
Linköping Studies in Science and Technology

Licentiate Thesis No. 1783

Spatio-Temporal Stream Reasoning with
Adaptive State Stream Generation

by

Daniel de Leng

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2017

This is a Swedish Licentiate’s Thesis

Swedish postgraduate education leads to a doctor’s degree and/or a licentiate’s degree. A
doctor’s degree comprises 240 ECTS credits (4 year of full-time studies).

A licentiate’s degree comprises 120 ECTS credits.

Copyright c© 2017 Daniel de Leng

ISBN 978-91-7685-476-1
ISSN 0280–7971

Printed by LiU Tryck 2017

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138645

Abstract
A lot of today’s data is generated incrementally over time by a large variety of pro-
ducers. This data ranges from quantitative sensor observations produced by robot
systems to complex unstructured human-generated texts on social media. With
data being so abundant, making sense of these streams of data through reason-
ing is challenging. Reasoning over streams is particularly relevant for autonomous
robotic systems that operate in a physical environment. They commonly observe
this environment through incremental observations, gradually refining information
about their surroundings. This makes robust management of streaming data and
its refinement an important problem.
Many contemporary approaches to stream reasoning focus on the issue of query-
ing data streams in order to generate higher-level information by relying on well-
known database approaches. Other approaches apply logic-based reasoning tech-
niques, which rarely consider the provenance of their symbolic interpretations. In
this thesis, we integrate techniques for logic-based spatio-temporal stream reason-
ing with the adaptive generation of the state streams needed to do the reasoning
over. This combination deals with both the challenge of reasoning over streaming
data and the problem of robustly managing streaming data and its refinement.
The main contributions of this thesis are (1) a logic-based spatio-temporal reason-
ing technique that combines temporal reasoning with qualitative spatial reasoning;
(2) an adaptive reconfiguration procedure for generating and maintaining a data
stream required to perform spatio-temporal stream reasoning over; and (3) inte-
gration of these two techniques into a stream reasoning framework. The proposed
spatio-temporal stream reasoning technique is able to reason with intertemporal
spatial relations by leveraging landmarks. Adaptive state stream generation al-
lows the framework to adapt in situations in which the set of available streaming
resources changes. Management of streaming resources is formalised in the Dy-
Know model, which introduces a configuration life-cycle to adaptively generate
state streams. The DyKnow-ROS stream reasoning framework is a concrete realisa-
tion of this model that extends the Robot Operating System (ROS). DyKnow-ROS
has been deployed on the SoftBank Robotics NAO platform to demonstrate the sys-
tem’s capabilities in the context of a case study on run-time adaptive reconfigura-
tion. The results show that the proposed system—by combining reasoning over and
reasoning about streams—can robustly perform spatio-temporal stream reasoning,
even when the availability of streaming resources changes.

This work was funded in part by the National Graduate School in Computer Science, Swe-
den (CUGS), the Swedish Aeronautics Research Council (NFFP6), the Swedish Foundation
for Strategic Research (SSF) project CUAS, the Swedish Research Council (VR) Linnaeus
Center CADICS, the ELLIIT Excellence Center at Linköping-Lund for Information Tech-
nology, and the Center for Industrial Information Technology CENIIT.

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Acknowledgements

I first and foremost want to thank my supervisor Fredrik Heintz. For some-
one who planned half a decade ahead, remaining in Sweden was not some-
thing I had considered. Your research on DyKnow and the sense-reasoning
gap brought me to a beautiful Swedish winter in November of 2012. I was
planning to do my Master’s thesis work in Linköping before attending a
graduate school in the United States to be with the person I love. You gave
me an opportunity which brought him to Sweden instead and allowed me
to continue working on interesting problems here at AIICS. It changed our
lives for the better, and for that I am forever grateful to you. As a student,
I also want to thank you for your time and support, and I look forward to
our future challenges and opportunities.

Thanks to Patrick Doherty for taking the time to read through an earlier
version of this thesis. It can be difficult to see problems with the writing
when one is in the middle of it. Your comments were very valuable in
improving the quality of the thesis.

I also want to thank Mattias Tiger for our daily (sometimes frustrating
but healthy) discussions about everything research and outside of research,
and above all, for being a friend and a guide to all things Sweden. Our
lunches and fikas together with Jon Dybeck and Erik Hansson are always
a great way to disconnect from work or give a fresh perspective.

To everyone at AIICS; I am grateful for our Friday fikas, your continu-
ing feedback and support in matters research and teaching, and your com-
pany. Thank you all.

Last but not least, I want to thank my beloved husband Riley, my par-
ents Eric and Natasha, my siblings Samantha and Daryl, and my parents-
in-law Paige and Gary for their love and support across borders and oceans.
You make an enormous difference.

Contents

1 Introduction 1
1.1 Scope and limitations . 5
1.2 Methodology . 6
1.3 Contributions . 7
1.4 Outline . 8

2 Stream reasoning 10
2.1 Introduction . 10

2.1.1 Temporal logics . 11
2.1.2 Automata-theoretic model checking 13
2.1.3 Progression-based path checking 15

2.2 Stream reasoning systems . 16
2.2.1 DSM systems . 16
2.2.2 CEP systems . 17

2.3 Project DyKnow . 18
2.4 Summary . 19

3 Spatio-temporal stream reasoning 20
3.1 Introduction . 20

3.1.1 Spatial reasoning with RCC-8 21
3.1.2 Temporal reasoning with MTL 23
3.1.3 Approaches towards spatio-temporal reasoning . . . 24

3.2 Metric Spatio-Temporal Logic 25
3.2.1 Syntax . 25
3.2.2 Semantics . 26

3.3 Spatio-temporal inference with RCC-8 27
3.3.1 Temporal constraint networks 27
3.3.2 Intratemporal inference 29
3.3.3 Intertemporal inference 29

3.4 Stream reasoning with MSTL 33
3.4.1 Progression of MTL . 34
3.4.2 Spatial state streams 34
3.4.3 Rewriting rules for ‘next’ 37
3.4.4 Extending progression to MSTL 39

v

vi CONTENTS

3.5 Performance evaluation . 42
3.5.1 CPU usage of progression 42
3.5.2 Effectiveness and scalability of landmarks 43
3.5.3 Caching spatial relations between rigid objects 46

3.6 Open problems . 48
3.7 Summary . 48

4 Semantic subscriptions 51
4.1 Introduction . 51

4.1.1 Semantic integration 53
4.1.2 Configuration planning 53

4.2 DyKnow model . 54
4.2.1 Streams . 54
4.2.2 Computational environment 55
4.2.3 Dynamics . 57
4.2.4 Cost and optimality 60

4.3 Handling perturbations . 62
4.3.1 Update procedure . 63
4.3.2 Correctness . 71
4.3.3 Any-time extension . 72

4.4 Ontology-based model representation 73
4.4.1 DyKnow ontology . 74
4.4.2 Ontological extensions 77

4.5 Open problems . 78
4.6 Summary . 78

5 DyKnow-ROS: Putting it all together 79
5.1 Introduction . 79
5.2 Architecture . 80

5.2.1 The nodelet proxy . 82
5.2.2 Interactive visualisation 85

5.3 Management of stream processing 86
5.3.1 Representation of configurations 87
5.3.2 Configuration life-cycle daemon 90

5.4 Spatio-temporal stream reasoning support 91
5.5 Performance evaluation . 94
5.6 Open problems . 95
5.7 Summary . 95

6 Case study 96
6.1 Introduction . 96
6.2 Experimental set-up . 96

6.2.1 Humanoid lab . 97
6.2.2 Piff and Puff . 97

6.3 Recovery from failures . 98
6.4 Exploitation of new optima 102

CONTENTS vii

6.5 Cleaning up . 105
6.6 Open problems . 105
6.7 Summary . 106

7 Related work 107
7.1 LARS . 107
7.2 SECRET . 108
7.3 RSP . 109
7.4 PEIS . 110

8 Conclusions and future work 112
8.1 Conclusions and lessons learned 112
8.2 Limitations and open problems 113
8.3 Future work . 114

A DyKnow ontology in Manchester syntax 117

List of Figures

1.1 Synergy effect between reasoning over streams and reason-
ing about streams. 2

1.2 Conceptual system overview for spatio-temporal stream rea-
soning with adaptive state stream generation. 3

2.1 Left: All models of the system description are also models
of the LTL specification, showing correctness. Right: Some
models of the system description are not models of the LTL
specification, indicating that the specification is violated by
some system traces. 13

3.1 Conceptual overview with the spatio-temporal stream rea-
soning highlighted. 21

3.2 The eight qualitative spatial relations considered by RCC-8
and their transitions as illustrated by regions x and y. 23

3.3 Conceptual representation of progression. 34
3.4 The ‘busy student’ scenario where regions in Vs are shaded,

regions in Vd are transparent, and inferred relations are rep-
resented by dashed arrows. 36

3.5 A qualitative spatio-temporal stream reasoning example. . . 37
3.6 CPU usage over successive progressions when progressing

23[0,1000]p over regular state sequences. 43
3.7 CPU usage over successive progressions when progressing

2¬p→ 3[0,1000]2[0,999]p over regular state sequences. 44
3.8 Absolute disjunction size for varying number of regions and

landmark ratio; smaller is better. 45
3.9 Percentage of such relations fully unknown. 46
3.10 Comparison of mean CPU times when separating static and

dynamic variables. 49
3.11 Relative CPU time increase when separating static and dy-

namic variables. 50

4.1 Conceptual overview with the adaptive state stream genera-
tion highlighted. 52

viii

LIST OF FIGURES ix

4.2 Hierarchical concept graph of the DyKnow ontology. 75

5.1 Conceptual system overview for spatio-temporal stream rea-
soning with adaptive state stream generation. 81

5.2 UML diagram showing the DyKnow nodelet implementa-
tion and its relation to standard ROS components. 83

5.3 Screenshot of the interactive visualisation tool. 85
5.4 Architecture of the stream reasoning engine component. . . 92
5.5 Performance graph showing the different time-to-arrivals for

messages relative to the number of hops for a linear chain. . 94

6.1 Humanoid lab (left) equipped with four ceiling cameras (right). 97
6.2 A SoftBank Robotics NAO V4 robot. 98
6.3 Piff and Puff’s transformation pipeline conceptually show-

ing the transformations from camera images to ball positions. 99

List of Tables

3.1 Definitions for the 15 RCC relations. 22

4.1 Notation for the DyKnow model. 54

6.1 Piff’s transformations and their tags denoted by itag⇒ otag. 100
6.2 The Humanoid lab’s ceiling camera transformations and their

tags denoted by itag⇒ otag. 103

x

Chapter 1

Introduction

Real-world robotic systems must be able to interpret and reason about un-
certain sensor observations to effectively operate in the physical world.
Such observations occur in the context of and across time and space. Conse-
quently, observations are temporally and spatially connected to each other.
The discrete observations succeed each other like snapshots that, when
taken together, tell us a story about the world we reside in. Stream reasoning
is a subfield of Artificial Intelligence (AI) that focuses on the incremental
reasoning over incrementally-available information, which we characterise
as streams containing state information. More specifically, stream reasoning
is a subfield of Knowledge Representation (KR), which is itself a subfield of
AI. For many systems, including autonomous robotic systems, this stream-
ing information is generated from sensor observations. Stream reasoning
plays an increasingly important role as robots are no longer confined to
carefully crafted environments and instead have to deal with the highly-
dynamic physical world that is inhabited by other entities. In such a con-
text, situation awareness is of great importance and covers not just the envi-
ronment outside of an autonomous robot, but also how its percepts arise
from its own controllable internal configuration.

The contributions presented in this thesis can be roughly divided into
two distinct but adjoining strands; spatio-temporal stream reasoning and adap-
tive state stream generation. Spatio-temporal stream reasoning is an applica-
tion of reasoning over streams, which means reasoning with the streaming
data that makes up a stream. Streaming data is assumed to become incre-
mentally available over time, which makes it fundamentally different from
database contexts. Examples of (incremental) reasoning over streams in-
clude the generation of a stream of more refined data, or the drawing of
conclusions from streaming data. Adaptive state stream generation utilises
reasoning about streams, which can be regarded as meta-stream reasoning.
In this view, the streams themselves—and by extension, their properties—
are of interest for the purpose of reasoning. Both views are complemen-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Synergy effect between reasoning over streams and reasoning
about streams.

tary and form the basis for the two strands of this thesis. As illustrated in
Figure 1.1, reasoning about streams can facilitate and strengthen reasoning
over streams, and reasoning over streams can influence the reasoning about
streams. The two strands thus provide a natural synergy effect wherein the
whole is greater than its individual parts.

Spatio-temporal stream reasoning. Many approaches towards temporal
stream reasoning exist, but there have been fewer attempts at integrating
spatial and temporal streaming information. The incorporation of spatial
information can be of great importance when reasoning about the physi-
cal world, such as is the case for autonomous robots. This thesis focuses
on logic-based spatio-temporal stream reasoning, where logic formulas are
evaluated over streams using a technique called progression, further ex-
plained in Chapter 3. Logic formulas allow us to very clearly specify crisp
statements that describe the temporal and spatial properties of the world.
Execution monitoring is an application of progression in which we check
whether the expected properties hold or are violated through formula eval-
uation. This is an important ability for safety in autonomous robotics. Con-
tributions in the area of spatio-temporal stream reasoning (i.e. reasoning
over streams) make up the first part of this thesis.

Adaptive state stream generation. Recently there has been a lot of progress
in the development of stream reasoning systems. The number of sources
for streams—such as sensors or Internet of Things (IoT) devices—is increas-
ing, yet most research assumes that the streaming resources are fixed and
known. Therefore, while it is important to reason about which streaming
resources to subscribe to, most of today’s systems lack the capability to do
so. We argue that it is unreasonable to assume that the streaming resources

3

Figure 1.2: Conceptual system overview for spatio-temporal stream rea-
soning with adaptive state stream generation.

are fixed and known, and that being able to reason about these dynamics
is important for autonomous systems in order to effectively operate in the
real world. This thesis focuses in particular on the problem of reliably gen-
erating a stream containing states (i.e. a state stream) for the evaluation of
logic formulas, where the computational resources may change over time.
This is done by reasoning about streams, and in particular how streams can
be generated.

Figure 1.2 shows a conceptual system overview combining the two strands,
which we refer to in further detail in the corresponding chapters. The
strand on spatio-temporal stream reasoning focuses on the evaluation of
logic formulas; the strand on adaptive state stream generation subsequently
focuses on adaptive reconfiguration of computational environment in or-
der to maintain a stream used for the evaluation of such a formula. The
numbers in the conceptual system overview identify interactions. First,
a formula is provided to the stream reasoning manager (1), together with
specifications of stream-generating components and their semantic descrip-
tions. This formula acts as a query; the task of the system is to determine
the truth value of the formula. To evaluate the formula, the manager needs
to configure stream-generating components (2) in such a way that they pro-
duce a stream of states that can be used for this purpose. Then the formula
can be added to the stream reasoning engine (3), which can subscribe to the
state stream produced by the computational environment (4). With a for-
mula and a suitable state stream, the engine can perform progression until
it determines the truth value of the formula, which is subsequently sent
back to the manager (5). The manager can internally act on the evaluation
result if applicable, and subsequently sends the result back to the client (6).
For a more concrete example, consider the following synergy examples that

4 CHAPTER 1. INTRODUCTION

illustrate the framework’s behaviour.

Example 1 (Adapting to changing conditions). Suppose that we have a robot
that is tasked with the visual tracking of objects in an environment. Its preferred
tracker assumes well-lit surroundings to produce high-precision tracks. It also has
a redundant tracker that provides lower-quality tracks but it does not require the
environment to be as well-lit. An execution monitor can send a formula of the
form ‘If I am in my room, it is always the case that if the light condition of my
surroundings is poor, then the surroundings will be well-lit within 10 seconds.’
to the stream reasoning manager. If the formula evaluates to false, for example
because it has become dark because the room’s lights switched off and nobody is
there to turn them back on, this triggers the monitor to swap out the two trackers,
which will result in a reconfiguration. Any formulas depending on a stream of
tracks are progressed with minimal interruption.

The situation described above uses the progressor to check the changing
state of the environment. The formula allows us to very precisely specify
the conditions in which the preferred tracker should be used; in the robot’s
room and in well-lit conditions. The 10 second window ensures that short
interruptions of the lighting conditions do not lead to reconfigurations. The
formula is provided to the stream reasoning manager, which is assumed
to already have access to specifications for stream-generating components.
It uses the information in the grounding to reconfigure the system such
that the light conditions and robot position are provided in a stream. This
stream is fed to the stream reasoning engine, which uses it to evaluate the
provided logic formula. If the formula evaluates to false, we know that the
tracker’s assumed well-lit environment no longer holds, so the stream rea-
soning engine tells the stream reasoning manager that it can no longer be
used. The stream reasoning manager subsequently reconfigures the system
by using the alternative tracker instead.

Example 2 (Introspection). Suppose that we have a robot system consisting of
a number of components that refine streaming information. Every component in
addition produces a stream with computational resource usage in terms of CPU
time and memory consumed. While our components were designed to be load-
efficient, we want to ensure that changes made during the development do not
result in unexpected behaviour. The stream reasoning manager is therefore sent
a formula stating ‘The resource usage of all components is nominal.’ After one
developer commits their changes, a software test is run. While all feature tests
pass, the formula evaluates to false; the changes violate the resource constraints.
The execution monitor upon noticing this violation swaps out the offending module
for an older version.

In the above example, the operational environment used for sensing is
a robot’s internal processing, which is reasoned over by the stream rea-
soning engine. The formula envaluation is being used to detect unwanted
situations and to respond to those situations through reconfiguration.

1.1. SCOPE AND LIMITATIONS 5

1.1 Scope and limitations

The aim of this Licentiate thesis is

to combine spatial and temporal stream reasoning techniques
based on logic, and to develop techniques for the adaptive
generation of streams needed for this type of reasoning.

The two strands are considered separately (as before) for the purposes of
identifying scope and limitations, before being joined into a single inte-
grated system. The aim as described covers all components previously pre-
sented as part of the conceptual overview, with the exception of the stream
reasoning manager acting on evaluation results by performing reconfigu-
rations. While doing so is made possible as the result of the work presented
in this thesis, an in-depth exploration is left for future work.

Spatio-temporal stream reasoning. There are many ways to combine spa-
tial and temporal stream reasoning. This thesis focuses specifically on logic-
based stream reasoning techniques that combine these two aspects. For the
spatial reasoning we focus on topological spatial modeling and inference.
Combining spatial and temporal logics is not something new—Kontchakov
et al. (2007) provide a lengthy overview of different techniques that have
been employed to combine the two. However, the application of these tech-
niques to the domain of stream reasoning requires a different approach,
which is what is presented in this thesis. The goal of this thesis strand is
thus to design a spatio-temporal logic that is applicable to stream reason-
ing, which requires a form of incremental path checking.

Adaptive state stream generation. State stream generation deals with the
incremental generation of logical interpretations (states) for each time point.
There are many ways this could be done. However, it is usually ignored
when the topic of interest is the temporal logic, because it is generally as-
sumed that the states exist. The goal of this thesis strand is to design a
method for the adaptive, on-demand generation of interpretations grounded
in an underlying stream processing environment. This is closely related to
research areas such as service composition or configuration planning, al-
beit with a focus on repair. The thesis does not seek to introduce novel
languages for describing the relationship between entities in a stream pro-
cessing environment; areas such as the semantic web have worked on re-
lated problems. Instead, the thesis focuses on the problem of adaptively
reconfiguring the stream processing environment to deal with unexpected
changes. Subscriptions to such streams are called semantic subscriptions
in this context.

Integration. The resulting techniques are integrated into a stream reason-
ing framework for the purpose of supporting autonomous robots in their

6 CHAPTER 1. INTRODUCTION

operations. The resulting system should be able to leverage pre-existing
modules, or it should be possible to convert those modules with mini-
mal effort. The focus is thus on the usability of the resulting system to-
wards research into autonomous robots. This means that a custom, spe-
cialised implementation is unlikely to be sufficiently suitable. Further, the
scope of this thesis limits itself to the unidirectional support from adaptive
state stream generation to spatio-temporal stream reasoning. The described
(bidirectional) synergy effect by allowing the stream reasoning to affect the
adaptive state stream generation is the focus of ongoing research.

1.2 Methodology

The procedure used to produce the aforementioned contributions is based
on the need to offer real-world applicable solutions to real-world problems.
To this effect, the work towards this thesis can be categorised into three
categories; theory, engineering, and deployment.

Theory. First, theoretical contributions were developed and proposed,
providing a solid foundation that doubles as a clear design specification.
These theoretical contributions are based on and extend previous work in
the various fields. The spatio-temporal stream reasoning strand is closely
related to research in the field of knowledge representation and reasoning,
for example.

Engineering. The different theoretical results were tested empirically as
software artefacts. While the contributions themselves are general and
could be implemented in a variety of ways, the goal of this work was to pro-
vide a stream reasoning framework implementation that integrates these
results in a useful manner. This presented a number of engineering prob-
lems that were resolved as part of the integration work. The engineering
work focused in part on the applicability of the resulting software artefacts.
Special care was taken to make sure that the software was easy to use by
other developers, decreasing the cost of adoption. The engineering efforts
often highlighted potential theoretical problems which had to be resolved.

Deployment. The resulting software artefacts were deployed on the Soft-
Bank Robotics1 NAO robot platform. Since the work on state stream gener-
ation relies on underlying implemented functionality, software under de-
velopment for the RoboCup Standard Platform League (SPL) was used and
adapted to work with the stream reasoning framework. This presented an
interesting test-bed for testing the ease of integration, and highlighted var-
ious engineering problems that required solving. The result of deployment

1Formerly called Aldebaran; acquired by SoftBank Robotics in 2015 and renamed accord-
ingly on May 19th, 2016.

1.3. CONTRIBUTIONS 7

often also yields or highlights interesting theoretical questions and prob-
lems.

The theoretical foundation thus provide a basis upon which the pro-
posed system is built. While some of the presented results are purely the-
oretical in nature, the focus lies on robotics-related application domains.
By providing a formal model of the system, the results can therefore be re-
produced in other system realisations than the one presented in this thesis,
using different platforms than those used here. This supports the claim of
generality of these results. Lastly, the goal is to make our system realisa-
tion open-source in the future, allowing for our empirical evaluations to be
repeated.

1.3 Contributions

The contributions of this thesis are:

1. A spatio-temporal logic MSTL was developed based on Metric Tem-
poral Logic (MTL) and the Region Connection Calculus (RCC-8). Sub-
sequent improvements to progression were formalised and empiri-
cally evaluated. Further, the application of the ‘next’ operator to spa-
tial terms, as originally introduced as part of the logic ST1, was ex-
tended with efficient rewriting rules so it can be used for stream rea-
soning. These contributions are based on material that originally ap-
peared in Heintz and de Leng (2014) and de Leng and Heintz (2016a).

2. A formal model of a distributed stream reasoning framework was
developed, along with the formalisation of its dynamics in terms of
changes to the computational environment. Reconfiguration of the
computational environment allows for the generation of streams based
on requests, for example to support the evaluation of a logic for-
mula. An adaptive reconfiguration algorithm is presented. To sup-
port adaptive reconfiguration planning, the cost of using the frame-
work’s components is learned on-line. These contributions are based
on material that originally appeared in Heintz and de Leng (2013)
and de Leng and Heintz (2014, 2015a,b, 2017).

3. The DyKnow-ROS2 dynamically reconfigurable stream reasoning frame-
work was implemented as an extension to the Robot Operating Sys-
tem (ROS). The required reconfigurability strengthens ROS, which by
default does not support this ability. ROS visualisation tools were
enhanced with the ability to visualise the dynamically-changing en-
vironment. These contributions are based on material originally ap-
peared in de Leng and Heintz (2016b).

2DyKnow homepage: http://www.dyknow.eu

8 CHAPTER 1. INTRODUCTION

The complete listing of publications covered in this thesis is as follows:

• D. de Leng and F. Heintz. Towards Adaptive Semantic Subscriptions
for Stream Reasoning in the Robot Operating System. To appear in
Proceedings of the 30th IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2017.

• D. de Leng and F. Heintz. DyKnow: A Dynamically Reconfigurable
Stream Reasoning Framework as an Extension to the Robot Operat-
ing System. In Proceedings of the 5th IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots, 2016.

• D. de Leng and F. Heintz. Qualitative Spatio-Temporal Stream Rea-
soning With Unobservable Intertemporal Spatial Relations Using Land-
marks. In Proceedings of the 30th AAAI Conference on Artificial Intelli-
gence, 2016.

• D. de Leng and F. Heintz. Ontology-Based Introspection in Support
of Stream Reasoning. In Proceedings of the 13th Scandinavian conference
on Artificial Intelligence, 2015.

• D. de Leng and F. Heintz. Ontology-Based Introspection in Support
of Stream Reasoning. In Proceedings of the 1st Joint Ontology Workshops
held at the 24th International Joint Conference on Artificial Intelligence,
2015.

• F. Heintz and D. de Leng. Spatio-Temporal Stream Reasoning with
Incomplete Spatial Information. In Proceedings of the 21st European
Conference on Artificial Intelligence, 2014.

• D. de Leng and F. Heintz. Towards On-Demand Semantic Event Pro-
cessing for Stream Reasoning. In Proceedings of the 17th International
Conference on Information Fusion, 2013.

• F. Heintz and D. de Leng. Semantic Information Integration with
Transformations for Stream Reasoning. In Proceedings of the 16th In-
ternational Conference on Information Fusion, 2013.

Lastly, one contribution was the invited publication of a popular science
article (not peer-reviewed) titled “Querying flying robots and other Things:
Ontology-supported stream reasoning” in XRDS (de Leng, 2015) within the
theme of the Internet of Things (IoT) targeted at students within the field
of computer science.

1.4 Outline

The remainder of this thesis is organised as follows. Chapter 2 covers
stream reasoning preliminaries. In Chapter 3, we introduce the spatio-
temporal logic MSTL which combines temporal and spatial reasoning. The

1.4. OUTLINE 9

logic is complemented with efficient progression techniques to make it ap-
plicable to stream reasoning, and an empirical evaluation is provided to
support this claim. Chapter 4 discusses a formal model for a stream reason-
ing framework that can adaptively generate state streams for formula eval-
uation. An implementation combining these contributions is presented in
Chapter 5, where the DyKnow stream reasoning framework is introduced
and empirically evaluated. Chapter 6 describes a case study in which Dy-
Know is used on NAO robots. A survey of related work is presented in
Chapter 7 and compared to the thesis contributions. Finally, Chapter 8
concludes the thesis and discusses future work.

Chapter 2

Stream reasoning

Stream reasoning spans a broad research area and is the focus of this thesis.
In this chapter, the concepts of streams and stream reasoning are briefly
explained. In particular, the thesis focuses on execution monitoring as an
application of stream reasoning. This chapter introduces path checking and
relates it to progression, which is the technique of our choice for formula
evaluation. Progression is used as a tool to perform execution monitoring.
This chapter subsequently gives an overview of stream reasoning systems,
considering different families, before giving a brief history of the DyKnow
project and its associated stream reasoning systems.

2.1 Introduction

Stream reasoning does not have a singular definition in the literature, but
variations generally agree with the notion that stream reasoning is some
kind of reasoning pertaining to incrementally-available information. In this
thesis, the concept of stream reasoning is therefore defined as follows.

Definition 1 (Stream reasoning). Stream reasoning is the incremental reason-
ing over and about streams of incrementally-available information.

The incremental nature of streams constitutes a significant departure
from classical databases. One analogy is that of a waterfall flowing into a
basin: Classical approaches operate on the basin, whereas stream reason-
ing approaches operate on the waterfall. Classical approaches thus only
operate on what is stored and always on everything that is stored, whereas
stream reasoning puts constraints on how much can be stored and always
assumes to only have a fragment of the entire stream to operate on. Due
to the properties of streaming data, new approaches are needed. Laney
(2001) originally described the terms volume, velocity and variety as im-
portant properties for describing data. These properties were subsequently

10

2.1. INTRODUCTION 11

extended to define Big Data. The following stream properties originate
from the ‘four Vs of big data’ applied to a stream reasoning context:

Volume. One can no longer assume that the data can be collected in its
entirety prior to processing it. The volume of data may simply be too large
for any practical storage to take place. Streaming data is therefore generally
assumed to be accessed once and then lost.

Velocity. The incremental nature of streams invokes the property of ve-
locity, i.e. how quickly data becomes available. Depending on the source of
a data stream one can or cannot make assumptions about its velocity. For
example, user-generated content can be highly irregular and bound to hu-
man behavioural patterns, whereas sensor data in a real-time system can
be assumed to have a fixed frequency. A general stream reasoning system
must be able to cope with differences in velocity, and high velocity in par-
ticular.

Variety. Streaming data can originate from many heterogeneous sources
in various data formats and as various data types. Examples of different
data types are text, images, and speech. Being able to interpret the data
from streams in various formats and types is important in order to effec-
tively work with this data.

Veracity. The trustworthiness and accuracy of data is another important
factor to consider when dealing with streaming data. The trustworthiness
of data is in part based on who produced the data and who provided it;
some sources may be of poor quality or (purposely or not) misrepresent
information. This may also be a consequence of low accuracy of data.

Different stream reasoning systems focus on different aspects. For social
media tools, variety and veracity may be far less important than dealing
with volume and velocity, as the focus is user-generated unstructured data.
In robot systems, value, veracity and velocity are important in order to deal
with a rapidly-changing environment. This leads to different perspectives
on stream reasoning.

2.1.1 Temporal logics

Logic-based approaches to stream reasoning are often related to temporal
(modal) logics such as Linear Time Logic LTL, Computation Tree Logic CTL,
or their combination CTL∗. The syntax and semantics for propositional LTL
are as follows.

12 CHAPTER 2. STREAM REASONING

Definition 2 (LTL syntax). The syntax for propositional LTL is as follows for
atomic propositions p ∈ Prop and well-formed formulas (wffs) φ and ψ:

p | ¬φ | φ ∨ ψ | φ U ψ (2.1)

The semantic of LTL are based on temporal models which describe a se-
quence of time-points. These temporal models are represented as Kripke
models.

Definition 3 (Temporal model). A temporal model is a Kripke modelM =
〈T,<, V〉 where T denotes a set of time-points, < denotes a temporal ordering over
T, and V : T 7→ 2Prop denotes a mapping from time-points to states.

The temporal model thus represents a time-line. The semantics of LTL
are as follows.

Definition 4 (LTL semantics). The LTL statement that a wff φ holds in a temporal
modelM = 〈T,<, V〉 at time-point t ∈ T is defined recursively:

M, t |= p iff p ∈ V(t) for p ∈ Prop (2.2)
M, t |= ¬φ iffM, t 6|= φ (2.3)

M, t |= φ ∨ ψ iffM, t |= φ orM, t |= ψ (2.4)

M, t |= φ U ψ iff ∃t ≤ t′ :M, t′ |= ψ (2.5)

and ∀t′′ : t ≤ t′′ < t′ :M, t′′ |= φ

The syntax of propositional LTL is often extended to include the follow-
ing Boolean operators:

> ≡de f p ∨ ¬p (2.6)

⊥ ≡de f ¬> (2.7)

φ ∧ φ ≡de f ¬(¬φ ∨ ¬ψ) (2.8)

φ→ ψ ≡de f ¬φ ∨ ψ (2.9)

φ↔ ψ ≡de f (φ→ ψ) ∧ (ψ→ φ) (2.10)

φ R ψ ≡de f ¬(¬φ U ¬ψ) (2.11)

3φ ≡de f > U φ (2.12)

2φ ≡de f ¬3¬φ (2.13)

We refer to these extensions as syntactic sugar since they do not occur
formally in the above semantics. The symbols 2, 3, U and R are called
‘always’, ‘eventually’, ‘until’, and ‘release’ respectively. Using LTL with the
syntactic sugar provided by the above operators, we can formally describe
temporal statements in the logic.

Example 3 (LTL statement). Consider the statement from a previous synergy
example: “If I am in my room, it is always the case that if the light condition of my

2.1. INTRODUCTION 13

Figure 2.1: Left: All models of the system description are also models of
the LTL specification, showing correctness. Right: Some models of the sys-
tem description are not models of the LTL specification, indicating that the
specification is violated by some system traces.

surroundings is poor, then the surroundings will be well-lit within 10 seconds.”
This statement can be approximated as

inRoom→ (2(poorLight→ 3goodLight)), (2.14)

where propositions inRoom, poorLight and goodLight stand for “I am in my
room”, “the light condition of my surroundings is poor”, and “the surroundings
are well-lit” respectively. Note that this is an approximation since LTL is not able
to describe metric conditions such as “within the next 10 seconds.”

