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Preface

The thesis has been developed as part of the requirements for a PhD de-
gree at the Artificial Intelligence and Integrated Computer System divi-
sion (AIICS) in the Department of Computer and Information Sciences at
Linköping University.

The work focuses on issues related to Unmanned Aerial Vehicle (UAV)
navigation, in particular in the areas of guidance and vision-based au-
tonomous flight in situations of short and long term GPS outage.

The thesis is divided into two parts. Part I (Simulation and Guidance)
describes a helicopter simulator and a path following control mode devel-
oped and implemented on an experimental helicopter platform. Part II
(Vision-based Navigation) presents an approach to the problem of vision-
based state estimation for autonomous aerial platforms which makes use
of geo-referenced images for localization purposes. The problem of vision-
based landing is also addressed with emphasis on fusion between inertial
sensors and video camera using an artificial landing pad as reference pat-
tern. In the last chapter, a solution to a vision-based ground object geo-
location problem using a fixed-wing micro aerial vehicle platform is pro-
posed.

The helicopter guidance and vision-based navigation methods developed
in the thesis have been implemented and tested in real flight-tests using a
Yamaha Rmax helicopter. Extensive experimental flight-test results are
presented.

Linköping, May 2009

Gianpaolo Conte

The work in this thesis is supported in part by grants from the Wallen-
berg Foundation, the SSF MOVIII strategic center, the NFFP04-031 ”Au-
tonomous flight control and decision making capabilities for Mini-UAVs”
project grants and LinkLab, a Saab-LiU Center for Future Aviation Sys-
tems.
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Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is an aerial vehicle without a hu-
man pilot on board. It can be autonomous, semi-autonomous or radio-
controlled. In the past, the use of UAVs have been mostly related to mili-
tary applications in order to perform the so-called Dirty, Dull and Danger-
ous (D3) missions such as reconnaissance, surveillance and location acqui-
sition of enemy targets. Recently, interest for UAV systems has begun to
grow also in the direction of civil applications.

The different aspects of aircraft navigation involve capabilities in deci-
sion making, obstacle perception, aircraft state estimation (estimation of
position, velocity and attitude) and aircraft control. In the earlier days
of aeronautic history, the on-board pilot had to solve these tasks by using
his own skills. Nowadays the situation is quite different since a high level
of automation is present in modern military and civil aircrafts. However,
the replacement of the pilot skills with a fully automated system is an ex-
tremely hard task. This is the reasons why the introduction of UAVs in
non-segregated airspace represents a challenge.

The work presented in this thesis was initiated as part of the WITAS
UAV Project [18, 17], where the main goal was to develop technologies
and functionalities necessary for the successful deployment of a fully au-
tonomous Vertical Take Off and Landing (VTOL) UAV. The typical op-
erational environment for this research has been urban areas where an
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autonomous helicopter can be deployed for missions such as traffic moni-
toring, photogrammetry, surveillance, etc.

To accomplish complex autonomous missions, high-level functionalities
such as mission planning and real world scene understanding have to be
integrated with low-level functionalities such as motion control, sensing and
control mode coordination. Details and discussions relative to the WITAS
UAV software architecture can be found in [19, 42].

This thesis addresses two problems related to the navigation task, there-
fore it is divided into two parts. Part I addresses the problem of Simula-
tion and Guidance where a simulation tool and a spline following control
mode are described. Part II addresses the problem of Vision-based Nav-
igation without GPS. Moreover, a vision-based method for ground target
geo-location from a Micro Aerial Vehicle platforms (MAV) is also presented.

Part I describes the helicopter dynamic model used in the simulator
and the development and flight-testing of a Path Following Control Mode
(PFCM) which enables a UAV helicopter to follow 3D geometric paths. A
basic functionality required for a UAV is the ability to fly from a start-
ing location to a goal location. In order to achieve such a task safely
the helicopter must perceive and than avoid eventual obstacles on its way.
Additionally, it must stay within the allowed flight envelope. The UAV
developed during the WITAS UAV Project has the capability of using a
priori knowledge of the environment in order to avoid static obstacles. An
on-board path planner uses this knowledge to generate collision-free paths.
Details of the path planning methods used can be found in [48, 47, 64]. The
PFCM developed in this thesis executes 3D path segments generated by the
path planner. The velocity set-points are generated in the PFCM taking
into account the helicopter’s kinematic constraints. The PFCM has been
implemented on-board an autonomous helicopter and flight-test results are
presented in this thesis.

In Part II the challenging problem of coping with long-term GPS out-
ages using vision-based techniques is addressed. Such a problem is of ex-
treme importance when deploying a UAV in real world scenarios. A UAV
navigation system in fact depends on the GPS system as the primary po-
sition source. It is well known that the GPS system can be vulnerable
in certain situations and can be jammed using commercial GPS jammers.
Such a critical issue must be addressed and a back-up solution must be
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found for a safe deployment of any UAV system. Part II of this thesis deals
with this issue and proposes a vision-based navigation architecture which
can cope with GPS outages using geo-referenced imagery as absolute posi-
tion source. The proposed vision-based solution is implemented on-board
a UAV helicopter and experimental flight-test results will be presented.
In addition the thesis presents experimental results of a vision-based au-
tonomous landing approach using an artificial pattern as landing pad.

Geo-referenced imagery is also used for high accuracy ground target
localization from a small autonomous fixed-wing MAV platform. The ac-
curacy of such a method is evaluated through field trials. The approach
was also used during the 3rd US-European Micro Aerial Vehicle compe-
tition (MAV07, Toulouse, 2007) achieving the best accuracy among the
competitors resulting in 1st place in the competition.

The UAV platform used for most of the field experiments is a Rmax un-
manned helicopter manufactured by Yamaha Motor Company. The hard-
ware and software necessary for autonomous flight have been developed
during the WITAS UAV Project using off-the-shelf hardware components.

Flight missions are performed in a training area of approximately one
square kilometer in the south of Sweden, called Revinge (Figure 1.1). The
area is used for emergency service training and includes a number of build-
ing structures and road networks. An accurate 3D model of the area is
available on board the helicopter in a GIS (Geographic Information Sys-
tem), which is used for mission planning purposes.

The image in Figure 1.1 is also used for helicopter localization purposes
as a geo-reference image in chapter 5.
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Figure 1.1: Orthophoto of the flight-test area in Revinge (south of Sweden).
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Chapter 2

Platform

This chapter presents an overview of the UAV hardware/software architec-
ture developed during the WITAS UAV Project. A description of the UAV
helicopter platform used for the experimental tests will also be presented.

