speech 

act), assessments of the conceptual quality of the student’s response obtained by 

Latent Semantic Analysis (LSA), conversational directness (i.e. how much 

information the tutor is explicitly providing to the student), and tutor feedback 

(negative, neutral, positive). The full list of features is can be found in D’Mello et al., 

[2008]. 

 

Gross body language (posture features). The Body Posture Measurement System 

(BPMS), developed by Tekscan™, was used to monitor the gross body language of 

students during tutorial sessions with AutoTutor (see left monitor of Figure 3). The 

BPMS consists of a thin-film pressure pad (or mat) that can be mounted on a variety 

of surfaces. The output of the BPMS system consisted of two 38 ×41 matrices (for the 

back and seat) with each cell in the matrix corresponding to the amount of pressure 

exerted on the corresponding element in the sensor grid. 

We relied on an attentive-arousal framework [Bull 1987] to interpret relationships 

between the posture features and the affective states of the student. One can think of 

heightened pressure in the seat as resonating with a tendency to position one’s body 

towards the source of stimulation (i.e., high attentiveness since the student is 

positioning his or her body towards the AutoTutor interface, or a short distance 

between the nose and the screen). On the other hand, an increase in pressure on the 

back of the chair suggests that the student is leaning back and detaching one’s self 

from the stimulus (low attentiveness). Arousal was operationally defined by the rate 

of change of pressure exerted on the back and the seat of the pressure sensitive chair, 

and is similar to the degree of activation. In addition to these primary features, we 

also tracked changes in body position and arousal before and after an emotional 

episode (see [D'Mello and Graesser 2009] for details). 

 

Facial feature tracking. We use the Mindreader system [el Kaliouby and Robinson 

2005a; el Kaliouby and Robinson 2005b] for fully automated facial feature tracking. 

The Mindreader system uses a commercially available facial feature tracking system 

for the real time analysis of facial and head movements. Mental states are inferred 

from the facial and head movements with a multilevel modeling approach with 

Dynamic Decision Networks. The individual facial and head movements are at the 

lowest level of the hierarchy. These movements are then used to recognize Action 

Units (AU) à la Ekman’s Facial Action Coding System [Ekman and Friesen 1978]. 

For example, AU 4 (brow lowerer) and AU 7 (lid tightener) are two action units that 

are commonly associated with confusion [McDaniel, D’Mello, King, Chipman, Tapp 

and Graesser 2007]. Displays, or combinations of AUs, occupy the next level of this 

multilevel hierarchy. Example displays include mouth open (combination of AUs 25 

and 26 or jaw drop and lips part, respectively), and head nod (combination of AUs 53 

and 54 or head up and head down, respectively). The displays are then combined for 

mental state inference. In this fashion, the multilevel model incorporates different 



levels of spatial and temporal detail in a hierarchical manner that was inspired by 

models of how humans perceive facial activity.  

 

Multimodal affect detection. The system uses a decision-level fusion algorithm 

where each channel (conversational cues, face, posture) independently provides its 

own diagnosis of the student’s affective state. These individual diagnoses are 

combined with an algorithm that selects a single affective state and a confidence 

value of the detection. The algorithm relies on a voting rule enhanced with a few 

simple heuristics. 

A spreading activation network is used to model decision-level fusion [Rumelhart 

et al. 1986]. The network consists of emotions and sensors as nodes with projecting 

and lateral links among them. Each sensor node is connected to each emotion node in 

the network by a projecting link. The degree to which a particular sensor activates a 

particular emotion is based on the accuracy by which the sensor has detected the 

emotion in past offline evaluations. Hence, if one sensor is more accurate at detecting 

boredom than confusion, it will excite the boredom node more than the confusion 

node, even if its current estimates on the probability of both emotions are 

approximately equivalent. 

It is also possible to connect each to every other emotion with an excitatory or 

inhibitory lateral link. Related emotions excite each other while unrelated emotions 

inhibit each other. For example, confusion would excite frustration but boredom 

would inhibit engagement. It should be noted that these lateral links are sometimes 

not activated when the network is instantiated in some of our simulations. Indeed, 

the configuration of links and valences are varied in these simulations. 

Each emotion node receives activation from both links and maintains an 

activation value. At any time, the emotion node with the highest activation value is 

considered to be the emotion that the student is currently experiencing. The decision-

level fusion algorithm operates in four phases.  

1. Detection by Sensors. Each sensor provides an independent estimate of the 

likelihood that the student is experiencing an emotion. The likelihood can be 

represented as a probability value for each emotion (e.g., the posture sensor 

expresses a .53 probability that the current emotion is boredom). 

2. Activation from Sensors. Sensors spread activation and emotion nodes 

aggregate this activation. 

3. Activation from Emotion Nodes. Each emotion spreads the activation received 

from the sensors to the other emotions, so that some emotions are excited 

while others are inhibited.  

4. Decision. The emotion with the highest activation is selected to be the emotion 

that the student is currently experiencing. 

5.3 Regulating Negative Affective States 

Despite the complexity associated with real-time affect detection, detection is only 

one piece of the puzzle. The next challenge is to help students regulate their affective 

states so that positive states such as flow/engagement and curiosity persevere, while 

negative states such as frustration and boredom are prevented or regulated when 

they arise. As an initial step, we focused on interventions that help students regulate 

the negative affective states of boredom, frustration, and confusion. 

