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Abstract

The Metric Interval Temporal Logic (MITL) progres-
sion algorithm invented by Bacchus and Kabanza
(1996) is extended to work also for the case when the
duration and content of states are only partially spec-
ified (constrained). This is motivated by an approach
to prediction, but also leads to a new, tableaux style,
algorithm for deciding the consistency of an MITL for-
mula. The algorithm is not yet fully developed.

1. Introduction

Metric Interval Temporal Logic (MITL) (Alur, Feder, &
Henzinger 1996), like LTL (Emerson 1990), is a tense-
modal logic expressing properties of infinite sequences
of propositional states. The logics differ in that state
sequences in MITL models are timed: each state in the
sequence has a starting and ending timepoint, which
maps to an underlying real timeline, and modal oper-
ators in MITL are qualified with constraints on state
durations.

For applications working with MITL, the progression
algorithm of Bacchus and Kabanza (1996) is a power-
ful tool. The algorithm “pushes” the truth criteria for
an MITL formula forwards over the states of a timed
model, one at a time: input is an MITL formula ¢, and
a state ¢ with duration D(q), and the algorithm returns
an MITL formula ¢’ such that ¢ is T in q 7ff ¢' is T in
the succeeding state.

Of state succeeding ¢, nothing needs to be known:
the returned formula is a condition that can be checked
for contradiction, for truth in the succeeding state when
it becomes known, or further progressed. The progres-
sion algorithm as presented, however, requires all prop-
erties of the state g, in particular the duration D(q), to
be known.

Motivated by the use of MITL to represent knowl-
edge in a predictive model, I have extended the pro-
gression algorithm to work with only partial knowledge
about the duration of state g, expressed by a set of
constraints on variables representing state starting and
ending times. As it turns out, the further extension to
working with only partial knowledge about the state g
itself is fairly straightforward, and potentially applica-
ble to the problem MITL consistency checking.

The next two sections introduce background mate-
rial: first, the approach to prediction that motivated
this line of inquiry, then in more detail MITL and Bac-
chus’ and Kabanza’s progression algorithm. Section 4
presents the extension to partial knowledge about state
timing.

Section 5, finally, describes the further extension to
the progression algorithm and how it may be applied
to MITL consistency. This is still work in progress: the
consistency checking algorithm presented is sound, but
not complete.

2. Background I: Prediction as a
Knowledge Representation Problem

Prediction is a central component in many control and
reasoning tasks, e.g. state estimation/diagnosis, inter-
pretation of sensor data (most notably the problem of
reidentification), tracking control and planning. All of
prediction relies on models: it is only with the knowl-
edge encoded in a model, whatever form it takes, that a
predictive system can conclude anything stronger than
a tautology.

In a previous paper (Haslum 2001), I argued that
there are for any application involving prediction many
possible “model designs”, by which I mean broadly
the ontology, representation, acquisistion and compu-
tational methods associated with a model, and for the
comparative investigation of different alternatives. As
a case study, [ have designed two different solutions
to a prediction problem encountered in the WITAS
UAV project!: one is a discrete event model and uses
a schema-like representation of “normality”, while the
other is based on a Markov process. Both models use
continuous time.

The role of MITL is in the first model design, as a

1The WITAS project studies architectures and tech-
niques for intelligent autonomous systems, centered around
an unmanned aerial vehicle (UAV) for traffic surveillance.
For an overview, see e.g. (Doherty et al. 2000) or
http://www.ida.liu.se/ext/witas/. The problem consid-
ered is to predict the movements of a vehicle in a road net-
work, and appears in the context of the task of planning a
search strategy.



language to formulate ezpectations, expressing beliefs
about what will hold true, over time, in the normal
case. Hxpectations are arranged in a heirarchy reflect-
ing the strength of belief. A possible future develop-
ment is represented by a timed sequence of events, finite
since the prediction horizon is bounded. By checking
which formulas of the hierarchy, if any, the develop-
ment necessarily violates, it is assigned a “normality
rating”, representing a measure of the percieved rela-
tive likelihood of that development occuring. To make
enumeration of even finite developments possible, it is
necessary to adopt a constraint based representation of
state starting and ending times, since events are dis-
tributed along a dense time line. This, and the use of
progression as the tool to check for formula violation in
finite developments, motivated the first step in extend-
ing the progression algorithm.