2.1 Hardware/software architecture

The software architecture developed is a complex distributed architecture
for high level autonomous missions. The architecture enables the UAV to
perform so-called push button missions. This is intended to cover missions
where a UAV is capable of planning and executing the mission from take-
off to landing with limited, or no human intervention. An example of
such a mission demonstrated in an actual flight experiment is a building
inspection mission. In this scenario a UAV helicopter is given the task of
taking pictures of each of the facades of a selected set of buildings input by
a ground operator using an on-screen display. Once the ground operator
has selected the buildings of interest and given the start mission command,
a flight-plan is generated on-board the helicopter from take-off to landing
including the computation of the most advantageous helicopter position
relative to the building facades to inspect [63].

To accomplish high-level autonomous missions, an architecture which
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integrates many different functionalities is required. Figure 2.1 provides an
overview of the software architecture that has been developed during the
WITAS Project. The three main blocks of Figure 2.1 represent:

• the deliberative/reactive system (DRC) which implements a number
of high level planning and monitoring functionalities such as path
planner, task planner, execution monitoring, GIS, etc.

• the image processing system (IPC) which implements the image pro-
cessing functions, part of the sensor fusion architecture described in
chapter 5 and handles everything which is related to the video camera
(frame grabbing, camera pan/tilt control, etc.)

• the primary flight control system (PFC) which implements the control
modes (hovering, path following, take-off, landing, etc.), the Kalman
filters (INS/GPS, INS/camera) and handles communication with the
helicopter platform and with the other sensors (GPS, pressure sensor,
etc.)

each system is implemented on a separate computer.
The PFC executes predominantly hard real-time tasks such as flight

control modes or the sensor fusion algorithms. This part of the system uses
a Real-Time Application Interface (RTAI) [39] which provides industrial-
grade real-time operating system functionality. RTAI is a hard real-time
extension to a standard Linux kernel (Debian) and has been developed at
the Department of Aerospace Engineering of Politecnico di Milano.

The DRC instead, has reduced timing requirements. This part of the
system uses the Common Object Request Broker Architecture (CORBA)
as its distribution backbone. Currently an open source implementation
of CORBA 2.6 called TAO/ACE [31] is in use. More details about the
complete software architecture can be found in [19, 63, 42].

The on-board hardware schematic is displayed in Figure 2.2. The
avionic system is based on three PC104 embedded computers. The PFC
system is implemented on a 700Mhz Pentium III and includes a wireless
Ethernet bridge, a GPS receiver, a barometric altitude sensor and a com-
pass. The PFC communicates with the Yamaha Rmax helicopter through
a serial line RS232C. It sends control inputs to the servos and reads the
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High Level Services
(Path Planner, GIS, etc.)

Task Procedures

Helicopter Server

CORBA

HCSM Interpreter (C-API)

DRC

Control Modes

Simulator

INS/GPS 
Kalman filter

HCSM 
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INS/Camera 
Kalman filter

PFC

Camera
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Controller

Image 
Processing

Hardware 
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HCSM 
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Hardware 
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IPC
Real-time

communication
channels

Point-mass filter 

Figure 2.1: UAV software architecture schematic.

inertial sensor data from an inertial measurement unit integrated in the
helicopter. The IPC runs on a second PC104 embedded computer (PIII
700MHz), it includes a color CCD camera mounted on a pan/tilt unit, a
video transmitter and a video recorder (miniDV). The DRC system runs
on the third PC104 embedded computer (Pentium-M 1.4GHz) and exe-
cutes planning and monitoring functionalities. Network communication
between computers is physically realized with serial line RS232C and Eth-
ernet. Ethernet is mainly used for CORBA applications, remote login and
file transfer, while serial lines are used for hard real-time networking.
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DRC 
- 1.4 GHz P-M 
- 1GB RAM 
- 512 MB flash 

IPC 
- 700 MHz PIII 
- 256MB RAM 
- 512 MB flash 
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- 256MB RAM 
- 512 MB flash 

sensor 
suite 

sensor
suite 

RS232C 
Ethernet 
Other media 

Figure 2.2: On-board hardware schematic.

2.2 Helicopter platform

The Yamaha Rmax helicopter used for the experimentation (Figure 2.3)
has a total length of 3.6 m (including main rotor). It is powered by a 21
hp two-stroke engine and has a maximum takeoff weight of 95 kg.

The Rmax rotor head is equipped with a Bell-Hiller stabilizer bar (see
Figure 2.4). The effect of the Bell-Hiller mechanism is to reduce the re-
sponse of the helicopter to wind gusts. Moreover, the stabilizer bar is
used to generate a control augmentation to the main rotor cyclic input.
The Bell-Hiller mechanism is very common in small-scale helicopters but
quite uncommon in full-scale helicopters. The reason for this is that a
small-scale helicopter experiences less rotor-induced damping compared to
full-scale helicopters. Consequently, it is more difficult to control for a
human pilot. It should be pointed out though that an electronic control
system can stabilize a small-scale helicopter without a stabilizer bar quite
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Figure 2.3: The Rmax helicopter.
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efficiently. For this reason the trend for small-scale autonomous helicopters
is to remove the stabilizer bar and let the digital control system stabilize the
helicopter. The advantage in this case is a reduced mechanical complexity
in the system.

Figure 2.4: The Rmax rotor head with Bell-Hiller mechanism.

The Rmax helicopter has a built-in attitude sensor called YAS (Yamaha
Attitude Sensor) composed of three accelerometers and three rate gyros.
The output of the YAS are acceleration and angular rate on the three
helicopter body axes (see section 3.4 for a definition of body axis). The
YAS also computes the helicopter attitude angles. Acceleration and angular
rate from the YAS will be used as inertial measurement data for the sensor
fusion algorithms described in this thesis.

The Rmax also has a built-in digital attitude control system called
YACS (Yamaha Attitude Control System). The YACS stabilizes the heli-
copter attitude dynamics and the vertical channel dynamics. The YACS is
used in all the helicopter control modes implemented in the control archi-
tecture as an attitude stabilization system.
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Part I

Simulation and Guidance
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Chapter 3

Simulation

3.1 Introduction

This chapter describes the simulation tool which has been used to develop
and test the guidance algorithms implemented on the Rmax helicopter. It
is used to test the helicopter missions both in the lab and on the field. The
Rmax helicopter simulator is implemented in the C language and allows
testing of all the control modes developed. Many flight-test hours have
been avoided due to the possibility of running, in simulation, the exact
code of the control system which is executed on the on-board computer
during the actual flight-test.

In order to develop and test the helicopter control system a mathe-
matical model which represents the dynamic behavior of the helicopter
is required. The simulator described in this section is specialized for the
Yamaha Rmax helicopter in the sense that the model includes the dy-
namics of the bare platform in addition to the Yamaha Attitude Control
System (YACS). The YACS system stabilizes the pitch and roll angles of
the helicopter, the yaw rate and the vertical velocity.