Many extensions of LTL exist. CTL is sometimes also referred to as branching-
time logic due to its branching time-lines. It allows for reasoning over paths
in a tree structure and separates state formulas from path formulas. CTL∗ is
a combination of CTL and LTL, and has the expressivity of both combined.
Another extension of LTL is Metric Temporal Logic (MTL), which allows for
metric constraints on the modal operators, restricting them to a specific
time-period. This allows for statements such as “φ is true for the next 10
time-points,” or “ψ becomes true within the next 10 time-points.”

2.1.2 Automata-theoretic model checking

LTL has proven to be extremely useful in areas such as formal verification,
in which the correctness of a program is tested by comparing a descrip-
tion of the program to an LTL specification of how the program should
behave. If the description falls within the scope of the specification, the
program is correct. This relation is illustrated in Figure 2.1. On the left, all
models of the system description are also models of the LTL specification,

14 CHAPTER 2. STREAM REASONING

which means that the system verifiably operates within the constraints de-
scribed by the specification. On the right, there are also models of the sys-
tem description that occur outside the LTL specification, meaning they vio-
late the specification. Automata-theoretic model checking makes use of ω-
automata to describe a program in terms of possible state sequences, which
can be regarded as streams. These finite automata operating on (infinite-
length) ω-words are therefore sometimes called ‘stream automata’. Finite
automata operate on finite-length words w ∈ Σ∗, where Σ∗ denotes the
set of finite strings over a finite alphabet Σ. For infinite-length words we
instead use the set Σω of ω-words α ∈ Σ∗, from which languages of infi-
nite words can be constructed. Just as regular languages can be described
by regular expressions, ω-regular languages can be described by ω-regular
expressions.

Example 4 (Finite and infinite regular languages). Suppose we have a finite
alphabet Σ = {a, b}. The regular expression a(a|b)∗ describes any finite sequence
of a’s or b’s following a single a. These sequences describe finite-length words. We
can describe ω-words with ω-regular expressions. As an example, consider the
ω-regular expression a∗bω, which describes all ω-words which start with a finite
sequence of a’s followed by an infinite sequence of b’s.

Finite automata use accept (or final) states to determine the acceptability
of words: if a word ends in an accept state of a given finite automaton,
the word is considered to be accepted by that finite automaton. However,
since ω-words do not have a final element, the acceptance conditions of
ω-automata differs from those of finite automata. Different types of ω-
automata consequently exist with varying semantics in terms of acceptance
conditions, but Büchi ω-automata are commonly used.

Definition 5 (Büchi automata). A Büchi automatonB is a type of ω-automaton
over an alphabet Σ denoted by a tuple

(Σ, Q, ∆, Q0, F), (2.15)

where Q denotes a finite set of states, Q0 ⊆ Q denotes the set of initial states,
∆ ⊆ Q× Σ× Q denotes the transition relations, and F ⊆ Q denotes the set of
accepting states. An ω-word α ∈ Σω is accepted by B iff for its associated run σ it
is the case that inf(σ) ∩ F 6= ∅, i.e. at least one of the accept states is encountered
infinitely often.

ω-automata encode a set of ω-words. The concept of a run formally
describes such ω-words.

Definition 6 (Run). A run on an automaton is an ω-word σ for language Q,
starting with σ(0) ∈ Q0 and (σ(i), α(i), σ(i + 1)) ∈ ∆ for every i ≥ 0, i.e. runs
start in an initial state and only contain valid transitions between states. The
function inf : σ 7→ Q is used to denote the set of states that occur infinitely often.

2.1. INTRODUCTION 15

We can describe a system in terms of a Büchi automaton Bsys such
that the set of ω-words that are accepted by Bsys correspond to the set
of possible system traces. A Büchi automaton thus describes a language
L(B) ⊆ Σω. LTL is commonly used to describe the properties of a sys-
tem which we want to verify. These properties can then be translated
into equivalent Büchi automata in various ways, by converting the Kripke
model for an LTL specification into a Büchi automaton such that Σ = 2|Prop|.
A survey of techniques is presented by Vardi (2007). The conversion of a
specification φ results in a Büchi automaton Bφ. If we can determine that
L(Bsys) ⊆ L(Bφ), we prove that the system adheres to the formal LTL spec-
ifications.

The approach used for formal verification implicitly models the set of
all valid interpretations for an LTL statement by encoding them into an ω-
automaton. This technique can also be used for logic-based stream reason-
ing where we want to determine the truth value of an LTL formula φ given
a stream. Such a stream corresponds to an ω-word α. By encoding the
LTL formula into a Büchi automaton Bφ, the task is to determine whether
α ∈ L(Bφ). This is however a costly task, as the resulting automaton is in
the worst-case exponential in the size of the formula, although many opti-
misations exist. Checking whether a trace is accepted by such a constructed
automaton (i.e. whether α ∈ L(Bφ)) is then linear in the size of the formula
in the worst-case.

2.1.3 Progression-based path checking

For applications such as run-time verification, we are not interested in find-
ing all models that satisfy a formula. Rather, given an incremental sequence
of observations, the challenge is to determine whether the observations sat-
isfy the formula. This is referred to as path checking. Path checking can be
useful to guard the behaviour of an autonomous system and can be used
to detect e.g. software bugs or nefarious code.

Path checking can be performed using automata-theoretic model-checking
techniques such as the one shown earlier. A different approach to path
checking is based on an incremental checking technique called progression (Bac-
chus and Kabanza, 1996, 1998). A formal presentation of progression is
deferred to Chapter 3. Informally, progression can be used to incremen-
tally check whether the states received thus far make the checked-against
formula true or false. Progression achieves this by rewriting the formula.
When receiving a state, the formula is decomposed into a part for the cur-
rent time-point and a remainder. By applying the current state to its con-
stituent subformula, the entire formula can be made true or false regardless
of any future states, and we may terminate early. Path checking through
progression is useful in for example execution monitoring, where we mon-
itor the behaviour of a system relative to rules that are specified in a logic.
If the evaluation of these rules returns ‘false’, we conclude that the system

16 CHAPTER 2. STREAM REASONING

has violated a predefined rule and must take (immediate) action to recover
to a legal state.

One major advantage of using progression instead of automata is that
it bypasses the preprocessing cost associated with building an automaton
from a formula. The syntactic rewritings performed by progression have a
time complexity linear in the size of the formula, but the formula can grow
exponentially large in the worst case. In many practical cases, however,
the formula growth appears to be managable and we avoid an exponential
blow-up associated with generating an automaton. Therefore, progression
is used for path checking in the context of this thesis.

2.2 Stream reasoning systems

Stream reasoning systems are systems that are designed to perform reason-
ing with streams. Cugola and Margara (2012) collectively refer to stream
reasoning systems as Information Flow Processing (IFP) systems, and pro-
vide an excellent survey of the various approaches. The following is a short
contrast between two classes of stream reasoning systems; the Data Stream
Management (DSM) systems3, and the Complex Event Processing (CEP) sys-
tems. The boundaries between DSM and CEP systems can however be
blurry at times.

2.2.1 DSM systems

Data Stream Management Systems (DSMS) originate from the area of databases
and Database Management Systems (DBMS). DSMS take continuous queries
that produce results for the duration that they are active. An early example
of this is the Stanford Stream Data Manager (STREAM) (Arasu et al., 2004)
which supported the Continuous Query Language (CQL) (Arasu et al.,
2003, 2006). CQL is based on the Structured Query Language (SQL) and ex-
tends it with windowing operations. The use of windowing operations al-
low DSMS to convert streams to relations (S2R) and relations to streams (R2S).
This means that an input stream is never considered in its entirety; instead,
the most recent few values are considered in accordance with a window
rule (e.g. sliding or tumbling windows) and a relation is repeatedly con-
structed from the input stream. DSMS querying languages then allow for
traditional DBMS operations to be applied to these relational structures,
and the resulting relations are converted back into an output stream.

More recently, stream reasoning has become and area of interest within
the Semantic Web (SW), which seeks to make the web machine-readable
(Berners-Lee et al., 2001). Data in the Semantic Web is often represented in
the Resource Description Format (RDF). A popular querying language for

3The term ‘Data Stream Management Systems’ is commonly written as DSMS, but when
contrasted with ‘CEP systems’ it is also written as ‘DSM systems’.

2.2. STREAM REASONING SYSTEMS 17

RDF data is the SPARQL Protocol and RDF Query Language (SPARQL).
Similar to CQL providing a continuous extension of SQL, Barbieri et al.
(2009) present Continuous SPARQL (C-SPARQL) as a continuous exten-
sion of SPARQL by employing window operations for sliding and tum-
bling windows. Semantic Web approaches commonly relate RDF data to
an ontology, and hence add operations for relations to ontologies (R2O) and
ontologies to relations (O2R) in addition to the operations for converting be-
tween streams and relations.

The use of windows for stream reasoning has been studied by Beck et al.
(2014, 2015) as part of a logic-based formalisation of stream reasoning. One
result is the logical window operator�, which describes the semantics of a
large variety of windowing operations that can be applied to streams.

2.2.2 CEP systems

The focus for CEP systems is on events and combinations of events. An
event is sometimes broadly defined as ‘anything that happens or is per-
ceived as happening.’ Events can be used to refer to single time-points, but
also to time intervals. One key difference between CEP systems and DSM
systems is how values are temporally related. Whereas DSM systems make
use of windows, CEP systems tend to make use of temporal orderings. The
detection of a queried temporal ordering of events can itself be seen as a
complex event.

Early CEP techniques include chronicle recognition systems, which were
introduced by Ghallab (1996). Chronicles are represented by (complex)
events and metric temporal constraints on those events. Chronicles can
be detected in a stream by checking for the occurrence of their composite
events relative to the metric temporal constraints.

Gyllstrom et al. (2006) present the SASE language for complex event
pattern matching, which is further extended by Diao et al. (2007) into SASE+.
SASE and SASE+ make use of windows to restrict pattern lengths, but
rather than aggregating data with relational operations from DBMS, they
check for the presence or absence of events in sequences of interest. A com-
monly used example for SASE is that of RFID tags for store products to
keep track of their location events; some sequences of events may indicate
theft or item misplacement.

The Semantic Web also supports CEP querying languages. One exam-
ple is yet another continuous query extension of SPARQL proposed by Ani-
cic et al. (2011). Event Processing SPARQL allows for CEP queries similar
to SASE and SASE+ by checking for the (optional) sequential occurrence of
events.

CEP systems thus do not exclude windows, but focus primarily on the
temporal relations that exist between events. When a complex event pat-
tern is matched, this may be used as a complex event detection yielding a
resulting event stream.

18 CHAPTER 2. STREAM REASONING

2.3 Project DyKnow

The DyKnow project has focused on stream reasoning for several years,
leading to several generations of DyKnow artefacts, some of which were
successfully deployed in larger autonomous UAV systems. Initially Dy-
Know was an acronym for Dynamic Knowledge Processing. This was later ex-
tended to Dynamic Knowledge Processing and Object Management. Presently,
DyKnow is a pseudo-acronym.

We distinguish between three generations of DyKnow, where the latest
generation of DyKnow is the product of the research leading up to this the-
sis. The first generation of DyKnow was first published as part of Heintz
and Doherty (2004) and finalised as part of Heintz (2009). Its implemen-
tation was done using the Common Object Request Broker Architecture
(CORBA), and primarily focused on the manipulation and abstraction of
streaming data in the early years of stream reasoning and stream process-
ing research. In this thesis we will refer to this version of DyKnow as
DyKnow-CORBA if there is a risk of ambiguity.

The second generation of DyKnow came about in part due to the switch
to ROS. The initial conversion was performed as part of the Master’s the-
sis work by Dragisic (2011); Lazarovski (2012); Hongslo (2012) and a sub-
sequent publication by Heintz and Dragisic (2012). In these works, Dy-
Know’s stream processing capabilities were converted to ROS. These capa-
bilities were then extended with initial support for RCC-8 and an ontology-
based method for connecting logical symbols to streams. Finally, de Leng
(2013) sought to unify the above disparate components and further ex-
tended the semantic matching capabilities of DyKnow resulting in the work
presented in Heintz and de Leng (2013). The unification process exposed
some critical shortcomings of DyKnow: the semantics of the stream pro-
cessing languages were difficult to express; the stream processing focused
on streams and initially ignored transformations; and the state stream gen-
eration yielded extremely long queries for simple operations. The decision
was made to instead focus on transformations, from which streams are a
product.

The third generation of DyKnow thus focuses on the management of
streams by managing their producing transformations. Since ROS was
used, it needs to be possible for ROS-based implementations to be inte-
grated into DyKnow with minimal or no effort. Part of these efforts re-
sulted in an extension to ROS to cope with some of its shortcomings. This
latest version of DyKnow is called DyKnow-ROS.

We provide a detailed overview of the third-generation DyKnow stream
reasoning framework (i.e. DyKnow-ROS) in Chapters 3–5.

2.4. SUMMARY 19

2.4 Summary

In this chapter, we defined streams to be incrementally-available sequences
of time-stamped values, and stream reasoning as reasoning over those se-
quences. One can roughly subdivide stream reasoning systems into two
categories. DSM systems often focus on window-based aggregation of
streaming data; CEP systems focus primarily on atomic events and com-
binations of events. Streaming data can be characterised using a set of
properties based on the ‘4 Vs of big data’; volume, velocity, variety, and verac-
ity. For the purposes of robotics applications, value, veracity and velocity
are of particular importance in order to deal with rapidly-changing envi-
ronments observed by sensors. To assist in situation awareness in order to
deal with such an environment, we are especially interested in execution
monitoring applications. One common approach is to present rules of in-
terest in terms of LTL and to generate corresponding automata for model
checking. An alternative approach is to apply syntactic rewriting rules in a
procedure called progression, which is the approach pursued in this thesis.

Chapter 3

Spatio-temporal stream
reasoning

Logic-based stream reasoning commonly makes use of temporal logics to
express statements concerning the truth value of properties over time. Sim-
ilar to temporal statements, many autonomous robotic systems can also
benefit from or require the ability to make statements concerning spatial
properties. This chapter includes and extends previously published ma-
terial (Heintz and de Leng, 2014; de Leng and Heintz, 2016a). It presents
MSTL, which is a spatio-temporal logic that combines the well-known MTL
metric temporal logic with qualitative spatial relations from RCC-8. Sub-
sequently, efficient techniques for evaluating MSTL formulas are presented
and empirically evaluated.

3.1 Introduction

Qualitative spatio-temporal reasoning is concerned with reasoning over
time and space, in particular reasoning about spatial change (Cohn and
Renz, 2008). This thesis presents a logic for spatio-temporal stream reason-
ing, alongside the tools required to incrementally evaluate spatio-temporal
formulas in this logic. Using a formal logic allows us to precisely formulate
conditions and constraints. Furthermore, this chapter presents techniques
that allow us to efficiently determine the truth value of such a formula.

Combining spatial and temporal reasoning can be extremely useful in
situations wherein one deals with for example physical objects, as it allows
for the expression of spatial constraints that must hold over time. Consider
the following example concerning a quad-rotor.

Example 5 (Containment in a virtual box). A quad-rotor is a small unmanned
aerial vehicle that can be used in small spaces, for example indoors. In some cases, a
quad-rotor may have to share space together with humans. Safety conditions could

20

3.1. INTRODUCTION 21

Figure 3.1: Conceptual overview with the spatio-temporal stream reason-
ing highlighted.

include restricting such a quad-rotor to a specific area of space, like a virtual box.
An example statement combining spatial and temporal constraints is as follows:
“It is always the case that if the UAV leaves the virtual box, it should be inside the
virtual box within five seconds.”

The constraints above are useful to detect situations where safety is
compromised. A different example concerns itself with the detection of
suspicious activity in order to prevent unsafe situations from occurring in
the first place.

Example 6 (Perimeter monitoring). Consider a restricted area close to a public
road. The area’s perimeter is under surveillance by autonomous UAVs. A high-
level task planner is responsible for detecting and tracking intrusions. An example
rule could be expressed as: “If a moving object outside the perimeter stops moving
for more than 60 seconds, dispatch a UAV to that object.”

In the above example, a type of spatio-temporal behaviour can be de-
tected and responded to. Note that neither example deals with exact spatial
coordinates. Rather, spatial entities are referenced by their spatial relations.
This thesis therefore focuses on qualitative spatial relations when dealing
with the spatial properties of objects.

The conceptual overview from before, with the relevant spatio-temporal
stream reasoning components highlighted, is shown in Figure 3.1. In par-
ticular, this chapter focuses on the evaluation of spatio-temporal logic for-
mulas.

3.1.1 Spatial reasoning with RCC-8

The region connection calculus RCC was presented by Randell et al. (1992)
as a calculus for topological reasoning over abstract regions based on their

22 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Definition Description
C(x, y) ≡de f x ∩ y 6= ∅ Connected
DC(x, y) ≡de f ¬C(x, y) Disconnected
P(x, y) ≡de f ∀z[C(z, x)→ C(z, y)] Part of
PP(x, y) ≡de f P(x, y) ∧ ¬P(y, x) Proper part
EQ(x, y) ≡de f P(x, y) ∧ P(y, x) Equals
O(x, y) ≡de f ∃z[P(z, x) ∧ P(z, y)] Overlapping
PO(x, y) ≡de f O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) Partially overlapping
DR(x, y) ≡de f ¬O(x, y) Discrete from
TPP(x, y) ≡de f PP(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] Tangential proper part
EC(x, y) ≡de f C(x, y) ∧ ¬O(x, y) Externally connected
NTPP(x, y) ≡de f PP(x, y) Non-tangential proper part
∧¬∃z[EC(z, x) ∧ EC(z, y)]

P−1(x, y) ≡de f P(y, x) Inverse part of
PP−1(x, y) ≡de f PP(y, x) Inverse proper part
TPP−1(x, y) ≡de f TPP(y, x) Inverse tangential

proper part
NTPP−1(x, y) ≡de f NTPP(y, x) Inverse non-tangential

proper part

Table 3.1: Definitions for the 15 RCC relations.

spatial relations. These regions are assumed to be composed of non-empty
regions of topological space that can be characterised in terms of sets of
points. The calculus defines and builds up spatial relations between re-
gions from a primitive ‘connected’ relation C(x, y), which has the intended
meaning that (non-empty) regions x and y share at least one point. Ran-
dell et al. (1992) recursively define a set of 15 RCC relations (including C) as
shown in Table 3.1.4

RCC-8 is a subset of RCC that is composed of eight jointly exhaustive
and pairwise disjoint relations that allow us to describe the topological spa-
tial relations between regions. Using composition-table based reasoning in
RCC-8 (Cui et al., 1993), new spatial relations can be inferred from incom-
plete spatial knowledge. Figure 3.2 shows the eight qualitative relations
that are considered by RCC-8 as well as their transitions. The transitions
are interesting in situations where observations of a pair of regions yield
non-adjacent spatial relations, because those intermediate and unobserved
relations can then be inferred.

Example 7 (Busy student). Suppose that we have a spatial configuration in
which we consider three regions student, office, and canteen. A robot observes
that region student is strictly within region office, i.e. NTTP(student, office).
Further, the robot knows that region canteen is disconnected from region office,
i.e. DC(canteen, office). When asked whether the student is in the canteen, the

4Sometimes the relation EQ(x, y) is written with infix notation instead, i.e. x = y.

3.1. INTRODUCTION 23

Figure 3.2: The eight qualitative spatial relations considered by RCC-8 and
their transitions as illustrated by regions x and y.

robot cannot rely on direct observations. In fact, the robot might even consider it
likely for a student to be in a canteen. By using the composition table for RCC-8,
the robot can correctly deduce the unobserved spatial relation DC(student, canteen).

In the above example, the observed spatial relations are used to infer
unobserved facts about the world. This can be especially useful when there
is a need for information that is not easily observable, or even unobserv-
able.

3.1.2 Temporal reasoning with MTL

Recall that LTL formulas lacked the expressivity to describe quantitative
temporal constraints such as ‘within 10 seconds’. Metric Temporal Logic
(MTL) was introduced by Koymans (1990) and solves this problem by adding
temporal intervals to the U operator, yielding UI for some temporal interval
I.

Definition 7 (MTL syntax). The syntax for MTL is as follows for atomic proposi-
tions p ∈ Prop, temporal interval I ⊆ (0, ∞), and well-formed formulas (wffs) φ
and ψ:

p | ¬φ | φ ∨ ψ | φ UI ψ (3.1)

As with LTL, additional Boolean operators are commonly used for MTL.
These are the same as those for LTL, with the exception of the modal opera-
tors 2 and 3 which become 2I and 3I . In MTL, 2 and 3 become short-hand
for (unconstrained) 2[0,∞] and 3[0,∞] instead.

Example 8 (MTL statement). Recall the statement from a previous synergy ex-
ample: “If I am in my room, it is always the case that if the light condition of my
surroundings is poor, then the surroundings will be well-lit within 10 seconds.”
In MTL, this statement can be written as

inRoom→ (2(poorLight→ 3[0,10]goodLight)), (3.2)

24 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

where propositions inRoom, poorLight and goodLight stand for “I am in my
room”, “the light condition of my surroundings is poor”, and “the surroundings
are well-lit” respectively.

MTL thus makes it possible to be more precise about temporal intervals
by making them explicit in the temporal operators. The semantics of MTL
is given below.

Definition 8 (MTL semantics). The MTL statement that a wff holds in M =
〈T,<, V〉 at time-point t ∈ T is defined recursively:

M, t |= p iff p ∈ V(t) for p ∈ Prop (3.3)
M, t |= ¬φ iffM, t 6|= φ (3.4)

M, t |= φ ∨ ψ iffM, t |= φ orM, t |= ψ (3.5)

M, t |= φ U[t1,t2]
ψ iff ∃t′ ∈ [t + t1, t + t2] :M, t′ |= ψ (3.6)

and ∀t′′ ∈ [t, t′) :M, t′′ |= φ

One problem of MTL is that it allows for punctuality constraints. A punc-
tuality constraint is one wherein the interval is punctual, i.e. a specific time-
point rather than a range. Alur et al. (1996) prove that MTL is undecidable
and introduce a decidable fragment of MTL called Metric Interval Temporal
Logic (MITL) by excluding punctuality constraints. A survey of decidable
MTL-sublogics covering SMTL, BMTL, CFMTL, MITL, and MTL[0,∞] is provided
by Ouaknine and Worrell (2008).

3.1.3 Approaches towards spatio-temporal reasoning

Several qualitative spatio-temporal reasoning formalisms have been cre-
ated by combining a spatial formalism with a temporal one. Examples are
STCC (Gerevini and Nebel, 2002) and ARCC-8 (Bennett et al., 2002) which
both combine RCC-8 with Allen’s Interval Algebra (Allen, 1983).

The STi family5 (Wolter and Zakharyaschev, 2000) of spatio-temporal
logics represent a language for reasoning over spatio-temporal representa-
tions and offers such a temporalisation of RCC-8 using temporal operators
similar to MTL. STi member language ST0 makes use of the temporal op-
erators ‘it will always be the case’ 2, ‘at some point in the future’ 3, and
‘at the next time-point’ ©. Its extension ST1 introduces spatio-temporal
representations for spatial relations between two time-points through the
‘next’ operator, but does not attempt to provide reasoning techniques that
handle such instantaneous observations. One problem is for example that
ST1 can refer to future states, which clearly causes difficulties when ob-
servations are assumed to be incremental over time. Furthermore, the STi

5For consistency reasons this thesis uses the same typesetting for all logics; the original
literature—as well as the papers this chapter is based on—use a calligraphic version ST i
instead.

3.2. METRIC SPATIO-TEMPORAL LOGIC 25

family is a pure temporalisation of RCC-8 in the sense that it does not allow
for expressing other (non-spatial) properties. This means that the domain
of discourse exclusively treats its objects as spatial entities in relation to
each other.

A survey of other approaches that combine spatial and temporal rea-
soning techniques is provided by Kontchakov et al. (2007).

3.2 Metric Spatio-Temporal Logic

To make statements about the spatial and temporal nature of objects, we
introduce a hybrid logic called Metric Spatio-Temporal Logic (MSTL), which
combines elements from MTL and RCC-8. MTL provides the ability to reason
over objects in time, but does not include a spatial formalism. We extend
these languages by considering temporal objects that are spatial in nature.
MSTL is thus similar to ST1, which temporalises RCC-8 but restricts its lan-
guage to spatial relations. Because MSTL is in part based on MTL, statements
in MSTL can contain both spatial relations and predicates.

3.2.1 Syntax

Spatial relations are of the form R(r1, r2) where R is any of{
EC, EQ, DC, PO, NTTP, TPP, NTTP−1, TPP−1

}
(3.7)

and r1, r2 are spatial objects, also referred to as regions. We call this set R8
for brevity to indicate that its elements correspond to the RCC-8 relations
‘externally connected’, ‘equals’, ‘disconnected’, ‘non-tangential proper part’,
‘tangential proper part’, ‘inverse non-tangential proper part’ and ‘inverse
tangential proper part’ respectively. Given an n-ary predicate P, binary
spatial relation R8, variable or constant terms τ1, . . . , τn, and integers i, j ∈
Z the following statements are well-formed formulas (wffs) in MSTL:

R8(©iτ1,©jτ2) | P(τ1, . . . , τn) | ©i τ1 =©jτ2 (3.8)

We will write τ for ©0τ, ©τ for ©1τ, and ©−τ for ©−1τ as syntactic
sugar. By recursion, for wffs φ and ψ and variable x the following state-
ments are also wffs in MSTL:

¬φ | φ ∨ ψ | φ ∧ ψ | φ→ ψ | ∀x[φ] | ∃x[φ] (3.9)

Finally, temporal notations are also defined by recursion for wff φ, natural
numbers n1, n2 ∈N, and integers i ∈ Z:

©iφ | 2[n1,n2]
φ | 2φ | 3[n1,n2]

φ | 3φ | φ U[n1,n2]
ψ (3.10)

Note that we apply the same syntactic sugar as for© over terms.

26 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

The syntax allows us to make complex spatio-temporal statements. Take
for example the following statement, where informally 2 means ‘it will al-
ways be the case’, 3 means ‘at some point in the future’, and© means ‘at
the next time-point’. The spatial relation PO is contained in R8 and stands
for ‘partially overlapping’.

∀c1[∀c2[c1 6= c2 ∧ Car(c1) ∧ Car(c2)→ (3.11)
(2(PO(©c1, c2) ∧ Speeding(c1)→ 3PO(c1, c2)))]]

This wff has the intended meaning ‘it is always the case that if a car is
speeding and tails another car, they will eventually collide’.

3.2.2 Semantics

Because we are interested in statements over space and time, we make use
of spatio-temporal models for MSTL. It borrows the notion of a spatial assign-
ment function from the topological temporal model (tt-model) from STi.

Definition 9 (Spatio-temporal model). A spatio-temporal model is a tuple
of the form M = 〈T,<, U,D, I, α〉, where T represents a set of time-points, <
represents an ordering over T, U represents the non-empty universe of the space
as a set of points, and D = 〈P ,R〉 represents the domain consisting of predicates
P and spatial objects R. An interpretation It ∈ I maps predicates and constant
terms to P and R respectively for every time-point in T. For constant terms this
mapping will be the same for all t, but for predicates this is not necessarily the
case. A spatial assignment function α associates at every time-point in T every
spatial object label in R to a subset of U. It is extended to interpret ‘next’ as
α(©ir, t) = α(©i−jr, t + j) for spatial object label r ∈ R and integers i, j ∈ Z.

From this definition it is clear that we are only considering objects that
have some spatial properties associated with them, expressed in the form of
spatial relations. Spatial objects therefore are also commonly called regions
when we only focus on temporal and spatial properties.

Definition 10 (Truth). The MSTL statement that a spatio-temporal formula φ
holds in M = 〈T,<, U,D, I, α〉 at time-point t ∈ T is defined recursively for

3.3. SPATIO-TEMPORAL INFERENCE WITH RCC-8 27

integers i, j ∈ Z.

M, t |= P(τ1, . . . , τn) iff
〈

It(τ1), . . . , It(τn)
〉
∈ It(P) (3.12)

M, t |= ∀x[φ] iff ∀r ∈ R :M, t |= φ[x/r] (3.13)
M, t |= ∃x[φ] iff ∃r ∈ R :M, t |= φ[x/r] (3.14)
M, t |= ¬φ iffM, t 6|= φ (3.15)

M, t |= φ ∨ ψ iffM, t |= φ orM, t |= ψ (3.16)

M, t |= φ U[t1,t2]
ψ iff ∃t′ ∈ [t + t1, t + t2] :M, t′ |= ψ (3.17)

and ∀t′′ ∈ [t, t′) :M, t′′ |= φ

M, t |=©iφ iffM, t + i |= φ (3.18)

M, t |= C(©ir1,©jr2) iff α(r1, t + i) ∩ α(r2, t + j) 6= ∅ (3.19)

From the RCC ‘connected’ spatial relation C, the usual semantics of all RCC-8
relations can be recursively defined, but here they are left out for the sake of brevity.

Allowing for the ‘next’ operator to be invoked over region variables is
a powerful extension that makes it possible to refer to a particular region
at the next time-point, or by recursive application any past or future time-
point.

3.3 Spatio-temporal inference with RCC-8

RCC-8 allows for both representation of observed spatial relations as well
as the inference of unobserved spatial relations. However, these obser-
vations are usually assumed to be restricted to a single time-point rather
than across different time-points. To represent spatial relations across time-
points, we can add a temporal element. The addition of a ‘next’ operator
© as initially proposed by ST1 can lead to situations wherein regions at
different time-points are considered. In what follows, we explore the con-
sequences to spatio-temporal inference when the ‘next’ operator is used
to describe relations across time-points, starting with the representation of
these relations.

3.3.1 Temporal constraint networks

While the ‘next’ operator allows for powerful representations, it compli-
cates evaluation of those statements when we consider observations of the
world to occur within rather than across time-points. Spatial relations for
regions can be partially observed at time-point t and at time-point t + 1 in-
dependently, but no observations can be made with regards to the spatial
relations between regions at time-point t and regions at time-point t+ 1. To
better illustrate how these concepts relate, we introduce the spatial relation
matrix as a representation of constraint networks.

28 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Definition 11 (Spatial relation matrix). Given a spatio-temporal model M, a
spatial relation matrix is an n × n matrix Mt for time-point t ∈ T where n
denotes the total number of region variables |R|. For every matrix element Mt

i,j
and region variables ri, rj ∈ R we have Mt

i,j = (riRrj) such that R ⊆ R8 and
R 6= ∅. The semantics of Mt are then as follows.

Mt
i,j = (riRrj) iffM, t |=

∨
Rk∈R

Rk(ri, rj) (3.20)

The spatial relation matrix allows us to intuitively represent spatial facts
about regions and corresponds to a complete RCC-8 network. Such matri-
ces are also expected as input to qualitative reasoners such as GQR. The
main diagonal always consists of the singleton {EQ}. Further, the matrix
is semi-symmetric; symmetry holds for all relations except for NTTP and
TPP, which have inverses NTTP−1 and TPP−1 respectively. Existing gen-
eral solvers for qualitative CSPs such as GQR can be used to determine the
algebraic closure of spatial relation matrices, i.e. given spatial relation ma-
trix Mt, the algebraic closure AC(Mt) yields a spatial relation matrix Nt

such that for every corresponding set of spatial relations Nt
i,j ⊆ Mt

i,j ⊆ R8.
A small example of a spatial relation matrix for regions r1, r2, r3 at time-
point t with partial knowledge is shown below.

Mt =

 {EQ}
{

NTTP−1
}
{PO, EC}

{NTTP} {EQ} {DC}
{PO, EC} {DC} {EQ}

 (3.21)

Region r2 is inside of region r1 but disconnected from region r3, and region
r1 is partially overlapping or externally connected with region r3.

A spatial relation matrix can be extended to describe relations between
multiple time-points. This is a useful property because it allows us to de-
scribe relations between regions at different time-points that are not neces-
sarily consecutive.

Definition 12 (Intertemporal spatial relation matrix). An intertemporal spa-
tial relation matrix Mt1,t2 is a spatial relation matrix describing the spatial rela-
tions between regions ri, rj ∈ R such that we relate ri at time-point t1 to rj at
time-point t2, i.e. relating α(ri, t1) to α(rj, t2).

A spatial relation matrix Mt from Definition 11 is then equivalent to an
intertemporal spatial relation matrix Mt,t. Intertemporal spatial relations
can thus be represented by an intertemporal spatial relation matrix. For the
‘next’ operator, this would for example be Mt,t+1. However, we assume
that these relations are unobservable and must somehow be inferred from
our observations at time-points t and t + 1, represented by Mt and Mt+1.

3.3. SPATIO-TEMPORAL INFERENCE WITH RCC-8 29

By combining the four different combinations for intertemporal spatial
relation matrices over two time-points t1 and t2, we can concisely describe
in one matrix the relations between regions at single time-points as well
as the relations between those regions at different time-points. This cor-
responds to an RCC-8 network in which every region is contained twice,
i.e. once for every time-point.