 

Foundations of affect-sensitivity. An examination of the education and tutoring 

literature did not provide any clear guidance on how to best respond to students’ 

affective states during tutoring. Some theories did address the presence of certain 

negative affective states, so insights gleaned from these theories were applied to 

respond to boredom, frustration, and confusion. The major theories that were 



considered included attribution theory [Batson et al. 1995; Heider 1958; Weiner 

1986], empathy [Dweck 2002; Lepper and Chabay 1988], cognitive disequilibrium 

during learning [Festinger 1957; Graesser and Olde 2003; Piaget 1952], and 

politeness [Brown and Levinson 1987; Wang et al. 2008]. A discussion of how these 

theories informed affect-sensitive responses appears in [D’Mello, Craig, Fike and 

Graesser 2009]. 

In addition to the theoretical considerations, the assistance of experts in tutoring 

was enlisted to help create the set of affect-sensitive tutor responses. When there was 

no guidance from theory or expertise, the research group added affect-sensitive rules 

that were intuitively plausible. So in a nutshell, the rules were determined by theory, 

experts, and intuition. As such, the specific rules that were developed should be 

considered to be an initial attempt towards achieving affect-sensitivity in a tutoring 

context rather than a rigid set of specifications. The architecture of the Affective 

AutoTutor (discussed in Section 5.4) was designed to afford easy implementation and 

testing of a variety of responses, so the system itself can be considered to be a flexible 

framework to experiment with different affect-sensitive tutorial strategies. 

The affect-sensitive production rules that we developed were designed to map 

dynamic assessments of the students’ cognitive and affective states with appropriate 

tutor actions. In particular, at any given turn Affective AutoTutor keeps track of five 

major informational parameters that provide the foundations for affect sensitivity 

(three affective parameters and two cognitive parameters). The three affective 

parameters include the current affective state detected, the confidence level of that 

affect classification, and the previous affective state detected. The cognitive 

parameters include a global measure of student ability (dynamically updated 

throughout the session) and the conceptual quality of the student’s immediate 

response (see Section 3.3).  

Taking these five parameters as input, Affective AutoTutor is equipped with a set 

of production rules to map the input parameters with appropriate tutor actions. 

Affective AutoTutor responds with (a) feedback for the current answer with an 

affective facial expression, (b) an affective statement accompanied by a matching 

emotional facial and vocal expression by the tutor, and (c) the next dialogue move to 

advance the conversation.  

 

Feedback with affective facial expression. AutoTutor provides short feedback to 

each student response. There are five levels of feedback: positive, neutral-positive, 

neutral, neutral-negative, and negative. Each feedback category has a set of 

predefined phrases that the tutor randomly selects from. “Good job” and “Well done” 

are examples of positive feedback, while “That is not right” and “You are on the 

wrong track” are examples of negative feedback.  

In addition to articulating the textual content of the feedback, Affective AutoTutor 

also modulates its facial expressions and speech prosody. Positive feedback is 

delivered with an approval expression (big smile and big nod). Neutral positive 

feedback receives a mild approval expression (small smile and slight nod). Negative 

feedback is delivered with a disapproval expression (slight frown and head shake), 

while the tutor makes a skeptical face when delivering neutral-negative feedback (see 

Figure 4). Neutral feedback is not accompanied by a facial expression. 

 



 
 

Figure 4. Synthesized facial expressions by the AutoTutor agent 

 
Affective response. After delivering the feedback, Affective AutoTutor delivers an 

emotional statement if it senses that the student is bored, confused, or frustrated. A 

non-emotional discourse marker (e.g. “Moving on”, “Try this one”) is selected if the 

student is neutral. We have currently implemented two pedagogically distinct 

variants of Affective AutoTutor. These include a Supportive and a Shakeup 

AutoTutor. 

Supportive AutoTutor. The Supportive AutoTutor responds to the students’ 

affective states via empathetic and motivational responses. These responses always 

attribute the source of the students’ emotion to the material instead of the students 

themselves. So the Supportive AutoTutor might respond to mild boredom with, “This 

stuff can be kind of dull sometimes, so I'm gonna try and help you get through it. 

Let's go”. A more encouraging response is required for severe boredom (e.g., “Let's 

keep going, so we can move on to something more exciting”). An important point to 

note is that the Supportive AutoTutor never attributes the boredom to the student. 

Instead, it always blames itself or the material.  

A response to confusion would include attributing the source of confusion to the 

material (e.g., “Some of this material can be confusing. Just keep going and I am sure 

you will get it”) or the tutor itself (e.g., “I know I do not always convey things clearly. 

I am always happy to repeat myself if you need it. Try this one”). If the level of 

confusion is low or mild, then the pattern of responses entails: (a) acknowledging the 

confusion, (b) attributing it to the material or tutor, and (c) keeping the dialogue 

moving forward via hints, prompts, etc. In cases of severe confusion, an encouraging 

statement is included as well. 

Similarly, frustration receives responses that attribute the source of the 

frustration to the material or the tutor coupled with an empathetic or encouraging 

statement. Examples include: “I may not be perfect, but I'm only human, right? 

Anyway, let's keep going and try to finish up this problem.”, and “I know this 

material can be difficult, but I think you can do it, so let's see if we can get through 

the rest of this problem.” 

As a complete example, consider a student that has been performing well overall 

(high global ability), but the most recent contribution was not very good. If the 

current emotion was classified as boredom, with a high probability, and the previous 

emotion was classified as frustration, then AutoTutor might say the following: 

“Maybe this topic is getting old. I'll help you finish so we can try something new”. 