3. Background II: Timed Automata,
MITL and Progression

Timed automata and MITL both have their roots in the
research area of formal specification and verification of

reactive hardware/software systems. Introductions can
be found in e.g. Alur (1999) and Emerson (1990).

Timed Automata Timed automata (Alur & Dill
1994) are essentially finite state automata, augmented
with time constraints of two kinds: a transition can
have a time window in which it is possible to make the
transition and a state can have a maximal time that the
system may remain in the state before it has to exit by
some transition.

Let Rt denote real numbers > 0, with a special sym-
bol oo for infinity.

Definition 1 (Timed Automaton)

A timed automaton, A = (@, R, C, L), consists of a set

of states @, a transition relation
RCExQxQ@xR"xR"

where ¥ is some set of event labels, a state constraint

function C : @ — R, and state labelling function

L : Q — 2P, where P is some set of propositional

symbols (often the set of states is 2F, i.e. a state is

defined by its properties).

As usual, if (a,q,¢,t,t') € R, the system may transit
from state g to ¢’ in response to the event a, but only
in the time interval [t,%'] relative to the time that the
system entered ¢ (time constraints of the first kind),
and the system may remain in state ¢ for a time at most
equal to C(q) (time constraints of the second kind)Z.

Like a finite automaton accepts a set of strings over its
alphabet, a timed automaton accepts a set of histories.

2The normal way to define timed automata is to aug-
ment standard automata with a set of real-valued “clock
variables”, and express time constraints in a language of in-
equalities (Alur 1999). Definition 1 is less general, but it is
sufficient for MITL satisfiability and simplifies some of what
follows.

Definition 2 (Development)

A development is a sequence of alternating states and
events marking state transitions, d = ¢, ag, ¢1, a1, - - -,
with an associated function T : d — Rt that tells the
starting time of each state, such that

(4) for = > 0, there exists ¢,/ € Rt such that
R(ai, ¢i, ¢iv1,t,t') and T(q;) +t < T(qiv1) < T(q) +
t', and

(22) for ¢ >0, T(git+1) < T(q:) + Cla)-

The time interval through which state g¢; lasts is
[T(g:), T(git1)), t.e. closed at the beginning and open
at the end®. The duration of a state g; is denoted

D(q;) = T(qi+1) — T(a).

Two additional properties are usually required of a
timed automaton: ezecutability, which is the require-
ment that any finite prefix satisfying conditions (z) and
(27) of definition 2 can be extended to an infinite devel-
opment, and non-zenoness, which is the requirement
that the automaton does not make an infinite number
of transitions in finite time.

Even when only finite development prefixes starting
in a specific state gg are considered, the set of possible
developments is uncountable, since the starting time of
any state in a development can change by an arbitrarily
small amount. For finite developments to be enumer-
able, a more compact representation has to be adopted:
a set of developments that differ only on state starting
times are represented by a single sequence of states and
events, d = qo, ao, .. ., gn, and a set of constraints on the
starting times T'(qo), ..., (gn), managed in a tempo-
ral constraint network (TCN). Throughout, the TCN is
assumed to be simple, i.e. containing only upper and
lower bounds on the difference between pairs of tem-
poral variables. This ensures that there are efficient
algorithms for checking the consistency of the TCN,
and for extracting minimal and maxmimal bounds
on variable differences (Dechter, Meiri, & Pearl 1991;
Brusoni, Console, & Terenziani 1995).

Metric Interval Temporal Logic

The Metric Interval Temporal Logic (MITL) is a so
called “tense modal logic”, and was developed as a
language for specifying properties of real-time, reactive
systems (Alur, Feder, & Henzinger 1996).

Definition 3 (MITL Syntax)

The language of propositional MITL consists of a set of
atoms P, propositional connectives and four temporal
operators: Op 419 (always @), Opep (eventually p),
Op,ee (next (p% and @ Uz Y (¢ until ). The inter-
vals adjoined to the operators express metric temporal
restrictions, and take point values in R*.

3This choice is rather arbitrary: the reverse convention
could be made as well.