Definition 13 (Extended spatial relation matrix). An extended spatial re-
lation matrix Mt1∪t2 for t1 < t2 combines four intertemporal spatial relation
matrices as follows:

Mt1∪t2 =

[
Mt1,t1 Mt1,t2

Mt2,t1 Mt2,t2

]
(3.22)

In general, spatial relation matrices can be used to represent uncertainty
for spatial relations between regions by using non-singleton sets. This is
important because often we can not deduce that a single relation must
hold. We can use extended spatial relation matrices to talk about the spa-
tial relations both within individual time-points and between time-points.
This makes them a suitable representation tool for intertemporal RCC-8 net-
works when considering the problem of deducing unobservable intertem-
poral relations.

3.3.2 Intratemporal inference

Intratemporal inference with RCC-8 assumes that all spatial relations are
observed within the same time-point, i.e. Mt,t for some time-point t. In this
case, Mt,t represents a constraint network for a single time-point, for which
it may be possible to reduce the uncertainty of spatial relations between
regions based on the observed spatial relations between other regions. It
is possible to apply composition table based reasoning for RCC-8 to this
effect. A composition table presumes regions i, j, and k such that the spatial
relations for (i, j) and (j, k) are knowns, and presents the possible spatial
relations that may exist between regions (i, k).

Gantner et al. (2008) present the Generic Qualitative Solver (GQR) which
can be used to perform qualitative reasoning on a number of calculi, includ-
ing RCC-8. They make use of the path consistency algorithm shown in Al-
gorithm 1, based on the path consistency algorithm by Mackworth (1977).
The algorithm takes a constraint network and produces a refined constraint
network in O(n3) time and O(n2) space. Path consistency continuously
updates spatial relation Cik by computing Cik ∩ (Cij ◦ Cjk), utilising a third
variable j. These updates can be performed based on a composition table.

3.3.3 Intertemporal inference

Sometimes we want to talk about spatial relations between regions at dif-
ferent time-points. By following the example of ST1, we can extend our

30 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Algorithm 1: Path consistency (Gantner et al., 2008)
1 function PATH-CONSISTENCY((V, C)):
2 Q← {(i, j) | 1 ≤ i < j ≤ n}
3 while Q is not empty do
4 select and delete an (i, j) from Q
5 for k← 2 to n, k 6= i ∧ k 6= j do
6 t← Cik ∩ (Cij ◦ Cjk)

7 if t 6= Cik then
8 Cik ← t
9 Cki ← t^

10 Q← Q ∪ {(i, j)}
11 end
12 t← Ckj ∩ (Cki ◦ Cij)

13 if t 6= Ckj then
14 Ckj ← t
15 Cjk ← t^

16 Q← Q ∪ {(k, j)}
17 end
18 end
19 end
20 return (V, C)

definition of region symbols accordingly. If region is a region symbol, then
©region is also a region symbol, such that α(©region, t) = α(region, t + 1).
This allows us to refer to regions at different time-points using the same
region symbol region. However, this also complicates the semantics of the
mapping α. From its definition, it is clear that we are referring to the same
universe of points, but it is not clear whether α(x, t) = α(x, t + 1) for all
time-point t, or whether it is possible that α(x, t) 6= α(x, t + 1) for some
time-point t. This leads to two opposing interpretations of space.

Rigid regions In the case of rigid regions, the points that are associated
with a region symbol are the same across all time-points, i.e.

∀t ∈ T[x ∈ R → α(x, t) = α(x, t + 1)] (3.23)

As an example, consider a set of points that make up the region of a cookie,
which we refer to using the region symbol cookie. At time-point t1 we then
assume that α(cookie, t1) = Rcookie such that Rcookie ⊆ U. If we at the next
time-point t2 break the cookie into two parts, indicated by regions Rle f t and
Rright, it is clearly the case that α(©cookie, t1) = Rle f t ∪ Rright for a non-
crumbling cookie. Thus the relation between the cookie and its individual
components it preserved across time, which is a nice property.

The trade-off is however that the region symbols are always mapped to
the same set of points in U; there is no difference between a region symbol

3.3. SPATIO-TEMPORAL INFERENCE WITH RCC-8 31

and a region. Any intertemporal relations between the same region will
therefore always correspond to EQ(x,©x). This makes sense if we want to
check whether the region referred to by region symbol x has itself changed
point-wise, but it is less useful if we want to know whether a cookie’s
relation to space has somehow changed. Consider a second region Rtable
with symbol table. Suppose that we first observe that the cookie is within
the area of the table, i.e. NTPP(cookie, table) at time-point t1, and then ob-
serve at time-point t2 that DC(cookie, table). This means that at time-point
t1, all points in Rcookie are also part of Rtable minus the tangential points;
Rcookie ⊂ Rtable. At time-point t2, we have Rcookie ∩ Rtable = ∅. Since the
rigid region assumption states that α(x, t) = α(x, t + 1), we now have a
problem, as cookie cannot both be separate from and a subset of table. The
object space assumption is therefore unsound for intertemporal relations.

Rigid space A different way of dealing with intertemporal relations is
by using the rigid space assumption, where we do not require all region
symbols to refer to the same region at all time-points. This means that the
region symbol cookie is α-mapped to different sets of spatial points at differ-
ent time-points. Suppose α(cookie, t) = Rcookie and α(©cookie, t) = R′cookie,
then it is possible that Rcookie 6= R′cookie. One could see this distinction as the
cookie occupying a different area of space, and that both the original and
new areas of occupied space have remained the same in terms of points.
However, without any context that means we cannot say anything about
intertemporal relations, although the inferencing power for intratemporal
relations remain unchanged.

The rigid space assumption therefore assumes space itself is rigid. We
can now use space itself as a frame of reference for intertemporal spatial
relations. Recall the cookie and the table, where NTPP(cookie, table) and
DC(©cookie,©table) This is no longer a problem; it simply means that

α(cookie, t1) 6= α(cookie, t2) ∨ α(table, t1) 6= α(table, t2), (3.24)

i.e. either the cookie moved, or the table moved, or both moved. In this
thesis we make use of the rigid space assumption when referring to in-
tertemporal relations.

Reasoning alone thus does not allow us to say anything about intertem-
poral relations, represented by Mt1,t2 and Mt2,t1 in extended spatial relation
matrices. These relations cannot be observed, nor can they be inferred from
individual time-points. Concretely, observations are limited to Mt1,t1 and
Mt2,t2 . This may seem counter-intuitive, but this is because humans often
assume a frame of reference when observing spatial changes over time. One
way around this problem is therefore to make assumptions about some or
all intertemporal relations represented by Mt1,t2 and Mt2,t1 in order to es-
tablish such a frame of reference. Effectively this corresponds to ‘pegging’

32 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

only these landmark regions to the space they occupy, allowing outside
space to warp relative to the landmarks and fixing the frame of reference.
The set of landmarks is indicated by LM ⊆ R. For all landmarks x ∈ LM,
the α-mapping is fixed such that α(x, t) = α(x, t + 1) for all t ∈ T. By us-
ing a consistent set of landmarks, it is possible to infer intertemporal rela-
tions based on the spatial relations between non-landmark and landmark
regions. Additionally, since the landmark regions are rigid, the spatial re-
lations between landmark regions do not change.

Definition 14 (Landmark). A landmark given a set of region variables R over
any two time-points t, t + 1 is a region variable r ∈ R that is rigid between t and
t + 1, i.e. EQ(r,©r). The set of landmarks is indicated by LM ⊆ R such that
r ∈ LM implies that landmark r is rigid.

Example real-world landmark candidates are e.g. buildings, lakes, mon-
uments, trees, and roads. These physical entities are unlikely to change
during the run-time of a system, and therefore provide a reasonable frame
of reference. An immediate effect of landmarks being rigid is that their re-
lations to other landmark regions remain unchanged. Effectively, the set
of landmarks LM provides a possible frame of reference with respect to
which relations may change over time. Since this affects the truth seman-
tics of statements in MSTL, we introduce a landmark extension to the spatio-
temporal model to capture this.

Definition 15 (Landmark-based spatio-temporal model). A landmark-based
spatio-temporal model is a spatio-temporal model

MLM = 〈T,<, U,D, I, αLM〉 (3.25)

and LM ⊆ R represents the landmark set. LM then restricts α such that
for all time-points t ∈ T and all landmark regions r ∈ LM it is the case that
α(r, t) = α(r, t + 1).

Landmarks may introduce inconsistencies if we make observations that
conflict with the landmark-imposed restriction of α. To illustrate how this
might happen, consider an example where at time-point t we make the
observation PO(r1, r2), and at time-point t + 1 we make the observation
DC(r1, r2). If we only consider the individual time-points, there is no prob-
lem. The following extended spatial relation matrix illustrates our igno-
rance of the intertemporal spatial relations Mt1,t2 and Mt2,t1 .

Mt1∪t2 =


{EQ} {PO} R8 R8
{PO} {EQ} R8 R8
R8 R8 {EQ} {DC}
R8 R8 {DC} {EQ}

 (3.26)

However, if we use landmarks, the choice of LM results in an assumption
about some intertemporal relations. Choosing LM = {r1, r2} is inconsis-
tent, because it implies that regions r1 and r2 need to be partially overlap-
ping and disconnected at the same time, which is a contradiction. Instead

3.4. STREAM REASONING WITH MSTL 33

picking LM = {r1} is consistent, and one could imagine region r2 ‘mov-
ing away from’ region r1. Naturally, the converse holds as well if we pick
region r2 as our frame of reference.

We can show that consistency is guaranteed if only one landmark is
chosen, and the above example shows that this does not always hold for
the case of |LM| ≥ 2. Picking a single landmark corresponds to the case
of adding a single connection between two disconnected RCC-8 networks
for different time-points. The issue of choosing more than one landmark
while retaining consistency is a difficult problem, and is closely related to
the Amalgamation Property (Li et al., 2008), as well as the Patchwork Prop-
erty (Lutz and Milic̆ić, 2007; Huang, 2012).

To further illustrate the impact of the choice of LM, consider again the
scenario above and suppose we wish to evaluate the formula 2EQ(r1,©r1)
at time-point t. Choosing LM = {r1} means this formula will evaluate to
True, i.e.

M{r1}, t |= 2EQ(r1,©r1). (3.27)

Choosing LM = {r2}means this formula will evaluate to False, i.e.

M{r2}, t 6|= 2EQ(r1,©r1). (3.28)

Choosing any other consistent LM we can only conclude

MLM, t |= 2EQ(r1,©r1) ∨ ¬(2EQ(r1,©r1)); (3.29)

we cannot say for certain which one is true. This is specifically caused by
the choice of landmark in combination with the observations at the two
time-points. The following two statements then hold for the same two ob-
servations described earlier:

M{r1}, t |= 2EQ(r1,©r1) ∧ ¬2EQ(r2,©r2) (3.30)

M{r2}, t |= 2EQ(r2,©r2) ∧ ¬2EQ(r1,©r1) (3.31)

This clearly shows how landmark choice shapes the frame of reference
within which MSTL statements may hold.

3.4 Stream reasoning with MSTL

In stream reasoning, information is assumed to become incrementally avail-
able. Recall that progression is a technique for evaluating temporal logic
formulas where we try to determine the truth value of the formula based
on the information received thus far. This makes it possible to sometimes
determine the truth value for an MSTL formula without having to wait for
the entire stream to arrive. The result of progressing a formula through the
first state in a sequence is a new formula that holds in the remainder of the
state sequence iff the original formula holds in the complete state sequence.
If progression returns true (false), the entire formula must be true (false),
regardless of future states.

34 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Figure 3.3: Conceptual representation of progression.

3.4.1 Progression of MTL

In the area of model checking, given a Kripke model M and a wff φ, the
task is to determine all states s such thatM, s |= φ. Progression instead is
tasked with the problem of incrementally determining whetherM, s |= φ
by iterating over the temporal states inM. Progression thus nicely fits the
context of stream reasoning wherein streams become available incremen-
tally. This is shown conceptually in Figure 3.3, where states si are processed
by the progression algorithm in sequence.

The progression algorithm originally appeared in Bacchus and Kabanza
(1996, 1998) for MTL and is reproduced as Algorithm 2. It takes a wff φ, state
si, and a time duration ∆ until the next successor state si+1. It then produces
a rewritten formula φ+ that incorporates the state information contained
within si. Note that the algorithm does not assume access toM; instead, in-
dividual states are considered. If PROGRESS(φ, si, ∆,D) yields φ+, then the
next call will be to PROGRESS(φ+, si+1, ∆,D) etc. If PROGRESS(φ, si, ∆,D)
returns True, then we can concludeM, si |= φ; andM, si 6|= φ otherwise.
Bacchus and Kabanza (1998) show the correctness of PROGRESS by proving
that

M, si |= φ iffM, si+1 |= PROGRESS(φ, si, ∆,D) (3.32)

for any state si, where ∆ = T (si+1)− T (si) denotes the time between the
states si and si+1. The complexity of progression is linear in the size of the
formula, but the resulting formula may double in size. This may result in
exponentially long formulas in the worst case, but by introducing intervals
for temporal operators, the worst-case length can be limited.

3.4.2 Spatial state streams

Progression works by taking state information and rewriting the formula
based on the received state. Formulas are then evaluated based on a se-
quence of states, each of which syntactically rewrites the formula until a
truth value can be determined. Such sequences of states are called state
streams. State streams are generated by an underlying system, often based
on a combination of sensor readings and conversions in robotic applica-
tions. From the perspective of the logic, the state stream is simply a (par-
tially observed) Kripke model over which formulas are evaluated.

To evaluate a logic formula through progression, a state must at least
contain the truth value of the predicates or relations that occur in said for-

3.4. STREAM REASONING WITH MSTL 35

Algorithm 2: Progression for MTL (Bacchus and Kabanza, 1996)
1 function PROGRESS(φ, si, ∆, D):
2 if φ = φ1 ∧ φ2 then
3 return PROGRESS(φ1, si, ∆,D) ∧ PROGRESS(φ2, si, ∆,D)
4 else if φ = ¬φ1 then
5 return ¬PROGRESS(φ1, si, ∆,D)
6 else if φ = φ1 UI φ2 then
7 if I < 0 then
8 return False
9 else if 0 ∈ I then

10 return
PROGRESS(φ2, si, ∆,D) ∨ (PROGRESS(φ1, si, ∆,D) ∧ φ1 UI−∆ φ2)

11 else
12 return PROGRESS(φ1, si, ∆,D) ∧ φ1 UI−∆ φ2
13 end
14 else if φ = ∀x[φ1] then
15 return

∧
c∈D PROGRESS(φ1(x/c), si, ∆,D)

16 else if φ = ∃x[φ1] then
17 return

∨
c∈D PROGRESS(φ1(x/c), si, ∆,D)

18 else if φ =©φ1 then
19 return φ1
20 else
21 if si |= φ then
22 return True
23 else
24 return False
25 end
26 end

mula. Such a state stream generation method is discussed in more detail in
Chapter 4. Assuming there exists a method for generating streams of states
and a qualitative spatial reasoner (QSR), augmenting these state streams
with spatial information can be done in a number of ways. A straight-
forward and naive method would be to collect the complete set of spatial
information for a given time-point, run it through the QSR to infer more in-
formation on the spatial relations, and then augment the state stream with
these resulting spatial relations. A slightly better way would be to only
augment the state stream with those spatial relations that are relevant to the
stream reasoning engine. To efficiently infer implicit spatial relations we
use the facts that relations between (rigid) variables that have not changed
are the same and the algebraic closure for the same set of variables must
be computed many times (every time some of the variables have changed).
As an example, the spatial relations between static buildings do not change,
so it is not necessary to compute their spatial relations at every time-point
even if they are not explicitly given. If the set of variables is partitioned

36 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Figure 3.4: The ‘busy student’ scenario where regions in Vs are shaded,
regions in Vd are transparent, and inferred relations are represented by
dashed arrows.

into those that are static and those that are dynamic, it is enough to com-
pute the algebraic closure of the constraints involving only static variables
once and then add the constraints involving at least one changing variable
when they have changed and compute the new algebraic closure. The ef-
fect is that there is an initial cost of computing the static part while the cost
for each update is reduced (Heintz and de Leng, 2014).

Formally, let Vt be the set of all variables at time t and Ct be the set of all
(binary) constraints on these variables at time t. The set Vt is partitioned
into Vt

s and Vt
d , where Vt

s is the set of static variables and Vt
d is the set of

dynamic variables at time t. Ct is partitioned into Ct
s and Ct

d, where Ct
s

is the set of constraints where both variables belong to the set Vt
s and Ct

d
is the set of constraints where at least one variable belong to the set Vt

d .
Further, let ACt

s denote the algebraic closure of the variables Vt
s and the

constraints Ct
s and ACt denote the algebraic closure of the variables Vt and

the constraints Ct. Then, ACt can be computed from ACt
s by adding the

constraints Ct
d and computing the algebraic closure.

Example 9 (Busy student; continued.). Recall that region student is strictly
within region office, i.e. NTTP(student, office), and region canteen is discon-
nected from region office, i.e. DC(canteen, office). We can add another spatial
relation; the office contains a desk NTPP(desk, office). If the office, canteen and
desk are considered to be static, i.e. Vt

s = {office; canteen; desk}, we can apply
preprocessing to infer DC(chair, canteen). In contrast, since Vt

d = {student},
we must reconsider the spatial relations involving the student at every time-point.
Figure 3.4 shows how relations involving the student can change over time, while
the relations between static regions remain the same.

Figure 3.5 shows a graphical representation of evaluating the spatio-
temporal formula 2(PO(a, b) → 3DC(a, b)) given the static region vari-

3.4. STREAM REASONING WITH MSTL 37

Figure 3.5: A qualitative spatio-temporal stream reasoning example.

ables a, c, d and the static relations EC(a, c) and EC(a, d). The spatial in-
formation in the first state is the spatial relation NTPP(c, b) which after
spatial reasoning gives that PO(a, b) can be either True or False, meaning
its truth value is Unknown. In the next state the spatial relation TPP−1(d, b)
is given from which the conclusion that DC(a, b) is Unknown can be drawn.
Finally, in the third state where NTPP−1(d, b) is given spatial reasoning
concludes that DC(a, b) is True. This example shows both the benefit of
spatial reasoning—as no explicit information about the relation between a
and b is given—and the use of three-valued progression over disjunctive
information.

3.4.3 Rewriting rules for ‘next’

In order for progression to be applicable to MSTL, some changes are needed
to deal with the spatial relations. In particular, the application of temporal
operators to spatial objects needs to be handled before progression can op-
erate on the propositions in a wff.

By combining temporal with spatial reasoning, we effectively need both
temporal and spatial evaluation methods. Progression is used to handle
temporal aspects across time-points, and has previously been used to eval-
uate MTL formulas (Doherty et al., 2009). For every step in the progression,
spatial reasoning is performed within that step by using for example GQR.
This however does not include spatial reasoning between different time-
points. Therefore, progression needs to be extended to handle intertempo-
ral relations that are the result of the ‘next’ operator in MSTL. This gives rise

38 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

to additional rewriting rules based on occurrences of the ‘next’ operator.
Progressing the ‘next’ operator when it occurs in front of wffs in MSTL

corresponds to rewriting that formula by removing the operator, i.e. during
progression ©φ is rewritten to φ for wff φ. The following proofs show
equivalences for occurrence of ‘next’ excluding intertemporal relations, and
make use of the semantics presented in Definition 10.

Theorem 1 (Next and negation).

|= ∀x[∀y[¬© R(x, y)↔©¬R(x, y)]] (3.33)

Proof. Decomposing bi-implication into cases:

(⇒) AssumeM, t |= ¬© R(x, y) holds for some arbitraryM and t. From
the semantics of negation this means M, t 6|=©R(x, y). According to the
semantics of©, this is equivalent toM, t + 1 6|= R(x, y), thus
M, t + 1 |= ¬R(x, y). Reintroducing© then yieldsM, t |=©¬R(x, y).

(⇐) Analogous to the above in reverse order.

Theorem 2 (Next and always).

|= ∀x[∀y[2[t1,t2]
© R(x, y)↔ 2[suc(t1),suc(t2)]

R(x, y)]] (3.34)

Proof. Decomposing bi-implication into cases:

(⇒) Assume M, t |= 2[t1,t2]
© R(x, y) holds for some arbitrary M and t.

From the semantics of 2, this means ∀t1 ≤ t′ ≤ t2 : M, t′ |= ©R(x, y)
holds. By definition of©, for every t′ we getM, suc(t′) |= R(x, y). Rein-
troducing the universal quantifier, we get ∀suc(t1) ≤ t′ ≤ suc(t2) :M, t′ |=
R(x, y). Reintroducing 2, this yieldsM, t′ |= 2[suc(t1),suc(t2)]

R(x, y).

(⇐) Analogous to the above in reverse order.

Theorem 3 (Next and eventually).

|= ∀x[∀y[3[t1,t2]
© R(x, y)↔ 3[suc(t1),suc(t2)]

R(x, y)]] (3.35)

Proof. Analogous to the proof of Theorem 2, replacing symbols ∀ and 2 by
∃ and 3 respectively.

The ‘next’ operator can also occur inside intertemporal relations R(x,©y).
In this case, it is not possible to evaluate R(x,©y) at the current time-point,
because the relation depends on a future state of y. To work around this
problem, we make use of the ‘previous’ operator©−, which is the inverse
of the ‘next’ operator. The following proofs show equivalences for ‘next’
involving intertemporal relations, and make use of the ‘previous’ operator.

3.4. STREAM REASONING WITH MSTL 39

Theorem 4 (Extract next).

|= ∀x[∀y[©R(x, y)↔ R(©x,©y)]] (3.36)

Proof. Decomposing bi-implication into cases:

(⇒) AssumeM, t |=©R(x, y) holds for some arbitraryM and t. From the
semantics of ©, this meansM, t + 1 |= R(x, y). Further, we have α(z, t +
1) = α(©z, t) for any region z, so we getM, t |= R(©x,©y).

(⇐) Analogous to the above in reverse order.

Theorem 5 (Partially extract next).

|= ∀x[∀y[R(x,©y)↔©R(©−x, y)]] (3.37)

Proof. Decomposing bi-implication into cases:

(⇒) Assume M, t |= R(x,©y) holds for some arbitrary M and t. From
the semantics of © over regions, we have α(z, t) = α(©−z, t + 1) and
α(©z, t) = α(z, t + 1) for any region z. Therefore this is equivalent to

M, t + 1 |= R(©−x, y) (3.38)

when applied to regions x and y respectively. Introducing© then yields

M, t |=©R(©−x, y). (3.39)

(⇐) Analogous to the above in reverse order.

The ability to rewrite MSTL formulas such that occurrences of ‘next’ over
regions are either removed or replaced by ‘previous’ is vital for stream rea-
soning, because it allows for the delayed evaluation of formulas so that, at
the time of evaluation, they only refer to the current and previous state(s) of
the world. This makes the earlier-presented landmark approach applicable
in a stream reasoning context.

3.4.4 Extending progression to MSTL

The progression algorithm for MTL was extended to work with MSTL. The
modified algorithm is shown in Algorithm 3. It takes as its arguments a
wff φ, time-point t, mapping α, duration ∆ and domain of discourse D and
returns a progressed formula φ+. The duration ∆ determines the metric
distance between two consecutive time-points.

One limitation of the algorithm is that it requires full knowledge of the
topological space through the α mapping, which in practice is not directly

40 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Algorithm 3: Progression extended for MSTL

1 function PROGRESS(φ, t, α ∆, D):
2 if φ = φ1 ∧ φ2 then
3 return PROGRESS(φ1, t, α, ∆,D) ∧ PROGRESS(φ2, t, α, ∆,D)
4 else if φ = ¬φ1 then
5 return ¬PROGRESS(φ1, t, α, ∆,D)
6 else if φ = φ1 UI φ2 then
7 if I < 0 then
8 return False
9 else if 0 ∈ I then

10 return
PROGRESS(φ2, t, α, ∆,D) ∨ (PROGRESS(φ1, t, α, ∆,D) ∧ φ1 UI−∆ φ2)

11 else
12 return PROGRESS(φ1, t, α, ∆,D) ∧ φ1 UI−∆ φ2
13 end
14 else if φ = ∀x[φ1] then
15 return

∧
c∈D PROGRESS(φ1(x/c), t, α, ∆,D)

16 else if φ = ∃x[φ1] then
17 return

∨
c∈D PROGRESS(φ1(x/c), t, α, ∆,D)

18 else if φ =©iφ1 where i > 0 then
19 return©i−1φ1

20 else if φ = R(©ix,©jy) is a spatial relation where i > 0 or j > 0 then
21 return R(©i−1x,©j−1y)
22 else
23 if t, α |= φ then
24 return True
25 else if t, α 6|= φ then
26 return False
27 else
28 return Unknown
29 end
30 end

available. Instead, we have to rely on partial information on spatial rela-
tions, which may not be sufficient to determine the exact spatial relation
between a pair of spatial objects even after application of the algebraic clo-
sure for RCC-8. In those cases, Algorithm 3 will return Unknown. Assuming
full knowledge, however, we are able to show its correctness as follows.

Theorem 6 (Correctness of PROGRESS for MSTL). Assuming full knowledge of
the topological space through α, the PROGRESS algorithm for MSTL (Algorithm 3)
is correct, meaning

M, t |= φ iffM, t + 1 |= PROGRESS(φ, t, ∆,D) (3.40)

for wff φ, time-point t, duration ∆, and domain of discourse D.

3.4. STREAM REASONING WITH MSTL 41

Proof. We base this proof on the correctness proof of PROGRESS on MTL,
which was based on the semantics of the logic. Since MTL was extended to
MSTL by the addition of spatial relations, the cases covered by lines 18–29
need to be proven.

Consider first the base case from lines 22–29. Assume first thatM, t |= φ.
Then PROGRESS(φ, t, α, ∆, D) returns True on line 24, and

M, t + 1 |= PROGRESS(φ, t, α, ∆,D) (3.41)

holds. Conversely, assume the latter holds. This can only be the case if it
has returned True, which it only does if t, α |= φ, soM, t |= φ holds. Thus
the correctness equation holds for the base case.

Now consider the case of φ = R(©ix,©j, y) where i > 0 or j > 0. As-
sume first thatM, t |= R(©ix,©j, y). Then PROGRESS returns R(©i−1x,©j−1, y).
From the semantics of the ‘next’ operator we know that our assumption
yields R(©i−1x,©j−1, y) for the next time-point;

M, t + 1 |= R(©i−1x,©j−1, y). (3.42)

This corresponds to the result obtained from PROGRESS;

M, t + 1 |= PROGRESS(R(©ix,©j, y), t, α, ∆,D). (3.43)

Conversely, starting with the aforementioned equation, we again obtain
R(©i−1x,©j−1, y) for time-point t + 1, which from the semantics of the
‘next’ operator leads back to M, t |= R(©ix,©j, y). Thus the correctness
equation holds for the case of φ = R(©ix,©j, y) where i > 0 or j > 0.

Now consider the case of φ = ©iφ1 where i > 0. Assume first that
M, t |=©iφ1. Then PROGRESS returns©i−1φ1. From the semantics of the
‘next’ operator we know that our assumption yields ©i−1φ1 for the next
time-point;

M, t + 1 |=©i−1φ1. (3.44)

This corresponds to the result obtained from PROGRESS;

M, t + 1 |= PROGRESS(©iφ1, t, α, ∆,D). (3.45)

The converse follows the same pattern in reverse order in the same way as
in the previous case. Thus the correctness equation holds for the case of
φ =©iφ1 where i > 0.

The remaining cases are covered by the correctness proof for MTL by
Bacchus and Kabanza (1998). By exhaustive proof over the semantics of
MSTL we therefore conclude that

M, t |= φ iffM, t + 1 |= PROGRESS(φ, t, ∆,D) (3.46)

for wff φ, time-point t, duration ∆, and domain of discourse D. This means
that PROGRESS for MSTL is correct.

42 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

3.5 Performance evaluation

Thus far we introduced a logic for spatio-temporal stream reasoning and a
number of methods for the evaluation of formulas in that logic. In terms of
performance, we are interested in three properties. Progression allows us to
evaluate MSTL formulas, which can grow exponentially in the worst case.
Therefore the computational resource usage of progression is of interest.
In additional to those performance experiments, we provide experimental
results supporting our effectiveness claims with regards to landmark usage
and state stream augmentation.

3.5.1 CPU usage of progression

The performance of progression has been studied previously (Doherty et al.,
2009), but is included for the sake of completeness using our new imple-
mentation. Note that the performance of progression itself is not directly
affected by supporting spatial reasoning, as it is a syntactic approach. In-
stead, the generation of a suitable state stream involves spatial inference so
that complete states can be generated. The performance of progression is
closely tied to the formula being progressed and the stream used for the
progression. The evaluation of progression is therefore done through two
separate experiments with different formulas and different streams. The
results are shown in Figures 3.6 and 3.7. In each case, 1000 formulas are
progressed concurrently.

In the first experiment we measure the CPU usage over successive pro-
gressions for the progression of the formula

23[0,1000]p, (3.47)

where the truth value of p is determined by a regular pattern and every
time-step takes 100ms. The first pattern is illustrated by an uninterrupted
(red) line; the second pattern is illustrated by a dashed (green) line. For the
first pattern, p is set to always be true. This corresponds to a state stream in
which for every state p is set to true. The nesting of temporal operators is
important here. Since p is always true, the eventually operator immediately
evaluates to true as well, so the formula ceases to grow in size. Figure 3.6
shows that progression steps take a bit over 20µs per formula. In contrast,
the second pattern shows a sequence wherein p is false for 10 time-steps
and becomes true for one time-step, before repeating. This means that the
formula must grow in order to keep track of the eventually operator, for
which the interval allows a delay of up to 1000ms before p has to be true in
order for the formula to not be evaluated to false. The pattern uses the full
duration allowed, and once p becomes true the formula shrinks again. This
shrinking and growing behaviour can be correctly observed in Figure 3.6,
where the shrinking occurs every 1000ms. In the worst case for this type of
formula, a progression step takes about 45µs per formula.

3.5. PERFORMANCE EVALUATION 43

Figure 3.6: CPU usage over successive progressions when progressing
23[0,1000]p over regular state sequences.

In the second experiment we similarly measure the CPU usage over
successive progressions for the progression of the formula

2¬p→ 3[0,1000]2[0,999]p, (3.48)

where the truth value of p is again determined by a regular pattern and
every time-step takes 100ms. Due to the logical nature of implication, this
formula only grows whenever p is false. The different state sequences show
different degrees growth accordingly. In the best case, p is never false and
the formula is never expanded, resulting in progression steps taking about
a constant 50µs per formula. If p does become false, the formula is ex-
panded, and progression steps take more time. In these examples, progres-
sion steps take about 100µs per formula in the worst case.

3.5.2 Effectiveness and scalability of landmarks

In order to empirically evaluate MSTL with landmarks we ran experiments
to test the effectiveness and the scalability of the landmark based approach
compared to the case where no landmarks were used. In these experiments,
we were only interested in consistent scenarios, to capture the operational

44 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Figure 3.7: CPU usage over successive progressions when progressing
2¬p→ 3[0,1000]2[0,999]p over regular state sequences.

real-world domain. In particular, we are interested in the effects of land-
marks on the resulting intertemporal disjunction size for non-landmark to
non-landmark relations.

When considering two time-points t1 and t2, the problem of generating
scenarios is given a consistent scenario with landmarks for time-point t1
generate a consistent scenario with those same landmarks for time-point
t2. To achieve this, we make use of a variation of the scenario generation
method presented by (Renz and Nebel, 2001), which was previously ex-
tended to handle static regions (Heintz and de Leng, 2014). Scenarios for
a single time-point are generated based on the number of (non-landmark)
regions n and the average disjunction size l. We extend this by also con-
sidering the number of landmarks m such that n + m = |R|, and fixing
parameter l = 4. The reason for fixing l = 4 is that it provides a middle
ground between fully known and fully unknown. Our parameter combina-
tions consist of varying numbers of regions between 20 and 200 with step
size 20, and varying landmark ratios relative to the number of regions (i.e.
m/n) between 0 and 0.9 with step size 0.1.

The initial ‘seed’ for a scenario covers the landmark regions and their
relations to each other. In our experiments we generated 30 such seeds
per parameter combination. Here we are only interested in a consistent

3.5. PERFORMANCE EVALUATION 45

Figure 3.8: Absolute disjunction size for varying number of regions and
landmark ratio; smaller is better.

scenario with complete knowledge, so GQR is used to generate consistent
interpretations of scenarios. These fully known seeds can then be used as
the basis for a larger spatial relation matrix by adding further regions until
we obtain the desired |R| regions. The number of CSPs generated from a
seed was kept constant at 20. Note that these CSPs then all share a seed
as a common component. We can therefore combine two CSPs that share
a common seed. Excluding combinations that involve the same CSP twice,
given 30 seeds and 20 CSPs per seed we get 30× (20× (20− 1))/2 = 5700
instances for each parameter set.