The dynamics model of the Rmax helicopter has been derived in two
separate steps. First, the helicopter attitude dynamics with the YACS in
the loop, has been identified using system identification methods. Sub-



14 3.2. RELATED WORK

sequently, the derived attitude dynamics has been used as input to the
longitudinal equations of motion representing the helicopter velocity dy-
namics.

The reason why the YACS has been used was to speed up the control
development process and to shift the focus toward development of func-
tionalities such as the PFCM presented in chapter 4. All of the currently
developed flight modes use the YACS as an inner control loop which sta-
bilizes the high frequency helicopter dynamics. Experimental tests have
shown that the YACS decouples the helicopter dynamics so that the pitch,
roll, yaw and vertical channels can be treated separately in the control
system design. In other words the channels do not influence each other.

3.2 Related work

The derivation of the helicopter model described here is quite unusual since
it includes the attitude control system in the loop. The main interest here
was to investigate the suitability of using the YACS as the inner control
loop of a complete helicopter control system.

Typical work on scale helicopter modeling found in the literature ad-
dress the problem of modeling the helicopter dynamics without a control
system in the loop. Extensive insight on helicopter dynamics can be found
in [50]. In [44], a model identification technique has been used to identify
the dynamics of the bare unmanned helicopter R50 also manufactured by
the Yamaha Motor Company. In that work, a mathematical structure of
the model of the helicopter dynamics was assumed beforehand, while the
parameters of the model were identified through a parameter identification
technique.

3.3 Hardware-in-the-loop simulation

Two versions of the simulator have been developed. A non real-time ver-
sion, used to develop the control modes, where the purpose of the simula-
tion in this case is the tuning and testing of the internal logic of the control
modes. A real-time version is instead used to test the complete UAV archi-
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tecture, where simulations are performed with hardware-in-the-loop. The
latter is used to test a complete helicopter mission and can be used on
the flight-test field as a last minute verification for the correct functioning
of hardware and software. Both simulators use the same dynamic model
which will be presented in this chapter.

The helicopter dynamics function is located in the PFC system and it
is called every 20 ms when the system is in simulation mode. Figure 3.1
shows the hardware/software components involved in a real flight-test and
in the simulation test. The components and connections represented with
a dashed line are not active during the respective test modalities.

The diagram shows which components can be tested in simulation. Ob-
serve that in simulation the helicopter servos are connected and can move,
but there is no feedback from the servo position to the simulator. The fact
that their movement can be visually checked is used as a final check that
the system is operating appropriately.

The YACS control system is also part of the loop, but since it is built
into the helicopter, it cannot be fed with simulated sensor outputs, so it
still takes the input from the YAS sensor which, obviously, does not deliver
any measurement from the helicopter. This is not problematic because the
simulator does not have the purpose of testing the correct functioning of
the YACS.

Currently, the video camera is not used in the simulation loop but
the system can still control the camera pan/tilt. A virtual environment
(Figure 3.2), reproducing the flight-test area described in the introduction
(Figure 1.1), is used for visualization purposes. Theoretically the image
processing functions could be fed with synthetic images in order to feedback
from the virtual environment, this is a topic for future work.

3.4 Reference systems

This section provides definitions of the different reference systems used in
this part of the thesis. The reference systems and transformations relative
to the camera system will be given in Part II of the thesis.

The Earth system (Figure 3.3) has its origin at the center of mass of
the Earth and axes which are fixed with respect to the Earth. Its Xe axis
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Figure 3.1: Figure a) depicts the hardware/software architecture in flight-
test configuration. Figure b) depicts the architecture during the hardware-
in-the-loop simulation.
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Figure 3.2: Virtual environment used for flight mission simulation.
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points toward the mean meridian of Greenwich, the Ze axis is parallel to
the mean spin axis of the Earth, and the Y e axis completes a right-handed
orthogonal frame.

The navigation system (Figure 3.3) is a local geodetic frame which has
its origin coinciding with that of the sensor frame and axes with the Xn

axis pointing toward the geodetic north, the Zn axis orthogonal to the ref-
erence ellipsoid pointing down, and the Y n axis completing a right-handed
orthogonal frame.

Figure 3.3: Earth and navigation reference systems.

The body system (Figure 3.4) is an orthogonal axis set which has its
origin coinciding with the center of gravity of the helicopter, the Xb axis
pointing forward to the helicopter’s nose, the Y b axis orthogonal to the Xb

axis and pointing to the right side of the helicopter body, and the Zb axis
pointing down so that it forms a right-handed orthogonal frame. Since the
Rmax inertial sensors are quite close to the helicopter’s center of gravity it
is possible to consider the navigation frame and the body frame as having
the same origin point.

In order to transform a vector from the body system to the navigation
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Figure 3.4: Body reference system.

system a rotation matrix has to be applied:

~r n = Cnb ~r
b (3.1)

The rotation matrix Cnb is defined as:

Cnb =

 cosθcosψ −cosφsinψ+sinφsinθcosψ sinφsinψ+cosφsinθcosψ
cosθsinψ cosφcosψ+sinφsinθsinψ −sinφcosψ+cosφsinθsinψ
−sinθ sinφcosθ cosφcosθ

(3.2)

where φ, θ and ψ are the Euler angles roll, pitch and heading. Since
the rotation matrix is orthogonal, the transformation from the navigation
system to the body system is given by:

Cbn = (Cnb )T (3.3)

The transformation matrix 3.2 and 3.3 will be used later in the thesis.

3.5 The augmented Rmax dynamic model

The Rmax helicopter model presented in this thesis includes the bare heli-
copter dynamics and the YACS control system dynamics. The code of the
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YACS is strictly Yamaha proprietary so the approach used to build the rel-
ative mathematical model has been that of black-box model identification.
With the use of this technique, it is possible to estimate the mathematical
model of an unknown system (the only hypothesis about the system is that
it has a linear behavior) just by observing its behavior. This is achieved in
practice by sending an input signal to the system and measuring its output.
Once the input and output signals are known there are several methods to
identify the mathematical structure of the system.

The YACS model identification is not part of this thesis and details
can be found in [20]. In the following section the transfer functions of the
augmented attitude dynamics will be given. These transfer functions will
be used to build the augmented Rmax helicopter dynamic model used in
the simulator.

3.5.1 Augmented helicopter attitude dynamics

As previously stated the YACS and helicopter attitude dynamics have been
identified through black-box model identification.