Formulas in MITL are evaluated over an infinite timed
development (d,T). Since MITL formulas only refer-
ence present and future states, any suffix of a develop-
ment is, for the purpose of evaluating formulas, also a
development: thus a formula holds in a state g;, if it
holds in the development suffix beginning with g¢;.

Definition 4 (MITL Semantics)

Let d* denote the suffix of d starting with the ith state.
A formula ¢ not containing any temporal operator

holds in d* iff ¢ evaluates to T in the state ¢;. The

truth conditions for temporal formulas are

e Ot holds in d* iff ¢ holds in every d* such that
the intersection of time intervals [T'(gx), T'(qk+1)) and
[T(q,) +t,T(gi) + '] is non-empty (note that & > ¢
is 1mp11ed by the fact that ¢,# > 0 and that time
increases along a development)

o O holds in d* iff there exists a gy such that
[T(gr), T(gr+1)) and [T(gq:) + ¢, T(q;) + t'] intersect
and ¢ holds in d*.

e Ojt,e)¢ holds in d* if ¢ holds in g;11 and T(g;) + ¢ <
T(gi+1) < T(q:) +¢.

® U9 holds in d* iff there exists a g such that
[T(gx), T(qk+1)) and [T'(gi) + ¢, T(gi) + t'] intersect,
% holds in d* and ¢ holds for all d’ with 7 < j < k.

Connectives are interpreted as in ordinary logic.

It should be clear that the definitions can be extended
to allow open or half-open operator time intervals, but
to avoid an explosion of cases in definitions and algo-
rithms, only closed intervals are considered in the re-
mainder of the paper.

The MITL Progression Algorithm

The MITL progression algorithm provides a way to
evaluate MITL formulas “incrementally” over a finite
prefix of a development. Thus, the algorithm does not
always return TRUE or FALSE, but often a condition to
be further progressed through remaining states in the
development.

Algorithm 5 (MITL Progression)

Let ¢ and g be the input formula and state, respectively,
and ¢’ the returned formula. The progresion algorithm
works recursively, by cases depending on the form of
the input formula:

(2) If ¢ contains no temporal operators, ¢’ = TRUE if ¢
is true in g and ¢’ = FALSE if not (note that TRUE
and FALSE are formula constants, not truth values).
If ¢ combines one or more subformulas with a propo-
sitional connective, ¢’ is the result of likewise com-
bining the result of progressing each subformula. For
example, if ¢ = a A then ¢’ = o' A S,

(#2) If @ = Qe,¢1¥, then

(w1.a) if D(q) < tort’' < D(q), then ¢’ = FALSE, and
(v2.0) if t < D(g) < t/, then ¢' = 9.

(%)

(
(2
(2.
(2

w) If ¢ = Op 49, then

w.a) if D(q) <t, then ¢’ = O;_p(q),e—D(a) ¥,
w.b) if t < D(q) < t', then ¢’ =4’ A D¢ p(qg)¥, and
w.c) if t' < D(q), then ¢’ =¢',

where 1’ is the result of progressing 1.

(v) If ¢ = O, then

(v.a) if D(q) <t, then ¢' = Op_p(q),tr—D(q)¥>
(v.b) if t < D(q) <t', then ' ="'V O p_p(g¥,
(v.c) if t' < D(q), then ' =/,

where ' is the result of progressing .

(v1) if o = x Ut 9, then

(
(

(

vt.a)
vt.b)

if D(q) <t, then ¢' = x' A (xUjt—D(q),#'—D(q)] ¥)>

ift < D(g) <t 9" =9 V(X A(xUoe— D(g) %))
and

if #' < D(g), then ¢’ = ¢/,
where x' and 9’ are the result of progressing x and
9, respectively.

vL.C)

4. The Extended Progression Algorithm

Algorithm 5 assumes that the duration of the input
state, D(q), is a number, but as explained above sets
of developments have to be represented by a combi-
nation of state/event sequence and time constraints
to achieve enumerability. Consequently, the progres-
sion algorithm has to take as input a set of time con-
straints, C, and return the set of all possible progres-
sions, {(¢1,C1), ..., (¢k, Ci)}, where each C! is a set
of additional time constraints consistent with C and ¢]
is the result of progressing the input formula ¢ under
constraints C' U C..