This is a randomly chosen phrase from a list that was designed to indirectly address 

the student’s boredom and to try to shift the topic before the student becomes 

disengaged from the learning experience. This rule fires on several different 

occasions, and each time it is activated the Supportive AutoTutor will select a 

dialogue move from a list of associated moves. In this fashion, the rules are context 

sensitive and are dynamically adaptive to each individual student.  



Shakeup AutoTutor. The major difference between the Shakeup AutoTutor and 

the Supportive AutoTutor lies in the source of emotion attribution. While the 

Supportive AutoTutor attributes the students’ negative emotions to the material or 

itself, the Shakeup AutoTutor directly attributes the emotions to the students. For 

example, possible shakeup responses to confusion are, “This material has got you 

confused, but I think you have the right idea. Try this…” and “You are not as 

confused as you might think. I'm actually kind of impressed. Keep it up”.  

Another difference between the two versions lies in the conservational style. 

While the Supportive AutoTutor is subdued and formal, the Shakeup tutor is edgier, 

flaunts social norms, and is witty. For example, a supportive response to boredom 

would be “Hang in there a bit longer. Things are about to get interesting.” The 

shakeup counterpart of this response is “Geez this stuff sucks. I'd be bored too, but I 

gotta teach what they tell me”. 

 

Affective facial expression and affectively modulated speech. The affective 

response is accompanied by an emotional facial expression and emotionally 

modulated speech. These affective expressions include empathy, mild enthusiasm, 

high enthusiasm, skepticism, and neutral in some cases. The facial expressions in 

each display were informed by Ekman’s work on the facial correlates of emotion 

expression [Ekman and Friesen 1978].  

The facial expressions of emotion displayed by Affective AutoTutor are augmented 

with emotionally expressive speech synthesized by the agent. The emotional 

expressivity is obtained by variations in pitch, speech rate, and other prosodic 

features. Previous research has led us to conceptualize AutoTutor’s affective speech 

on the indices of pitch range, pitch level, and speech rate [Johnstone and Scherer 

2000]. The current quality of the emotionally-modulated speech is acceptable, 

although there is the potential for improvement. 

 

Next dialogue move. Finally, AutoTutor responds with a move to advance the 

dialogue. In the current version of Affective AutoTutor, this dialogue move is 

sensitive to the student’s cognitive state but not to his or her affective state (see 

Section 3). That is, affect-sensitivity is currently limited to the tutor’s short feedback 

and motivational responses and but not its pedagogical dialogue moves that advance 

the learning (i.e., pumps, hints, prompts, assertions). Future affect-sensitive 

interventions will focus on the tutor’s pedagogical moves as well (e.g., hinting when a 

student is stuck and frustrated). This adaptation would increase the bandwidth of 

communication and allow Affective AutoTutor to respond at a more sophisticated 

metacognitive level.  

5.4 Architecture of Affective AutoTutor 

The architecture of Affective AutoTutor is presented in Figure 5. This version is 

somewhat different from the AutoTutor architecture that was described in Section 

3.5 because it represents a newer version of the system (v3). Affect detection occurs 

at the client in real time and the detected state is transmitted to the AutoTutor 

server. The Affective Dialogue Manager integrates the diagnosis of the student’s 

cognitive (via the Language Analyzer and Assessments modules) and affective states 

in order to select an action that is sensitive to their emotions and cognitions. 

Information from the physical sensors including a camera and posture sensor is 

collected (link 1a) and transmitted to the Affect Detector (2a and 2b). At the same 

time, contextual information is collected from the AutoTutor server (1b) and 

transmitted to the Affect Detector (2c). At the end of a conversational turn, the Affect 

Detector transmits its diagnosis of the student’s affective state along with the text of 

the student’s response to the Hub (4). The Language Analyzer then analyses the text 



of the response (5a) by parsing the text and detecting questions and other speech 

acts. The Assessments module compares the conceptual quality of the text based on 

expectations and misconceptions stored in the Curriculum Script and with LSA (5b). 

The Dialogue Manager, the Affective Dialogue Manager, and the Question Asking 

modules plan and generate the tutor’s response to the student’s cognitive and 

affective states (5c). The response is transmitted to the client (6), where it is rendered 

by the animated pedagogical agent, thereby completing one affect-responsive 

student-tutor turn. 

 

 
 

Figure 5. Architecture of Affective AutoTutor 

6. EVALUATION OF AFFECTIVE AUTOTUTOR 

Affective AutoTutor has been evaluated in terms of its ability to detect students’ 

affective states and to improve learning gains when compared to the non-affective 

AutoTutor. 

6.1 Affect Detection Accuracy 

The multimodal classifier that we have developed integrates classification decisions 

from three unimodal classifiers: namely a dialogue-based classifier, a posture-based 

classifier, and a classifier that relies on facial feature tracking (See Section 5.2). We 

are currently in the process of systematically evaluating this classifier, so 

classification accuracy scores not yet available. However, we have performed 

extensive evaluations of earlier versions of the system [D'Mello and Graesser 2010], 

so the results of these evaluations are summarized here. 

As a precursor to the fully automated decision-level multimodal classifier that was 

integrated into Affective AutoTutor, we have developed and extensively validated 



unimodal classifiers that focus on the dialogue, posture, and facial features and a 

semi-automated multimodal classifier. These classifiers were all trained and 

validated on data from the Multiple-Judge study described in Section 5.1. We begin 

with a description of the classification accuracy associated with individual channels 

followed by an evaluation of the semi-automated multimodal classifier. 