The Equations in 3.4 represent the four input/output transfer functions
in the Laplace domain:

∆φ =
2.3(s2 + 3.87s+ 53.3)

(s2 + 6.29s+ 16.2)(s2 + 8.97s+ 168)
∆ail

∆θ =
0.5(s2 + 9.76s+ 75.5)

(s2 + 3s+ 5.55)(s2 + 2.06s+ 123.5)
∆ele (3.4)

∆r =
9.7(s+ 12.25)

(s+ 4.17)(s2 + 3.5s+ 213.4)
∆rud

∆aZ =
0.0828s(s+ 3.37)

(s+ 0.95)(s2 + 13.1s+ 214.1)
∆thr

where ∆φ and ∆θ are the roll and pitch angle increments (deg), ∆r
the body yaw angular rate increment (deg/sec) and ∆aZ the acceleration
increment g along the Zb body axis. ∆ail, ∆ele, ∆rud and ∆thr are the
control input increments taken relative to a trimmed flight condition. The
control inputs are in YACS units and range from -500 and +500.
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These transfer functions describe not only the dynamic behavior of the
YACS but also the dynamics of the helicopter (rotor and body) and the
dynamics of the actuators.

Since the chain composed by the YACS, actuators and helicopter is
quite complex it is important to remember that the estimated model has
only picked up a simple reflection of the system behavior. The identification
was done near the hovering condition so it is improper to use the model
for different flight conditions. In spite of this, simulations up to ∼10 m/s
have shown good agreement with the experimental flight-test results.

3.5.2 Helicopter equations of motion

The aircraft equations of motion can be expressed in the body reference
frame with three sets of first order differential equations [24]. The first set
represents the translational dynamics along the three body axes:

X = m(u̇+ q w − r v) +mg sinθ

Y = m(v̇ + r u− pw)−mg cosθ sinφ (3.5)
Z = m(ẇ + p v − q u)−mg cosθ cosφ

where X, Y , Z represent the resultants of all the aerodynamic forces; u,
v, w the body velocity components; p, q, r the body angular rates; m and
g the mass and the gravity acceleration; φ and θ the pitch and roll angles.

The second set of equations represents the aircraft rotational dynamics:

L = Ixṗ− (Iy − Iz) q r
M = Iy q̇ − (Iz − Ix) r p (3.6)
N = Iz ṙ − (Ix − Iy) p q

where L, M , N represent the moments generated by the aerodynamic
forces acting on the helicopter; Ix, Iy, Iz the inertia moments of the heli-
copter.

The third set of equations represents the relation between the body
angular rates and the Euler angles:
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φ̇ = p+ q sinφ tanθ + r cosφ tanθ

θ̇ = q cosφ− r sinφ (3.7)
ψ̇ = q sinφ secθ + r cosφ secθ

These three sets of nonlinear equations are valid for a generic aircraft.
The transfer functions Equations 3.4 can be used now in the motion equa-
tions. From the Laplace domain of the transfer functions, it is possible to
pass to the time domain. This means that from the first three equations
in 3.4 we derive φ(t), θ(t) and r(t) which can be used in Equations 3.7 in
order to find the other parameters p(t), q(t), ψ(t).

The Equations in 3.6 will not be used in the model because the dynam-
ics represented by these equations is contained in the first three transfer
functions in 3.4. The motion Equations in 3.5 can be rewritten as follows:

u̇ = Fx − q w + r v − g sinθ
v̇ = Fy − r u+ pw + g cosθ sinφ (3.8)
ẇ = Fz − p v + q u+ g cosθ cosφ

where Fx, Fy, Fz are the forces per unit of mass. In this set of equations
some of the nonlinear terms are small and can be neglected for our flight
envelope, although for simulation purposes, it does not hurt to leave them
there. Later, when the model will be used for control purposes the necessary
simplifications will be made.

The tail rotor force is included in Fy and it is balanced by a certain
amount of roll angle. In fact every helicopter with a tail rotor must fly
with a few degrees of roll angle in order to compensate for the tail rotor
force which is directed sideways. For the Rmax helicopter the roll angle
is 4.5 deg in hovering condition with no wind. The yaw dynamics in our
case is represented by the third transfer function in 3.4. For this reason
we do not have to model the force explicitly. By doing that we find in our
model a zero degree roll angle in hovering condition which does not affect
the dynamics of our simulator. Of course a small coupling effect between
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the lateral helicopter motion and yaw channel is neglected during a fast
yaw maneuver due to the consistent increase of the tail rotor force.

The Equations in 3.8 are then rewritten as follows:

u̇ = Xu u− q w + r v − g sinθ
v̇ = Yv v − r u+ pw + g cosθ sinφ (3.9)
ẇ = Zw w + T − p v + q u+ g cosθ cosφ

where Xu, Yv and Zw are the aerodynamic derivatives (accounting for
the aerodynamic drag). The values used for the aerodynamic derivatives
are Xu = −0.025, Yv = −0.1 and Zw = −0.6. These values have been
chosen using an empirical best fit criteria using flight-test data.

The main rotor thrust T is given by:

T = −g −∆aZ (3.10)

where ∆aZ is given by the fourth transfer function in 3.4.
Comparing the Equations in 3.9 with other work in the literature, for

example [44], it can be observed that the rotor flapping terms are missing.
The rotor flapping represents the possibility of the helicopter rotor disk
to tilt relative to the helicopter fuselage. On the other hand the flapping
dynamics is contained in the transfer functions in 3.4. It was not possible
to model rotor flapping explicitly in the Equations in 3.9 because it is not
observable from the black-box model identification approach used. The fact
that the flapping terms are not included in Equations 3.9 does not have
strong consequences on the low frequency dynamics. On the other hand, the
high frequency helicopter dynamics is not captured correctly. Therefore the
helicopter model derived here cannot be used for high bandwidth control
system design. In any case, the model is good enough for position and
velocity control loop design. In [50] the mathematical formulation for rotor
flapping can be found.
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3.6 Simulation results

The validation of the Rmax helicopter model can be found in [20]. In this
section, the validation of the simulation procedure with the control system
in the loop will be described. The results of two simulation tests of the
PFCM, which will also be described later in the thesis, will be provided.
The PFCM is a control function that enables the helicopter to follow 3D
path segments. The path segments will be given to the PFCM which is in
a closed loop with the simulator. The simulation results will be compared
to the same PFCM implemented on the helicopter platform. This is not a
validation of the simulator since the control function is in the loop. What
is interesting is the analysis of the differences of the closed loop behavior
between the flight-test and the simulation. The helicopter is commanded
to fly a segment path starting from a hovering condition until reaching a
target speed. The path also presents a curvature change. The same control
function has been used for the two tests. In Figure 3.5 and Figure 3.6 the
simulation (dashed line) and flight-test (continuous line) are overlapped on
the same graph. The upper-left plot of Figure 3.5 represents the helicopter
path as seen from above. The difference in position between the simulation
and flight-test is very small, below one meter and cannot be seen in detail
from the plot. In the same diagram the velocity components and the total
velocity are plotted. This shows that the simulated velocity and the real
velocity are quite close. In this test, the helicopter was accelerated to 5
m/s forward speed. In Figure 3.6 the results for the pitch and roll inputs
and the attitude angles are presented. The pitch and roll inputs present
a steady state error compared to the simulation while the pitch and roll
angles are in good agreement.