The results of our experiments are illustrated in Figures 3.8 and 3.9,
where every point represents the average over 5700 instances. In Figure 3.8,
the number of regions and the landmark ratio are changed to see how they
affect the disjunction size of non-landmark to non-landmark spatial rela-
tions. Here we limit ourselves to the average over the spatial relations
that are not fully unknown. The results show that the more landmarks
are added, the less uncertainty in terms of disjunction size is measured for
these relations, reaching between disjunction sizes 4 and 5 for a landmark
ratio of 0.9. The landmark approach is also scalable in terms of the number
of regions.

This is also shown in Figure 3.9, which illustrates the percentage of

46 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Figure 3.9: Percentage of such relations fully unknown.

non-landmark to non-landmark intertemporal relations that remain fully
unknown. Previously, we could not say anything about these relations, as
illustrated by the percentage of fully unknown relations being 100%. Us-
ing landmarks, this is reduced to 30% for landmark ratio 0.9, but having a
landmark ratio as low as 0.1 results in an improvement of roughly 20%.

3.5.3 Caching spatial relations between rigid objects

The spatial reasoning is mainly dependent on the number of variables, the
average number of constraints (degree) and the average label size (Renz
and Nebel, 2001). Using basically the same method as Renz and Nebel
(2001) we evaluate the effect of precomputing the algebraic closure of the
static variables, compared to computing the whole algebraic closure for
each time-step.

In the experiments we try to estimate the function A′(v, E(deg), E(l), r)
by measuring the execution time on instances with the number of vari-
ables v, the expected degree E(deg), the expected label size E(l) and the
ratio of dynamic variables r. The number of variables can be divided in a
dynamic part vd = r× v and a static part vs = v− vd. The expected degree
is the expected number of relations from a given dynamic variable to other
variables. The expected label size is the expected size of the disjunction of

3.5. PERFORMANCE EVALUATION 47

RCC-8 relations for a given relation between a dynamic variable and some
other variable. In this evaluation we use E(l) = 4.0.

Because the static component only has to be computed once, we com-
pare the case where all variables are dynamic to the case where there is a
separation between static and dynamic variables, ignoring the time it takes
to compute this static component. The mean performance results of the
former are denoted by A(v, E(deg), 4.0). For the mean performance results
of the dynamic component of the latter, the notation A′d(v, E(deg), 4.0, r) is
used. The performance experiments used values of E(deg) ranging from
1 to 20 with step size 1, and values of v ranging from 20 to 500 with step
size 20. The value of r was chosen to be constant, r = 0.25. For every
combination, we took the population mean CPU time over 100 runs. The
population mean was chosen to account for the difference in distribution
between the satisfiable and unsatisfiable problem instances.

The evaluation compares the case of all variables being dynamic to the
case when some are static. A selection of the evaluation results are shown
in Figures 3.10 and 3.11.

The top graph in Figure 3.10 shows the absolute performance in CPU
time of A(v, E(deg), 4.0). The graph shows a ridge at E(deg) = 9. This is
where the phase-transition occurs, where the majority of problem instances
flip from being satisfiable to being unsatisfiable. In comparison, the bottom
graph shows the absolute performance in CPU time of A′d(v, E(deg), 4.0, 0.25).
Note that this only shows the time needed by the dynamic component. For
low degrees, the time needed surpasses that of the exclusively dynamic
case. A potential explanation for this behaviour is that the combination of
a low degree and high number of variables for the dynamic variables com-
bined with the completely known static part (i.e. a degree of vs − 1 and ex-
pected label size E(l) = 1 for the static component) makes for computation-
intensive problem instances. For all other values of v and E(deg) the per-
formance is significantly improved.

A comparison of the two top-row graphs is shown in Figure 3.11. The
comparison shows a clear decrease in performance when comparing the
exclusively dynamic case to the separated case when the degree is low and
the number of variables is high. However, in all other cases there is a per-
formance increase, especially around the phase-transition area. The general
performance increase is roughly 50 milliseconds. The relative performance
increase shows an increase of about 35% in the phase-transition area, and
an increase of close to 100% for a low number of variables.

The results show that the separation of dynamic and static variables for
r = 0.25 generally leads to better performance, except in the case of a low
degree with a high number of variables. The performance increase is at its
highest around the phase-transition region where the more difficult prob-
lem instances reside. The performance increase is expected to be higher for
lower values of r and decrease as r approaches 1.

48 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

3.6 Open problems

• While the ‘next’ operator adds powerful additional expressivity in
terms of intertemporal spatial relations, its semantics is fixed to tem-
poral states, which in practice means that ‘next’ refers to different
lengths of time for different stream frequencies. A formula therefore
has a different meaning depending on what type of stream is used in
terms of frequency. Can this ambiguity be resolved in a meaningful
way?

• The semantics of MSTL makes use of a topological space and a map-
ping α from region symbols and time-points to this topological space.
When evaluating MSTL formulas, however, this mapping cannot be
used directly, because it would require some oracle. Instead, we make
use of spatial relations that are part of a state stream. How can the se-
mantics of MSTL be modified to use these relation-based spatial states
rather than a topological space?

• Landmarks have been shown to reduce the uncertainty of intertem-
poral spatial relations. However, in many cases this means that for-
mulas referring to intertemporal relations will still be evaluated to
unknown. Can the temporal modality be complemented with the
classical necessity modality to reason about possible consistent inter-
pretations instead?

• Can the qualitative representational approach for MSTL be generalised
to types of qualitative relations other than spatial relations?

3.7 Summary

While spatial extension to temporal reasoning have been investigated in
the past, these works have not specifically focused on the application of
these resulting spatio-temporal logics in a stream reasoning context. We
presented MSTL, a metric spatio-temporal logic that combines the well-
known MTL temporal logic and RCC-8 qualitative spatial calculus. Simi-
lar to ST1, MSTL allows for the application of the ‘next’ operator to region
terms, which makes it possible to express intertemporal spatial relations
between regions. Since qualitative intertemporal spatial relations cannot
be observed directly, a frame of reference formed by landmark regions is
used to reduce the uncertainty of the intertemporal spatial relations. To fa-
cilitate incremental reasoning over streams, the generation of state streams
is discussed. These state streams are used to progress MSTL formulas us-
ing an extension of the classical progression procedure for MTL. This makes
it possible to apply model checking to MSTL formulas, which is useful in
applications such as execution monitoring.

3.7. SUMMARY 49

Figure 3.10: Comparison of mean CPU times when separating static and
dynamic variables.

50 CHAPTER 3. SPATIO-TEMPORAL STREAM REASONING

Figure 3.11: Relative CPU time increase when separating static and dy-
namic variables.

Chapter 4

Semantic subscriptions

Logic-based stream reasoning commonly makes use of temporal logics to
express statements concerning the truth value of properties over time. Stream
reasoning techniques usually do not consider where their data originates
from, and assume it to be given. However, the generation of streaming data
for the purpose of stream reasoning is an important stream processing task.
State stream generation is the refining of low-level data streams into high-
level symbolic information that can be combined for consumption by such
a stream reasoning tool. This chapter borrows from and extends previous
work on state stream generation (de Leng, 2013; Heintz and de Leng, 2013;
de Leng and Heintz, 2014), configuration modelling and planning (de Leng
and Heintz, 2015b,a, 2017), and unpublished improvements for the recon-
figuration procedure.

4.1 Introduction

Robotic systems are getting increasingly complex, with more and more
components usually connected by some form of publish-subscribe messag-
ing pattern. Support for this type of integration is often provided by mid-
dleware such as CORBA and the Robot Operating System (ROS). The con-
figuration of what channels a component publishes and subscribes to is of-
ten done manually or through scripts. This is both error-prone and assumes
that the set of available components does not change at run-time. However,
IoT development towards for example swarmlets (Latronico et al., 2015)
points to a future in which systems are increasingly heterogeneous, decen-
tralised and geographically spread-out. The assumption of an unchanging
or slowly changing set of available components is therefore rapidly becom-
ing unreasonable.

The challenge of dealing with this volatility also affects the task of gen-
erating state streams for the purpose of progression. After all, if compo-
nent sets cannot be assumed to be constant, the task of generating a state

51

52 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

Figure 4.1: Conceptual overview with the adaptive state stream generation
highlighted.

stream needs to be complemented with the task of maintaining one. The
second strand of this thesis focuses on exactly this problem. The conceptual
overview from before, with the relevant state stream generation compo-
nents highlighted, is shown in Figure 4.1. It illustrates how the stream rea-
soning manager accepts a spatio-temporal logic formula (1) and reconfig-
ures the computational environment (2) in order to generate a state stream
(4) for the stream reasoning engine so it can evaluate that formula. Once
the configuration is initiated, the stream reasoning manager keeps track of
the computational environment and reconfigures it when needed. To see
how this problem relates to reasoning over streams, consider the previous
chapter on a logic for spatio-temporal stream reasoning. The task of the
stream reasoning engine is to evaluate a formula. In order to do so, the
symbols in the formula need to be interpreted. This is done by grounding
these symbols into streaming data, which is produced by an underlying
computational environment. This thesis explicitly assumes that the envi-
ronment may change over time, which makes maintaining a stream for for-
mula evaluation challenging.

In this chapter, the problem of adaptively generating a state stream is
translated into the problem of robustly satisfying a semantic subscription
in a stream reasoning framework. We first consider a formalisation of a
stream reasoning framework and its dynamics, called the DyKnow model,
which allows us to frame the problem as an optimisation problem. The
purpose of the formal model is to be general enough such that implemen-
tation details are abstracted away, allowing for potentially many different
realisations. With the DyKnow model formalised we consider a common
representation of configurations relative to an ontology. We then consider
a life-cycle and algorithms for setting up and maintaining semantic sub-
scriptions, finalising the formalisation of semantic subscriptions.

4.1. INTRODUCTION 53

4.1.1 Semantic integration

The integration of different components based on their semantics is re-
ferred to as semantic integration and is closely related to the work presented
here. An approach to ‘semantically-enabled sensor plug & play’ was pro-
posed by Bröring et al. (2009), who identified challenges to achieving sen-
sor plug-and-play based on semantic knowledge of sensor observations.
They subsequently proposed a method for automatic plug-and-play func-
tionality by making use of a Sensor Bus (Bröring et al., 2011) that matches
services to sensors. The approach to semantic subscriptions taken in this
thesis is more advanced than the Sensor Bus approach in that we periodi-
cally recombine and reconnect components whereas the Sensor Bus directly
connects with information sources.

Another example is research towards Semantic Sensor Networks, which
led to the development of the Semantic Sensor Network ontology (SSN) (Comp-
ton et al., 2012). SSN focuses on well-structured semantic descriptions of
sensors. The work presented here makes use of semantic descriptions of
streaming components rather than sensors by using functional descriptions
of the inputs and outputs of these components. These functional descrip-
tions are extensions of the OWL-S service ontology (Martin et al., 2004)
applied to a streaming context.

4.1.2 Configuration planning

The aforementioned reconfiguration capabilities are also closely related to
configuration planning. Automatic (re)configuration techniques have been
studied in detail (Rao and Su, 2005; Dustdar and Schreiner, 2005; Pejman
et al., 2012). The work by Tang and Parker (2005) on ASyMTRe is an exam-
ple of a system geared towards the automatic self-configuration of robot
resources in order to execute a certain task. Similar work was performed
by Lundh et al. (2008) related to the Ecology of Physically Embedded Intel-
ligent Systems, also called the PEIS-ecology (Saffiotti et al., 2008). Given a
high-level goal describing a task, Lundh et al. use a configuration planner
to configure a collection of robots towards the execution of the task rather
than logic-based stream reasoning. Their solution is however designed for
use within the PEIS middleware and does not easily transfer to other en-
vironments such as the ROS middleware. Lundh (2009) further points out
that their approach uses static cost measures and could benefit from incor-
porating semantic knowledge. Our approach focuses on a more advanced
representation of cost, and makes use of semantic descriptions for compo-
nents.

The SAMSON Wireless Sensor Networks (WSNs) middleware by Por-
tocarrero et al. (2016) is similar to run-time reconfigurable systems in con-
sidering a dynamic environment in which a network can be reconfigured
to deal with changes, albeit at a lower level. In the case of SAMSON, these
changes include faults, but also disconnection and power concerns. A sur-

54 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

Symbol Description
li ∈ Var Set of variables

tag, itagi, otag ∈ Tag Set of tags
vi ∈ V Set of (structured) values
ti ∈ T Set of time-points

tid, cid, qid ∈N Set of identifiers
ini, out, chan ∈N Set of channels〈

cid, tid, [in1, in2, . . . , inn]
T , out,S

〉
∈ CU Computation units〈

tid, f (x1, . . . , xn,S), [itag1, . . . , itagn]
T , otag

〉
∈ F Transformations

〈qid, tag, chan〉 ∈ T Targets
S ⊆ Var× V States
∼ ⊆ Tag×Tag Similarity relation

f : Vn × S ↪→ V × S Transformation function
ε = 〈CU, F, T,∼〉 Environment

δ = (CU+, CU−, F+, F−, T+, T−) Change set
ε′ = ε⊗ δ Update

ε⇒δ ε′

ε ∈ Valid Set of valid environments

Table 4.1: Notation for the DyKnow model.

vey of other recent work towards WSN middlewares is presented by Kera-
siotis et al. (2015).

4.2 DyKnow model

The DyKnow model is a formalisation of stream reasoning frameworks and
extends earlier work by Heintz (2009) and Heintz et al. (2010) which con-
sidered such frameworks to be composed of possibly many interconnected
components. The formal model is general and serves as a specification from
which potentially many different realisations can be created. Table 4.1 pro-
vides a complete summary for the notation used in describing the model.

4.2.1 Streams

State streams as expected by progression contain the state information of
fluents for all time-points under consideration. A state stream is a special-
isation of a stream, which we consider to be a sequence of time-stamped
values.

Definition 16 (Stream). A stream is an unbounded sequence of time-stamped
values

((l0, v0, t0), (l1, v1, t1), . . .) (4.1)

where vi ∈ V represents a (structured) value, li ∈ Var represents a variable name,
and ti ∈ T represents a time-point.

4.2. DYKNOW MODEL 55

The individual triplets that make up a stream are referred to as samples.
In the DyKnow model, streams are closely tied to channels, which provide
a transportation mechanism for streams to ‘flow’ over. Channels are used
to connect components that produce and consume samples over time, ef-
fectively consuming and producing streams. The DyKnow model makes
use of a computation-centric view, wherein streams are implicit products
of explicit configurations of computations.

4.2.2 Computational environment

A computational environment is composed of a computation graph, transfor-
mations and targets. The computation graph consists of computation units
connected by channels.

Streams are the product of transformations, which can either refine ex-
isting streams into new streams, or act as sources by generating streams
without requiring any input streams. In practice, sources often use infor-
mation external to the computational environment to generate streams, for
example through sensor observations. A transformation is considered to
be an annotated function that can be instantiated as a computation unit for
application within a specific configuration.

Definition 17 (Transformation). A transformation (TF) is an annotated stream-
generating function that takes streams as inputs. It is described by a tuple〈

tid, f (x1, . . . , xn,S), [itag1, . . . , itagn]
T , otag

〉
, (4.2)

where tid ∈ N represents a unique transformation identifier, f : Vn × S ↪→
V × S represents a partial function from input values and an initial state to an
output value and a resulting state, itagi ∈ Tag represent tags for inputs, and
otag ∈ Tag represents the output tag.

Definition 18 (Computation unit). A computation unit (CU) is a component
that is described by a tuple〈

cid, tid, [in1, in2, . . . , inn]
T , out,S

〉
, (4.3)

where cid ∈ N represents a unique identifier for CUs, tid ∈ N represents the
unique identifier of the transformation which this CU is an instance of, ini ∈N∪
{none} represent incoming channels, out ∈ N∪ {none} represents the outgoing
channel, and S ⊆ Var×V represents the state as a relation between variables and
values.

Note that there is a close relation between CUs and TFs—a CU is called
an instance of a TF iff its tid identifiers match.

Example 10 (TFs and CUs). Robots commonly use visual sensing methods to
detect and track objects of interest. Consider a ball detector that is able to de-
tect footballs by their round white shape with black spots. The ball detector can

56 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

be represented in terms of a transformation and a computation unit. The ball
detector transformation refers to the mathematical function describing the detec-
tion method, together with meta-information for this function. It is annotated with
tags describing its input as camera images, and its output as bounding boxes. We
can apply the transformation by connecting it to an input stream of camera im-
ages, yielding a stream of bounding boxes. This application of the transformation
is called a computation unit. Every CU has an identity, a reference to its corre-
sponding TF, connections to input and outputs channels, and state information.
The state information allows the transformations to be stateful, meaning they can
retain information that makes it easier to for example perform tracking after an
initial detection.

Lastly, the computational environment contains targets, which describe
semantic subscriptions for outside modules such as the stream reasoning
engine. Note that subscriptions also occur within the computational envi-
ronment, but that these are not referred to as targets because they do not
reflect the global configuration goals of the computational environment.
Subscriptions of the latter kind are described by the connections between
CUs and channels as shown earlier.

Definition 19 (Target). A target describes a desired semantic subscription and
is denoted by a tuple

〈qid, tag, chan〉 , (4.4)

where qid ∈ N is a unique (query) identifier, tag ∈ Tag is a description of the
desired information, and chan is the channel the described stream is expected on.

Targets thus indirectly represent configuration goals for the computa-
tional environment6 by indirectly referencing desired streams by their se-
mantic descriptions. These streams are generated by instantiated transfor-
mations, which in turn have input requirements. For a given set of targets,
there may be many different computation graphs which satisfy all of the
input requirements and similarity relations at different costs.

Example 11 (Targets). Consider the following statement: “Whenever a NAO
robot has its battery level drop under 10%, it should be in the charging state within
the next minute.” Such a statement could be logically formalised as

∀x ∈ NAO
[
2

(
batteryLevel(x) < 0.1→ 3[0,60]Charging(x)

)]
. (4.5)

In order to evaluate this formula, we need battery level information and charging
state information for NAO robots. Targets allow us to specify what kind of in-
formation we are interested in with the help of tags. To evaluate this formula, we
thus need two targets; one pertaining to battery level information and another to
charging state information. The symbols in the formula can then be interpreted by
grounding them to the streaming data, utilising the channel information which is
part of every target.

6Alternatively, one can consider targets to represent constraints on channels. These con-
straints are then described in terms of desired semantic descriptions.

4.2. DYKNOW MODEL 57

By combining these elements, we can formally describe the computa-
tional environment by an environment.

Definition 20 (Environment). An environment is denoted by a tuple

ε = 〈CU, F, T,∼〉 , (4.6)

where CU denotes a set of computation units called a computation graph, F
denotes a collection of transformations called a library, T denotes a set of targets
called a goal, and ∼ ⊆ Tag × Tag denotes a similarity relation between tags.
Elements of environment ε have short-hand representations CUε, Fε, Tε, and ∼ε

respectively.

An environment thus encodes the configuration of the system as well as
the state of its individual components. It is connected to streams through
the collection of channels that connect the various CUs, because they are
a product of those CUs. There is therefore a total mapping from streams
to channels. Since CUs define outgoing and incoming channels, there is a
clear connection between streams and their source and destination CUs as
well.

4.2.3 Dynamics

An environment is a representation of the state of the configuration of
the computational environment. This environment may be subjected to
changes over time. These changes are represented by a change set.

Definition 21 (Change set). A change set is a tuple

δ = (CU+, CU−, F+, F−, T+, T−) (4.7)

consisting of set additions and set removals denoted by superscript ‘+’ and ‘−’
respectively. The notation δ∅ is used as a short-hand to describe the absence of
change, i.e. δ∅ = (∅,∅,∅,∅,∅,∅).

Change sets can thus add and remove elements to and from the envi-
ronment. These additions and removals can also be used to for example
represent tag changes in transformations or connection changes of CUs to
channels. Whenever an environment changes in a way that can be repre-
sented using a change set, we call this change an update. More formally, an
update is the application of a change set to an environment, yielding a new
environment.

Definition 22 (Update). An update applying a change set δ to an environment
ε is denoted by ε′ = ε⊗ δ (alternatively: ε⇒δ ε′), where ⊗ maps environments ε
and change set δ to resulting environments ε′ such that

CUε′ = (CUε ∪ CU+
δ) \ CU−δ , (4.8)

Fε′ = (Fε ∪ F+
δ) \ F−δ , (4.9)

Tε′ = (Tε ∪ T+
δ) \ T−δ . (4.10)

58 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

Change sets can be used to express operations of interest on environ-
ments. We call these operations actions. In particular, we are interested
in the addition and removal actions for environment elements, as well as
actions for changing connections between CUs and channels.

TFs are identified by a unique tid and describe a function f (x1, . . . , xn,S)
from inputs and current state to an output and resulting state. They are
further annotated with tags in Tag for the inputs and the output. Com-
mon actions affecting TFs in a computational environment are register and
deregister.

Definition 23 (Register action). The register action covers the class of change
sets defined by the function

register(ε, tid, f , itag, otag) = (∅,∅, {〈tid, f , itag, otag〉} ,∅,∅,∅). (4.11)

Definition 24 (Deregister action). The deregister action covers the class of
change sets defined by the function

deregister(ε, tid) = (∅,∅,∅, F,∅,∅), (4.12)

where F = {〈tid, , , 〉 ∈ Fε} and represents a wildcard.

Targets are composed of a (query) identifier, tag, similarity relation, and
a specified channel. Like TFs, targets can be added and removed by the
query and release actions.

Definition 25 (Query action). The query action covers the class of change sets
defined by the function

query(ε, qid, tag, chan) = (∅,∅,∅,∅, {〈qid, tag, chan〉} ,∅). (4.13)

Definition 26 (Release action). The release action covers the class of change
sets defined by the function

release(ε, qid) = (∅,∅,∅,∅,∅, T), (4.14)

where T = {〈qid, , 〉 ∈ Tε} and represents a wildcard.

Like TFs and targets, CUs can also be added and removed. However,
unlike with TFs and targets, existing CUs can be connected to and discon-
nected from channels as well. We therefore consider the addition and re-
moval of CUs to be two actions in addition to the connecting and discon-
necting of existing CUs. Adding and removing CUs is represented by the
spawn and destroy actions.

Definition 27 (Spawn action). The spawn action covers the class of change sets
defined by the function

spawn(ε, cid, tid, S) = (CU,∅,∅,∅,∅,∅), (4.15)

where CU =
{〈

cid, tid, [none, . . . , none]T , none,S
〉}

.

4.2. DYKNOW MODEL 59

Definition 28 (Destroy action). The destroy action covers the class of change
sets defined by the function

destroy(ε, cid) = (∅, CU,∅,∅,∅,∅), (4.16)

where CU = {〈cid, , , , 〉 ∈ CUε} and represents a wildcard.

The spawn action thus adds a CU with a provided state to account for
e.g. parameters. Since CUs encode their own connections to channels, the
removal of a CU implicitly breaks any connections to channels. When the
spawn action is applied, a CU is added such that all of its connections are
set to none by default. This initial state can then be altered by using the
connect and disconnect actions, for each of which we have to consider two
variants to distinguish between inputs and output.

Definition 29 (Connect action). The connect action covers the class of change
sets defined by the functions

connect↓(ε, cid, i, chan) = (CU+, CU−,∅,∅,∅,∅), (4.17)

where CU+ and CU− are defined for every
〈
cid, tid′, in′, out′,S ′

〉
∈ CUε as

CU+ =


〈

cid, tid′,



...
in′i−1
chan
in′i+1

...

 , out′,S ′
〉


, (4.18)

CU− =
{〈

cid, tid′, in′, out′,S ′
〉
∈ CUε

}
, (4.19)

and its outgoing variant

connect↑(ε, cid, chan) = (CU+, CU−,∅,∅,∅,∅), (4.20)

where CU+ and CU− are defined for every
〈
cid, tid′, in′, out′,S ′

〉
∈ CUε as

CU+ =
{〈

cid, tid′, in′, chan,S ′
〉}

, (4.21)

CU− =
{〈

cid, tid′, in′, out′,S ′
〉
∈ CUε

}
. (4.22)

Definition 30 (Disconnect action). The disconnect action covers the class of
change sets defined by the functions

disconnect↓(ε, cid, i) = connect↓(ε, cid, i, none), (4.23)
disconnect↑(ε, cid) = connect↑(ε, cid, none). (4.24)

Actions are useful to concisely describe common change sets, and will
be used later as part of a reconfiguration algorithm.

60 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

4.2.4 Cost and optimality

While there may be many different environments that would satisfy a tar-
get, not all such environments are equally preferred. This is due to the costs
associated with the run-time expenses of maintaining such a resulting envi-
ronment, and the one-time expense of applying the change set that yields
such a resulting environment. We refer to the cost of maintaining a CU
as upkeep. Likewise, the cost of instantiating a CU is called labour. While
labour is a one-time cost, upkeep accumulates over time.

The measured labour and upkeep are represented by functions from en-
vironments or change sets to cost. These global cost measures are obtained
from the individual CUs.

Definition 31 (Labour). Labour is the observed non-negative cost of performing
an update ε⊗ δ and is equal to

labour(δ) = ∑
cu∈(CU+−CU−)

labour(tid(cu)). (4.25)

Definition 32 (Upkeep). The run-time cost of an environment ε = 〈CU, F, T,∼〉
is referred to as upkeep. Upkeep represents the observed non-negative run-time
cost for one time-unit and is calculated as

upkeep(ε) = ∑
cu∈CUε

upkeep(cid(cu)). (4.26)

Labour and upkeep can be used to represent the cost of change sets
and environments. This is useful when we wish to compare the costs of
different (alternative) updates. We will make use of estimators l̂abour and
ûpkeep to represent the estimated rather than measured labour and upkeep
of change sets and environments.

A computational environment may become invalid or suboptimal as
the result of updates. This may for example happen due to changing op-
erational costs associated with CUs (upkeep), CUs may crash and require
replacing, transformations may become unavailable rendering their CU in-
stances invalid, or new transformations may become available for a lower
cost. In order to maintain adaptive semantic subscriptions, the problem is
to find a change set such that, when applied to an environment, the result-
ing environment is valid and update is optimal.

Definition 33 (Validity). An environment ε is valid, denoted by ε ∈ Valid, iff
for every CU:

1. there exists an associated TF in Fε;

2. for every identifier ini there exists a CU in CUε for every 1 ≤ i ≤ n, i.e. no
subscriptions to none;

4.2. DYKNOW MODEL 61

3. for every target 〈qid, tag, chan〉 in Tε, there exists a CU with an associated
TF such that tag ∼ε otag; and

4. itagi ∼ε otag holds for every connected pair of CUs.

We exclude change sets that yield an invalid environment when used in
an update. This reduces the number of applicable change sets to just those
that yield environments that satisfy all targets. A pragmatic relaxation is to
also allow for change sets that satisfy some targets, if it is not possible to
satisfy all targets.

By combining validity with the estimators for labour and upkeep, we
obtain a cost estimator that takes into account whether the resulting envi-
ronment is valid. A value MAX COST is used to represent an upper limit on
the cost of an update. For updates yielding invalid environments, this is
represented by a cost exceeding MAX COST.

Definition 34 (Cost). The cost estimator ĉost combining estimators ûpkeep and
l̂abour is defined as

ĉost(ε, δ, H) =

{
l̂abour(δ) + H × ûpkeep(ε⊗ δ), if ε⊗ δ ∈ Valid,
MAX COST+ 1, otherwise.

(4.27)

The cost estimator is used for determining the estimated cost of up-
dates. An optimal update is one that minimises the estimated cost of apply-
ing a change set and the estimated upkeep over a predetermined horizon.
It makes use of the cost estimator and excludes updates that exceed the
maximum cost, for example due to being absent from Valid.

Definition 35 (Optimality). An update ε′ = ε ⊗ δ∗ is optimal relative to a
horizon of H time-units iff δ∗ ∈ ∆∗, where

∆∗ = arg min
δ

ĉost(ε, δ, H) (4.28)

subject to ĉost(ε, δ, H) ≤ MAX COST

for cost estimator ĉost and upper bound MAX COST.

Note that there may be many optimal change sets, in which case any
can be chosen. Alternatively, if no change set can make the resulting en-
vironment valid, there are no optimal change sets. The choice of horizon
determines how conservative change sets are; if the horizon is large, up-
keep starts to outweigh labour more than in cases where the horizon is kept
short. Different estimators can be used, ranging from simplistic constant
values to advanced predictive models whose accuracy is used to increase
or decrease the length of the next horizon.

62 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

4.3 Handling perturbations

During the run-time of the system, it is possible for the environment to
change outside of its own control. We call these changes perturbations,
which can be represented in terms of change sets. Some perturbations can
be relatively harmless; for example, a transformation that is currently not
in use could be deregistered. Worse would be the case wherein a transfor-
mation for which CUs exist is deregistered. In such a case, the behaviour
of those CUs becomes undefined, and they therefore require removal. Fur-
thermore, the loss of these CUs can leave holes in the computation graph,
leaving the environment invalid. In yet another example, a CU could crash
and thereby be removed from the computation graph, resulting in similar
potential problems. These last examples are clear cases wherein a perturba-
tion results in an expensive and suboptimal environment. Less clear cases
are those wherein new transformations become available. A new transfor-
mation could be cheaper to use than the transformations currently in use
by an environment, but making this change is not critical.

Definition 36 (Perturbation). We can consider different types of perturbations
δp. Short-term negative perturbations7 result in an immediate cost increase
(compared to no change) when considering an equal horizon H:

cost(ε, δp, H) > cost(ε, δ∅, H). (4.29)

When the cost does not change as the result of δp, it is considered to be a short-
term neutral perturbation. Similarly, long-term positive perturbations make
possible an update that would result in a cost decrease, i.e.

∃δ∗[cost(ε⊗ δp, δ∅, H) > cost(ε⊗ δp, δ∗, H)], (4.30)

with (inversely) long-term neutral perturbations lacking such an update. Dif-
ferent perturbations can thus have different effects in the short and long term.

To handle both the short and long term repercussions of perturbations,
semantic subscriptions are periodically evaluated and updated to repair or
improve the underlying environment. This recurring process is referred
to as the configuration life-cycle. The life-cycle is composed of a number of
phases which are repeated every cycle, which starts with a review interval
followed by a stable interval.

Review interval. The purpose of the review interval is to reflect on the
preceding stable interval (if any) and to improve the environment config-
uration. During this interval, the stream reasoning manager searches for
a change set such that its application to the current environment consti-
tutes an optimal update. Whether an update is optimal is determined by

7Short-term positive perturbations are generally ignored as they would require an outside
force to for example remove a target together with any CUs that would no longer be necessary.

4.3. HANDLING PERTURBATIONS 63

a combination of labour and cumulative upkeep relative to a horizon. If
an optimal update is found (i.e. ∆∗ 6= ∅), it is then applied; otherwise the
environment remains unchanged (i.e. δ∗ = δ∅). During the application of
an update, the labour costs are measured and used to update the labour
estimator l̂abour. The review interval is then succeeded by a new stable
interval.

Stable interval. Once the update produced during the review interval has
been performed, the stable interval begins. The purpose of the stable inter-
val is to maintain uninterrupted streams that satisfy targets, while moni-
toring the upkeep of the environment to update the ûpkeep estimator. The
stable interval ends when one of two events occur: (1) if a short-term nega-
tive perturbation is detected, the review interval is started immediately in
order to mitigate the increase in cost induced by such a perturbation; and
(2) if the horizon is reached, the review interval is started as scheduled in
order to check for possible improvements as the result of any long-term
positive perturbations that occurred during the stable interval.

Both the review interval and the stable interval are thus responsible for
monitoring observed costs.

4.3.1 Update procedure

Whenever the review interval is started, we search for and apply an opti-
mal update if one exists. We denote δp to represent the perturbation that
started to review cycle, if one exists; otherwise δp = δ∅. It is applied to a
previous environment ε−1 to yield the current environment ε0 = ε−1 ⊗ δp.
The challenge is to find an optimal update δ∗ to mitigate any suboptimality
induced by δp, yielding the next environment8 ε1 = ε0 ⊗ δ∗. This is done
through a three-step approach shown below.