 

Conversational cues (dialogue features). We compared the accuracy by which 17 

standard classifiers (e.g., Naive Bayes logistic regression, support vector machines) 

could detect the affective states from the dialogue features [D'Mello, Craig, 

Witherspoon, McDaniel and Graesser 2008a]. Machine learning experiments with 10-

fold cross validation indicated that standard classifiers were moderately successful in 

discriminating the affective states of boredom, confusion, flow/engagement 

frustration, and neutral, yielding a peak accuracy of 42% with neutral (chance = 20%) 

and 54% without neutral (chance = 25%). Individual detections of boredom, 

confusion, flow, and frustration, when contrasted with neutral, had accuracies of 

69%, 68%, 71%, and 78%, respectively (chance = 50%). Follow-up classification 

analyses that assessed the degree to which machine-generated affect labels 

correlated with affect judgments provided by humans revealed that human-machine 

agreement was on par with novice judges (self and peer) but quantitatively lower 

than trained judges. 

 

Gross body language (posture). As described in Section 5.2, an automated body 

pressure measurement system was used to capture the pressure exerted by the 

student on the seat and back of a chair during the tutoring session. Two algorithms 

to detect affect from the pressure maps were developed. The first algorithm focused 

on the average pressure exerted, along with the magnitude and direction of changes 

in the pressure during emotional experiences (see Section 5.2). The second algorithm 

monitored the spatial and temporal properties of naturally occurring pockets of 

pressure. This second algorithm was not described in this paper because it is quite 

complex and its performance was equivalent to the simpler algorithm.  

Machine learning experiments with 10-fold cross validation yielded affect 

detection accuracies of 73%, 72%, 70%, 83%, and 74%, respectively (chance = 50%), in 

detecting boredom, confusion, delight, flow, and frustration, from neutral [D'Mello 

and Graesser 2009]. Accuracies involving discriminations between combinations of 

two, three, four, and five affective states (excluding neutral) were 71%, 55%, 46%, 

and 40% with chance rates being 50%, 33%, 25%, and 20%, respectively.  

 

Facial features. Although there is considerable research on the use of facial feature 

tracking to detect human emotions, a vast majority of this research has focused on 

the basic emotions instead of the learning-centered states that are of relevance to 

AutoTutor [Calvo and D’Mello 2010; Zeng et al. 2009]. Therefore, we conduced some 

preliminary analyses to assess the possibility of detecting the learning-centered 

states from facial features [Craig et al. 2008; McDaniel, D’Mello, King, Chipman, 

Tapp and Graesser 2007]. The Mindreader system (see Section 5.2) was in 

development at this time because we were exploring some of the technical challenges 

associated with the accurate automated detection of facial expressions, which is still 

an open problem. Therefore, as an initial step, we had two trained judges code a 

sample of the observations of emotions on the action units and assessed the 

performance of a linear discriminant function classifier on this sample [McDaniel, 

D’Mello, King, Chipman, Tapp and Graesser 2007]. 

The classifier was also able to successfully discriminate between boredom, 

confusion, delight, frustration, and neutral with an accuracy of 49%, a significant 

improvement over the base rate (chance) of 22%. We also computed accuracy scores 



for individually detecting each of the affective states. The results indicated that the 

discriminant function was most successful in detecting delight (72%, chance = 20%) 

followed by confusion (58%, chance = 28%). This was expected since both these states 

are typically accompanied by animated facial expressions. The reliability of detecting 

the more subtle affective state of boredom was lower than delight and confusion 

(23%, chance = 12%). The results also indicated that the discriminant analysis was 

unable to distinguish frustration from the other emotions. In fact, the accuracy score 

for this emotion reflected an accuracy equal to random guessing (17%, chance = 18%). 

 

Semi-automated multimodal affect classifier. We developed a semi-automated 

feature level multimodal classifier [D'Mello and Graesser 2010]. The classifier is 

considered to be semi-automated because while dialogue and posture features were 

automatically computed, facial features consisting of action units [Ekman and 

Friesen 1978] were manually annotated by trained humans. It is a feature-level 

classifier because it combines features from individual modalities and uses this 

combined feature vector for classification. This is different from decision-level fusion 

where individual classifications from the three sensors are combined via some voting 

rule to yield a final classification. Comparisons of feature-level and decision-level 

fusion on the present data set yielded equivalent performance [D'Mello 2009], so we 

focus on results from feature-level fusion here. 

The evaluations on the unimodal classifiers discussed above used within-students 

cross validation methods. Therefore, different instances from the same student could 

be in both the training and the test sets. Individual differences play an important 

role in affect expression, so it is prudent to consider an evaluation method that 

transcends individual differences. We addressed this concern by assessing the 

classification accuracy of the multimodal classifier with a split-half evaluation 

method. Fourteen of the 28 students from the Multiple-Judge study were randomly 

selected and their instances were assigned to the training set. Instances from the 

remaining 14 students were assigned to the test set. Discriminant models were 

constructed from the training instances and evaluated on the testing instances.  

The discriminant models yielded a 48.8% accuracy on the unseen test set for 

discriminating between boredom, flow/engagement, confusion, frustration, and 

neutral (chance = 20%). Precision (p) and recall (r) scores were: boredom (p = .39, r 

= .65), flow/engagement (p = .59, r = .53), confusion (p = .52, r = .49), frustration (p 

= .43, r = .44), and neutral (p = .38, r = .33). These results are positive because they 

imply that these moderate accuracy scores can be expected in real-world situations 

where the affect detector has to classify the emotions of unknown students.  