In Figures 3.7 and 3.8, the same path segment is tested but the heli-
copter accelerates until 10 m/s velocity is reached. The simulated position
and velocity are still in good agreement with the flight-test experiment
while the pitch and roll angles are worse. This is the limitation of as-
suming a linear dynamic model. Since the model has been identified near
hovering conditions, when operating far from such conditions the model
will not perform equally well. It is interesting to notice that the simulation
can predict quite accurately the saturation of the roll input (Figure 3.8)
at around 845 sec. This could be a sign that the helicopter is flying too
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fast for the current path curvature, and an adjustment in the PFCM in
the generation of the velocity reference might be required. This kind of
problem can be analyzed very efficiently with the simulator tool developed.

Figure 3.5: Results 1st flight. Comparison between flight-test position
and velocity data (solid) with simulation data (dash-dot). The helicopter
accelerates to 5 m/s target velocity.
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Figure 3.6: Results 1st flight. Comparison between flight-test helicopter
inputs and attitude data (solid) with simulation data (dash-dot). The
helicopter accelerates to 5 m/s target velocity.
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Figure 3.7: Results 2nd flight. Comparison between flight-test position
and velocity data (solid) with simulation data (dash-dot). The helicopter
accelerates to 10 m/s target velocity.



28 3.6. SIMULATION RESULTS

Figure 3.8: Results 2nd flight. Comparison between flight-test helicopter
inputs and attitude data (solid) with simulation data (dash-dot). The
helicopter accelerates to 10 m/s target velocity.



CHAPTER 3. SIMULATION 29

3.7 Conclusion

In this chapter, the simulation tool used to test and develop the UAV
software architecture, including the control system has been described. The
simulator has been a useful tool for the development of the control modes.
The hardware-in-the-loop version of the simulator is a useful tool to test
a complete mission in the field. In addition, the fact that the helicopter
servos are in the simulation loop provides a rapid verification that the
correct signals arrive from the control system. This verification is used for
a final decision on the field in order to proceed or not with a flight-test.
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Chapter 4

Path Following Control
Mode

4.1 Introduction

The Path Following Control Mode (PFCM) described in this chapter and
published in [14], has been designed to navigate an autonomous helicopter
in an area cluttered with obstacles, such as an urban environment. The
path planning problem is not addressed in this thesis, it can be found in [47].
It is assumed that a path planner generates a collision-free path. Then the
task which will be solved here is to find a suitable guidance and control
law which enables the helicopter to follow the path robustly. The path
planner calculates the path geometry which is then input to the PFCM.
Before starting with the description of the PFCM, some basic terminology
will be provided.

Guidance is the process of directing the movements of an aeronautical
vehicle with particular reference to the selection of a flight path. The term
of guidance or trajectory generation in this thesis addresses the problem of
generating the desired reference position and velocity for the helicopter at
each control cycle.

The outer control is a feedback loop which takes as inputs the reference
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position and velocity generated by the trajectory generator and calculates
the output for an inner control loop.

The inner control is a feedback loop which stabilizes the helicopter
attitude and the vertical dynamics. As mentioned previously, the inner
control loop used here has been developed by Yamaha Motor Company
and is part of the YACS.

4.2 Related work

Several methods have been proposed to solve the problem of generation and
execution of a state-space trajectory for an autonomous helicopter [23, 27].
In general this is a hard problem, especially when the trajectory is time
dependent. The solution adopted here is to separate the problem into two
parts: first to find a collision-free path in the space domain and than to
add a velocity profile later. In this way the position of the helicopter is not
time dependent which means that it is not required for the helicopter to
be in a certain point at a specific time. A convenient approach for such a
problem is the path following method. By using the path following method
the helicopter is forced to fly close to the geometric path with a specified
forward speed. In other words, the path is always prioritized and this is
a requirement for robots that for example have to follow roads and avoid
collisions with buildings. The method developed for PFCM is weakly model
dependent and computationally efficient.

The path following method has also been analyzed in [58, 53]. The
guidance law derived there presents singularity when the cross-track error
is equal to the curvature radius of the path so that it has a restriction on the
allowable cross-track error. The singularity arises because the guidance law
is obtained by using the Serret-Frenet formulas for curves in the plane [58].

The approach used in this thesis does not use the Serret-Frenet formulas
but a different guidance algorithm similar to the one described in [22] which
is also known as virtual leader. In this case the motion of the control point
on the desired path is governed by a differential equation containing error
feedback which gives great robustness to the guidance method. The control
point (Figure 4.1) is basically a point lying on the path where the helicopter
ideally should be.
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Figure 4.1: Control point on the reference path.

The guidance algorithm developed uses information from the model
in 3.9 described in section 3.5.2 in order to improve the path tracking
error while maintaining a reasonable flight speed. The experimental results
presented show the validity of the control approach.

Figure 4.2 represents the different components of the control system,
from the path planner to the inner loop that directly sends the control
inputs to the helicopter actuators. The PFCM described in this thesis
includes the trajectory generator and the outer control loop.

4.3 Trajectory generator

In this section, a description of the guidance algorithm developed for the
PFCM is provided. The trajectory generator function takes as input a set of
parameters describing the geometric path calculated by the path planner
and calculates the reference position, velocity and heading for the inner
control loop. First the analytic expression of the 3D path is calculated,
then a feedback algorithm calculates the control point on the path. Finally
the reference input for the outer loop is calculated using the kinematic
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Figure 4.2: The PFCM includes two modules: trajectory generator and
outer loop.

helicopter model described in chapter 3.

4.3.1 Calculation of the path geometry

The path planner generates 3D geometric paths described by a sequence of
segments. Each segment is passed from the high-level part of the software
architecture, where the path planner is located, to the low-level part where
the control modes including the PFCM are implemented.

The path segment is generated in the navigation frame with the origin
fixed at the initial point of the path. We will use the superscript n to
indicate a vector in the navigation frame. Each segment is described by
a parameterized 3D cubic curve represented by the following equation in
vectorial form:

~pn(s) = As3 +Bs2 + Cs+D (4.1)
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where A, B, C and D are 3D vectors calculated from the boundary
conditions of the segment and s the path segment parameter.