The extension 1is conceptually straightforward,
though somewhat complicated in practice. Notice that
for each temporal operator algorithm 5 branches de-
pending on the duration of the input state, and that
the returned formula is built up according to the recur-
sive path of branches taken. In general, an MITL for-
mula defines a tree structure of possible progressions,
with time constraints associated to the branches and
resulting formulas at the leaves.

For the formal definition of the progression tree, a
special form of each temporal operator has to be intro-
duced: a relative interval is written [X : ¢,¢'], where
X is a TCN variable and ¢,#' € R, and interpreted as
[X +t, X +t']. Relative temporal operators are obtained
by adjoining a relative interval to any of the standard
temporal operators.

Definition 6 (Progression Tree)

For an MITL formula ¢ and a state ¢ with start-
ing and ending times denoted by variables Xs(g) and
X&(q), the progression tree Tp(y) is defined as follows:
edges in the tree are labeled with constraints (involving
Xs(q), Xg(q), and possibly other TCN variables) and
leaf nodes are labeled with formulas.
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Figure 1: Construction of Tp(a A B)

(2) If p is a state formula (i.e. contains no temporal
operators), Tp(p) consists only of a leaf, labeled with
TRUE if ¢ holds in ¢ and FALSE if not.

(1) Tp(—a) is constructed from 7p () by replacing every
leaf label o' with —a'.

(#21) To construct Tp(a A ), start with 7p(c). For every
leaf, let o' be the leafs label: replace the leaf with
a copy of 7p(B), and within that copy replace every
leaf label 8’ by o' AB’. The construction is illustrated
in figure 1.
The construction of 7p(a V ) is analogous.

() Tp(Oyt,e%) has three branches:

(tv.a) a branch labeled Xg(g) — Xs(g) < t leads to a leaf
labeled by FALSE,

(tv.b) a branch labeled Xg(q) — Xs(g) > t', also to a leaf
labeled FALSE, and

(tv.c) a branch labeled ¢t < Xg(g) — Xs(g) < t' leads to
the root of Tp(7).

(v) Te(Oix:t¥) also has three branches:

(v.a) at the first branch, labeled Xg(q) — X < ¢, is a leaf
labeled Ojx¢,¢19,

(v.b) at the second branch, labeled t < Xg(q) — X < t/,
is a copy of Tp(¢), and within that copy every leaf
label ¢’ is replaced with (Ojx.t %) A4, and

(v.c) at the third branch, labeled ¢ < Xg(g) — X, is an
unmodified copy of Tp ().

(v) Tp(Op,e¥) is equal to Tp(Oixs(q):t,e1¥)-

(vir) Tp(Orx:t,e)¥) has three branches:

(vii.a) at the first branch, labeled Xg(g) — X < t, is a leaf
labeled ¢ (x.t,t19,

(vii.b) at the second branch, labeled ¢t < Xg(q) — X < ¢/,
is a copy of 7p () with every leaf label ' replaced
by (O[X:t,t’]’l/)) \4 ¢17 and

(vii.c) at the third branch, labeled t' < Xg(q) — X, is a
copy of Tp(¢).

(viaz) Tp(Op,en) is equal to Tp(Crxs(q),e1¥)-

(iz) Tp(XUx:t,#1%) has three branches:

(t1z.a) at the first branch, labeled Xg(g) — X < t, is a leaf
labeled xUx.t,t1%,

(2z.b) at the second branch, labeled ¢t < Xg(g) — X < ¥/,
is Tp(¥), but every leaf, with label v/, is replaced
a copy of Tp(x), and in this copy, every leaf label
X' is replaced by (x' A (xUx:1,1%)) V ¢/, and

(ez.c) at the third branch, labeled ¢’ < Xg(g)—X, is only
Tp(¥)-
() Tep(XU,e1%) equals Tp(xUixs(q):t,e1¥)-

The construction of the progression tree parallels pro-
gression algoritm 5, but time constraints are captured
in the edge labels instead of the bounds of intervals ad-
joined to temporal operators in the formulas labelling
the leafs. The introduction of relative temporal oper-
ators serves to ensure that all time constraints found
in the progression tree remain simple. The algorithm
for progression now becomes a simple matter of tree
traversal:

Algorithm 7 (Extended MITL Progression)

Let ¢ and ¢ be the input MITL formula and state, re-

spectively, and C a set of (simple) time constraints.
Construct 7p(y). For every leaf I in the progression

tree, collect the set of constraints C; found along the

path to I: if C'UC} is consistent, (¢}, C]) is included in

the set of progressions returned.