Exploration. The procedure for reconfiguration is shown in Algorithm 4.
Nodes represent CUs-to-be that should become part of the resulting envi-
ronment. The EXPLORE procedure first generates a root node which is a
placeholder that is used to represent the targets (line 7). For example, if
there are three targets, the root node will be a ternary node such that the
tags for every input correspond to the tags of the targets, and the ports
correspond to the desired ports of the targets. The task of EXPLORE is to
build a valid computation graph starting from the root node. To do so, it
will need to expand nodes in the graph with children satisfying that node’s
inputs. The combination of a node and an input index is therefore called a
job. Jobs are kept track of as part of the openJobs stack (line 3), and updated

8The perturbation ε−1 ⊗ δp is thus similar to the game-theoretical move by nature.

64 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

Algorithm 4: Exploration procedure
1 function EXPLORE(Environment ε, ChangeSet δp):
2 registry← new Map()
3 openJobs← new Stack()
4 trace← new Stack()
5 bestTrace← new Stack()
6 bestCost← ∞
7 Node root = new Node(createRoot(ε))
8 running← true
9 while running do

10 expansionFailure← false
11 while |openJobs| > 0∧ ¬expansionFailure do
12 Job job← openJobs.pop()
13 Node next← registry[job.tid]
14 if EXPAND (next, trace, registry, ε, δp, bestCost) then
15 if ¬next.virtual[job.port] then
16 Add children to openJobs
17 end
18 Reset candIndex for all jobs in openJobs
19 else
20 expansionFailure← true
21 openJobs.push(job)
22 end
23 end
24 if |trace > 0| then
25 (f rom⇒i to, cost)← trace.pop()
26 if ¬expansionFailure ∧ bestCost > cost then
27 bestTrace← trace ∪ (f rom⇒i to, cost)
28 bestCost← cost
29 end
30 registry[f rom].children[i]← nil
31 registry[f rom].virtual[i]← false
32 if⇒=→ then
33 registry[to]← nil
34 Remove invalidated jobs from openJobs
35 end
36 openJobs.push(new Job(f rom, i))
37 else
38 running← false
39 end
40 end
41 return COMPILE (bestTrace, ε)

when necessary. The choices made while building the graph are likewise
stored in the trace stack (line 4).

The procedure runs by sequentially considering every job in openJobs

4.3. HANDLING PERTURBATIONS 65

Algorithm 5: Node expansion
1 function EXPAND(Node node, var i, Stack trace, Map registry, Environment ε,

ChangeSet δp, var bestCost):
2 children[i]← nil
3 virtual[i]← false
4 expanded← false
5 while ¬expanded ∧ candIndex[i] < numCandidates(node.tid, ε, i) do
6 candidateTID ← getCandidate(node.tid, ε, δp, candIndex[i])
7 (f rom⇒i to, sumCost)← trace.peek()
8 cost← cost(candidateTID)
9 if registry[candidateTID] = nil then

10 if sumCost + cost < bestCost then
11 Node child← new Node(candidateTID)
12 children[i]← child
13 virtual[i]← false
14 registry[candidateTID]← child
15 trace.push((tid→i candidateTID, sumCost + cost))
16 Reset inputs succeeding i
17 expanded← true

18 end
19 else
20 children[i]← registry[candidateTID]
21 virtual[i]← true
22 trace.push((tid i candidateTID, sumCost))
23 expanded← true

24 end
25 candIndex[i]← candIndex[i] + 1
26 end
27 return expanded

and calls the EXPAND procedure on these nodes (lines 11–23). If the EXPAND
procedure succeeds, any new children have their inputs added to openJobs.
Sometimes EXPAND will find an existing node. In that case it has already
been expanded as the result of the DFS approach, and does not need its
inputs added as jobs. Whenever EXPAND fails, the failing job is returned to
openJobs and backtracking is applied (lines 24–39). EXPAND can fail when
all candidates for expansion have been exhausted, either due to having
been attempted already, or because they result in the graph’s cost exceed-
ing the current best cost. When backtracking is performed, the last action
stored in trace is reverted and a corresponding job as added. This will
cause EXPAND to try a different candidate. For every valid graph, we check
whether it is better than the currently best solution, and if so we replace it.
Once no more backtracking is possible, we use the best trace and convert it
into a change set using the COMPILE procedure (line 41).

66 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

Algorithm 6: Compilation procedure
1 function COMPILE(Stack trace, Environment ε):
2 δ← (∅,∅,∅,∅,∅,∅)
3 removalSet← CUε

4 channelMap← new Map()
5 cidMap← new Map()
6 foreach (f rom⇒i to, cost) ∈ trace do
7 if to.cid ∈ removalSet then
8 removalSet \ {to.cid}
9 end

10 if⇒ =→ then
11 chan← getUniqueID()
12 channelMap[to]← chan
13 cid← getUniqueID()
14 cidMap[to.tid]← cid
15 δ← δ ∪ spawn(ε, cid, to.tid,∅) ∪

connect↓(ε, cidMap[f rom.tid], i, chan) ∪ connect↑(ε, cid, chan)
16 else
17 chan← channelMap[to]
18 δ← δ ∪ connect↓(ε, cidMap[f rom.tid], i, chan)
19 end
20 end
21 foreach cid ∈ removalSet do
22 δ← δ ∪ destroy(ε, cid)
23 end
24 return δ

Expansion. The EXPAND procedure is described in greater detail in Algo-
rithm 5. The procedure is applied to a specific node and attempts to find
a valid child node for a specified input index i. The corresponding action
taken is then added to the trace. Actions can represent the spawning of and
connecting to new CUs (→), or the reusing of nodes () that were previ-
ously added to the exploration graph as part of the current call to EXPLORE.

Every node keeps track of which candidates it has thus far considered
for expansion for every input index. This is done by maintaining a candIndex
array of candidate indices, where each index corresponds to the next can-
didate to be attempted for that input index. The procedure attempts suc-
cessive candidates until it either finds one that works, or runs out of can-
didates for input index i (lines 5–26). Specifically, the procedure considers
transformations candidateTID and checks if they occur in the registry map,
which maps TIDs to nodes. If a node already exists for candidateTID, it is
reused (lines 20–23), i.e. a virtual connection. Otherwise, a new node is cre-
ated iff this does not result in the cost exceeding the best cost (lines 10–18),
i.e. a new connection. Finally, the procedure returns whether expansion
was successful or not (line 27).

4.3. HANDLING PERTURBATIONS 67

Change set compilation. The COMPILE procedure described in Algorithm 6
constructs a change set δ∗ from the trace produced by EXPLORE in conjunc-
tion with EXPAND. The change set is first composed of a number of spawn
and connect actions. Spawn actions are called for nodes representing new
CUs (line 15). A newly spawned CU then needs to be connected to a chan-
nel for its output port. The same channel is used to connect the input port of
the receiving CU to. For connections to existing CUs, only the receiving CU
needs to be connected with its input port. In these cases, the pre-existing
channel is used to connect to. Finally, any CUs existing in the original envi-
ronment that do not occur in the trace are scheduled for destruction. This
ensures that CUs that are not in use do not linger and therefore do not ac-
cumulate upkeep.

To better illustrate how the three procedures interact, the following ex-
ample illustrates two key scenarios. In the first, the environment is com-
pletely empty as it would be when the system is first started, and a pertur-
bation populates the environment for the first time. The second case deals
with perturbations that negatively impact the environment and which must
be resolved to guarantee semantic subscriptions are maintained.

Example 12 (Finding an optimal change set). Consider for a horizon H = 10
an environment ε = 〈∅, F, T,∼〉 such that

F = { 〈tid1, f1(x), [A] , B〉 , (4.31)
〈tid2, f2(x), [C] , D〉 ,
〈tid3, f3(), [], E〉 ,
〈tid4, f4(), [], F〉 ,
〈tid5, f5(), [], G〉};

T = { 〈qid1, B, 101〉 , (4.32)
〈qid2, D, 102〉},

and the similarity relation is reflexive and further includes A ∼ E, A ∼ F, B ∼ F,
and B ∼ G. We thus have an environment in which no CUs are active, five trans-
formations are registered, and two targets are registered. We will assume that the
cost estimators yield 1.0 labour and 1.0 upkeep for each of the five transformations.
Additionally, the perturbation is described by

δp = (∅,∅,∅,∅, T,∅), (4.33)

meaning that the disturbance is the registration of the targets T for example by
a human operator. Since δp is a short-term negative perturbation (∞ > 0),
the EXPLORE(ε, δp) procedure described in Algorithm 4 is called to mitigate the
perturbation-induced cost increase.

After initialising the stacks and map, the root node is created. This root node
is based on the set of targets T and is represented by a placeholder transformation

68 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

〈root,∅, [D, E] , none〉. The first call to EXPAND is done on this root node with an
empty trace and a bestCost value corresponding to ∞. The expansion is performed
in a depth-first manner, starting with the first input of the root node. The candi-
dates are determined by the similarity relation ∼. Therefore, any transformations
with an output tag equal to an input tag under consideration qualify as candidates
for expansion. The first input tag of the root node is B, which is only equal to
the output tag of transformation tid1. Since tid1 does not exist in the registry, it
cannot be reused, so a new CU would have to be spawned from it. The total cost of
such a CU would be 11.0; 1.0 from the labour and 10.0 from the upkeep over the
length of the horizon. Since our current cost is 0.0, adding 11.0 would not exceed
the bestCost value of ∞, so the candidate is used. The trace now consists of one
entry;

[(root→0 tid1, 11.0)]. (4.34)

The EXPAND procedure is subsequently called again for the first input index of the
node for tid1. Its input tag corresponds to A, which is similar to the output tag
of tid3 and tid4. Maintaining the order of transformations, tid3 is chosen first,
resulting in the trace

[(tid1 →0 tid3, 22.0) , (4.35)
(root→0 tid1, 11.0)].

Since tid3 has no dependencies, the search continues with the second input of the
root node, yielding tid2 as a candidate, followed by tid4. The first solution thus has
a trace

[(tid2 →0 tid4, 44.0) , (4.36)
(root→1 tid2, 33.0) ,
(tid1 →0 tid3, 22.0) ,
(root→0 tid1, 11.0)]

and a cost of 44.0. The EXPLORE procedure then starts backtracking. The trace
head

(tid2 →0 tid4, 44.0) (4.37)

is first removed, and EXPAND is called on its head node tid2 with a best cost of
44.0. While tid5 is a valid candidate, its cost would be equal or greater than the
best cost of 44.0, so EXPAND returns failure and backtracking continues. The next
trace head is

(root→1 tid2, 33.0) , (4.38)

for which there are no alternatives, so backtracking continues further. Next is trace
head

(tid1 →0 tid3, 22.0) , (4.39)

where EXPAND is called on the tid1 node, which does have an alternative candidate
tid4. Since picking tid4 would not exceed the best cost, it is picked, resulting in a

4.3. HANDLING PERTURBATIONS 69

trace

[(tid1 →0 tid4, 22.0) , (4.40)
(root→0 tid1, 11.0)].

The EXPAND procedure returns success, but EXPLORE still has the root node as an
open job to reflect the backtracking which removed its subgraph at its second input,
so EXPAND is called on the root node. Due to the change from tid3 to tid4 earlier
in the trace, the root node is allowed to pick tid2 as its candidate again. Expansion
of the tid2 node subsequently yields tid4 and tid5 as candidates. Adhering to the
ordering, tid4 is chosen first. This time, tid4 already exists in the registry, so it can
be reused for free, resulting in the trace

[(tid2 0 tid4, 33.0) , (4.41)
(root→1 tid2, 33.0) ,
(tid1 →0 tid4, 22.0) ,
(root→0 tid1, 11.0)]

and a cost of 33.0. After this point, no better solutions are found, and backtracking
exhausts the trace.

The EXPLORE procedure then returns the result of applying the COMPILE
procedure to the trace given the environment ε. This procedure runs through the
trace, starting at the bottom of the stack, choosing unique channels and CU identi-
fiers. The first item is root →0 tid1, which requires the spawning of a CU of type
tid1 and its subsequent connection to the desired target channel 101. A unique
channel is randomly chosen for its input; we will assume it is channel 1. This is
followed by the spawning of a CU of type tid4, the output for which is connected
to channel 1, and which has no inputs. Then follows the spawning of a CU of type
tid2 whose output is connected to channel 102 as determined by the second target,
and whose input channel us chosen to be channel 1 as it shares the source CU of
type tid4. The resulting change set then becomes δ∗ = (CU+,∅,∅,∅,∅,∅),
where

CU+ = { 〈cid1, tid1, [1], 101,∅〉 , (4.42)
〈cid2, tid4, [], 1,∅〉 ,
〈cid3, tid2, [1], 102,∅〉}.

The update ε′ = ε⊗ EXPLORE(ε, δp) thus yields a resulting environment

ε′ =
〈
CU+, Fε, Tε,∼ε

〉
. (4.43)

When this update is performed, the estimators for l̂abour are updated based on the
observed resource usage associated with instantiating transformations.

The update above marks the end of the review interval and the start of the stable
interval. The stable interval normally has a duration equal to the horizon length,

70 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

during which the estimators for ûpkeep are updates based on the observed resource
usage of CUs. Short-term negative perturbations could however cut this duration
short. To better illustrate the adaptivity of semantic subscriptions, we will assume
that such a perturbation indeed occurs.

For the duration from the review cycle’s completion to the perturbation, the
targets qid1 and qid2 ensured that there would be a stream sent over channels 101
and 102, for which the semantics are described by the tags B and D respectively.
The occurrence of the perturbation jeopardises these streams. In the worst case,
no more samples are sent out on the channels, effectively freezing the streams.
The premature termination of the stable interval and start of the review interval
is meant to quickly mitigate this problem. We will assume that the perturbation
corresponds to the crash of a CU, illustrated by

δp = (∅, {〈cid3, tid2, [1], 102, S〉} ,∅,∅,∅,∅). (4.44)

The perturbation δp encodes the fact that the CU of type tid2 and with identity
cid3 has been removed from the environment. This puts a hole in the computation
graph, as streaming data from CU cid2 sent over channel 1 is no longer processed,
nor is the stream that would have resulted from that processing sent over channel
102 to satisfy target qid2. Furthermore, the estimators for labour and upkeep have
been updated since our previous optimal update, and the upkeep cost of CU cid2 is
determined to be 3.0 per time-unit instead of the estimated 1.0 per time-unit.

The EXPLORE(ε′ ⊗ δp, δp) procedure is run to obtain an optimal update that
will cost-efficiently resume the data stream on channel 102. The process is the same
as before, except that now we can use CUs from the environment ε′′ = ε′ ⊗ δp,
which are prioritised over spawning new CUs from transformations. One advan-
tage of reusing CUs is that no labour cost is acrued. This leads to an initial trace

[(tid2 0 cid2, 51.0) , (4.45)
(root→1 tid2, 51.0) ,
(cid1 →0 cid2, 40.0) ,
(root→0 cid1, 10.0)]

and a cost of 51.0; reusing cid1 requires an upkeep of 10.0, reusing cid2 requires an
upkeep of 30.0, spawning a CU of type tid2 requires an upkeep of 10.0 and labour
equal to 1.0, and connecting this new CU to a CU we already paid for is cost-
free. Unfortunately, while this solution is a quick-fix of the problem, it is not the
best solution. The upkeep cost of cid2 has increased sharply since the last review
interval. Therefore, backtracking yields another solution which is optimal;

[(tid2 →0 tid5, 43.0) , (4.46)
(root→1 tid2, 32.0) ,
(cid1 →0 tid3, 21.0) ,
(root→0 cid1, 10.0)].

4.3. HANDLING PERTURBATIONS 71

This way, we no longer expend resources on the upkeep of cid2, and the one-off
labour cost is insignificant with a horizon length of 10 time-units. The EXPLORE
algorithm next calls on COMPILE. As before, a change set is generated which
spawns and connects CUs. This time we however also destroy CU cid2 to remove
its drain on the upkeep, as it is never removed from the removalSet due to not oc-
curring in the trace. The resulting change set is therefore δ∗ = (CU+, CU−,∅,∅,∅,∅),
where

CU+ = { 〈cid4, tid3, [], 1,∅〉 , (4.47)
〈cid5, tid2, [2], 102,∅〉 ,
〈cid6, tid5, [], 2,∅〉};

CU− = { 〈cid2, tid4, [], 1, S〉}. (4.48)

The application of δ∗ to environment ε′′ then yields a new environment

ε′′ ⊗ δ∗ = 〈CU, Fε, Tε,∼ε〉 (4.49)

such that the new computation graph CU is described by

CU = { 〈cid1, tid1, [1], 101, S〉 , (4.50)
〈cid4, tid3, [], 1,∅〉 ,
〈cid5, tid2, [2], 102,∅〉 ,
〈cid6, tid5, [], 2,∅〉}.

As can be seen from the environment ε′′ ⊗ δ∗, we now have four CUs satisfying
the two targets. This leads to the resumption of the previously-frozen stream over
channel 102, fixing the problem caused by the most recent perturbation in a cost-
efficient manner.

4.3.2 Correctness

The EXPLORE procedure is designed to find an optimal update if one ex-
ists, even if the original environment is invalid and therefore has a cost
exceeding MAX COST. Note that while there may exist different optimal up-
dates with the same cost, only the first one found is selected; the others are
pruned. In order to show the correctness of the EXPLORE procedure, it must
be shown to return an optimal update.

Theorem 7 (Correctness). The EXPLORE procedure is correct, meaning that for
any environment ε resulting from a perturbation δp, and any horizon of length H,
for the set of optimal change sets ∆∗ defined as

∆∗ = arg min
δ

ĉost(ε, δ, H) (4.51)

subject to ĉost(ε, δ, H) ≤ MAX COST,

72 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

the following implication holds:

∆∗ 6= ∅→ EXPLORE(ε, δp) ∈ ∆∗, (4.52)

i.e. if some optimal change sets exist, the EXPLORE procedure will return one of
them.

Proof. The proof is based on Algorithms 4, 5, and 6. In particular, it is first
shown that the exploration procedure exhaustively finds all change sets δ
so that ε⊗ δ ∈ Valid if the guard sumCost + cost < bestCost on line 10 in
Algorithm 5 is omitted. It is then shown that the inclusion of this guard
excludes suboptimal change sets, thereby returning an optimal change set
if one exists.

The EXPLORE procedure performs a depth-first expansion of the root
node when run for the first time. This sequence of operations is enforced
by the stack of open jobs; whenever more expansions are available, they
are pushed to the top of the stack. This means that when the stack is empty,
no more expansions can be performed, and a complete computation graph
has been found. The sequence of actions resulting in this graph is main-
tained as a trace stack. This allows us to backtrack by undoing actions and
considering alternative candidates.

The candidates for expansion are kept track of within the nodes of the
graph. Whenever we backtrack to a node, we increment the candidate in-
dex (candIndex) for the input index of interest. When a suitable alternative
candidate is found, the trace is updated accordingly. Since a change has
been made to the graph, this means we can reset all of the candidate in-
dices of future jobs. This way we ensure that we find all valid change sets.

Now consider what happens if we reinstate the cost guard. For EXPLORE
to return a suboptimal solution, either there exists no solution in ∆∗ or the
optimal solution is not considered in lines 9–40. The former is a contra-
diction with our assumption that ∆ 6= ∅. The latter can only occur if the
cost guard on line 10 in EXPAND prunes away the optimal solution. Since
the guard only excludes expansions that would lead to costs greater than
the best cost, that would mean negative costs are necessary for this to oc-
cur. But negative costs are not allowed, so EXPAND cannot prune away the
optimal solution. Therefore EXPLORE cannot return a suboptimal solution
whenever ∆∗ is non-empty.

4.3.3 Any-time extension

The EXPLORE procedure quickly finds a first solution (or finds that none
exist), which it subsequently improves on through an exhaustive consider-
ation of alternatives. Alternatively, the procedure could stop considering
alternatives prematurely and return the best solution found thus far. Such
an any-time extension of EXPLORE is useful in cases where an exhaustive
search would take too long and we are willing to sacrifice the optimality

4.4. ONTOLOGY-BASED MODEL REPRESENTATION 73

of the produced change set in favour of getting a change set faster. We
therefore consider a variant of EXPLORE which in addition to its usual ar-
guments takes a value timeout corresponding to the time-point after which
EXPLORE stops backtracking on its trace (line 24), effectively extending the
guard to |trace| > 0 ∧ runtime ≥ timeout where runtime represents the
number of time-units that passed since the procedure was started. The
original correctness criterion can then be generalised to

lim
timeout→∞

(
EXPLORE(ε, δp, timeout)

)
∈ arg min

δ
ĉost(ε, δ, H) (4.53)

subject to ĉost(ε, δ, H) ≤ MAX COST.

Given a finite value for timeout, it cannot be guaranteed that EXPLORE
will return an optimal change set. In such a case the direction of explo-
ration becomes a determining factor for the quality of the result. Heuris-
tics can be used to improve the result quality by guiding the direction of
exploration based on background knowledge of the search space. Specif-
ically, the getCandidate procedure in EXPAND imposes a total ordering
≺ on the available candidates at every node. When the procedure plans to
perform a spawn action, both labour and upkeep costs are acrued. When
instead an existing CU is used, labour costs are eliminated. If a previously-
expanded node can be used, all costs are eliminated. Therefore, the total
order

Spawn from TFs ≺ Reuse CUs ≺ Reuse nodes (4.54)

would prioritise cheap options before considering more expensive ones. A
perturbation δp can provide further guidance by encoding cases in which
CUs are destroyed. If the associated transformation was not removed,
the ordering of candidate transformations can consider this transformation
first, as it will likely provide an initial solution fast. Finally, additional
heuristics taking into account properties of transformations and CUs can
be considered, for example their cost, tags, or identifiers which imply fresh-
ness.

The any-time extension of EXPLORE also allows for the inclusion of its
own runtime into the configuration cycle. The length of the horizon H is
used to determine accumulated upkeep during the stable interval. In the
any-time version, we can consider a configuration cycle length

H+ = Hreview + Hstable (4.55)
= timeout + H (4.56)

instead, which fixes the configuration cycle to a regular pattern.

4.4 Ontology-based model representation

The formal model for stream reasoning frameworks allows us to precisely
describe system configurations in terms of environments, and the change

74 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

sets that can be applied to those environments. However, different realisa-
tions of this type of framework may use different internal representations.
This can lead to situations wherein two different realisations based on the
same formal model use two different representations. Such inconsistencies
can lead to difficulties if the two are expected to interoperate.

Definition 37 (Semantic interoperability). Semantic interoperability refers
to the ability to interoperate at a semantic level, even if the local representations
under consideration differ.

The Semantic Web was initially proposed by Berners-Lee et al. (2001)
as an approach to making the World Wide Web machine-readable so that
concepts could be formalised and exchanged, making it a good candidate
to realise semantic interoperability. The Web Ontology Language (OWL)
was described by the W3C in McGuinness et al. (2004), and was designed
to describe such ontologies.

4.4.1 DyKnow ontology

Semantic Web technologies were used to generate a DyKnow ontology9. On-
tologies in the Semantic Web are based on Description Logic (DL), which
makes it possible to perform inference on them to obtain indirect knowl-
edge. The DyKnow ontology describes the concepts presented as part of
the formal model, as well as the relations that exist between these concepts.
A concept hierarchy is shown in Figure 4.2, and a more detailed descrip-
tion of the ontology is presented in Appendix A using Manchester syntax
for human readability.

The ontology formalises concepts such as CUs and the transformations
they are instances of. For example, the dyknow:Transformation concept is de-
fined in DL as

Transformation v∃hasName.xsd:Name (4.57)
u∃hasCostModel.LabourCostModel,

where
LabourCostModel v CostModel. (4.58)

dyknow:Transformation objects can further have input and output ports us-
ing the dyknow:hasInPort and dyknow:hasOutPort relations. The name of a
dyknow:Transformation object then corresponds to a tid; the relations to dy-
know:Port objects are used for itag1, . . . , itagn and otag; and the cost is rep-
resented by a dyknow:LabourCostModel.

CUs are also encoded in the ontology with the dyknow:ComputationUnit
concept;

ComputationUnit v∃hasName.xsd:Name (4.59)
u∃hasCostModel.UpkeepCostModel.

9Available at: http://www.dyknow.eu/ontology/

4.4. ONTOLOGY-BASED MODEL REPRESENTATION 75

Figure 4.2: Hierarchical concept graph of the DyKnow ontology.

76 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

CUs can be connected via a dyknow:Subscription, which is defined as

Subscription v∃fromCU.ComputationUnit (4.60)
u∃fromPort.OutPort

u∃toCU.ComputationUnit

u∃toPort.InPort

u∃hasChannel.Channel,

meaning that a dyknow:Subscription must have some input and output port,
as well as some input and output CU. Further, it is associated with a dy-
know:Channel, which is used to represent the transportation mechanism over
which streams can flow from CU to CU. These channels are only required
to have some name, i.e.

Channel v ∃hasChannelName.xsd:string. (4.61)

The semantic representation thus matches the formal definition of compu-
tation graphs, and adds additional concepts (i.e. channel) that are neces-
sary for realisations of the formal model.

Finally, targets are represented using the dyknow:Target concept;

Target v∃hasName.xsd:Name (4.62)
u∃hasChannel.Channel

u∃hasTag.Tag.

Targets are thus also extended with a channel over which the resulting
stream is expected. The dyknow:hasTag connects dyknow:Tag objects to a dy-
know:Target object. The dyknow:Tag objects are in turn connected to semantic
descriptions with the dyknow:hasTagDescription relation.

CUs, transformations and targets can be associated with dyknow:Environment
objects to clearly distinguish between different environments. This makes
it possible for a knowledge base to represent not just a representation of a
local environment, but also that of external environments, for example on
different platforms. Configuration information can further be exchanged
using a common vocabulary, allowing agents to interpret configurations
of other agents and to share them in a multi-agent system. Furthermore,
different realisations of the formal model for stream reasoning frameworks
can use and extend the ontology while retaining interoperability. For exam-
ple, the dyknow:Channel concept does not specify a specific transportation
mechanism.

Because ontologies in OWL are based on DL, we can apply inference to
the ontological data. This makes it possible to obtain implicit information
from explicit information. One example of a potentially useful property is
the transitive dyknow:dependsOn object property, which is defined by

dependsOn v hasSubscription ◦ fromCU. (4.63)

4.4. ONTOLOGY-BASED MODEL REPRESENTATION 77

The dyknow:dependsOn relation for a given CU will connect it to all other
CUs down the subscription pipeline. A reasoner can be used to infer these
relations for every CU, such that the relations do not have to be provided
explicitly, reducing the size of the populated ontology. This makes it possi-
ble to easily obtain for some CU all CUs it depends on, which can be useful
for example when removing a CU to check for broken dependencies.

4.4.2 Ontological extensions

The DyKnow ontology thus provides a tool to support semantic interoper-
ability between different realisations of the formal model for stream rea-
soning frameworks, even when these realisations make use of different
internal representations of environments. A key observation is that the
DyKnow ontology is designed to be extendable for purposes of realising
the DyKnow model. These extensions can be performed in different ways
while retaining a cross-compatible representation. One could thus see the
DyKnow ontology as a top-level ontology. There are two sets of expected
extensions for the DyKnow ontology: system realisations and annotation lan-
guage realisations.

System realisations. The first category for ontological extensions deals
with the realisation of the DyKnow model into a concrete system. In this
case, concepts such as Channel or Transformation need an application-specific
conceptualisation. These conceptualisations are more specific than the gen-
eral concepts described in the DyKnow ontology. For example, while a
channel is assumed to have an identifier, the DyKnow model does not put
any constraints on what this identifier may look like, whereas a specific
realisation might do so. Likewise, transformations may be realised as pro-
grams, resulting in more specific properties.

Annotation language realisations. The second category deals with the
realisation of languages to annotate transformations or targets. These an-
notations are conceptualised by the DyKnow ontology using the Tag con-
cept. A tag could be many things. For example, a tag may simply be a
simple string of text, or it might be something more specific such as logical
propositions or ontological concepts.

Different realisations can thus be represented using ontological exten-
sions of the DyKnow ontology, as demonstrated later. Different realisations
however still understand the high-level conceptualisations; a channel is a
channel regardless of how it is implemented. This makes it possible for dif-
ferent realisations of DyKnow to remain compatible. While a multi-agent
approach is beyond the scope of this thesis, the ontology serves as an im-
portant starting point for multi-agent support.

78 CHAPTER 4. SEMANTIC SUBSCRIPTIONS

4.5 Open problems

• The choice of cost measures for CUs is difficult. Previous work, for ex-
ample Lundh (2009), notes the same difficulties and instead simplifies
the problem by assigning constant utility values. It seems more likely,
however, that the cost of CUs would change based on the context of
the operations. It would be interesting to see how well a predictive
cost model could be learned in terms of computational resource us-
age, and which features would be the most informative for these pre-
dictions. While the model presented in this chapter provides a frame-
work for using such predictions, learning good estimators is beyond
the scope of this thesis.

• While the DyKnow model does consider the cost of environments, it
does not consider the utility of the produced streams. In some imple-
mentations, a higher upkeep is associated with a higher-quality data
stream. The representation of utility and the trade-off between cost
and utility are interesting open problems.

• The presented approach allows for the configuration model to be rep-
resented relative to a Semantic Web ontology. This is done because
we foresee future configurations spanning multiple agents in a multi-
agent organisation, but additional work is necessary.

4.6 Summary

Reasoning over streams allows us to use crisp symbolic information to de-
termine whether a statement in MSTL holds, which can be useful in appli-
cations such as execution monitoring. However, these symbols need to be
assigned a truth value in order to be useful. State stream generation was
previously discussed in terms of the combination and synchronisation of
symbolic information streams. In many cases, and especially in the case
of robotic systems, information enters the system at a much lower level
of abstraction, for example as raw sensor observations. Generating a high-
level information stream thus requires the ability to reason about one’s own
stream refinement capabilities. This chapter formalised the stream rea-
soning framework’s computational environment as the DyKnow model.
It does so by considering targets for formula symbols, abstract transfor-
mations, concrete CUs, and channels connecting CUs. The model can be
represented relative to a Semantic Web ontology, allowing other (heteroge-
neous) systems to reason about a system’s internal configuration. Finally,
an algorithm for finding optimal updates was presented in the context of a
configuration life-cycle consisting of recurring review and stable intervals.

Chapter 5

DyKnow-ROS: Putting it all
together

By integrating the previously-presented techniques, an adaptive stream
reasoning framework can be constructed. In this chapter an instance of
such a framework called DyKnow-ROS is presented, which provides a re-
alisation of the DyKnow model integrated with ROS. The choice of im-
plementation is however general and could be applied to other support-
ing software. This chapter uses and extends materials from de Leng and
Heintz (2016b), which primarily focused on extending ROS with reconfig-
urable subscriptions, and materials from de Leng and Heintz (2017), which
focuses on semantic subscriptions for ROS. It presents an overview of the
software architecture and services by providing concrete realisations of the
abstract components presented previously. Finally, the framework is em-
pirically tested to measure overhead cost resulting from the indirection in-
duced by DyKnow-ROS.

5.1 Introduction

The DyKnow-ROS stream reasoning framework is an extension to ROS (Quigley
et al., 2009), which is a popular robot middleware used frequently in both
industry and academia. DyKnow-ROS is capable of reasoning about which
streams to subscribe to and can reconfigure the system during run-time to
for example generate streams required for spatio-temporal reasoning tasks.

ROS allows developers to write implementations as ROS nodes, which
can communicate with each other by using services and topics. These nodes
are combined into packages, of which many have been made publicly avail-
able. Topics can be used to connect nodes to establish a flow of information,
which makes them the implementation counterpart to the concept of chan-
nels capable of transporting information streams. Topics are advertised by

79

80 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

publishers and can be subscribed to by other nodes using subscribers, such
that a single topic can have multiple publishers and subscribers. Services
allow nodes to advertise functionality to other nodes, which can then be re-
quested by these nodes. Services (optionally) take a number of arguments
and can (optionally) return a result to the service caller. ROS uses Node
Handles to expose its API to developers of nodes, which packages such as
Image Transport augment to support efficient image transportation. Where
standard nodes correspond to individual processes when run, nodelets are
run on threads within a Nodelet Manager node. Communication between
nodelets is generally more efficient than between nodes. Further, nodes are
instantiated either manually or through a launch file, whereas nodelets can
also be instantiated using the Nodelet Manager’s services. This makes it
possible for programs to instantiate other programs at will.

In practice, most ROS-based systems rely on sometimes large collec-
tions of repeatedly nested launch files to operate. It may also be necessary
for a user to run a number of launch files in a particular sequence in or-
der for a system to function properly. It can be quite challenging to make
changes to such files to accommodate new components, or to change con-
figurations as part of a set-up phase. Clearly a lot of manual configurations
may be necessary to operate a ROS-based system. This may work for small
systems, but quickly becomes infeasible as systems grow to for example
hundreds of robots. Depending on the application, operator errors can be
very expensive. By applying the DyKnow model to ROS, DyKnow can
benefit from the underlying architecture provided by ROS, while provid-
ing ROS with adaptive reconfigurability. We consider this to be an exten-
sion of core ROS features. In the performance evaluation we show that the
induced overhead cost is minimal.