6.2 Efficacy of Affective AutoTutor in Increasing Learning 

We conducted two experiments to evaluate the pedagogical effectiveness of the two 

versions of Affective AutoTutor (Supportive and Shakeup as described in Section 5.3) 

when compared to the original tutor (Regular AutoTutor). This original AutoTutor 

has a conventional set of fuzzy production rules that are sensitive to cognitive states 

of the student, but not to the student’s emotional states. Both versions of Affective 

AutoTutor are sensitive to the student’s affective states in distinct ways. The obvious 

prediction is that learning gains should be superior for Affective AutoTutor when 

compared to the Regular AutoTutor. 

 

Within-subjects experiment comparing Supportive, Shakeup, and Regular 

tutors4. Participants and Design. The experiment had a repeated-measures design 

where 36 undergraduate students from a university in the U.S participated in three 

 
4 This experiment is described in more detail since it has not been previously published. 



computer literacy tutorial sessions on different topics, one with the Regular 

AutoTutor (no affect sensitivity), one with the Supportive AutoTutor, and one with 

Shakeup AutoTutor. For example, a student could have been assigned the hardware 

topic with the Supportive tutor, operating systems with the Shakeup tutor, and the 

Internet with the Regular tutor. The order in which students used these versions of 

AutoTutor and the computer literacy topics assigned to each version (i.e., hardware, 

operating systems, the Internet) was counterbalanced across students with a Latin 

Square.  

Knowledge Tests. Students were tested on their knowledge of computer literacy 

topics both before and after the tutorial session (pretest and posttest, respectively). 

The testing materials were adapted from computer literacy tests used in previous 

experiments involving AutoTutor [Graesser, Lu, Jackson, Mitchell, Ventura, Olney 

and Louwerse 2004]. They were comprised of questions that assessed students’ 

knowledge of all three computer literacy topics at deeper levels of comprehension. 

Each test contained 24 multiple-choice questions: 8 questions on hardware, 8 

questions on operating systems, and 8 questions on Internet. Students completed 

alternate test versions for pretest and posttest. The two test versions, composed of 

different questions, tested learners on the same subject matter and content. The 

assignment of test versions to pretest versus posttest was counterbalanced across 

students.  

Procedure. Students were tested individually during a two and a half hour 

session. First, students completed an informed consent and then the pretest. Next, 

the general features of AutoTutor’s dialogue and pedagogical strategies were 

described to the students. Students interacted with one of the version of AutoTutor 

until three main questions were successfully answered or the 30 minute training 

period had elapsed. They then interacted with another version of AutoTutor followed 

by the third version of AutoTutor. Finally, students completed the posttest and were 

debriefed.  

Results. The dependent measures was proportional learning gains associated with 

each version of AutoTutor. Proportional learning gains were computed as: (posttest – 

pretest) / (1-pretest). We conducted a 3 × 2 ANOVA on proportional learning gains 

with tutor type (Regular, Supportive, Shakeup) as a within subjects factor and prior 

knowledge (low and high median split on pretest scores) as a between subjects factor. 

The analysis did not yield a significant main effect for tutor type nor a significant 

tutor type  × prior knowledge interaction. However, there was a 0.18 sigma trend in 

favor of the Supportive tutor compared to the Regular tutor and a 0.28 sigma trend 

for the Supportive tutor over the Shakeup tutor. Learning gains for the Shakeup and 

Regular tutors were on par. 

There is a concern pertaining to our use of a within-subjects experimental design 

in lieu of a between-subjects design. The obvious concern with a within-subjects 

design is that participating in the second session on a related subject matter might 

cause interference with acquired knowledge in the first session. We attempted to 

address this concern by only considering each student’s first AutoTutor session, 

which was either Regular, Supportive, or Shakeup. This resulted in only 12 students 

in each group; a sample size too small for meaningful tests of significance but useful 

to explore interesting trends. The trend indicated that there was a medium effect of 

0.51 sigma in favor of the Supportive Tutor when compared to the Regular tutor and 

the Shakeup tutor, which were similar to each other. 

The within-subjects and the pseudo between-subjects analyses suggest that it is 

the Supportive tutor that yields the highest learning gains. Hence, we attempted to 

replicate this finding in a between subjects design with a larger sample of students. 

 



Between-subjects experiment comparing Supportive and Regular tutors. We 

conducted an experiment to evaluate the effectiveness of the Supportive AutoTutor 

when compared to the Regular AutoTutor [D'Mello, Lehman, Sullins, Daigle, Combs, 

Vogt, Perkins and Graesser 2010d]. This experiment did not include the Shakeup 

AutoTutor, because the previous within-subjects experiment indicated that the 

Supportive Tutor consistently outperformed the Shakeup Tutor. Our prediction was 

that learning gains should be superior for the Supportive AutoTutor over the Regular 

AutoTutor. 

The experiment had a between-subjects design in which 84 undergraduate 

students from a university in the U.S. were randomly assigned to either the Regular 

or the Supportive AutoTutor. Students in each condition completed a pretest on three 

computer literacy topics (hardware, operating systems, versus the Internet). They 

then completed two training sessions with the same version of AutoTutor, but on two 

different computer literacy topics. Students did not receive tutoring for the third 

computer literacy topic. They then completed a different posttest on all three topics. 

Proportional learning gains for the two topics they were tutored on served as a 

measure of learning, whereas gains for the topic that they did not receive tutoring on 

were used to assess knowledge transfer.  

Students were assigned to either a low or a high prior-knowledge group based on 

a median split on their pretest scores.  The analyses consisted of three 2 (tutor: 

regular vs. supportive) × 2 (prior knowledge: low vs. high) between-subjects ANOVAs 

for learning gains in each session and for knowledge transfer.  