The method of traversing the progression tree is not im-
portant, as long as every leaf at the end of a consistent
path is eventually found. The most efficient method
appears to be to search the tree depth first and check
the set of constraints incrementally, at each node.

Example 1 Consider the formula ¢ = O 9] Ojo,4] P-
The progression tree is shown in figure 2. If the input
set of constraints is C = {0 < Xg — Xg < 7}, there are
two consistent solution paths:

(a) Xp — Xs < 5, with the result Ojx.59 O[o,4] P

(b) 5< Xgp— Xs <9, Xg — Xg > 4, with the result
FALSE.

Xg—Xgs > 9and Xg—Xgs < 0 both contradict C, while
0 < Xg — Xs < 4 is inconsistent with the constraint
5 < Xg — X labelling the branch above.

Note that solutions returned by the algorithm may con-
tain relative temporal operators: these only make sense
in the context of a particular constraint set, which may
be viewed as conjoined to the returned formula. Con-
sequently, if the formula of a returned solution (¢, C")
is to be further progressed through another state, the
whole constraint set, C U C’, must be passed as input
to the next progression.

5. MITL Consistency

Alur et al. (1996) present a decision procedure for the
consistency of an MITL formula, but with several re-
strictions on the formula: there is no nezxt operator,
the time intervals adjoined to temporal operators must
have rational constant endpoints, and must be non-
singular, ¢.e. not of the form [¢,¢]. The restriction to
non-singular intervals is necessary, since the consistency
problem is provably undecidable if singular intervals are
allowed (Alur & Henzinger 1994).
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Xp—Xg<5 < Xp—Xs<9 Xgp—Xg>9
Oixs:5,9] Olo,4] P
Xgp—Xs<0 Xgp—Xs >4 0<Xgp—Xs<4
FALSE FALSE (Oxs:5,9) Opo,41 ) AP
Xgp—Xs <0 Xp—Xs >4 0<Xg—Xs<4
FALSE FALSE p

Figure 2: Tp(Os,9) Ojo,4] P)

The algorithm constructs a timed automaton accept-
ing exactly the developments that are models of the
formula. The automaton is then checked for emptiness
(z.e. whether it accepts at least one development), e.g.
using the procedure of Alur and Dill (1994).

Suppose that the progression algorithm is extended,
so that the input state ¢ may be unspecified w.r.t.
propositions as well as starting and ending time, and
the solutions returned contain constraints on both.
Then, if progressing an MITL formula through a se-
quence of completely unspecified states (except for the
constraint D(q) > 0, for each state), results in TRUE,
any sequence of states that satisfies the set of con-
straints collected along the way is a model for the for-
mula. This idea leads to what is essentially a tableaux
algorithm for MITL consistency.

The decision procedure for (non-real time) Linear
Temporal Logic (LTL) is also tableaux based, but con-
structs a Biichi automaton equivalent to the formula
to be checked (Wolper 1989; Gerth et al. 1995). A
variant described by Schwendimann (1998) is remark-
ably similar to the algorithm developed here, except
it is formulated in terms of inference rules rather than
progression, and applies of course only to LTL.

Partial State Progression

For the progression algorithm to work with partially
or completely unspecified states requires only a small
change in the progression tree: case (7) is replaced by

(¢”) For a single proposition p, 7p(p) has two branches,
labeled by p = T and p = F, ending in leafs labeled
TRUE and FALSE, respectively.

The branch labels are constraints on the value of p,
while the leaf labels are formula constants. Because

there are no disjunctions, the set of propositional con-
straints essentially corresponds to a partial assignment,
so consistency can be easily determined.

Tableaux Construction

The tableaux is a tree constructed by repeated progres-
sion of the MITL formula to be checked for consistency.
Each node in the tree is labeled by a formula and a
constraint set. The tree also represents a set of devel-
opments: each node corresponds to a state, and each
path from the root downwards to a development.