Figure 4.3 depicts a path segment with the relative boundary conditions.
The segment is defined by the starting point coordinates ~p(0), the end
point coordinates ~p(1) and two vectors which represent the direction of the
segment tangent at the starting point ~̇p(0) and at the end point ~̇p(1) so
that the 3D path segment is defined by 12 parameters. The path planner
calculates the 12 parameters ensuring the continuity of the path and of the
first order derivative at the segment joints.

Figure 4.3: Boundary conditions for a path segment.

Actually, by imposing only these boundary conditions (continuity of the
path and continuity of the first order derivative at the segment joints) the
segment has two degrees of freedom undefined which are represented by



36 4.3. TRAJECTORY GENERATOR

the magnitude of the tangent vectors ~̇p(0) and ~̇p(1).
The magnitude of the tangent vector affects the curvature of the path.

If the continuity of the second order derivative at the joints (e.g. the cur-
vature) is imposed then all the 12 parameters would be found and in this
case the path would be a cubic spline [51]. The two degrees of freedom
are chosen by the path planner in order to satisfy other conditions which
will not be mentioned here. For more details the reader is referred to [47].
The path generated in this way can have discontinuity of the second order
derivative at the segment joints. This can lead to a small path tracking
error especially at high speed.

The 12 parameters are passed as input arguments to the PFCM which
then generates the reference geometric segment used for control purposes.
The generation of the path segment in the PFCM is done using the matrix
formulation in 4.2 with the boundary condition vector explicitly written on
the right hand side. The parameter s ranges from s = 0 which corresponds
to the starting point ~p(0) to s = 1 which corresponds to the end point ~p(1)
of the same segment. When the helicopter enters the next segment the
parameter is reset to zero.

~pn(s) =
[
s3 s2 s 1

] 
2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0



~p(0)
~p(1)
~̇p(0)
~̇p(1)

 (4.2)

The vectors ~p(0), ~p(1), ~̇p(0) and ~̇p(1) are expressed in the navigation
reference system. For control purposes the tangent and the curvature need
to be calculated. The path tangent ~tn is:

~tn(s) =
[

3s2 2s 1 0
] 

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0



~p(0)
~p(1)
~̇p(0)
~̇p(1)

 (4.3)

The path curvature ~k n is:
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~q n(s) =
[

6s 2 0 0
] 

2 −2 1 1
−3 3 −2−1
0 0 1 0
1 0 0 0



~p(0)
~p(1)
~̇p(0)
~̇p(1)

 (4.4)

~k n(s)=
~tn(s)× ~q n(s)× ~tn(s)

|~tn(s)|4
(4.5)

In the guidance law the curvature radius which is ~r n = 1/~k n will be
used. Since ~tn and ~r n are expressed in the navigation frame, in order to
be used in the guidance law, they have to be transformed into the body
frame using the rotation matrix Cbn defined in section 3.4.

At this point the geometric parameters (tangent and curvature) of the
path segment are known. Now these parameters can be used in the guidance
law provided that the path segment parameter s is known. The method as
to how to find s will be discussed in the next section.

4.3.2 Feedback method

When the dynamic model of the helicopter is known, it is in principle
possible to calculate beforehand at what point in the path the helicopter
should be at a certain time. By doing this the path segment would be time
dependent. In this way at each control cycle the path parameters (position,
velocity and attitude) would be known and they could be used directly for
control purposes. Then the helicopter could be accelerated or slowed down
if it is behind or ahead of the actual control point (which is the point of
the path where the helicopter should be at the relative time).

The generation of a time dependent trajectory is usually a complex
problem. An additional complication is that the trajectory has to satisfy
obstacle constraints (to find a collision free path in a cluttered environ-
ment).

The alternative approach used here is the following. Instead of acceler-
ating or slowing down the helicopter, the control point will be accelerated
or slowed down using a feedback method. In this way the path is not time
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dependent anymore and so the problem of generating a collision free path
can be treated separately from the helicopter dynamics. Of course the path
generated must be smooth enough to be flown with a reasonable velocity
and this has to be taken into account at the path planning level. The fact
that the helicopter kinematic and dynamic constraints are not taken into
account at the path planning level might lead to a path which forces the
helicopter to abrupt brake due to fast curvature change. This problem can
be attenuated using some simple rules in the calculation of the segment
boundary conditions [47].

The algorithm implemented in this thesis finds the control point by
searching for the closest point of the path to the helicopter position. The
problem could be solved geometrically simply by computing an orthogonal
projection from the helicopter position to the path. The problem which
arises in doing this is that there could be multiple solutions. For this reason
a method has been adopted which finds the control point incrementally and
searches for the orthogonality condition only locally.

The reference point on the nominal path is found by satisfying the
geometric condition that the scalar product between the tangent vector
and the error vector has to be zero:

~e · ~t = 0 (4.6)

where the error vector ~e is the helicopter distance from the candidate con-
trol point. The control point error feedback is calculated as follows:

ef = ~e · ~t/|~t| (4.7)

with ef the magnitude of the error vector projected on the tangent ~t.
The vector ~e is calculated as follows:

~e = ~pcp,n−1 − ~pheli,n (4.8)

where ~pcp,n−1 is the control point position at the previous control cycle
and ~pheli,n is the actual helicopter position. The control point is updated
using the differential relation:

d~p = ~̇p · ds (4.9)
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Equation 4.9 is applied in the discretized form:

sn = sn−1 +
ef

|d~pcp

ds |n−1

(4.10)

where sn is the new value of the parameter. Equations 4.7 and 4.10
can also be used iteratively in order to find a more accurate control point
position. In this application, it was not necessary. Once the new value of
s is known, all the path parameters can be calculated.

4.3.3 Outer loop reference inputs

In this section, the method used to calculate the reference input or set-point
for the outer control loop will be described in detail. Before proceeding, a
description as to how the PFCM takes into account some of the helicopter
kinematic constraints will be provided.

PFCM kinematic constraints

The model in 3.9 will be used to derive the guidance law which enables the
helicopter to follow a 3D path.