The tutor × prior-knowledge interaction was significant for Session 1 (see Figure 

6). There was no difference in learning gains across tutors for the low prior-

knowledge students (d = .017). However, there was a significant and substantial 

effect (d = .824) in favor of the Regular tutor for students with high prior-knowledge. 

There was a different pattern in learning gains for students’ second AutoTutor 

session. There was a significant tutor × prior-knowledge interaction. Low prior-

knowledge students learned significantly more from the Supportive AutoTutor than 

the Regular tutor (d = .713). Although there was no significant difference in learning 

gains across tutors for the high prior knowledge students, there was a small to 

medium sized effect in favor of the Regular tutor (d = .384) (see Figure 6). 

There was a nonsignificant tutor × prior-knowledge interaction for transfer scores. 

However, there was a medium sized effect (d = .583) in favor of the Supportive tutor 

for the low prior-knowledge students (see Figure 6). It should also be noted that the 

high prior-knowledge students achieved lower transfer scores than the low prior-

knowledge students irrespective of whether they interacted with either the 

Supportive or the Regular AutoTutor. This can be attributed to the fact that 

AutoTutor is less effective in promoting learning for students with high domain 

knowledge (as mentioned in Section 4.4). 

 

 
 

Figure 6. Interactions between prior knowledge (low vs. high) and version of 

AutoTutor (Regular vs. Supportive). Y-axis is proportional learning gains. 



6.3 Summary of Findings, Limitations, and Future Directions 

The results of this experiment support a number of conclusions regarding the 

effectiveness of affect-sensitivity in promoting deep learning gains. First, the 

Supportive AutoTutor was more effective than the Regular tutor for low-domain 

knowledge students in the second session, but not the first session. Therefore, it is 

inappropriate for the tutor to be supportive to these students before there has been 

enough context to show there are problems. Simply put, don’t be supportive until the 

students need support! Second, the students with more knowledge never benefited 

from the Supportive AutoTutor. These students don’t need that emotional support, 

but rather they need to go directly to the content. Hence, there appears to be a 

liability to quick support and empathy compared to no emotional sensitivity.  

The central message is that there is an appropriate time for a particular emotion 

exhibited by AutoTutor. Just as there is a “time for telling” [Schwartz and Bransford 

1998], there is a “time for emoting.” We could imagine a trajectory where low-

knowledge students start out with a non-emotional Regular tutor until they see there 

are problems. Then after that they need support, as manifested in Session 2 of our 

study. Regarding high-knowledge students, they are perfectly fine working on 

content for an hour or more and may get irritated with an AutoTutor showing care. 

But later on there may be a time when they want a Shakeup AutoTutor for 

stimulation, challenge, and a playful exchange. Or maybe even a Supportive 

AutoTutor. These are all plausible hypotheses to explore for future research. 

It is also important to consider the feasibility of deploying affect detectors that 

require customized and often expensive hardware in classroom settings. The 

Affective AutoTutor used a combination of conversational cues, facial-feature 

tracking, and posture to detect student affect. Scalability is not a concern for the 

context-based affect detector because the use of conversational cues and other 

discourse constituents requires no additional sensors. Face-based detection is also 

feasible in the classroom because the only hardware requirement is a web cam 

However, the posture tracker (BPMS) is expensive and requires specialized hardware 

and software, so it is not ideal for classroom deployment. Fortunately, a number of 

cost-effect alternatives to the BPMS exit, thereby making real-world posture tracking 

viable. Some of these include pressure mats that are constructed in-house [Arroyo et 

al. 2009], Wii Fit Balance Boards™ [Olney and D'Mello 2010], and motion filtering 

techniques to assess body movements from live video [D’Mello et al. 2012]. Future 

research will be needed to pursue these and other alternatives, although it appears 

that the most scalable option would probably involve sensor-free affect detection, 

where predictive assessments of student affect using only context. 

7. OTHER VARIANTS AND EVOLVING VERSIONS OF AUTOTUTOR 

Our discussion so far has focused on the basic AutoTutor system as well as recent 

advancements to endow AutoTutor with affect sensing capabilities. We have also 

developed several other versions of AutoTutor in addition to these major research 

thrusts. This section briefly discusses some of these versions by distinguishing 

systems that have already been implemented and tested (i.e., implemented systems) 

from new systems that are currently in various phases of implementation and testing 

(evolving systems). 

7.1 Variants of AutoTutor that have been Implemented and Tested 

Versions of AutoTutor have been designed to incorporate particular pedagogical goals 

and cover different subject matters. Some of these are briefly discussed below. 

 

Versions that vary features of the AutoTutor agent. Most versions of AutoTutor 

have an animated conversational agent with synthesized speech, a small number of 



facial expressions, and some rudimentary hand and head gestures. These full 

versions have been compared to versions with voice only, text only, and various 

combinations of modalities in presenting AutoTutor’s dialogue messages [Graesser et 

al. 2003]. The full animated conversational agent has shown advantages in 

promoting learning over alternative modalities under some conditions, particularly 

for deeper levels of learning [Atkinson 2002; Moreno et al. 2001]. However, available 

research on AutoTutor suggests that it is the verbal content of the tutor’s messages 

that has the biggest impact on learning gains [Graesser, Moreno, Marineau, Adcock, 

Olney and Person 2003].  

 

Speech-enabled AutoTutor. The traditional AutoTutor system uses synthesized 

speech to speak the content of its dialogue moves. However, students type their 

responses to the tutor’s questions, thereby causing a mismatch between tutor and 

student input modalities. We developed a new version of AutoTutor that supported 

spoken input. Students spoke their responses in the new speech-enabled AutoTutor, 

and the commercially available Dragon Naturally Speaking ™ program was used for 

automatic speech recognition [D'Mello et al. 2011; D'Mello, King and Graesser 

2010b].  