Definition 8 (Tableaux Tree)
Let ¢ be an MITL formula. The tableauz tree of ¢,
Tr () is defined inductively by:

(¢2) Theroot, r, is labeled by ¢ and {Xg(r)—Xs(r) > 0}.

(1) Let n be a node labeled with formula ¢, and con-

straint set C,,. For each solution (¢',C’) found by
progressing ¢, with input constraints C,, n has a
successor node, n', labeled with ¢’ and C, U C' U
{Xs(n') = Xg(n), Xp(n') - Xs(n') > 0}.

Because constraints are only passed down in the tree,
variables can be named by the depth of the node only,
i.e. the root node starts at Xy and ends at X, its
successors all start at X; and end at X,, etc. The
constraint X;; —X; > 0, placed on every node, ensures
that the duration of the corresponding state is non-
negative.

Example 2 Figure 3 shows the tableaux tree for the
formula Os ) Ojo,4) p (formula labels only). Nodes
marked “zeno cycle” correspond to non-executable de-
velopments, as explained in the next section.
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Figure 3: 77 (0(s,9) Oo,4] P)

Definition 9 (Closed, Satisfying)

A node n in T7(p) is closed iff (a) the formula labeling
the node is TRUE or FALSE, or (b) the constraint set
stored in the node is inconsistent. A node is satisfying
if it is labeled with TRUE.

To decide the consistency of a formula ¢, Tr(p) is
searched for a satisfying node: if one is found, ¢ is con-
sistent, and the sequence of states along the path from
the root to the node is a model. The subtree beneath a
closed node does not have to be examined, and if every
leaf node is closed and not satisfying, ¢ is inconsistent.

Closing Cycles

For many MITL formulas, the tableaux tree contains
infinite branches without a closing node, and thus a
straightforward search in the tableaux tree may fail to
terminate. Consider for example Ujp,001<[0,10/p: this
formula generates, among others, an infinite sequence
of progressions identical to the input formula (except
for the O operator being relative to Xp).

If a node n is labeled by the same formula as a node
n' found along the path from the root to n, and the
constraint set of the ancestor node n' subsumes, i.e.
is less restrictive than, that of n, then all the possible
successors of n are already contained in the subtree
beneath n', and it should not be necessary to search
further below n. Thus, definition 9 must be amended:

Definition 10 (Cycle, Zeno Cycle)
A node n in T7(¢) for which there exists an ancestor
node n’ labeled by an identical formula and such that
the constraint set of n' subsumes that of n, is a cycle.
A cycle node is also closed.

If in addition, the maximal value of Xg(n) — Xg(r),
where 7 is the root, is bounded by the set of constraints
(z.e. not infinite), node n is a zeno cycle.

Because time constraints are only added as the formula
is progressed down the tableaux tree, the temporal con-
straint set of a node always subsumes those of its suc-
cessors. Subsumption for state constraints, however,
must still be checked.

A cycle node n represents an infinite development,
consisting of the states along the path from the root to
the ancestor node n', followed by an infinite number of
repetitions of the states from n' to, but not including,
n. If the maximal starting time of n (which is also the
ending time of the cycle) is bounded, the time in this
development can not diverge beyond that bound, z.e.
it will pass through an infinite number of states in finite
time: hence the name “zeno cycle”.

Evaluation in Cycles That a node is a cycle does
not mean that it does not satisfy the formula labeling
the node. For example, 77 (0,001 <[0,10/p) contains a
cycle node at depth 2, labeled by Ojx,:0,00][0,10/P and,
among others, the constraints { X, — X3 < 10,p; = T'}.
This represents a development consisting of an infinite
sequence of states, each with duration at most 10, in
all of which p is true, clearly a model for the formula.

For any node n that is a cycle but not a zeno cycle, if
the formula labeling the node at the start of the cycle
(node n' in definition 10) holds in the corresponding
infinite development, according to the standard MITL
semantics, n is satisfying. Even though the develop-
ment is infinite, the number of distinct states it visits
is finite, which makes evaluation possible, although not
without complications: the distance, in time, between
different states in the cycle may be “stretched”, though
not arbitrarily, by inserting repetitions of the cycle.