The sine and cosine can be linearized around θ = 0 and φ = 0 since
in our flight condition, the pitch and roll angles are between the interval
±20 deg. This means that we can approximate the sine of the angle to
the angle itself (in radians) and the cosine of the angle to 1. By doing this
from the first and second equation in 3.7 it is possible to calculate the body
angular rate p and q:

q = θ̇ + rφ (4.11)
p = φ̇− rθ

where the product between two or more angles has been neglected be-
cause it is small compared to the other terms. Using the same considera-
tions and using the Equations in 4.11 it is possible to rewrite the system
in 3.9 in the following form:
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u̇ = Xuu− (θ̇ + r φ)w + r v − g θ
v̇ = Yvv − r u+ (φ̇− r θ)w + g φ (4.12)
ẇ = Zww + T − (φ̇− r θ)v + (θ̇ + r φ)u+ g

At this point we can add the condition that the helicopter has to fly with
the fuselage aligned to the path (in general this condition is not necessary
for a helicopter, it has been adopted here to simplify the calculation). The
constraints which describe this flight condition (under the assumption of
relatively small pitch and roll angles) are:

r =
u

Rby

θ̇ =
u

Rbz
(4.13)

v = v̇ = 0
w = ẇ = 0

where Rby and Rbz are the components of the curvature radius along the
body axes Y b and Zb, respectively.

The equations in 4.12 can finally be rewritten as:

r =
u

Rby

θ =
Xuu− u̇

g

φ =
u2

gRby
(4.14)

T = − u
2

Rbz
− u4

g(Rby)2
− g

In the right hand side of 4.14 we have the four inputs that can be given
as a reference signal to an inner control loop (such as the YACS) which



CHAPTER 4. PATH FOLLOWING CONTROL MODE 41

controls the yaw rate r, the attitude angles φ, θ and the rotor thrust T .
These inputs only depend on the desired velocity and acceleration u and u̇
and the path curvature Rby and Rbz.

If the geometry of the path, which is represented by Rby and Rbz, is
then assigned, in principle it is possible to assign a desired velocity and
acceleration u and u̇ and calculate the four inputs for the inner loop. The
problem is that these inputs cannot be assigned arbitrarily because they
have to satisfy the constraints of the dynamic system composed by the
helicopter plus the inner loop.

A solution of 4.14 which does not involve the dynamic constraints is
represented by a stationary turn on the horizontal plane with constant
radius (picture (a) of Figure 4.4). The solution for this flight condition is
given by 4.14 where Rbz =∞, u̇ = 0 and Rby = constant. This condition is
called trimmed flight because the first derivative of the flight parameters are
zero (φ̇ = θ̇ = ṙ = Ṫ = u̇ = 0). For this flight condition it is straightforward
to calculate the maximum flight speed allowed. Since the maximum values
of r, φ, θ and T are limited for safety reasons, the maximum path velocity
u can be calculated from the system 4.14:

u1 = |Rbyrmax|

u2 = |gθmax
Xu

|

u3 =
√
|φmaxgRby| (4.15)

u4 = (| − g(Tmax + g)(Rby)2|) 1
4

The minimum of these four velocities can be taken as the maximum
speed for the path:

umax = min(u1, u2, u3, u4) (4.16)

The path generated by the path planner is represented by a cubic poly-
nomial. The curvature radius in general is not constant for such a path,
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Figure 4.4: Representation of the several ways in which the helicopter can
follow a 3D path.
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which means that the helicopter never flies in trimmed conditions but it
flies instead in maneuvered flight conditions.

Let now examine a maneuver in the vertical plane (Rby = ∞, Rbz =
constant). From the second equation in 4.13 and the second equation
in 4.14 we can observe that there is no constant velocity solution (u̇ = 0)
which satisfies both. This means that when the helicopter climbs, it loses
velocity.

To make the PFCM more flexible in the sense of allowing vertical climb-
ing and descending at a constant speed, we have to remove the constraints
θ̇ = u/Rbz and w = ẇ = 0. In other words the fuselage will not be aligned
to the path during a maneuver in the vertical plane as it is shown in Fig-
ure 4.4 (c). The helicopter instead will follow the path as it is shown in
Figure 4.4 (b).

Calculation of the outer loop inputs

We can finally address the problem of generating the reference inputs for
the outer control loop. The inputs will be calculated in the form of control
errors (difference between the current helicopter state and the desired one)
as follows.

1. Calculation of the position error vector δ~p.

The position error vector is the difference between the control point
position ~pncp and the helicopter position given by the INS/GPS system
~pnheli. In order to be used in the outer loop control equations the
vector must be rotated from the navigation frame to the body frame
using the rotation matrix Cbn:

δ~p b = Cbn(~pncp − ~pnheli)

As explained in section 4.3.2, the control point position is calculated
using feedback from the helicopter position. The method does not
search for the control point along the whole path segment but it
remembers the value of the parameter s (e.g. the previous control
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point) from the previous control cycle and starts the search from
there. By doing this, the search is very fast since the new control
point will not be far from the previous one (the control function is
called with a frequency of 50Hz). At the beginning of each segment,
the parameter value is set to zero.

Once the new value of s is found, the position error vector δ~p b can
be calculated together with the local path tangent ~t and curvature ~k.

2. Calculation of the velocity error vector δ~v.

The velocity error vector is the difference between the target velocity
vtarg and the helicopter velocity given by the INS/GPS system ~v nheli.
The target velocity is obviously tangent to the geometric path. The
direction of the tangent vector is given by:

~τ n =
~tn

|~t|
(4.17)

In order to be used in the control equations in 4.25, the velocity error
vector must be expressed in the body frame in the same way as the
position error vector:

δ~v b = Cbn(vtarg · ~τ n − ~v nheli) (4.18)

The calculation of vtarg (desired helicopter velocity along the path)
must take into account the helicopter kinematic constraints, the limi-
tation due to the maximum allowable vertical velocity and the partic-
ular phase of the flight path that is acceleration, cruising and braking.

Let us call vtarg1 the velocity calculated according to the acceleration,
cruising and braking condition, vtarg2 the velocity calculated accord-
ing to the helicopter kinematic constraints and vtarg3 the velocity
according to the vertical speed limitation. These three velocities will
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be calculated in the following part of this section and the minimum
value among the three will be used as vtarg. This procedure is re-
peated at each control cycle and in this way the velocity profile for
the path is shaped.

The calculation of vtarg1 is done considering the acceleration, cruising
and braking conditions. The calculation scheme can be represented
by the state-machine in Figure 4.5.

Figure 4.5: State-machine representing the calculation of the velocity
vtarg1.

The constant acceleration phase is activated only at the beginning
of the first segment of the path and it ends when vacc = vcruise or
vacc = vbrake. vcruise is set by the path planner while the calculation
of vbrake will be explained below. During the acceleration phase vacc
is increased at a constant rate of 1.2 m/s2. The cruising phase is
active when the braking and the acceleration phases are off. The
braking condition is activated when the following condition becomes
true:
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vbrake < vcruise (4.19)

with

vbrake =
√
|(2 · lend ·Acc+ v2

end)| (4.20)

where lend is the distance, calculated along the path segment, that
the helicopter has to fly to reach the end of the segment and Acc is
the desired acceleration during the braking phase (its value is set to
1.2 m/s). vend is the desired velocity at the end of each path segment
and it is assigned by the path planner. The condition 4.19 means that
the helicopter must start to brake when the distance to the end of
the segment is equal to the distance necessary to bring the helicopter
from the velocity vcruise to vend with the desired acceleration. If vend
is greater than vcruise the helicopter increases the velocity instead.
The method used for the calculation of lend is explained in [14].