In this chapter, we use ROS to realise the DyKnow model and thereby
realise an adaptive spatio-temporal stream reasoning application. The choice
of ROS is based on the fact that it closely follows the DyKnow model,
but other middleware could be used as well. The DyKnow-ROS system
at times requires supporting functionality that is not the focus of this the-
sis. When this occurs, these functionalities are identified in the thesis and
simplified placeholder solutions are used to complete the system. These
functionalities are subsequently revisited in a discussion on opportunities
for future work.

5.2 Architecture

DyKnow-ROS is a concrete realisation of the DyKnow model based on the
ROS middleware. Figure 5.1 shows the high-level architecture of DyKnow-
ROS with relevant components highlighted. In this case, all components
are considered relevant, and the focus is on their integration. In particu-
lar, given a formula and a semantic interpretation of its symbols, the full
system should be able to automatically generate a state stream over which

5.2. ARCHITECTURE 81

Figure 5.1: Conceptual system overview for spatio-temporal stream rea-
soning with adaptive state stream generation.

it then evaluates the provided formula. Once the formula has been evalu-
ated, the computational environment should automatically be cleaned up.
This combined functionality requires implementations for the stream rea-
soning manager, stream reasoning engine, the computational environment,
and their connecting interfaces.

While ROS provides most of the transportation functionality needed
to support this type of stream reasoning, its service-based interface lacks
control over the way nodelets in ROS are connected. The first step towards
DyKnow-ROS is therefore to extend this interface with additional services.
By default, the nodelet manager provides the following services:

• NodeletLoad: Given a nodelet name and type, the Nodelet Manager
instantiates a nodelet of that type, where the type is a reference to the
nodelet’s source.

• NodeletUnload: Given a nodelet name, the Nodelet Manager de-
stroys that nodelet. A nodelet cannot unload itself.

• NodeletList: Returns an array of nodelet names.

Nodelets can thus be added, removed, and enumerated using the Nodelet
Manager’s services. These services are prerequisites to the spawn and destroy
actions formally defined as part of the DyKnow model. Neither the Nodelet
Manager nor nodelets however provide services that allow for subscribers
and publishers to be changed at run-time. Developers are expected to spec-
ify configurations manually using launch files instead—ROS was not de-
signed for the purpose of automatic (re)configuration.

To extend ROS with run-time reconfiguration services for subscribers
and publishers in nodelets, different approaches could be taken. The ar-
chitecture of DyKnow-ROS was chosen based on three factors: ease of

82 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

adoption, ease of use, and minimal computational overhead. DyKnow-
ROS does not require a custom version of ROS, but instead provides an
optional extension through the use of add-on components that build on
top of nodelets. This extension is collectively referred to as a nodelet proxy.
This allows developers to use DyKnow-ROS in some parts of their system
but not others, if they so choose. Where DyKnow-ROS replaces standard
ROS components, it sticks as closely to the original interface as possible
and tries to limit required changes to namespace changes. This was done
to make it easy to switch from standard ROS nodelets to DyKnow-ROS
CUs while retaining a familiar interface. Lastly, DyKnow-ROS inevitably
induces overhead computational costs by virtue of being an add-on layer
on top of ROS. It seeks to keep this overhead minimal by keeping it relative
to the degree of control granted to DyKnow-ROS. The more extra features
from DyKnow-ROS are used, the larger the overhead.

5.2.1 The nodelet proxy

The flexibility offered by the Nodelet Manager makes it an excellent tool
for dynamically reconfiguring a ROS system. As mentioned earlier, the ser-
vices offered by a Nodelet Manager are limited to the loading and unload-
ing of nodelets. DyKnow-ROS therefore complements these services with
the help of persistent nodelet proxies that augment the ROS Node Handle.
The persistent nodelet proxy is the key component that allows DyKnow-
ROS to exert a greater control over the augmented nodelets, which are re-
alisations of CUs. A developer establishes a nodelet proxy by creating a
DyKnow variant of the nodelet handle instead of the usual ROS nodelet
handle. Recall that the ROS nodelet handle serves as an API that can
be used to call ROS functionality, such as creating publishers and sub-
scribers. The DyKnow-ROS node handle instead delegates these calls to the
nodelet proxy, which either delegates to the ROS node handle or to custom
DyKnow variants depending on the functionality requested. Specifically,
DyKnow-ROS provides its own publishers and subscribers that can be used
in the same way as ordinary ROS publishers and subscribers. The key dif-
ference between the two lies in the indirection imposed by DyKnow-ROS.
ROS publishers and subscribers connect directly to topics; a subscriber can
name a topic and a callback method, whereas a publisher can name a topic
and a message to be sent. The DyKnow-ROS variants instead use ports,
which are in turn connected to a topic. The nodelet proxy maintains a map-
ping between ports and topics, and allows for this mapping to change as
the result of services that are offered by the proxy. This way, ports can be
associated with different topics over time, which allows for run-time recon-
figuration to occur.

To illustrate the extension, a schematic of the nodelet proxy and its rela-
tion to a host nodelet is shown in Figure 5.2. The nodelet implementation
by a developer is indicated by NodeletImpl, which extends ros::Nodelet. The

5.2. ARCHITECTURE 83

Figure 5.2: UML diagram showing the DyKnow nodelet implementation
and its relation to standard ROS components.

developer is able to create a dyknow::NodeHandle, which takes a ros::NodeHandle
as an argument. The dyknow::NodeHandle extends the interface provided by
ros::NodeHandle, overriding some of its functionality. When a developer cre-
ates subscriptions or publishers, DyKnow-ROS provides dyknow::Subscriber
and dyknow::Publisher handles. These are run-time reconfigurable version of
the ros::Subscriber and ros::Publisher. A CU is also able to set a callback for
whenever it is reconfigured. This can be useful when a reconfiguration re-
quires actions to be taken by a nodelet, for example to notify some part of
the system of its new subscriptions and publishers. Further, statistics such
as the number of reconfigurations are maintained and made available.

The proxy adds additional services to control the mappings between
topics and ports. It can also list for a given nodelet what topics are con-
nected to which ports at the time of the service call.

• GetConfig: Returns a list of ports and associated topics for the nodelet
the proxy is associated with.

• SetConfig: Takes a list of ports and topics to be connected for the
nodelet the proxy is associated with.

• GetStatistics: Returns nodelet statistics in terms of uptime, the num-
ber of reconfigurations performed, and the number of messages sent
or received for each port.

These additional services are tied to individual CUs and allow external
components to keep track of and modify how CUs are connected to other
CUs. With the addition of these services, the lack of configuration control
is resolved.

Example 13 (A simple echo nodelet). To illustrate the subtle differences be-
tween standard ROS nodelets and DyKnow-ROS nodelets, we consider a simple

84 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

Listing 5.1: ROS echo example
1 void Echo::onInit() {
2 ros::NodeHandle nh = getMTPrivateNodeHandle();
3 sub = nh.subscribe("in", 1000, &Echo::callback, this);
4 pub = nh.advertise<MessageType>("out", 1000);
5 }
6

7 void Echo::callback(const MessageType::ConstPtr& msg) {
8 pub.publish(msg);
9 }

Listing 5.2: DyKnow-ROS echo example
1 void Echo::onInit() {
2 nh = dyknow::NodeHandle(getMTPrivateNodeHandle());
3 sub = nh.subscribe("in", 1000, &Echo::callback, this);
4 pub = nh.advertise<MessageType>("out", 1000);
5 }
6

7 void Echo::callback(const MessageType::ConstPtr& msg) {
8 pub.publish(msg);
9 }

echo unit. Echo units can receive messages, which they then immediately for-
ward, without performing any kind of processing on them. As such, they are one
of the smallest example nodelets. Listing 5.1 shows a ROS implementation of an
echo unit. We can use a local ros::NodeHandle to create a ros::Subscriber and
ros::Publisher. The subscriber is connected to the ‘in’ topic, with a callback to the
‘callback’ method. Anytime a message arrives, this method is called. Since we are
using an echo unit, the message is immediately published on the ‘out’ topic using
the publisher.

Switching to DyKnow-ROS requires some changes as shown in Listing 5.2.
Creating a dyknow::NodeHandle results in the creation of a proxy behind the scenes.
When all node handles go out of scope, so does the proxy, so we store the node
handle as a member variable. The reason for requiring the proxy to be persistent is
because it hosts the reconfiguration services—if it goes out of scope, the services be-
come unavailable. The remainder of the code is the same, although instead of ROS
subscribers and publishers, we get a dyknow::Subscriber and a dyknow::Publisher.
The subscriber uses the ‘in’ port; we do not control what topic it is connected to.
The same holds for the producer, which is connected to the ‘out’ port.

The difference between the two code snippets is thus minimal from the perspec-
tive of the developer. However, while the syntax is largely the same, the semantics
have slightly changed. As always, a developer should be aware of these underlying
mechanisms.

5.2. ARCHITECTURE 85

Figure 5.3: Screenshot of the interactive visualisation tool.

5.2.2 Interactive visualisation

ROS provides a wide array of visualisation tools using a Qt-based frame-
work. For the visualisation of nodes and topics, rqt graph provides a graph-
ical user interface that communicates with the ROS master and produces
a DOT graph. While this approach works great for nodes, it fails to de-
tect nodelets as they are threads within the Nodelet Manager node. We
therefore forked rqt graph and replaced the communication with the ROS
master to instead query the stream reasoning manager in DyKnow-ROS
for its configuration model. Since ROS does not take run-time reconfigura-
tion into consideration, we also had to switch from the manual refresh in
rqt graph to a frequency-based refresh. This was combined with a control
widget to allow a user to interact with the stream reasoning manager.

A screenshot of the tool at work is shown in Figure 5.3, where the bot-
tom left camera view was produced by the rqt image view widget. The
graph shown in the centre panel was created using the control panel on
the left. Ovals in the centre graph correspond to nodelets, and rectangles
correspond to topics. The bottom-right image view shows the colour video
stream. Since no changes were made to the rqt graph interface itself, this
representation is natural to ROS developers.

The control panel on the left supports a number of features based on
the services provided by DyKnow-ROS. The active tab lists the currently
active CUs together with their associated transformations, the number of
input ports, and the number of output ports. A library tab offers a listing
of transformation specifications by label, and allows a user to import or
delete transformations. CUs can be instantiated through the panel as well
with the create panel; the user provides a name for the nodelet to be created

86 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

and a type in terms of transformation specifications. The panel shown is
the connect panel, where either a combination of two nodelets and ports are
selected to be connected with a topic decided by the tool, or a single port
and topic can be connected where the user gets to specify the topic name
manually.

The visualisation tool gives access to all of the stream reasoning man-
ager’s services, offering an interface that can be managed by human oper-
ators. As a result, it offers the functionality expected by ROS developers as
well as some extra control over the configuration during run-time.

5.3 Management of stream processing

The stream reasoning manager is responsible for setting up and maintain-
ing configurations in support of stream reasoning. As illustrated in Fig-
ure 5.1, it interacts with the stream reasoning engine and the computa-
tional environment. It is implemented in DyKnow-ROS as a node, as is
the stream reasoning engine. The manager can interact with the compu-
tational environment with the help of the proxy services. Likewise, the
stream reasoning engine provides services which are presented later. Both
sets of services are used by the manager, which in turn provides its own set
of services acting as a client-facing interface. The services provided by the
stream reasoning manager are:

• AddTarget: Given a target specification, store the specification under
the associated label. Specifications can be overridden.

• RemoveTarget: Given a label, remove the target specification with
that label, if any.

• AddTransformation: Given a transformation specification, store the
specification under the associated label. Specifications can be over-
ridden.

• RemoveTransformation: Given a label, remove the transformation
specification with that label, if any.

• Spawn: Given a transformation label and name, instantiate a nodelet
of that transformation type with the supplied name. Nodelets can be
protected from unloading. Uses NodeletLoad.

• Destroy: Given a name, destroy the nodelet with that name if it exists
and if it is not protected. An unprotected nodelet can destroy itself
this way. Uses NodeletUnload.

• GetModel: Returns a listing of all running DyKnow nodelets and
their port-topic connections. Also returns all stored transformation
specifications. The format can be DyKnow or OWL.

5.3. MANAGEMENT OF STREAM PROCESSING 87

The manager thus provides supporting services for changing configura-
tions as well as acquiring a representation of the current environment. The
latter service is useful for taking configuration snapshots, for example for
the purpose of representing the environment in a client, as is done by the
visualisation tool mentioned previously.

We can subdivide the tasks of the stream reasoning manager into two
parts. The first is to keep track of the environment, i.e. what its current
state is, what TFs exist, what CUs exist, etc. This basically boils down to
a storage task. The second is to enforce the configuration life cycle, by
regularly updating the configuration. This is the daemon component of
the manager. We consider both tasks in more detail.

5.3.1 Representation of configurations

The stream reasoning manager keeps track of the state of the computational
environment and provides services that can be used to change this environ-
ment. The DyKnow model specifies an ontology for representing an envi-
ronment with a well-structured grammar. DyKnow-ROS makes use of this
ontology to not just represent the environment, but also as a grammar for
specifications of transformations and targets. Since DyKnow-ROS is a con-
crete realisation of the DyKnow model, it extends the DyKnow ontology to
capture ROS-specifics. For example, whereas the DyKnow ontology uses
the Channel concept, DyKnow-ROS refers to the Topic concept. The latter is
a specialisation of the former, and enforces a well-defined grammar for top-
ics as defined by the ROS specifications. Figure 4.2 in the previous chapter
illustrated the concept hierarchy of the DyKnow ontology, which is listed
in Appendix A. We briefly consider its extension to DyKnow-ROS here.

Service calls to the AddTransformation service provided by the stream rea-
soning manager require a uniquely-labeled transformation specification.
Recall that the dyknow:Transformation concept is defined in DL as

Transformation v∃hasName.xsd:Name (5.1)
u∃hasCostModel.LabourCostModel,

where
LabourCostModel v CostModel. (5.2)

DyKnow-ROS uses the specialised concept dyknowros:ROSTransformation such
that ROSTransformation v Transformation. Concretely, the ROSTransformation
is defined in DL as

ROSTransformation vTransformation (5.3)
u=1 hasSource.xsd:anyURI

u∃hasPort.Port,

88 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

where

hasInPort v hasPort, (5.4)
hasOutPort v hasPort. (5.5)

This means that a ROSTransformation has at least one port, either an input
or an output port. Furthermore, it has exactly one source, which is repre-
sented by a URI to a nodelet binary. This makes it possible for the manager
to dynamically load specific nodelet implementations. Lastly, ports can be
annotated with tags describing the semantics of the data flowing through
those ports and the channels they connect to. Listing 5.3 shows an example
of a transformation specification in DyKnow-ROS.

Listing 5.3: Example transformation specification in Turtle syntax
1 :undistort a :ROSTransformation ;
2 :hasType "nodelet" ;
3 :hasSource "package/Undistort" ;
4 :hasParam [
5 a :Parameter ;
6 :hasName "configPath" ;
7 :hasType "string" ;
8 :hasValue "/path/to/configuration/cam1/" .
9] ;

10 :hasPort [
11 a :InPort ;
12 :hasName "rawCamera" ;
13 :hasTag [
14 a :Tag ;
15 :hasValue "RawRGB(cam1)" .
16] .
17] ;
18 :hasPort [
19 a :OutPort ;
20 :hasName "undist" ;
21 :hasTag [
22 a :Tag ;
23 :hasValue "Undistorted(cam1)" .
24] .
25] ;
26 rdfs:label "Undistort(cam1)" .

Service calls to the AddTarget service require a target specification. Sim-
ilar to transformation specifications, target specifications make use of the
dyknow:Target concept extended to dyknowros:ROSTarget for ROS. Targets are
composed of a label, channel, and tag. In the case of ROS, the channel cor-
responds to a topic, i.e.

ROSTarget vTarget (5.6)
u∃hasTopic.Topic.

where dyknowros:Topic is a specialisation of dyknow:Channel. Topics use a
standardised naming convention enforced by ROS which is similar to the
way paths are represented in Unix-based systems. Listing 5.4 shows an
example target specification in DyKnow-ROS.

5.3. MANAGEMENT OF STREAM PROCESSING 89

Listing 5.4: Example target specification in Turtle syntax
1 :undistortSub a :ROSTarget ;
2 :hasTopicName "/result"ˆˆrosTopic ;
3 :hasTag [
4 a :Tag ;
5 :hasValue "Undistorted(cam1)" .
6] .
7 rdfs:label "undistortSub" .

This leaves us with CUs. While the service calls do not require CUs as
arguments, some do return them as part of the service response. Therefore,
they too have a DyKnow-ROS specification. Since nodelets act as CUs in
DyKnow-ROS, we simply get

Nodelet v ComputationUnit (5.7)

for the sake of completeness.

Example 14 (Transformation and target specifications in DyKnow-ROS).
Consider a smart lab equipped with four similar ceiling cameras. In this example,
the cameras are using fish-eye lenses, and their positions allow them to cover most
of the lab’s ground surface area with some overlap. A transformation could be
applied to the image streams from the cameras if they are first undistorted.

A subscription to an undistorted stream from a camera called ‘cam1’ is illus-
trated in Listing 5.4 as a target specification. The target is labelled undistortSub
and represents the desire for a stream to be produced on the /result topic with the
semantic description Undistorted(cam1). The semantic description is part of the
tagging language and intended to represent an undistorted image stream originat-
ing from the ‘cam1’ camera.

A transformation that might produce a suitable stream is illustrated in List-
ing 5.3. It represents a nodelet for which the binary is referred to in package/Undis-
tort. Note that this binary makes no reference to a particular camera. This is be-
cause the transformation combined the binary with a configuration for the ‘cam1’
camera. It does so by providing the binary with a ‘configPath’ parameter, which the
binary understands to be the location of a lens model file specific to the ‘cam1’ cam-
era. Consequently, the transformation is labelled Undistort(cam1) to illustrate it is
specific to the ‘cam1’ camera eventhough the binary it uses is not. The transfor-
mation has two ports; one input port expecting raw RGB images from the ‘cam1’
camera, and one output port producing undistorted versions of those images. The
transformation is therefore a suitable candidate for satisfying the target, assuming
that its dependency on raw RGB images can be resolved.

Both transformations and targets make use of tags, which are used for
semantic annotations. The focus of this thesis work was however not on
the development of an annotation language, but rather how one could be
used in the context of the DyKnow model. Despite this, a tagging lan-
guage is necessary for the DyKnow-ROS system to work. Therefore a sim-
ple tagging language is used when tags are explicitly specified, with the
understanding that a better tagging language can replace this placeholder
language in the future.

90 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

5.3.2 Configuration life-cycle daemon

The second task of the stream reasoning manager is to act as a daemon
by reconfiguring the DyKnow-ROS configuration in accordance with the
configuration life-cycle. This requires the realisation of Algorithm 4 from
the previous chapter in a ROS environment. Additionally, functionality is
needed for the observation of computational resource usage and its effect
on the cost estimators.

The EXPLORE procedure and its dependencies take a computational en-
vironment ε and perturbation δp, and subsequently construct an optimal
change set δ∗ with the help of the spawn, connect↓, connect↑ and destroy
actions. In DyKnow-ROS, the environment is available and monitored
by the stream reasoning manager. Perturbations can be detected as well
through the service calls that would qualify as perturbations. For exam-
ple, if a target is added, this is achieved to a service call to the manager,
thereby implicitly notifying the manager of a perturbation. As such, ε and
δ∗ have counterparts in DyKnow-ROS. The same holds for the aforemen-
tioned actions which make up δ∗, as each of them can be performed using
the services available to the stream reasoning manager. The application of
an optimal change set is then equivalent to a sequence of service calls. The
EXPLORE procedure is deviated from in two ways. Firstly, since ROS al-
lows nodelets to have multiple ros::Producer instances, a CU can have mul-
tiple outputs. In such a case, the CU is said to be an instance of multiple
transformations which take the same inputs but produce different outputs.
Secondly, CUs can be designated ‘protected’, in which case they are never
destroyed by a resulting change set. This will cause the procedure to find a
best change set given that the protected CUs are kept around.

Computational resource usage is measured in terms of CPU time, specif-
ically by combining utime and stime. Both values are obtained by read-
ing from /proc/$tid/statm on Linux for the corresponding thread iden-
tifier. For labour, we measure the CPU time associated with creating new
CUs. For upkeep, the CPU time per wall time minute is accumulated by
measuring the CPU times of individual callbacks from dyknow::Subscriber
and dyknow::Timer objects. The former is useful for CUs that react to new
inputs, whereas the other is useful for CUs that run at specific time inter-
vals. Upkeep is measured relative to a transformations, so if multiple CUs
exist for the same transformation, the upkeep would be the average CPU
time measured over all of those CUs.

Finally, the estimators need to be updated using these observations.
Since the focus of this thesis was not on precise estimations, a simple place-
holder was chosen to fulfil the requirement of having estimators. Future
work could produce better models of CPU usage. In the current state, the
predicted CPU usage is simply an average over the observed CPU usage.

5.4. SPATIO-TEMPORAL STREAM REASONING SUPPORT 91

The cost models for labour and upkeep are referred to as

LabourCostModel(historicalAverageLabour), (5.8)
UpkeepCostModel(historicalAverageUpkeep), (5.9)

in the DyKnow-ROS ontology extension.

5.4 Spatio-temporal stream reasoning support

Reasoning over streams is performed by the stream reasoning engine in Dy-
Know. This composite component takes as its input formulas, state streams,
and grounding information for the purpose of progression of the formulas
over the provided data. Formulas can be part of a formula group, which
represents a collection of formulas that are to be evaluated simultaneously
over a single state stream. The connecting information grounds the sym-
bols in logical formulas to specific values in the state stream. The engine
produces the corresponding truth values of the formulas, assuming the
reasoning procedure terminates—while progression is guaranteed to ter-
minate, it may never rewrite a formula into a single truth value in cases
where temporal operator intervals are unbounded.

In the simplest case, symbols in formulas can be directly connected to
values in a state stream originating from the computational environment.
However, in more complex cases, the stream reasoning engine must infer
truth values associated with (some of) a formula’s predicates. In this thesis,
the stream reasoning engine is therefore composed of a progressor as well
as a qualitative spatial reasoning engine, where the latter is a modified ver-
sion of GQR. The modifications make it possible for the progressor to use
GQR through ROS services. The stream reasoning engine itself provides a
number of services that control the evaluation of formulas, as shown below.

• CreateGroup: Creates a formula group with an optionally provided
label and result topic. If no label or result topic are provided, Dy-
Know generates them instead.

• DestroyGroup: Destroys a formula group by its label. This stops the
progression of formulas in the group.

• StartGroup: Activates progression for a formula group identified by
name.

• StopGroup: Stops the progression for a formula group by name.
Cannot be resumed.

• AddFormula: Adds a provided formula to a formula group identified
by its label. Yields an identifier (index) for the formula.

92 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

Figure 5.4: Architecture of the stream reasoning engine component.

• RemoveFormula: Removes a formula from a formula group identi-
fied by the group’s label and formula’s index. This can be done while
a formula is being progressed.

Figure 5.4 illustrates the architecture of the stream reasoning engine and
its relation to the generation of a state stream. State streams are needed to
evaluate formulas by the progressor. They are produced for each of the for-
mula groups, which make use of a number of symbols that are grounded in
streams. These streams are acquired through the use of targets in the com-
putational environment. The streams that are produced as a result of the
targets are subsequently synchronised. Because of strict typing constraints,
the synchronisation process first applies type flattening, in which the names,
types, and values of data samples are represented in string format. The cor-
rect conversion to and from this flattened format is obtained through code
generation from ROS message specifications, which basically represent the
data types used for topics. The streams produced as the result of targets
are thus converted into a flattened representation before being synchro-
nised. The synchronisation method used was proposed by Heintz (2009)
and makes use of the stream frequencies to determine whether and when
to wait for samples. The result of the synchronisation method is a state
stream in which every symbol has a corresponding value. Every formula
group requires one such state stream. Once a formula group is destroyed,
the targets associated with it are removed as well, unless they are shared
by another formula group.

Concretely, a wff in MSTL is made up of predicates for which the truth
value needs to be provided in order to run the progression procedure de-
scribed in Algorithm 3. If nothing is known about the predicates by DyKnow-
ROS, these truth values are expected to be provided directly in a state
stream. However, if the predicate is a comparator ⊕ ∈ {=, 6=,<,>,≤,≥},
the wff will contain statements of the form x ⊕ y, where x and y can be

5.4. SPATIO-TEMPORAL STREAM REASONING SUPPORT 93

constants or functions ranging over objects. For example, a statement such
as

altitude(uav) > 10 (5.10)

is a predicate for which the altitude(uav) term is provided externally in a
state stream. Similarly, a statement such as

altitude(uav1) > altitude(uav2) (5.11)

is a predicate for which both terms are provided externally in a state stream.
When comparators are used, a target is required for every externally-provided
term, where the resulting stream provides an interpretation of the func-
tions at different time-points. This allows the progressor to interpret the
comparators.

Consider a formula group consisting of a single MSTL formula stating
that all UAVs always have an altitude exceeding 50 metres, i.e.

∀x ∈ UAV [2(altitude(x) > 50)] , (5.12)

where the domain UAV = {uav1, uav2}. The first step is for a client (human
or otherwise) to generate two targets; one for altitude(uav1) and one for
altitude(uav2). These transformations are annotated with tags correspond-
ing to altitude information for the two UAVs. These tags could correspond
to the functions altitude(uav1) and altitude(uav2) depending on the choice
of tagging language. This results in two streams containing altitude infor-
mation for the two UAVs. The second step is for the system to synchronise
these two streams into a single type-flattened state stream. This then re-
sults in a new synchronised stream for which the data type is understood
by the stream reasoning engine, and every sample of which contains values
for the labels altitude(uav1) and altitude(uav2).

A different situation occurs for predicates from the R8 set of RCC-8
spatial relations. A spatial relation R(x, y) is true, false, or unknown de-
pending on other spatial relations. Since the handling of RCC-8 is part of
the DyKnow-ROS architecture itself, the state stream generation queries
GQR for relations R(x, y) and subsequently uses that information directly.
Consequently operators are required to specify targets that connect GQR to
qualitative spatial relation information produced in the computational en-
vironment. Methods towards automating this connection through targets
are beyond the scope of this thesis. An ad-hoc solution is to use RCC-8 tags
to identify any transformations that produce RCC-8 information. When-
ever a formula contains such a relation, DyKnow-ROS will first try to find
a transformation specifically generating that relation. If none exist, it will
instead use all RCC-8 relation-producing transformations, after which GQR
infers further spatial relations.

94 CHAPTER 5. DYKNOW-ROS: PUTTING IT ALL TOGETHER

Figure 5.5: Performance graph showing the different time-to-arrivals for
messages relative to the number of hops for a linear chain.

5.5 Performance evaluation

The proxy introduced by DyKnow-ROS potentially introduces an over-
head in throughput. Measuring the overhead gives insights into the cost
of adopting DyKnow-ROS.

Topic-based communication between nodelets is assumed to be faster
than between nodes because nodelets are part of the same process and
nodes are not. In this experiment, we use both as benchmarks for compar-
ison. The computation graph is a linear sequence of connected node(let)s
such that each intermediate node(let) receives from a predecessor node(let)
and immediately publishes to a successor node(let). The source produces
messages containing current time-stamps at a fixed frequency f . Every (in-
termediate) receiver checks that time-stamp against the arrival time and
reports the time difference. The number of node(let)s n then corresponds
to the number of message hops.

The performance results are shown in Figure 5.5, where the perfor-
mance graph contrasts the number of hops to the average time-to-arrival
for messages sent along the node(let) chain. The source produced 1,000
time-stamped messages at a frequency of f = 5Hz, which every receiver
compared to the local time upon arrival prior to forwarding the message.
The graph illustrates the time results for DyKnow-ROS nodelets and ROS
nodelets, as well as ROS nodes. As expected, nodes are much slower than
nodelets because they have to communicate between processes. The results
for nodes put into perspective the overhead we can see for DyKnow-ROS
nodelets when compared against standard ROS nodelets, which grows slowly

5.6. OPEN PROBLEMS 95

to about 0.2ms after n = 50 hops. We therefore conclude that the overhead
induced by DyKnow-ROS is negligible.

5.6 Open problems

• DyKnow-ROS relies on nodelets for dynamic instantiation of CUs.
This presents some practical problems. First, this excludes ROS nodes,
since these can only be started by command-line or via roslaunch.
Currently, node-based implementations have to be converted to nodelets,
although many support both types. The second issue is that a crash of
a nodelet brings down the nodelet manager, and thereby all CUs that
are running as part of that nodelet manager. This means that many
if not all CUs crash if one does, and recovery then requires a new
nodelet manager process to be started. Some additional engineering
efforts are needed to resolve these practical issues.

• ROS has some known shortcomings in terms of communication guar-
antees, making it less useful for real-time applications. A new version
of ROS, going by the name ROS2, is under development. It would be
interesting to see how ROS2 could be combined with the DyKnow
model for a potential DyKnow-ROS2 realisation with real-time guar-
antees.

5.7 Summary

This chapter presented a realisation of the DyKnow model with the Robot
Operating System (ROS), resulting in the DyKnow-ROS system. First an
extension of the services provided by ROS is presented to support the Dy-
Know model. For practicality, a common ROS visualisation tool was also
adapted to facilitate human interaction with the system. This was followed
by a concrete representation of entities in the DyKnow model with the help
of the DyKnow ontology extended for ROS. The configuration life cycle
was realised by a daemon that uses CPU time as the computational re-
source of choice in DyKnow-ROS, and some simple estimators for labour
and upkeep were presented. The generation of state streams with the help
of targets was explained. Finally, the overhead induced by the extensions
to ROS was measured and shown to be negligible.

Chapter 6

Case study

One of the thesis contributions—integration—deals with the applicability
and practicality of the suggested solutions. The previous chapters focused
first on the theoretical contributions within the two strands, followed by the
engineering contributions that resulted in the DyKnow-ROS stream reason-
ing framework. As per the methodology discussion, there is an additional
deployment step. DyKnow-ROS was therefore deployed on two SoftBank
Robotics NAO robots as part of a case study that highlights the applicabil-
ity and practicality of the proposed solutions. Since the framework makes
use of CUs, software written by the Linköping University RoboCup team
for the Standard Platform League was integrated into DyKnow-ROS to
support real-world transformations.

6.1 Introduction

Our case study focuses on two NAO robots, called Piff and Puff (Swedish
for Chip ’n Dale). Both Piff and Puff are capable of running a processing
pipeline that takes in sensor information and produces ball coordinates rel-
ative to the soccer field. For the case study, we were interested in situa-
tions where semantic subscriptions could provide added value to Piff in
performing its task of tracking the ball. We consider two cases; 1) Piff is
tracking the ball but something goes wrong; and 2) Piff is tracking the ball
and Puff offers to help for a while. Piff and Puff are assumed to be part
of the same computational environment; a multi-agent system approach is
beyond the scope of this thesis.

6.2 Experimental set-up

The operational environment is provided by a humanoid lab at Linköping
University, which is organised to support software development for NAO

96

6.2. EXPERIMENTAL SET-UP 97

Figure 6.1: Humanoid lab (left) equipped with four ceiling cameras (right).

robots.

6.2.1 Humanoid lab

The humanoid lab is equipped with a green felt RoboCup soccer field as
shown in Figure 6.1 on the left. As shown on the right, there are four cam-
eras attached to the ceiling over the field. The ceiling cameras are AXIS
M3005-V network cameras with a 118◦ angle of view, producing 1920 × 1080
images. These images can be used for accurate positioning of objects on the
field. The coordinate system uses one of the field corners as its origin, rel-
ative to which the coordinates of other objects such as balls or robots are
determined.

6.2.2 Piff and Puff

Piff and Puff are Softbank Robotics NAO humanoid robot platforms, of
which an example is shown in Figure 6.2. Standing upright, they are 58cm
tall and weigh 5.4kg. With normal use, the battery provides 90 minutes of
autonomy. The head houses two HD cameras producing 1280 × 960 im-
ages at 30 FPS in YUV422 colour space. One is located in the forehead
and faces forward; the other is located in the ‘mouth’ area and faces down-
wards. The various joints provide pose information to the system through
joint position sensors. The NAO comes equipped with an Intel Atom Z530
processor running at 1.6GHz, with 1GB of RAM, 2GB of Flash memory, and
an 8GB Micro SDHC. The system runs the Ubuntu 14.04 LTS operating sys-
tem with the NAOqi programming framework. Our NAO platforms use a
publically-available ROS driver10 exposing the NAOqi API through ROS.
More technical details can be found in the NAO technical guide11.