Improved Cycle Detection The condition for cy-
cle detection defined above is too weak to ensure that
the search for a satisfying node in the tableaux tree
terminates. Two examples illustrate the problem:

Example 3 77(0jp,00) (40,0012 A Cf0,00]7P)) contains
an infinite branch beginning with

10 : 0[0,00] (C[0,00] 72 A 0,00]P)

N1 Orxo:0,00] P A O1x0:0,00] (P[0,00] 7P A 0,00]P)

ny C1x1:0,002 A D[ X0:0,00] (10,0072 A ©[0,00]P)

ng : C1x:0,00] 7P A O[x:0,00] (€[0,00] 7P A ©[0,00]P)

corresponding to a sequence of states in which p alter-
nates between T and F.

Example 4 T7(0[p,00]0,00] (PAp)) contains only in-
finite branches of the form

10 100,001 C[0,00] (P A D)



ng . <>[X0:0,oo] (p A —'p) A D[XOZO,OO]O[O,OO] (p A _'p)
n2: Oixp0,00] (P A TP) A Orxy0,00) (P A D) A
Ox5:0,00] C[0,00] (P A D)

since the state formula p A —p will never be true.

In example 3, the formulas labelling nodes nz and n;
are identical, except for the reference time point of the
relative interval adjoined to the < operator. If, how-
ever, the constraints on the time variable X, at n; are
not more restrictive than those on X, at nj, the set of
successors, t.e. progressions, of n3 will also be identical
to those of n1, except for this difference: in particular,
if there exists a satisfying node among the successors of
ng, the “same” satisfying node must be found by the
same sequence of progressions from n;. To state this
condition precisely requires some extra definitions:

Definition 11 (Formula Shift)

The (backwards) shift by k of a formula ¢ is obtained
by replacing every occurrence of every time variable X;
with 2 > k by X;_, in ¢.

Definition 12 (Subsumes with Shift)
Let C and C' be constraint sets, where C C C’. Then
C subsumes C' with shift by k iff

e X;—X,;in C subsumes X;—X;in C', forallt < j < k,

e X; — X; in C subsumes X; — X, in C', for all
1<k<y,

e X; — X; in C subsumes X;,; — X4 in C', for all
k<1<,

The meaning of “X; — X; in C subsumes X, — X, in

C" is that the bounds on X; — X; set by C are less

restrictive than those placed on X, — X, by C".

Definition 13 (Extended Cycle)

A node n starting at X; in 77 () for which there exists
an ancestor node n’ starting at X; such that the formula
labelling n’ equals the formula labelling n backwards
shifted by 7 — ¢ and such that the constraint set at n’
subsumes that at n with shift 7 — z, is also a cycle.

By the extended definition, node n3 in example 3 is
a cycle so the branch is closed. The formula labelling
node n; at the start of the cycle is true in the corre-
sponding infinite development.

This, however, is not enough to close the branch in
example 4, because the formula resulting from progres-
sion is redundant. To fix this, the progression result
is rewritten into an equivalent, simpler, form, based on
the notion of “weak implication”:

Definition 14 (Weakly Implies)
Formula o weakly implies 3, w.r.t. constraint set C,
in case

() @ = Oxs0¢, B = Oxrspd’, [X

(?) o and @ are identical (z.e. a formula always weakly
implies itself), or

. s,t] necessarily

contains [X' : s, t'] given C' and ¢ weakly implies ¢,

or

(17) a = Oixi5,40, B = Orxnsr @, [X : s,1] is necessarily

contained in [X' : s',¢'] given C and ¢ weakly implies
¢'.

The rewrite rules applied to the formula resulting from
progression are:

R1. Eliminate from a conjunction every conjunct that
is weakly implied by another conjunct.

R2. Eliminate from a disjunction every disjunct that
weakly implies another disjunct.

Weak implication is determined w.r.t. the constraint
set input to progression and the set returned along with
the formula. Since weak implication entails ordinary
implication, the rules preserve equivalence.