Comparisons of the speech-enabled version of AutoTutor to the traditional typed-

input version yielded significant learning independent of input modality (i.e., spoken 

vs. typed). There was no significant difference across modalities despite considerable 

automatic speech recognition errors (word error rate = .46) and these errors were not 

correlated with learning gains. The fact that performance did not degrade in light of 

speech recognition errors is testament of the robustness of AutoTutor’s natural 

language processing capabilities. 

 

AutoTutor-3D. We developed a version of AutoTutor, called AutoTutor-3D, that 

guides students on using interactive simulations of physics microworlds [Graesser, 

Chipman, Haynes and Olney 2005; Jackson and Graesser 2006]. For each of the 

physics problems, we developed an interactive simulation world with people, vehicles, 

objects, and the spatial setting associated with the problem. Figure 7 shows an 

example of one of these physics microworlds on a problem that involves a rear-end 

collision of a truck with a car. The student modifies parameters of the situation (e.g., 

mass of vehicles, speed of vehicles, distance between vehicles) and then asks the 

system to simulate what will happen. Students are also prompted to describe what 

they see. Their actions and descriptions are evaluated with respect to covering the 

expectations or matching misconceptions. AutoTutor manages the dialogue with 

hints and suggestions that scaffold the learning process with dialogue. The 

simulations were effective in increasing learning but only for those students who 

invested sufficient effort to run the simulations. 

 

AutoTutor with enhanced feedback. We created different versions of AutoTutor 

in order to manipulate the feedback that the college students received during their 

interactions with the tutor [Jackson and Graesser 2007]. Students received either 

content feedback (e.g., highlighting important words after students type them in), 

progress feedback (e.g., displaying points on their performance) feedback, both, or 

neither. An experiment comparing the effects of these versions was quite 

illuminating in a number of respects. Although students learned in all feedback 

conditions, it was the content feedback that had a greater impact on learning than 

the progress feedback. We were surprised to learn that the students’ perceptions of 

these systems were inversely related to the amount they learned. Indeed, the mean 

ratings of nearly all of the scales of student perceptions were more positive in those 



conditions that yielded the least amount of learning. Simply put, deep learning is not 

fun.  

 

 
 

Figure 7. AutoTutor-3D with simulations 

 

7.2 New and Evolving Systems based on the AutoTutor Technology 

Aspects of the AutoTutor system are finding use in a number of new technologies 

that we and our collaborators are developing. Some of these systems are not 

AutoTutor per se, but are inspired by AutoTutor or incorporate some aspect of 

AutoTutor. These are briefly described below along with the name of the chief 

architect of each system who we are collaborating with. 

 

AutoTutor-Lite (Xiangen Hu, University of Memphis). In stark contrast to the 

computationally intensive AutoTutor-3D system, there is a minimalistic version of 

AutoTutor called AutoTutor-Lite [Hu et al. 2009]. AutoTutor-Lite includes the 

AutoTutor-style interface and interaction (animated agent and natural language 

conversation), but with a lightweight language analyzer and dialogue manager. 

AutoTutor-Lite has excellent authoring tools that lesson planners and instructors can 

use, even when they have minimal computer skills. Moreover, AutoTutor-Lite can be 

applied to PowerPoint content on any verbal subject matter, is easily customizable, 

and can be integrated into e-learning environments on the web as well as the 

desktop. One can imagine an industry that “autotutorizes” the conventional 

eLearning content that is widely available.  

 

Operation ARIES (Keith Millis, Northern Illinois University) ARIES (Acquiring 

Research Investigative and Evaluative Skills) [Cai et al. 2009; Millis et al. 2011] 



teaches scientific reasoning and critical thinking skills with two animated 

pedagogical agents. One agent in ARIES, called the guide-agent, is an expert on 

scientific inquiry and serves as a knowledgeable tutor. The other agent is a fellow 

student that exhibits low knowledge or flawed knowledge that the guide agent and 

human student will hopefully correct. An imperfect agent may indeed help learning. 

This notion has been pursued in the Teachable Agent research of Biswas and 

colleagues [Biswas et al. 2005]. Human students attempt to help a fellow student 

agent who has misconceptions and incomplete knowledge. The process of the human 

student trying to help the cyber student actually ends up facilitating learning in the 

human. In ARIES, a case study of an experiment is presented which may or may not 

have a number of flaws with respect to scientific methodology. A 3-way conversation 

transpires (called a trialogue) among the human student, the expert agent, and the 

student agent. ARIES facilitates learning compared to normal training methods for 

scientific critical thinking [Millis, Forsyth, Butler, Wallace, Graesser and Halpern 

2011]. 