10The NAO packages for ROS are documented at http://wiki.ros.org/nao (Last ac-
cessed: May 30th, 2017)

11The NAO technical documentation is available at http://doc.aldebaran.com (Last
accessed: May 30th, 2017)

98 CHAPTER 6. CASE STUDY

Figure 6.2: A SoftBank Robotics NAO V4 robot.

6.3 Recovery from failures

We start with a scenario in which a user wants to perform perimeter mon-
itoring. That is, check whether a ball ‘breaches’ the perimeter indicated by
the centre circle on the football field and, if so, notify the user. While a
toy scenario, it allows us to consider the full DyKnow-ROS system’s opera-
tions. The user makes no assumptions about what equipment exists in the
system; only that there is a DyKnow-ROS instance which he or she is able
to interact with. Neither does the user make any assumptions about the
availability of equipment over time. In a sense this is a natural behaviour
for a non-expert user. The user queries a system’s services and the system
tries to meet the user’s expectations to the best of its abilities. The sys-
tem further seeks to minimise the cost it incurs while satisfying the user’s
needs. The first step for a user is then to describe those needs in some lan-
guage expression. DyKnow-ROS uses MSTL for this purpose, so the user’s
inquiry is described by a wff

2[0,1440] [InsideCircle(ball)] , (6.1)

meaning that for the next 24 hours (measured in minutes), the ball will
remain within the circle12. The statement is not intended to enforce a par-

12Alternatively, qualitative spatial relations NTPP and TPP could be used.

6.3. RECOVERY FROM FAILURES 99

Figure 6.3: Piff and Puff’s transformation pipeline conceptually showing
the transformations from camera images to ball positions.

ticular situation, but rather specifies what is expected to happen. It might
be the case that the ball leaves the circle for whatever reason, which should
then result in the statement being evaluated to false. However, in order to
determine whether the statement is true or false (or even unknown), a state
stream is needed over which it can be evaluated.

The task of generating a state stream starts with the specification of
targets. Recall that targets are composed of a channel identifier and a
tag describing the semantics of the sought-after streaming data. The tar-
get should thus reflect that we require information on the truth value of
InsideCircle(ball), which is a predicate. The target is illustrated in Listing 6.1.

Listing 6.1: Target specification for InsideCircle(ball) information
1 :target1 a :ROSTarget ;
2 :hasTopicName "/target1"ˆˆrosTopic ;
3 :hasTag [
4 a :Tag ;
5 :hasValue "InsideCircle(ball)" .
6] .
7 rdfs:label "InsideCircle(ball)" .

After adding this target to the environment ε, it looks like

〈∅,∅, {〈target1, InsideCircle(ball), /target 1〉} ,=〉 . (6.2)

This represents a perturbation, so the environment tries to reconfigure it-
self. However, since no transformations exist, no solutions are found yet,
and no state stream is generated. We can solve this by considering the
situation wherein Piff registers its transformations to the environment. Ta-
ble 6.1 shows the semantics of the set of transformations provided by the
NAO robot using a short-hand notation.

The bottom cam TF provides a YUV image stream, which can be sub-
scribed to by the subsampler TF. This transformation down-samples the res-
olution of the three channels into 640x480, 320x240, 160x120, 80x60, and
40x30. The segmenter TF instances may subscribe to low-resolution Y and
V channels to determine the convex hull of the green field, ignoring the
space in the image which captures things outside of the field. This convex
hull is combined with the Y channel by the ball detector TF to produce pixel
coordinates of balls, which is then combined with pose information by the

100 CHAPTER 6. CASE STUDY

TID TF label Tags
tid1 pose(piff) ∅

⇒ pose(piff)
tid2 bottom cam(piff) ∅

⇒ yuvImage(piff)
tid3 subsampler(piff) yuvImage(piff)

⇒ imageScalePyramid(piff)
tid4 segmenter(piff) imageScalePyramid(piff)

⇒ convHull(piff, field)
tid5 ball detector(piff) convHull(piff, field),

imageScalePyramid(piff)
⇒ pixelPos(piff, ball)

tid6 ball localization(piff) pixelPos(piff, ball),
pose(piff)

⇒ position(ball)
tid7 circle monitor(ball) position(ball)

⇒ InsideCircle(ball)

Table 6.1: Piff’s transformations and their tags denoted by itag⇒ otag.

ball localization TF to produce ball position data, which matches the query.
Since the validity matrix is updated when transformations are added or
removed, the result is a 11 × 19 validity matrix for the 11 inputs and 19
outputs.

As the result of the perturbation, the stream reasoning manager searches
for an optimal configuration and finds one as shown conceptually in Fig-
ure 6.3. The associated change set δ is the instantiation of all transforma-
tions, and the connection of the resulting CUs in accordance with their an-
notations. The new environment ε is described by

〈CU, F, {〈target1, InsideCircle(ball), /target 1〉} ,=〉 , (6.3)

where the set of transformations F remains unchanged, and the set of CUs
is described by

CU = { 〈cid1, tid7, [/topic 1], /target 1〉 , (6.4)
〈cid2, tid6, [/topic 2, /topic 6], /topic 1〉 ,
〈cid3, tid5, [/topic 3, /topic 4], /topic 2〉 ,
〈cid4, tid4, [/topic 4], /topic 3〉 ,
〈cid5, tid3, [/topic 5], /topic 4〉 ,
〈cid6, tid2, [], /topic 5〉 ,
〈cid7, tid1, [], /topic 6〉}.

Piff now produces a ball position stream on the /topic 1 topic, which
can be used by the circle monitor TF to determine whether the ball is inside

6.3. RECOVERY FROM FAILURES 101

the circle. This Boolean information is then transmitted on topic target 1
as specified by the target target1. The new environment results in a stream
containing the information needed for interpreting the symbols of the MSTL
formula, which is synchronised, flattened, and connected to the stream rea-
soning engine. The progression procedure now uses the resulting state
stream to incrementally evaluate the formula through rewritings.

Unfortunately, something goes wrong and the image segmenter is un-
loaded, leaving a hole in the computation graph and interrupting the flow
of position information. This perturbation is detected as

δp = (∅, {〈cid4, tid4, [/topic 4], /topic 3〉} ,∅,∅,∅,∅). (6.5)

The subsampler is still producing a stream of low-resolution images, but
the segmenter no longer exists to do anything with them. The environment
is now as in Figure 6.3 but without a segmenter. This perturbation results
in the update procedure generating a change set by re-using the part of CU
that still exists, but instantiating a new computation unit cid8 of type tid4
and reconfiguring it to subscribe to the streams that were already being
produced by the subsampler, i.e.

δ∗ = ({〈cid8, tid4, [/topic 4], /topic 3〉} ,∅,∅,∅,∅,∅). (6.6)

The detector’s subscription to the defunct segmenter is thus replaced by
one to the new segmenter, and the information flow is restored.

Some time later, Puff joins Piff on the field and registers its own transfor-
mations in accordance with Table 6.1, where piff is replaced by puff for new
TIDs 8–14. The computational environment looks like before, but |Fε| = 14
now. Given the possibility to generate a second pipeline for ball positions,
the life-cycle daemon nevertheless does not use the second pipeline as-is.
The reason for this is that the cost for re-using Piff’s part of the computation
graph is assumed to be free, whereas a lot of effort would have to be spent
in order to instantiate Puff’s pipeline to switch away from Piff’s stream.
Only if Puff’s alternatives are significantly cheaper to make up for the ex-
tra labour cost will the daemon switch pipelines. Since both Piff and Puff
are NAO robots with similar equipment and the same transformations, we
assume this is not the case.

At some point, Piff needs to recharge its batteries. It therefore first
deregisters its transformations from the environment, i.e.

δp = (∅,∅,∅, F−,∅,∅), (6.7)

where |F−| = 7 consists of the seven transformations from Table 6.1. The
life-cycle daemon correctly identifies the perturbation and starts a review
interval, in which it determines that all active CUs are now defunct. This
means that there is no longer any guarantee that the CUs provide streaming
data. Thankfully, Puff’s transformations provide a suitable replacement for
the defunct CUs, leading to a change set

δ∗ = (CU+, CU−,∅,∅,∅,∅), (6.8)

102 CHAPTER 6. CASE STUDY

where the CU additions are based on Puff’s transformations, and the CU
removals are Piff’s defunct CUs;

CU− = { 〈cid1, tid7, [/topic 1], /target 1〉 , (6.9)
〈cid2, tid6, [/topic 2, /topic 6], /topic 1〉 ,
〈cid3, tid5, [/topic 3, /topic 4], /topic 2〉 ,
〈cid8, tid4, [/topic 4], /topic 3〉 ,
〈cid5, tid3, [/topic 5], /topic 4〉 ,
〈cid6, tid2, [], /topic 5〉 ,
〈cid7, tid1, [], /topic 6〉},

CU+ = { 〈cid9, tid14, [/topic 7], /target 1〉 , (6.10)
〈cid10, tid13, [/topic 8, /topic 12], /topic 1〉 ,
〈cid11, tid12, [/topic 9, /topic 10], /topic 2〉 ,
〈cid12, tid11, [/topic 10], /topic 9〉 ,
〈cid13, tid10, [/topic 11], /topic 10〉 ,
〈cid14, tid9, [], /topic 11〉 ,
〈cid15, tid8, [], /topic 12〉}.

Note also the removal of the cid8 CU which was previously used to patch a
gap in the computation graph.

After the occurence of the perturbation δp, the stream being produced
on /target 1 is temporarily interrupted as the review interval is performed.
At the end of the review interval, the change set δ∗ will have been applied
to the environment, cancelling out the suboptimality imposed by δp by re-
pairing the computation graph with an alternative pipeline satisfying the
target. Consequently, the MSTL formula can be evaluated further. The sys-
tem operates on a best-effort basis by quickly finding ways to repair broken
computation graphs, thereby minimising the interruption in the streams
used to construct a state stream for formula evaluation. Future work could
look into ways to mitigate any data loss that may occur during these con-
trolled hand-overs between agents.

6.4 Exploitation of new optima

Continuing the scenario, Puff is currently observing the ball which has not
yet left the circle on the field, and Piff is in the process of recharging. The
only transformations available to the computational environment are there-
fore Puff’s. However, the lab itself is also equipped with four cameras.
These cameras can be used in unison to generate a top-down image of the
field. More importantly, these cameras could be used to locate objects on
the field, in particular NAO robots and balls. A system can obtain the cam-

6.4. EXPLOITATION OF NEW OPTIMA 103

TID TF label Tags
tid15 ceiling cam(cam 1) ∅

⇒ rgbImageDistorted(cam 1)
tid16 undistort(cam 1) rgbImageDistorted(cam 1)

⇒ rgbImage(cam 1)
tid17 ceiling cam(cam 2) ∅

⇒ rgbImageDistorted(cam 2)
tid18 undistort(cam 2) rgbImageDistorted(cam 2)

⇒ rgbImage(cam 2)
tid19 ceiling cam(cam 3) ∅

⇒ rgbImageDistorted(cam 3)
tid20 undistort(cam 3) rgbImageDistorted(cam 3)

⇒ rgbImage(cam 3)
tid21 ceiling cam(cam 4) ∅

⇒ rgbImageDistorted(cam 4)
tid22 undistort(cam 4) rgbImageDistorted(cam 4)

⇒ rgbImage(cam 4)
tid23 stitch(field) rgbImage(cam 1)

rgbImage(cam 2)
rgbImage(cam 3)
rgbImage(cam 4)

⇒ rgbImage(field)
tid24 ball detector(field) rgbImage(field)

⇒ position(ball)

Table 6.2: The Humanoid lab’s ceiling camera transformations and their
tags denoted by itag⇒ otag.

era video feeds, stitch the images together, and perform localisation, with-
out the computational limitations imposed by NAO hardware.

We can thus register the ceiling camera system with the computational
environment, resulting in transformations with TIDs 15–24. The pipeline
consists of the transformations shown in Table 6.2. The registration of these
transformations constitutes a perturbation

δp = (∅,∅, F+,∅,∅,∅), (6.11)

where the set of added transformations |F+| = 10 consists of the ten trans-
formations listed in Table 6.2. Even though the perturbation did not break
anything—there is still a stream on topic target 1—it is nevertheless a po-
tential long-term positive perturbation, because the added transformations
might yield cheaper-cost solutions. If this is not the case, then δ∗ = δ∅;
otherwise, the stream reasoning manager can replace part of the active
pipeline with the transformations from the ceiling cameras. Since the per-
turbation is not a short-term negative perturbation, no immediate response
is required, so the life-cycle daemon waits with the review cycle until the

104 CHAPTER 6. CASE STUDY

horizon is reached or a short-term negative perturbation occurs.
Note that the ceiling camera pipeline provided by the lab lacks a trans-

formation that can provide InsideCircle(ball) information. This is because
that pipeline does not have the background knowledge to understand what
InsideCircle means; it does not care about the lines on the field, but only
about NAO robots and balls and their positions. However, Puff does care
about the circle on the field, and therefore knows given a position whether
that position is within the circle. Assuming that the reduction in upkeep
outweighs the labour cost of switching pipelines, DyKnow-ROS finds a so-
lution during the next review interval. It uses the entire ceiling camera
pipeline plus the circle monitor from Puff, while unloading the remaining
CUs. This leads to a change set

δ∗ = (CU+, CU−,∅,∅,∅,∅), (6.12)

where the sets of CU additions and removals are described by

CU− = { 〈cid10, tid13, [/topic 8, /topic 12], /topic 1〉 , (6.13)
〈cid11, tid12, [/topic 9, /topic 10], /topic 2〉 ,
〈cid12, tid11, [/topic 10], /topic 9〉 ,
〈cid13, tid10, [/topic 11], /topic 10〉 ,
〈cid14, tid9, [], /topic 11〉 ,
〈cid15, tid8, [], /topic 12〉},

CU+ = { 〈cid16, tid24, [/topic 13], /topic 7〉 , (6.14)
〈cid17, tid23, [/topic 14, /topic 15, /topic 16,

/topic 17], /topic 13〉,
〈cid18, tid22, [/topic 18], /topic 14〉 ,
〈cid19, tid20, [/topic 19], /topic 15〉 ,
〈cid20, tid18, [/topic 20], /topic 16〉 ,
〈cid21, tid16, [/topic 21], /topic 17〉 ,
〈cid22, tid21, [], /topic 18〉 ,
〈cid23, tid19, [], /topic 19〉 ,
〈cid24, tid17, [], /topic 20〉 ,
〈cid25, tid15, [], /topic 21〉}.

Note that CU cid9 is not among the CUs being unloaded as it is being reused
in the new environment. The topic /topic 7 is therefore being reused as the
output channel for the CU cid16. The resulting environment has a cheaper
long-term cost than would have been acrued by not performing the update,
while still generating a stream on /target 1 with minimal interruption.
When at some point Puff also requires recharging, it is possible for Puff to

6.5. CLEANING UP 105

leave while keeping the circle monitor available to the system. From that
point on, the ceiling camera generate position data which is processed by
Puff off-site. The system has successfully exploited the potential improve-
ment to the configuration when it became available.

6.5 Cleaning up

Finally, with the field devoid of NAO robots and perhaps at the start of a
new day, an unsuspecting student enters the lab and, not realising the ex-
perimental setup, takes the ball. The InsideCircle(ball) predicate evaluates
to false, thereby violating the MSTL formula, yielding ‘false’ as its final an-
swer. The stream reasoning manager releases the targets, corresponding to
a perturbation

δp = (∅,∅,∅,∅,∅, {〈target1, InsideCircle(ball), /target 1〉}). (6.15)

With the target removed, the DyKnow-ROS life-cycle daemon immediately
starts a review interval. Since no targets exist, any active CUs are need-
lessly expending upkeep cost. Therefore, all active CUs are removed while
retaining the set of transformations;

δ∗ = (∅, CUε,∅,∅,∅,∅). (6.16)

Without any targets, the environment remains idle until new targets are
registered, either as the result of a formula needing evaluation or because
of another purpose for needing a semantic subscription.

6.6 Open problems

• Targets currently only consider cost, without considering quality. This
prevents certain solutions from being chosen if they are more expen-
sive, regardless of their quality being greater than that of cheaper so-
lutions. As an example, sometimes redundant information can be
useful. One situation wherein this is the case is sensor fusion. Given
multiple sources of position information for an object, combining these
sources may lead to a better position estimation. However, since this
requires multiple pipelines and thus more upkeep costs, these solu-
tions will never be chosen. It would be interesting to see how one
could extend the approach presented here to a multi-target optimisa-
tion problem in which the cost is minimised and the quality is max-
imised.

• The synergy effect is demonstrated in terms of reasoning about streams
supporting robust reasoning over streams in situations wherein the
set of available computational resources changes. We have not yet

106 CHAPTER 6. CASE STUDY

explored in detail the opposite synergy direction, wherein reasoning
over streams may affect the reasoning about streams. This is a topic
left for future work.

• The lack of multi-agent support at this stage means that the two NAO
platforms used in this case study were part of a single DyKnow in-
stance. Effectively it was the lab that acted as an agent. Separating
the two platforms over two different DyKnow instances brings new
challenges.

6.7 Summary

This chapter covered a case study wherein the DyKnow stream reasoning
framework was deployed on NAO platforms. It illustrated how an instance
of the stream reasoning framework proposed in this thesis can be used to
effectively reason both over and about streams. The synergy effect was
demonstrated by having reasoning about streams support the ability to ro-
bustly reason over streams, even if the set of available resources changes
during the reasoning process.

Chapter 7

Related work

Work towards stream reasoning has resulted in many different perspec-
tives and foci. This chapter serves as a survey of recent and/or ongoing
research projects towards stream reasoning. The survey is not meant to be
exhaustive, and does not include many of the well-known stream process-
ing tools and libraries. The listed works are compared to the contributions
presented in this thesis. Some of the listed work refers to specific projects;
others represent areas of research of high relevance to this thesis.

7.1 LARS

LARS is a Logic-based framework for Analysing Reasoning over Streams
by Beck et al. (2014, 2015) and provides a logical formalisation of stream
reasoning. LARS considers stream reasoning to be logical reasoning on
streaming data, and therefore takes an approach wherein streaming data
is modelled logically, i.e. as predicates. This approach shares similarities
with DyKnow’s state streams, which carry the truth values of predicates
over time as well. Unlike DyKnow, however, LARS does not consider the
production of state streams.

Key contributions presented as part of the LARS framework are re-
ported (Beck et al., 2015) to include

1. a rule-based formalism for reasoning over streams;

2. different means to refer to or abstract from time; and

3. a window operator to this effect.

The window operator �x
ι,ch is applied to a stream S in order to produce a

resulting stream S′, where ι indicates a window type, ch a stream choice
function, and x a vector of window parameters. The window type ι is used
to identify a window function wι. It maps from an input stream S, a ref-
erence (starting) time point t, and parameters x to a substream S′ ⊆ S.

107

108 CHAPTER 7. RELATED WORK

LARS has successfully modelled time-based, tuple-based and partition-
based windows, making it expressive enough to capture languages such
as CQL (Arasu et al., 2003, 2006).

LARS’ window operator can be used to filter elements from a stream
and apply logical reasoning to the resulting substream, thereby providing
different potential views. In the DyKnow model, a window operator would
instead exist as a transformation that filters a stream based on windowing
conditions, rather than be part of the logical representation. DyKnow’s
computational environment can also make a distinction between a filtering
operation akin to the LARS substream-producing windowing operation on
the one hand, and the case wherein every sample contains a window on the
other hand. It is presently unclear how this distinction could be leveraged
in the LARS framework. In conclusion, LARS shares similarities with Dy-
Know in terms of reasoning with the help of transformations on streams,
which allow LARS to switch views and make logical statements on those
views.

7.2 SECRET

Similar to LARS, SECRET is a model for analysing the execution semantics
of stream processing systems proposed by Botan et al. (2010). The motiva-
tion behind SECRET is rooted in the existence of multiple stream process-
ing engines, each with their own capabilities and semantics, and the desire
to compare the execution behaviour of these heterogeneous stream pro-
cessing engines. In particular, the heterogeneity manifests itself in terms of
syntax, capability, and the execution model. SECRET is (arguably loosely)
named after the four dimensions it considers; scope, content, report and
tick. Dindar et al. (2013) consider these four dimensions with SECRET in
their coverage of the heterogeneity of the Coral8, STREAM, StreamBase,
and Oracle CEP stream processing engines.

SECRET considers streams to be countably infinite sets of elements s ∈ S,
such that a stream element (or a sample in DyKnow’s terminology) is de-
scribed by 〈v, tapp, tsys, tid, bid〉. Here v denotes a relational tuple conform-
ing to a schema S (i.e. a table), tapp, tsys ∈ T denote the application time and
system time, and tid, bid denote tuple ID and batch ID values. This type
formalisation of a stream is similar to DyKnow, which considers named
structured values that could be represented as done in SECRET. A batch B

is described as a set of stream elements such that each element making up
a batch has the same tapp as all other elements of that same batch. State
streams in DyKnow could thus be described in terms of batches. Finally, as
in LARS, SECRET describes a variety of window semantics using the def-
inition of a stream, where a window over a stream produces a substream.
In particular, SECRET describes time-based windows and tuple-based win-
dows with varying window sizes and slides.

7.3. RSP 109

A key motivation for SECRET was the heterogeneity in the window
operations supported by various stream processing engines. SECRET thus
captures the window-based query execution semantics along the aforemen-
tioned four dimensions. Scope deals with the scope of a window, meaning
the window intervals, given a set of parameters. Scope can be interpreted
differently by different stream processing systems. Content deals with how
the scope of these windows translates into the content of the produced sub-
streams given an input stream. The content is then commonly sent on for
processing, such as for example aggregation. When the content becomes
visible to the query processor can vary by system. Report states the condi-
tions on when content becomes visible. Lastly, tick deals with the control
loop of a stream processing engine, and in particular when it acts on a given
input stream. Given these four dimensions, Dindar et al. (2013) consider
both time-based and tuple-based windows for the aforementioned stream
processing engines.

SECRET is primarily a tool for analysing different stream processing
engines. As with LARS, SECRET has some overlap with the formal spec-
ifications of DyKnow. The main difference between LARS and SECRET
appears to be the level of detail; LARS provides high-level semantics rela-
tive to a logical model, whereas SECRET is closer to the operational seman-
tics of a set of pre-existing stream processing engines. In both approaches,
the semantic of the window operator were a primary point of attention.
DyKnow currently does not support window operations directly, although
windowing does take place in the form of interval-bounded temporal oper-
ators. Nevertheless, SECRET’s formal specification of window operations
can be of use when considering similar operations such as merging and
synchronisation as part of for example state stream generation in DyKnow.

7.3 RSP

RDF Stream Processing (RSP) refers to stream processing techniques that as-
sume streaming data to be formatted in the RDF data format. Many query-
ing languages have been designed for RSP, usually based on a continuous
version of the SPARQL query language for RDF graphs. These languages
include but are not limited to C-SPARQL (Barbieri et al., 2009), CQELS (Le-
Phuoc et al., 2011), SPARQLstream (Calbimonte et al., 2010) and EP-SPARQL
(Anicic et al., 2011).

RSP originally continued the same pattern forming the basis for efforts
such as LARS or SECRET; different RSP implementations used different se-
mantics for windowing operations, resulting in different answers depend-
ing on the system used. While the representation of RDF graphs is well-
defined, the content of RDF streams is not. Furthermore, since operations
on RDF graphs were time-invariant (incorporating time into ontologies is
a difficult open problem), combining streams with ontologies resulted in
different approaches. RSP-QL was therefore proposed by (Dell’Aglio et al.,

110 CHAPTER 7. RELATED WORK

2014) as a unifying query model to explain the heterogeneity of these vari-
ous RSP languages. To this effect, it extends the SPARQL model and bases
off the CQL and SECRET models.

7.4 PEIS

Research towards analysis of stream reasoning such as proposed as part of
LARS, SECRET and to some extent RSP generally ignores questions of in-
tegration into a larger (eco)system. Saffiotti et al. (2008) presented the PEIS
ecology13 for Physically Embedded Intelligent Systems. The cornerstone of
the PEIS ecology is its conceptualisation of physically embedded intelli-
gent systems (PEIS) as agents that operate in a physical environment and
are themselves physical entities. Every PEIS is assumed to at least have

1. some computational resources;

2. some communication resources; and

3. sensors and/or actuators allowing the system to interact with the
physical environment.

Consequently, PEIS are assumed to be heterogeneous entities with different
capabilities. A PEIS ecology consists of potentially many PEIS, each with
their own functionalities and communication capabilities. While the PEIS
ecology considers communication problems, DyKnow instead chooses to
use ROS as a commonly-used platform that provides communication sup-
port. The PEIS ecology as a whole is intended to solve problems in a multi-
agent organisation setting by interacting with the physical environment.

Lundh et al. (2008) focused on the problem of self-configuration and
proposed techniques for configuration planning. The underlying motiva-
tion is that in the PEIS ecology robots can and should help other robots to
collectively achieve goals common to the ecology they are part of. Func-
tionalities are formalised in a logical representation that can be used by
general planners. Given a goal, the planner is able to find a set of func-
tionalities that, when activated, fulfill the goal. This approach shares sim-
ilarities with DyKnow’s semantic subscriptions. Both consider a compu-
tational environment in which functionalities can be activated or transfor-
mations can be instantiated for a cost. However, in DyKnow this cost is es-
timated and may change over time, whereas the PEIS ecology uses simple
constant values. Furthermore, DyKnow’s similarity relation is based on the
semantic tags of transformations, whereas the PEIS ecology matches propo-
sitional statements. Both the lack of meaningful cost measures and the po-
tential value in using semantic descriptions were later identified (Lundh,
2009) as future work. On the other hand, the PEIS ecology is able to model

13Pronounced ‘pace ecology’

7.4. PEIS 111

actions taken by PEIS at the level of configuration planning, whereas Dy-
Know can only consider stream processing without taking into account the
actions of agents. The preconditions for transformations are not explicitly
modeled in DyKnow either; transformations are expected to only be avail-
able when preconditions are met, as exemplified in the synergy scenarios.
DyKnow focuses to a large degree on maintaining semantic subscriptions
and therefore emphasises the need for efficient and fast reconfiguration in
light of failures. The PEIS ecology instead focuses on achieving a goal in
a physical environment, where the configuration of functionalities of PEIS
plays one role. DyKnow and the PEIS ecology are thus complementary in
their results, where the difference in motivations means there is a different
focus.

Moving from the configuration-centric abstraction level down to the
data-centric abstraction level, Alirezaie (2015) more recently focused on
the problem of streaming data semantics. In particular, the focus was on
bridging the semantic gap between sensor data and ontological knowl-
edge, which is reminiscent of the sense-reasoning gap that was the motiva-
tion (Heintz et al., 2010) behind earlier DyKnow efforts. The semantic gap
between sensor data and ontological knowledge is described as the discon-
nect between quantitative sensor values and crisp high-level knowledge
encoded into ontologies. Alirezaie (2015) focuses on two aspects. First, cor-
respondences between sensor data and conceptual knowledge needs to be
automatically determined. Second, the two types of information are com-
bined in an inferencing process. In particular, the focus is on enriching the
sensor data, meaning it is ‘lifted up’ to the conceptual level. This is different
from DyKnow’s approach of describing the low-level sensor information
using high-level concepts, as this is purely descriptive rather than forma-
tive. The use of CEP on semantic events obtained from sensor information
is an interesting approach currently not used by DyKnow.

Overall, the PEIS ecology shares many similarities with the DyKnow
project. Both efforts consider a larger integration problem in which stream
reasoning combining sensor data with high-level knowledge is essential for
decision-making, albeit from different angles.

Chapter 8

Conclusions and future
work

In this thesis we presented a logic, algorithms, formal models, semantic
representations, integration, a concrete implementation, and a case study
for spatio-temporal stream reasoning with adaptive state stream gener-
ation. The logic MSTL was used to make spatio-temporal statements of
which the truth value can be robustly determined even in the face of un-
expected changes in the availability of (latent) streams. The thesis is quite
broad in its scope, resulting in the focus on the development and integra-
tion of two related strands. In this chapter, we take a critical look at the
resulting contributions. We therefore cover not just the intentional limita-
tions, but also unintentional limitations when considering the results from
other areas within computer science. Finally, we consider the potential for
future works, and provide a discussion of these options.

8.1 Conclusions and lessons learned

The results presented in this thesis represent the latest achievements within
the DyKnow project, divided into two integrated strands. The spatio-temporal
stream reasoning results form the first strand. Here, MSTL is presented as
an extension of MTL by incorporating RCC-8 for qualitative spatial reason-
ing, allowing for spatio-temporal statements to be made. The truth value
of these statements can be determined incrementally using an extended
version of progression. These statements can further contain intertempo-
ral spatial relations similar to ST1. Importantly, we assume that these in-
tertemporal spatial relations cannot be observed directly, and thus need to
be inferred. Without any additional information about intertemporal re-
lations, nothing is known about them. Our solution therefore makes use
of landmark regions which can reduce the uncertainty over intertemporal

112

8.2. LIMITATIONS AND OPEN PROBLEMS 113

spatial relations.
The second strand focuses on the problem of generating a state stream

over which an MSTL formula can be evaluated. The symbols in a formula
are therefore grounded in a computational environment, such that the truth
value of these symbols depends on the data that is produced by this under-
lying environment. Semantic annotations of the logical symbols (through
the use of targets) as well as the available stream transformations allows
us to find suitable configurations of the computational environment that
produce a state stream containing the information necessary to evaluate a
formula. By reconsidering the configuration periodically, the computation
graphs can be repaired or improved in case where the underlying system
changes unexpectedly. This ensures that the progression of an MSTL for-
mula is not necessarily interrupted or fails as the result of such changes,
making the system more robust. Additionally, the configurations can be
expressed relative to a Semantic Web ontology, allowing for the exchange
of configuration information.

The two strands were integrated into a single stream reasoning frame-
work in which reasoning about streams synergises with reasoning over
streams. The resulting framework model was integrated with ROS and al-
lows existing ROS nodelet implementations to be used in DyKnow with
minimal overhead in terms of throughput and developer burden. This
concrete implementation was then deployed on NAO platforms, adapting
software produced by the Linköping RoboCup SPL team to be usable by
DyKnow for a case study that highlights the added value of adaptive re-
configurability during stream reasoning tasks.

While the focus of the work was primarily on robotic applications, the
solutions are general and do not rely on specific supporting software such
as ROS. For example, experimental CUs have been written for non-robotic
domains such as Twitter, or to interact with DigitalOcean’s API by instan-
tiating, managing, and destroying virtual machines in off-platform data
centres. This highlights potential applicability of the presented solutions to
much broader application areas that involve many diverse computational
resources, for example smart cities or sensor networks, making them poten-
tially interesting to industrial applications of this kind. The computation
resources also do not necessarily have to be physical. One can imagine vir-
tual services that deal with areas such as advertisement, travel agencies, or
stock markets wherein financial information and their sources may change
continually. In fact, many CEP languages have query examples that deal
precisely with stock market events.

8.2 Limitations and open problems

We already discussed chapter-specific limitations and open problems through-
out the thesis, but a global view has not yet been covered. The work pre-

114 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

sented in this thesis has a number of limitations by design, which were
initially discussed in the introduction.

We focused only on logic-based stream reasoning. This was a clear
choice made from the beginning to see what we could do with temporal
logics once spatial information gets involved. The solutions presented were
designed with robot applications in mind, but as pointed out before, they
need not be exclusive to robot applications. Nevertheless, it is one of the
reasons why we could not assume that our data was in the RDF data for-
mat, as is done by many Semantic Web applications towards stream reason-
ing. From an architectural point of view, there are some obvious limitations
as well. The synergy effect is primarily one-sided in the presentation of
this thesis. Reasoning about streams does indeed support reasoning over
streams by producing necessary state streams. Likewise, reasoning over
streams does influence reasoning about streams by resulting in the genera-
tion of targets. However, more work could be done in the latter case by for
example considering the addition and removal of transformations based
on the truth value of formulas.

Taking a step back from the theoretical and practical contributions, one
can also consider the motivation for the work. Practically, today, many of
the problems presented as example scenarios in this thesis could be solved
more easily ad-hoc. However, the base assumption of research into for ex-
ample the IoT is that there will be many things, requiring a more scalable
approach. Smart cities have been mentioned before as a potential applica-
tion area, yet no experiments were performed at that scale. Our Humanoid
lab case study does not convey the scalability issue in the same way as a
smart city would. This is an example of an unintentional limitation of the
work.