Because of the constraint X; — X > 0, [X; : 0,00]
must be contained in [Xj : 0, 0], 50 Ox;:0,00] (P A —P)
weakly implies $(x,:0,00](P A 7p), and the formula la-
belling node n, in example 4 can be simplified to

C1x1:0,00] (P A 7P) A Ox4:0,00] P [0,00] (P A D)
using rewrite rule R, which makes the node a cycle
(by the extended condition).

Correctness and Complexity

The tableaux method is clearly sound, in the sense that
whenever a satisfying node is found, the path leading
to that node (with infinite repetition if it is a cycle
node) is a model for the formula. Likewise, if only the
basic cycle definition is applied and all branches are
closed and not satisfying, the formula is inconsistent:
the argument is that the progression algorithm is ex-
haustive and that the development corresponding to a
closed node can not be a model for the formula. The
extended cycle definition appears, intuitively, to be cor-
rect, but since it is so complicated, intuition is not quite
reliable and it should be proved formally.

Even the extended cycle detection, however, is not
strong enough to ensure termination, e.g. the tableaux
tree for the formula O o0] (0,10 7P A C[o,101P) contains
infinite branches. The reason, in this case, is that the
time limit on the < operator causes weak implication
to fail: <x,.0,10)p does not weakly imply <(x,.0,10/P
unless constraints entail X; = Xj, since only then is
[X1 :0,10] necessarily contained in [Xj : 0, 10].

Deciding MITL consistency is EXPSPACE-complete
(Alur, Feder, & Henzinger 1996). The algorithm by
Alur et al. requires time exponential in the number of
connectives and the largest integer constant appearing
in the formula.

The tableaux method may not be able to do too much
better. Consider the number of consistent progressions
of a formula ¢, in the worst case: The number of tem-
poral branch nodes in the progression tree is bounded



by the number of temporal operators. At each node,
the difference X — X;, where k is the index of the
state through which the formula is progressed (equal
to the tableaux depth), and ¢ < k, is compared to a
constant interval (the restriction interval of a tempo-
ral operator). With n branch nodes, the comparisons
involve at most 2n different constants, which when or-
dered yield 2n + 1 different intervals that each X, — X;
may fall into. Denoting the number of distinct vari-
able differences occuring in constraints in the tree by
d < max(k,n), the number of consistent paths through
the temporal branch nodes is at most

(2n + d)!

d!(2n)!
since X;41 — X; > 0 for all 2, and therefore X — X; <
X, — X; whenever 7 > 2. The number of consistent
truth value assignments is of course 2P, where p is the
number of distinct propositions occuring in the formula.

Thus, the worst case branching factor in the tableaux
tree is polynomial in the number of temporal operators
in the formula, but exponential in the number of dis-
tinct propositions and in the tableaux depth. As for
how deeply the tree may have to be searched to find
a satisfying node or close all branches (assuming the
search terminates at all), I have currently no idea.

< (2n+1)4,

6. Concluding Remarks

MITL is a powerful language for expressing properties
over time: it has been used to express requirements
in formal verification, goals and control rules in plan-
ning, and knowledge in predictive models. Likewise,
progression is a powerful tool for working with MITL.
The extended algorithm enables it to be used also with
a compact representation of sets of developments, which
in turn enables enumeration of the finite development
prefixes generated by a timed automaton.

The tableaux algorithm for deciding MITL consis-
tency shows some promise: with extended cycle detec-
tion and simplification rewriting, it manages to prove
the formula Ojp 0] <0,0012 A <[0,00]0[0,00] 7P unsatisfi-
able. In difference to the method by Alur et al., it does
not depend on time constants being integral, or even
rational, except as far as constraint management does.
Also, it appears simpler, which is not an unimportant
property.

Still, it is very much work in progress: besides mak-
ing it complete, the extended cycle detection, possibly
strengthened, needs to be proved correct, and a more
thorough analysis of the algorithms complexity to be
done. Although it certainly requires both exponential
time and space, it may be exponential in different vari-
ables than the existing algorithm: for example, it is
hard to see that the size of the constants in the in-
tervals adjoining the temporal operators should play a
part, and this may make a difference in practice.

That aside, rewriting based on weak implication is
inelegant and ad hoc. It may be seen as imposing a
“weak normal form” on formulas, but exactly what this

form is, and what set of rewrite rules is sufficient to
obtain it, needs to be clarified.
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