 
Deep Tutor (Vasile Rus, University of Memphis). We are working on systems that 

analyze language and discourse at deeper levels. Researchers can move beyond LSA 

and regular expressions and into more structure-sensitive processing and semantic 

decomposition [Rus and Graesser 2007; Rus et al. 2008]. Some versions of the  

dialogue manager module have lists of production rules and finite-state grammars, 

but also move to new levels into the realm of recursive, complex planning and 

multiple-goal agendas. This approach of deeper natural language processing and 

discourse management is currently being developed and tested in the area of physics 

via DeepTutor 

 

GuruTutor (Andrew Olney, University of Memphis). AutoTutor was modeled after 

novice human tutors and extensions that had more ideal tutoring mechanisms. The 

human tutors that served as guides were untrained in tutoring skills and had 

moderate domain knowledge; they were peer tutors, cross-age tutors, or 

paraprofessionals, but rarely were accomplished professionals or expert tutors. Since 

there is some evidence that expert tutors are more effective in promoting learning 

gains than their unaccomplished counterparts [Bloom 1984; Cohen, Kulik and Kulik 

1982], we are currently in the process of building a tutoring system (Guru) for high 

school biology based on the tactics, actions, and dialogue of expert human tutors. The 

pedagogical and motivational strategies of Guru are informed by a detailed 

computational model of expert human tutoring [D'Mello, Hays, Williams, Cade, 

Brown and Olney 2010a; D'Mello, Lehman and Person 2010c; D'Mello, Olney and 

Person 2010e]. In addition to encompassing some of the ideal tutoring strategies of 

the expert tutors, Guru also includes deeper natural language understanding 

capabilities, dynamic conversational management, and an engaging agent embedded 

in a 3D gaming world. 

 

MetaTutor (Roger Azevedo, McGill University). While AutoTutor and Affective 

AutoTutor focus on students’ cognitive and affective processes, MetaTutor is an ITS 

that tracks, models, and regulates students’ metacognitive processes during the 

learning of complex scientific content (e.g., functioning of the circulatory system) 

within hypermedia environments [Azevedo et al. 2008]. MetaTutor was based on 

extensive research documenting the importance of metacognitive processes such as 

monitoring, goal setting, and planning during learning [Azevedo 2009]. 

Unfortunately, students rarely deploy these metacognitive processes productively 

during unscaffolded learning with hypermedia [Azevedo et al. 2005]. Humans who 

are trained as external regulation agents can be quite effective in helping students 



deploy key metacognitive and self regulated learning processes in a manner that is 

contextually coupled with the learning material and environment. Therefore, 

MetaTutor was designed to automate the role of an externally regulating agent while 

students learn with hypermedia. Over time, MetaTutor is designed to fade into the 

background in an attempt to get students to eventually regulate their own learning. 

 

AutoMentor (David Shaffer, University of Wisconsin-Madison). AutoMentor will be 

an automated virtual mentor that provides guidance to students as they interact in 

groups in serious games. AutoMentor to some extent builds on AutoTutor, however, 

while AutoTutor manages one-on-one tutorial dialogue, AutoMentor will interact 

with groups of players in the serious game.  AutoMentor will be integrated in the 

serious game on urban planning called Land Science. The game helps students 

understand the kinds of problems and problem solving that socially valued 

professions routinely engage in. For example, how is the development of cities and 

suburbs influenced by zoning, roads, parks, housing, and economic investment?  

What developments in science and high-quality information sources need to be 

communicated in justifications of decisions? Currently, a human mentor can 

broadcast suggestions to the student players simultaneously whenever the mentor 

deems it appropriate to send a message.  The idea is to replace the suggestions 

generated by the human with AutoMentor’s suggestions.  

8. CONCLUDING REMARKS 

We presented AutoTutor, Affective AutoTutor, and existing and evolving versions of 

these systems as educational technologies that exemplify some of the exciting 

technologies emerging from the Intelligent Interactive Systems community. These 

21st century systems offer considerable advantages over the 20th century computer-

based training systems. They are also improvements over many of the 1990s ITSs 

that impressively modeled students’ cognitive states, while largely ignoring 

motivation and emotion. The ability to yield impressive learning gains that match 

human tutors by modeling and responding to students’ cognitive, emotional, and 

motivational processes is a major contribution of these systems. Additional 

refinements of these systems, as well as some of the newer technologies, such as 

AutoTutor-Lite, GuruTutor, DeepTutor, ARIES, MetaTutor, and AutoMentor, are 

expected to yield even greater improvements in engagement, self-efficacy, task 

persistence, and motivation. 

Another impressive achievement of these systems, particularly the dialogue-based 

tutors, is that they are redefining the human-computer interaction paradigm. Most 

(but not all) of the 20th century systems required humans to communicate with 

computers through windows, icons, menus, and pointing devices (i.e., the WIMP 

paradigm). But humans have always communicated with each other through speech 

and a host of non-verbal cues such as facial expressions, paralinguistic features of 

speech, oculesics (eye contact), posture, and gesture. In addition to enhancing the 

content of the message, these communicative channels provide information regarding 

the cognitive states, affective states, motivation levels, and social dynamics of the 

communicators. In their endeavor to support speech input, natural language 

dialogues, affect sensing, gaze tracking, and embodied conversational agents, the 

systems developed by us and our colleagues are pushing the envelope by blurring the 

boundary between human-human and human-computer interactions. 

Although the enhanced interactivity of the 21st century systems is impressive, it is 

always important to realize that content reigns supreme for learning. When it comes 

to deep learning, the medium is not the message, but the message is the message. 

Therefore, advances in intelligence and interactivity of educational technologies 

should always be accompanied by advances in the content-based learning sciences. 



Just as it takes a village to raise a child, it takes an interdisciplinary milieu of 

researchers encompassing computer science, engineering, psychology, linguistics, and 

education to develop many of the advanced learning technologies including but not 

limited to AutoTutor and Affective AutoTutor. And it will take even broader teams of 

interdisciplinary minds to position us towards the next set of discoveries and 

innovations that will undoubtedly emerge from the field of interactive intelligent 

systems over the next decade. 

ELECTRONIC APPENDIX 

The electronic appendix for this article can be accessed in the ACM Digital Library. 
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