8.3 Future work

While the aforementioned open problems are an obvious target for future
work, they are quite specific. More long-term future work could focus on a
number of areas, and in particular areas that are relevant but have not been
the focus of this work. For the stream reasoning, it would be interesting to
directly work with incomplete information. The usage of RCC-8 led to sit-
uations wherein there is uncertainty in the information inferred. This is an
issue that could also apply to other calculi such as Allen’s interval algebra.
Having a way to reason specifically about the incompleteness of informa-
tion could allow one to make logical statements that deal with the incom-
pleteness explicitly. Additionally, the support of probabilistic reasoning
would be extremely useful in robotic scenarios, as in many cases the infor-
mation we want to use in the crisp logical formulas is actually represented
in terms of probability distributions. While it is trivial to provide mean
values, this does not handle Boolean comparisons nicely, as a distribution

8.3. FUTURE WORK 115

might overlap with a threshold, thus making the truth value of the com-
parison inherently probabilistic. This also impacts the way state streams
are generated, as more meta-information is required to properly combine
probabilistic information of this kind. One interesting use-case would be
that of automated fusion, wherein the underlying configuration manager
takes into account the possibility of fusing probabilistic data streams in cer-
tain contexts.

There remains a lot of potential future work in the adaptive state stream
generation strand, in addition to the limitations mentioned earlier. In par-
ticular, determining appropriate utility measures with meaningful proper-
ties is an issue. For example, if we can provide a higher-quality stream
by fusing two probabilistic streams, there is still a trade-off to be made in
terms of the labour and upkeep such a reconfiguration would cost. Find-
ing a suitable trade-off between cost and utility is an important problem
especially for robot applications.

Furthermore, the current solution is designed with a single agent in
mind. By expanding reasoning over and about streams to a multi-agent
system setting, we can consider many interesting problems in addition to
the ones described above. While there exists ongoing work into configura-
tion of for example cloud computing systems, these approaches commonly
have data centres in mind. Extending these techniques and others to het-
erogeneous autonomous robot applications would be interesting.

Finally, further investigation of the synergy effect resulting from reason-
ing about and over streams may be of interest to many problems not limited
to situation awareness. Being able to reason about one’s own percepts al-
lows one to potentially resolve inconsistencies. As a motivating example,
consider an agent exploring a new continent and stumbling upon what
appear to be black swans. This finding is revolutionary yet troublesome
because, as far as the agent is aware, all swans are white—a Black Swan
event. How can we resolve this inconsistency? One way is the adoption of
well-studied non-monotonic defeasible reasoning techniques that allow for
useful rules with exceptions or belief updates; swans are usually white, but
black swans exist.14 This type of resolution occurs in the area of ‘reason-
ing over streams’. A different resolution can be found when we consider
reasoning about streams. Clearly our agent’s percepts led us to deduce an
inconsistency given our belief base is assumed to be correct. Therefore,
the agent can attempt to verify its observations over time by attempting
to either corroborate or contradict the observations, using other modes of
perception. The underlying consideration is close to that of Plato’s cave;
the agent is observing shadows created by the outside worlds and may be
fooled by those shadows. Perhaps the camera is faulty, or the means of
detecting swans is yielding incorrect detections. Logically either the ob-
servations are wrong, or the reasoning is. By reasoning about streams, an

14This is of course a variant of the ‘Tweety’ scenario wherein it is assumed that all birds can
fly, but that Tweety is a penguin, and penguins cannot fly.

116 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

agent is able to reason about perception itself and could thus find alternate
modes of perception to either corroborate the contradiction or contradict
the inconsistent observation. The value of such corroborating or contradic-
tory evidence is of course subject to the philosophy of science. This thesis
presents but a few initial steps towards such an agent from the starting
point of stream reasoning.

Appendix A

DyKnow ontology in
Manchester syntax

The following is a listing of the DyKnow ontology used for semantic inter-
operability. It makes use of Manchester syntax to improve human readabil-
ity. The full up-to-date ontology in OWL/RDF syntax can be obtained from
http://www.dyknow.eu/ontology/ in accordance with the derefer-
encing guidelines for ontologies. We use Parrot for HTML requests.

1 Prefix: : <http://www.dyknow.eu/ontology/dyknow#>
2 Prefix: dc: <http://purl.org/dc/elements/1.1/>
3 Prefix: owl: <http://www.w3.org/2002/07/owl#>
4 Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
6 Prefix: skos: <http://www.w3.org/2004/02/skos/core#>
7 Prefix: terms: <http://purl.org/dc/terms/>
8 Prefix: xml: <http://www.w3.org/XML/1998/namespace>
9 Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

10

11

12

13 Ontology: <http://www.dyknow.eu/ontology/dyknow>
14 <http://www.dyknow.eu/ontology/dyknow/201707>
15

16 Annotations:
17 terms:creator "Daniel de Leng"ˆˆxsd:string,
18 terms:modified "2017-07-27",
19 rdfs:comment "The DyKnow ontology can be used as a common

representation of stream reasoning framework configurations."@en,
20 rdfs:label "DyKnow Ontology"@en
21

22 AnnotationProperty: rdfs:comment
23

24

25 AnnotationProperty: rdfs:label
26

27

28 AnnotationProperty: terms:creator
29

117

118 APPENDIX A. DYKNOW ONTOLOGY IN MANCHESTER SYNTAX

30

31 AnnotationProperty: terms:modified
32

33

34 Datatype: rdf:PlainLiteral
35

36

37 Datatype: xsd:Name
38

39

40 Datatype: xsd:anyURI
41

42

43 Datatype: xsd:date
44

45

46 Datatype: xsd:dateTimeStamp
47

48

49 Datatype: xsd:string
50

51

52 ObjectProperty: dependsOn
53

54 SubPropertyChain:
55 hasSubscription o fromCU
56

57 Characteristics:
58 Transitive
59

60

61 ObjectProperty: fromCU
62

63 DisjointWith:
64 toCU
65

66 Characteristics:
67 Functional
68

69 Domain:
70 Subscription
71

72

73 ObjectProperty: fromPort
74

75 Characteristics:
76 Functional
77

78 Domain:
79 Subscription
80

81 Range:
82 OutPort
83

84

85 ObjectProperty: hasChannel
86

87 Characteristics:
88 Functional
89

119

90 Domain:
91 Subscription or Target
92

93 Range:
94 Channel
95

96

97 ObjectProperty: hasCostModel
98

99 Characteristics:
100 Functional
101

102

103 ObjectProperty: hasEnvironment
104

105 Range:
106 Environment
107

108

109 ObjectProperty: hasInPort
110

111 Domain:
112 Transformation
113

114 Range:
115 InPort
116

117 InverseOf:
118 isInPort
119

120

121 ObjectProperty: hasInstance
122

123 Domain:
124 Transformation
125

126 InverseOf:
127 instanceOf
128

129

130 ObjectProperty: hasOutPort
131

132 Domain:
133 Transformation
134

135 Range:
136 OutPort
137

138 InverseOf:
139 isOutPort
140

141

142 ObjectProperty: hasSample
143

144 Characteristics:
145 Functional
146

147 Domain:
148 SampleSequence
149

120 APPENDIX A. DYKNOW ONTOLOGY IN MANCHESTER SYNTAX

150 Range:
151 Sample
152

153

154 ObjectProperty: hasSampleSequence
155

156 Characteristics:
157 Functional
158

159 Domain:
160 Stream
161

162 Range:
163 SampleSequence
164

165

166 ObjectProperty: hasState
167

168 Characteristics:
169 Functional
170

171 Domain:
172 StateSequence
173

174 Range:
175 State
176

177

178 ObjectProperty: hasStateSequence
179

180 Characteristics:
181 Functional
182

183 Range:
184 StateSequence
185

186

187 ObjectProperty: hasSubscription
188

189 Range:
190 Subscription
191

192 InverseOf:
193 toCU
194

195

196 ObjectProperty: hasTag
197

198 Range:
199 Tag
200

201

202 ObjectProperty: hasTagDescription
203

204 Characteristics:
205 Functional
206

207 Range:
208 Tag
209

121

210

211 ObjectProperty: instanceOf
212

213 Range:
214 Transformation
215

216 InverseOf:
217 hasInstance
218

219

220 ObjectProperty: isInPort
221

222 Domain:
223 InPort
224

225 Range:
226 Transformation
227

228 InverseOf:
229 hasInPort
230

231

232 ObjectProperty: isOutPort
233

234 Domain:
235 OutPort
236

237 Range:
238 Transformation
239

240 InverseOf:
241 hasOutPort
242

243

244 ObjectProperty: nextSample
245

246 Characteristics:
247 Functional,
248 Irreflexive
249

250 Domain:
251 Sample
252

253 Range:
254 Sample
255

256

257 ObjectProperty: nextState
258

259 Characteristics:
260 Functional,
261 Irreflexive
262

263 Domain:
264 State
265

266 Range:
267 State
268

269

122 APPENDIX A. DYKNOW ONTOLOGY IN MANCHESTER SYNTAX

270 ObjectProperty: toCU
271

272 DisjointWith:
273 fromCU
274

275 Characteristics:
276 Functional
277

278 Domain:
279 Subscription
280

281 InverseOf:
282 hasSubscription
283

284

285 ObjectProperty: toPort
286

287 Characteristics:
288 Functional
289

290 Domain:
291 Subscription
292

293 Range:
294 InPort
295

296

297 DataProperty: hasChannelName
298

299 Characteristics:
300 Functional
301

302 Domain:
303 Channel
304

305 SubPropertyOf:
306 hasName
307

308

309 DataProperty: hasLabel
310

311 Characteristics:
312 Functional
313

314 Range:
315 xsd:Name
316

317

318 DataProperty: hasName
319

320 Characteristics:
321 Functional
322

323

324 DataProperty: hasPortName
325

326 SubPropertyOf:
327 hasName
328

329

123

330 DataProperty: hasTimeStamp
331

332 Characteristics:
333 Functional
334

335 Range:
336 xsd:dateTimeStamp
337

338

339 DataProperty: hasValue
340

341 Characteristics:
342 Functional
343

344

345 Class: ChangeSet
346

347 Annotations:
348 rdfs:comment "A change set describes changes made to an

environment. Formally the change set at least describes the
additions and removals of computation units, transformations,
and targets."@en,

349 rdfs:label "Change Set"@en
350

351

352 Class: Channel
353

354 Annotations:
355 rdfs:label "Channel"@en,
356 rdfs:comment "Channels are named transportation mechanisms for

data."@en
357

358 SubClassOf:
359 hasChannelName some xsd:string
360

361

362 Class: CostModel
363

364 Annotations:
365 rdfs:label "Cost Model"@en,
366 rdfs:comment "A model describing how to calculate the cost of an

update."@en
367

368

369 Class: Environment
370

371 Annotations:
372 rdfs:label "Environment"@en,
373 rdfs:comment "An environment is composed of a set of computation

units (sometimes called a computation graph), a set of
transformations, a set of targets, and a similarity relation
between tags. The environment can be changed by applying a
change set to it. This application is called an update.
Environments describe the state of a stream reasoning
framework."@en

374

375 SubClassOf:
376 hasName some xsd:Name
377

378

124 APPENDIX A. DYKNOW ONTOLOGY IN MANCHESTER SYNTAX

379 Class: InPort
380

381 Annotations:
382 rdfs:label "Input Port"@en,
383 rdfs:comment "A port for receiving streaming data over a channel."

@en
384

385 SubClassOf:
386 Port
387

388 DisjointWith:
389 OutPort
390

391

392 Class: LabourCostModel
393

394 Annotations:
395 rdfs:label "Labour Cost Model"@en,
396 rdfs:comment "A cost model for calculating the labour cost."@en,
397 rdfs:label "Labor Cost Model"@en,
398 rdfs:comment "A cost model for calculating the labor cost."@en
399

400 SubClassOf:
401 CostModel
402

403

404 Class: OutPort
405

406 Annotations:
407 rdfs:label "Output Port"@en,
408 rdfs:comment "A port for transmitting streaming data over a

channel."@en
409

410 SubClassOf:
411 Port
412

413 DisjointWith:
414 InPort
415

416

417 Class: Parameter
418

419 Annotations:
420 rdfs:label "Parameter"@en
421

422 SubClassOf:
423 hasLabel some xsd:Name,
424 hasValue some xsd:anyURI
425

426

427 Class: Port
428

429 Annotations:
430 rdfs:comment "The connection between a channel and a computation

unit is realised in terms of ports. Ports are named entities."
@en,

431 rdfs:label "Port"@en
432

433 SubClassOf:
434 hasPortName some xsd:Name

125

435

436

437 Class: Sample
438

439 Annotations:
440 rdfs:label "Sample"@en,
441 rdfs:comment "An atomic, time-stamped data point."@en
442

443 SubClassOf:
444 hasLabel some xsd:Name,
445 hasTimeStamp some xsd:dateTimeStamp,
446 hasValue some xsd:anyURI
447

448

449 Class: SampleSequence
450

451 Annotations:
452 rdfs:label "Sample Sequence"@en
453

454 EquivalentTo:
455 hasSample some Sample
456

457

458 Class: Sink
459

460 Annotations:
461 rdfs:comment "A transformation that does not produce any resulting

stream is called a sink."@en,
462 rdfs:label "Sink"@en
463

464 SubClassOf:
465 Transformation,
466 hasOutPort exactly 0 OutPort
467

468

469 Class: Source
470

471 Annotations:
472 rdfs:comment "A transformation that does not take any incoming

stream is called a source."@en,
473 rdfs:label "Source"@en
474

475 SubClassOf:
476 Transformation,
477 hasInPort exactly 0 InPort
478

479

480 Class: State
481

482 Annotations:
483 rdfs:comment "A state is a mapping from a variable to a value."@en

,
484 rdfs:label "State"@en
485

486 SubClassOf:
487 hasLabel some xsd:Name,
488 hasValue some xsd:anyURI
489

490

491 Class: StateSequence

126 APPENDIX A. DYKNOW ONTOLOGY IN MANCHESTER SYNTAX

492

493 Annotations:
494 rdfs:label "State Sequence"@en
495

496 EquivalentTo:
497 hasState some State
498

499

500 Class: StateStream
501

502 Annotations:
503 rdfs:label "State Stream"@en,
504 rdfs:comment "A stream composed of states is called a state stream

. State streams thus describe mappings from sets of variables
to sets of values for specific time-points. State streams can
be used to for example evaluate logical formulas."@en

505

506 SubClassOf:
507 Stream
508

509

510 Class: Stream
511

512 Annotations:
513 rdfs:comment "A sequence of samples representing a flow of data is

called a stream."@en,
514 rdfs:label "Stream"@en
515

516 EquivalentTo:
517 hasSampleSequence some SampleSequence
518

519

520 Class: Subscription
521

522 Annotations:
523 rdfs:comment "A subscription is a connection from a transmitting

port to a receiving port over a channel."@en,
524 rdfs:label "Subscription"@en
525

526 SubClassOf:
527 fromPort some Port,
528 hasChannel some Channel,
529 toPort some Port
530

531

532 Class: Tag
533

534 Annotations:
535 rdfs:label "Tag"@en,
536 rdfs:comment "A tag is a descriptor with which concepts can be

annotated. A concrete application can extend the Tag concept
to describe an annotation language."@en

537

538 SubClassOf:
539 hasTagDescription some owl:Thing
540

541

542 Class: Target
543

544 Annotations:

127

545 rdfs:comment "Targets describe the semantics of a desired
information stream by using tags. Every target specifies a
channel over which this desired information should be sent.
Targets can be used to obtain adaptive semantic subscriptions
which can be maintained by a DyKnow stream reasoning manager."
@en,

546 rdfs:label "Target"@en
547

548 SubClassOf:
549 hasChannel some Channel,
550 hasTag some Tag,
551 hasName some xsd:Name
552

553

554 Class: Transformation
555

556 Annotations:
557 rdfs:comment "Transformations describe stream-generating functions

over streams that can be instantiated as computation unit.
The act of instantiating a transformation results in cost
being acrued. Transformations are identifiable by a unique
name."@en,

558 rdfs:label "Transformation"@en
559

560 SubClassOf:
561 hasCostModel some LabourCostModel,
562 hasName some xsd:Name
563

564

565 Class: UpkeepCostModel
566

567 Annotations:
568 rdfs:comment "A cost model for calculating the upkeep cost."@en,
569 rdfs:label "Upkeep Cost Model"@en
570

571 SubClassOf:
572 CostModel
573

574

575 Class: owl:Thing

Bibliography

M. Alirezaie. Bridging the Semantic Gap between Sensor Data and Ontological
Knowledge. PhD thesis, Örebro university, 2015.

J. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.

R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM (JACM), 43(1):116–146, 1996.

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified
language for event processing and stream reasoning. In Proceedings of the
20th International World Wide Web Conference (WWW), 2011.

A. Arasu, S. Babu, and J. Widom. Cql: A language for continuous queries
over streams and relations. In Proceedings of the 9th International Workshop
on Database Programming Languages (DBPL), pages 1–19. Springer, 2003.

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,
U. Srivastava, and J. Widom. STREAM: The Stanford data stream manage-
ment system, pages 317–336. Stanford InfoLab, 2004.

A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. The VLDB Journal, 15(2):121–
142, 2006.

F. Bacchus and F. Kabanza. Planning for temporally extended goals. In
Proceedings of the 13th AAAI conference of Artificial Intelligence, pages 1215–
1222, 1996.

F. Bacchus and F. Kabanza. Planning for temporally extended goals. Annals
of Mathematics and Artificial Intelligence, 22(1-2):5–27, 1998.

D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-
SPARQL: SPARQL for continuous querying. In Proceedings of the 18th
International World Wide Web Conference (WWW), 2009.

H. Beck, M. Dao-Tran, T. Eite, and M. Fink. Towards a logic-based frame-
work for analyzing stream reasoning. In Proceedings of the 3rd Interna-
tional Workshop on Ordering and Reasoning (OrdRing), 2014.

128

BIBLIOGRAPHY 129

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based frame-
work for analyzing reasoning over streams. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI), 2015.

B. Bennett, A. Cohn, F. Wolter, and M. Zakharyaschev. Multi-dimensional
modal logic as a framework for spatio-temporal reasoning. Applied Intel-
ligence, 17(3):239–251, 2002.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5):34–43, 2001.

I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller, and N. Tatbul. SE-
CRET: a model for analysis of the execution semantics of stream process-
ing systems. Proceedings of the VLDB Endowment, 3(1-2):232–243, 2010.

A. Bröring, K. Janowicz, C. Stasch, and W. Kuhn. Semantic challenges for
sensor plug and play. In Proceedings of the International Symposium on
Web and Wireless Geographical Information Systems (W2GIS), volume 5886,
pages 72–86, 2009.

A. Bröring, P. Maué, K. Janowicz, D. Nüst, and C. Malewski. Semantically-
enabled sensor plug & play for the sensor web. Sensors, 11(8):7568–7605,
2011.

J.-P. Calbimonte, O. Corcho, and A. J. Gray. Enabling ontology-based access
to streaming data sources. In Proceedings of the 9th International Semantic
Web Conference (ISWC), pages 96–111. Springer, 2010.

A. Cohn and J. Renz. Qualitative spatial representation and reasoning. In
Handbook of Knowledge Representation, pages 869–886. Elsevier, 2008.

M. Compton et al. The SSN ontology of the W3C semantic sensor network
incubator group. Web Semantics: Science, Services and Agents on the World
Wide Web, 17:25–32, 2012.

G. Cugola and A. Margara. Processing flows of information: From data
stream to complex event processing. ACM Computing Surveys (CSUR),
44(3):15, 2012.

Z. Cui, A. G. Cohn, and D. A. Randell. Qualitative and topological re-
lationships in spatial databases. In Proceedings of the Third International
Symposium on Advances in Spatial Databases (SSD), pages 296–315, 1993.

D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte, and O. Corcho. RSP-QL se-
mantics: A unifying query model to explain heterogeneity of RDF stream
processing systems. International Journal on Semantic Web and Information
Systems, 10(4):17–44, 2014.

Y. Diao, N. Immerman, and D. Gyllstrom. SASE+: An agile language for
Kleene closure over event streams, 2007.

130 BIBLIOGRAPHY

N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, and I. Botan. Modeling the ex-
ecution semantics of stream processing engines with SECRET. The VLDB
Journal, 22(4):421–446, 2013.

P. Doherty, J. Kvarnström, and F. Heintz. A temporal logic-based plan-
ning and execution monitoring framework for unmanned aircraft sys-
tems. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS),
19(3):332–377, 2009.

Z. Dragisic. Semantic matching for stream reasoning. Master’s thesis,
Linköping University, 2011.

S. Dustdar and W. Schreiner. A survey on web services composition. Inter-
national Journal of Web and Grid Services, 1(1):1–30, 2005.

Z. Gantner, M. Westphal, and S. Wölfl. GQR – a fast reasoner for binary
qualitative constraint calculi. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI), pages 24–29, 2008.

A. Gerevini and B. Nebel. Qualitative spatio-temporal reasoning with RCC-
8 and Allen’s interval calculus: Computational complexity. In Proceedings
of the 15th European Conference on Artificial Intelligence (ECAI 2002), vol-
ume 2, pages 312–316, 2002.

M. Ghallab. On chronicles: Representation, on-line recognition and learn-
ing. In Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning, KR’96, pages 597–606, San Fran-
cisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and G. Anderson.
SASE: Complex event processing over streams. In Proceedings of the 3rd
Biennial Conference on Innovative Data Systems Research (CIDR), 2006.

F. Heintz. DyKnow : A Stream-Based Knowledge Processing Middleware Frame-
work. PhD thesis, Linköping University, 2009.

F. Heintz and P. Doherty. DyKnow: An approach to middleware for knowl-
edge processing. Journal of Intelligent and Fuzzy Systems, 15(1), 2004.

F. Heintz and Z. Dragisic. Semantic information integration for stream rea-
soning. In Proceedings of the 15th International Conference on Information
Fusion (FUSION), 2012.

F. Heintz and D. de Leng. Semantic information integration with trans-
formations for stream reasoning. In Proceedings of the 16th International
Conference on Information Fusion (FUSION), pages 445–452, 2013.

F. Heintz and D. de Leng. Spatio-temporal stream reasoning with incom-
plete spatial information. In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI), pages 429–434, 2014.

BIBLIOGRAPHY 131

F. Heintz, J. Kvarnström, and P. Doherty. Bridging the sense-reasoning gap:
DyKnow – stream-based middleware for knowledge processing. Journal
of Advanced Engineering Informatics, 24(1):14–26, 2010.

A. Hongslo. Stream processing in the Robot Operating System framework.
Master’s thesis, Linköping University, 2012.

J. Huang. Compactness and its implications for qualitative spatial and tem-
poral reasoning. In Proceedings of the 13th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2012), 2012.

F. Kerasiotis, C. Koulamas, C. Antonopoulos, and G. Papadopoulos. Mid-
dleware approaches for wireless sensor networks based on current
trends. In Proceedings of the 4th Mediterranean Conference on Embedded Com-
puting (MECO), pages 244–249, 2015.

R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Spatial logic +
temporal logic = ? In Handbook of Spatial Logics, pages 497–564. Springer,
2007.

R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

D. Laney. 3d data management: Controlling data volume, velocity and
variety. META Group Research Note, 6:70, 2001.

E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and M. Weber.
A vision of swarmlets. IEEE Internet Computing, 19(2):20–28, 2015.

D. Lazarovski. Extending the stream reasoning in DyKnow with spatial
reasoning in RCC-8. Master’s thesis, Linköping University, 2012.

D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked
data. In Proceedings of the 10th International Conference on The Semantic
Web, ISWC’11, pages 370–388, 2011.

D. de Leng. Extending semantic matching in DyKnow to handle indirectly-
available streams. Master’s thesis, Utrecht University, 2013.

D. de Leng. Querying flying robots and other Things: Ontology-supported
stream reasoning. XRDS, 22(2):44–47, 2015.

D. de Leng and F. Heintz. Towards on-demand semantic event processing
for stream reasoning. In Proceedings of the 17th International Conference on
Information Fusion (FUSION), pages 1–8, 2014.

D. de Leng and F. Heintz. Ontology-based introspection in support of
stream reasoning. In Proceedings of the 1st Joint Ontology Workshops
(JOWO) co-located with the 24th International Joint Conference on Artificial
Intelligence (IJCAI), 2015a.

132 BIBLIOGRAPHY

D. de Leng and F. Heintz. Ontology-based introspection in support of
stream reasoning. In Proceedings of the 13th Scandinavian Conference on
Artificial Intelligence (SCAI), pages 78–87, 2015b.

D. de Leng and F. Heintz. Qualitative spatio-temporal stream reasoning
with unobservable intertemporal spatial relations using landmarks. In
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI),
pages 957–963, 2016a.

D. de Leng and F. Heintz. DyKnow: A dynamically reconfigurable stream
reasoning framework as an extension to the robot operating system. In
Proceedings of the 5th IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR), pages 957–963, 2016b.

D. de Leng and F. Heintz. Towards adaptive semantic subscriptions for
stream reasoning in the robot operating system. In Proceedings of the 30th
IEEE/RSJ International Conference on Intelligent Robots and Systems (SIM-
PAR) (to appear), 2017.

J. J. Li, T. Kowalski, J. Renz, and S. Li. Combining binary constraint net-
works in qualitative reasoning. In Proceedings of the 18th European Confer-
ence on Artificial Intelligence (ECAI 2008), volume 8, pages 515–519, 2008.

R. Lundh. Robots that Help Each Other: Self-Configuration of Distributed Robot
Systems. PhD thesis, Örebro University, 2009.

R. Lundh, L. Karlsson, and A. Saffiotti. Autonomous functional configura-
tion of a network robot system. Robotics and Autonomous Systems, 56(10):
819–830, 2008.

C. Lutz and M. Milic̆ić. A tableau algorithm for description logics with
concrete domains and general TBoxes. Journal of Automated Reasoning, 38
(1-3):227–259, 2007. ISSN 0168-7433.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8(1):99–118, 1977.

D. Martin et al. OWL-S: Semantic markup for web services. W3C member
submission, 2004.

D. L. McGuinness, F. Van Harmelen, et al. OWL web ontology language
overview. W3C recommendation, 2004.

J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In
Proceedings of the International Conference on Formal Modeling and Analysis
of Timed Systems, pages 1–13, 2008.

E. Pejman, Y. Rastegari, P. M. Esfahani, and A. Salajegheh. Web service
composition methods: A survey. In Proceedings of the International Multi-
Conference of Engineers and Computer Scientists (IMECS), volume 1, pages
560–564, 2012.

BIBLIOGRAPHY 133

J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, T. C. Rodrigues, and T. V.
Batista. SAMSON: Self-adaptive middleware for wireless sensor net-
works. In Proceedings of the 31st ACM/SIGAPP Symposium on Applied Com-
puting (SAC), pages 1315–1322, 2016.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. ROS: an open-source robot operating system.
In Proceedings of the 2009 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2009.

D. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and
connection. In Proceedings of the 3rd International Conference on Principles
of Knowledge Representation and Reasoning (KR 1992), pages 165–176, 1992.

J. Rao and X. Su. A survey of automated web service composition methods.
In Proceedings of the International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC), volume 3387, pages 43–54, 2005.

J. Renz and B. Nebel. Efficient methods for qualitative spatial reasoning.
Journal of Artificial Intelligence Research, 15:289–318, 2001.

A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid, B. Seo,
and Y.-J. Cho. The PEIS-ecology project: vision and results. In Proceed-
ings of the IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2008.

F. Tang and L. Parker. ASyMTRe: Automated synthesis of multi-robot task
solutions through software reconfiguration. In Robotics and Automation,
pages 1501–1508. IEEE, 2005.

M. Y. Vardi. Automata-theoretic model checking revisited. In Proceedings of
the 8th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 137–150. Springer, 2007.

F. Wolter and M. Zakharyaschev. Spatio-temporal representation and rea-
soning based on RCC-8. In Proceedings of the Seventh Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2000), pages 3–14, 2000.

Department of Computer and Information Science
Linköpings universitet

Licentiate Theses

Linköpings Studies in Science and Technology
Faculty of Arts and Sciences

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,

Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.
No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.
No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.
No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett
agentteoretiskt perspektiv, 2000.

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.
No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.
No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,
2005.

No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.
No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.
No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.
No 1359 Jana Rambusch: Situated Play, 2008.
No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.
No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.
No 1371 Fredrik Lantz: Terrain Object Recognition and Context Fusion for Decision Support, 2008.
No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.
No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.
No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.
No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.
No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.
No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.
No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.
No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.
No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.
No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.
No 1450 Fabian Segelström: Visualisations in Service Design, 2010.
No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.
No 1466 Mohammad Saifullah: Exploring Biologically Inspired Interactive Networks for Object Recognition, 2011

No 1468 Qiang Liu: Dealing with Missing Mappings and Structure in a Network of Ontologies, 2011.
No 1469 Ruxandra Pop: Mapping Concurrent Applications to Multiprocessor Systems with Multithreaded Processors and
 Network on Chip-Based Interconnections, 2011.
No 1476 Per-Magnus Olsson: Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles, 2011.
No 1481 Anna Vapen: Contributions to Web Authentication for Untrusted Computers, 2011.
No 1485 Loove Broms: Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts, 2011.
FiF-a 101 Johan Blomkvist: Conceptualising Prototypes in Service Design, 2011.
No 1490 Håkan Warnquist: Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis, 2011.
No 1503 Jakob Rosén: Predictable Real-Time Applications on Multiprocessor Systems-on-Chip, 2011.
No 1504 Usman Dastgeer: Skeleton Programming for Heterogeneous GPU-based Systems, 2011.
No 1506 David Landén: Complex Task Allocation for Delegation: From Theory to Practice, 2011.
No 1507 Kristian Stavåker: Contributions to Parallel Simulation of Equation-Based Models on

Graphics Processing Units, 2011.
No 1509 Mariusz Wzorek: Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems, 2011.
No 1510 Piotr Rudol: Increasing Autonomy of Unmanned Aircraft Systems Through the Use of Imaging Sensors, 2011.
No 1513 Anders Carstensen: The Evolution of the Connector View Concept: Enterprise Models for Interoperability
 Solutions in the Extended Enterprise, 2011.
No 1523 Jody Foo: Computational Terminology: Exploring Bilingual and Monolingual Term Extraction, 2012.
No 1550 Anders Fröberg: Models and Tools for Distributed User Interface Development, 2012.
No 1558 Dimitar Nikolov: Optimizing Fault Tolerance for Real-Time Systems, 2012.
No 1582 Dennis Andersson: Mission Experience: How to Model and Capture it to Enable Vicarious Learning, 2013.
No 1586 Massimiliano Raciti: Anomaly Detection and its Adaptation: Studies on Cyber-physical Systems, 2013.
No 1588 Banafsheh Khademhosseinieh: Towards an Approach for Efficiency Evaluation of

Enterprise Modeling Methods, 2013.
No 1589 Amy Rankin: Resilience in High Risk Work: Analysing Adaptive Performance, 2013.
No 1592 Martin Sjölund: Tools for Understanding, Debugging, and Simulation Performance Improvement of Equation-

Based Models, 2013.
No 1606 Karl Hammar: Towards an Ontology Design Pattern Quality Model, 2013.
No 1624 Maria Vasilevskaya: Designing Security-enhanced Embedded Systems: Bridging Two Islands of Expertise, 2013.
No 1627 Ekhiotz Vergara: Exploiting Energy Awareness in Mobile Communication, 2013.
No 1644 Valentina Ivanova: Integration of Ontology Alignment and Ontology Debugging for Taxonomy Networks, 2014.
No 1647 Dag Sonntag: A Study of Chain Graph Interpretations, 2014.
No 1657 Kiril Kiryazov: Grounding Emotion Appraisal in Autonomous Humanoids, 2014.
No 1683 Zlatan Dragisic: Completing the Is-a Structure in Description Logics Ontologies, 2014.
No 1688 Erik Hansson: Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA

Multicore Architecture, 2014.
No 1715 Nicolas Melot: Energy-Efficient Computing over Streams with Massively Parallel Architectures, 2015.
No 1716 Mahder Gebremedhin: Automatic and Explicit Parallelization Approaches for Mathematical Simulation Models,

2015.
No 1722 Mikael Nilsson: Efficient Temporal Reasoning with Uncertainty, 2015.
No 1732 Vladislavs Jahundovics: Automatic Verification of Parameterized Sytems by Over-Approximation, 2015.
FiF 118 Camilla Kirkegaard: Adding Challenge to a Teachable Agent in a Virtual Learning Environment, 2016.
No 1758 Vengatanathan Krishnamoorthi: Efficient and Scalable Content Delivery of Linear and Interactive Branched

Videos, 2016.
No 1771 Andreas Löfwenmark: Timing Predictability in Future Multi-Core Avionics Systems, 2017.
No 1777 Anders Andersson: Extensions for Distributed Moving Base Driving Simulators, 2017.
No 1780 Olov Andersson: Methods for Scalable and Safe Robot Learning, 2017.
No 1783 Daniel de Leng: Spatio-Temporal Stream Reasoning with Adaptive State Stream Generation, 2017.