The calculation of vtarg2 takes into account the kinematic constraints
described by the equations in 4.15. For safety reasons the flight
envelope has been limited to: rmax = 40 rad/sec maximum yaw
rate, φmax = 15 deg maximum roll angle, θmax = 15 deg maxi-
mum pitch angle and for the vertical acceleration a load factor of
Nzmax = Tmax/g = 1.1. The value of Nzmax has been chosen us-
ing the fact that a load factor of 1.1 means increasing the helicopter
weight 10 percent. The maximum takeoff weight of the Rmax is 94 kg
and the Rmax weight used in this experimental test is around 80 kg,
so a load factor of 1.1 ensures enough safety. The second equation
in 4.15 represents the forward velocity u2 achievable with the maxi-
mum pitch angle. It is not considered as a constraint here since the
cruise velocity assigned by the path planner will always be smaller
than u2. umax is calculated using 4.16. Finally we can calculate
vtarg2 as:
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vtarg2 =
umax
τ bx

(4.21)

where τ bx is the projection of the vector in 4.17 on the helicopter Xb

body axis.

Figure 4.6 shows the three velocities u1, u3 and u4, depending on
the path curvature radius, calculated from equations in 4.15 using
the limitation rmax, φmax and Nzmax. The most limiting velocity is
u3, which means the maximum roll angle φmax is the most limiting
factor for the maximum velocity umax. The situation can change
if the takeoff weight is more than 80 kg, in this case Nzmax could
become the limiting factor.

Figure 4.6: Velocity constraint due to the maximum yaw rate, roll angle
and load factor.

It is important to mention that the velocity umax is calculated using
Equation 4.15 which is derived from a trimmed flight condition. As
previously mentioned, using a path described by a cubic polynomial,
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the curvature changes continuously and the helicopter almost never
flies in trimmed conditions. The resulting umax might not always be
consistent with the attitude dynamics θ̇ and φ̇. The faster the speed,
the more the attitude dynamics is relevant.

The velocity vtarg3 is calculated as follows. The vertical velocity must
be limited during a descending path because of the vortex ring which
can build up around the main rotor in this flight condition. In this
case, the helicopter descends into rotor down-wash and enters what
is commonly called the vortex ring state (VRS). This situation can
cause loss of helicopter control and might be difficult to recover. For
this reason a limitation on the descending velocity component is nec-
essary. The flow state diagram of Figure 4.7 shows the combination
of horizontal and vertical speed where VRS occurs. This diagram was
developed at the Aviation Safety School, Monterey CA, in the late
1980s for use by mishap investigators in their analysis of several of
these events. In this thesis, this diagram has been used as a guideline
in choosing the right combination of vertical and horizontal speed in
order to avoid a VRS situation. More details on VRS phenomenon
can be found in [50].

The flow state diagram axes are parametrized with the hovering in-
duced velocity which is calculated in feet/minutes as follows:

Vi = 60

√
DL

2ρ
(4.22)

where DL is the rotor disk loading (lbs/ft2) and ρ the air density
(SLUGS

ft3
). This diagram will be used to calculate a safe vertical speed.

For the Rmax helicopter, the induced hovering velocity calculated us-
ing 4.22 and converted in m/s results in Vi = 6.37 m/s. The value has
been calculated using the air density at sea level ρ = 0.002377SLUGS

ft3
,

Rmax weight of 80 kg and rotor diameter R = 3.115 meters. From
the diagram, the vertical speed when the light turbulence first occurs
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Figure 4.7: Flow states in descending forward flight (from ”The vortex ring
state fallacy” by R.E. Joslin, 2003).
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is around w1 = 0.5Vi = 3.18 m/s. It can also be observed that for a
descent angle smaller than 30 deg the VRS area is avoided completely.

The maximum vertical velocity profile chosen for the Rmax is shown
in Figure 4.8 (dashed line) where for safety reasons w1 has been re-
duced to 1.5 m/s for a descent angle γ greater than 30 deg, while
for γ smaller then 30 deg the descending velocity has been limited to
w2 = 3 m/s.

Figure 4.8: Maximum descent velocity used in the PFCM for the Rmax
helicopter.

The calculation of vtarg3 is then:

γ = atan(
τnz
τnx

)

wMAXdescent = 1.5 90◦ > γ ≥ 30◦

wMAXdescent = 3 30◦ > γ > 0◦ (4.23)

vtarg3 =
wMAXdescent

τnz
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Finally, the helicopter velocity profile is given by:

vtarg = min(vtarg1, vtarg2, vtarg3)

3. Calculation of the heading error δψ.

The heading error is given by:

δψ = atan2(tny , t
n
x)− ψheli

where ψheli is the helicopter heading given by the INS/GPS system.

4. Calculation of the feed forward control terms rff , φff .

The terms rff and φff are calculated from the first and third equa-
tions in 4.14 where the component of the curvature radius Rby is cal-
culated as follows:

~kb = Cnb
~kn

Rby =
1
kby

(4.24)

The feed forward terms will be used in the outer control loop to
enhance the tracking precision.

4.4 Outer loop control equations

The PFCM control equations implemented on the Rmax are the following:
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Y AWyacs = rff +Ky
1 δψ

PITCHyacs = Kp
1 δpx +Kp

2 δvx +Kp
3

d

dt
δvx +Kp

4

∫
δvxdt

ROLLyacs = φff +Kr
1δpy +Kr

2δvy (4.25)

THRyacs = Kt
1δpz +Kt

2δvz +Kt
3

∫
δvzdt

where the K’s are the control gains, rff and φff are the feed-forward control
terms resulting from the model in 4.14. The other two terms θff and Tff
relative to the pitch and throttle channels have not been implemented.
These channels are controlled by the feedback loop only. δψ is the heading
error, δp is the position error vector (difference between the control point
and helicopter position), δv is the velocity error vector (difference between
target velocity and helicopter velocity).

Adding the feed forward control terms, especially on the roll channel,
results in a great improvement in the tracking capability of the control sys-
tem compared to a PID feedback loop only. Results of the control approach
are shown in the next section.

4.5 Experimental results

This section presents experimental results of the PFCM implemented on the
Rmax helicopter. In Figure 4.9, a 3D path is flown starting from an altitude
of 40 meters and finishing at 10 meters. The path describes a descending
spiral and the velocity vcruise given by the path planner was set to 10 m/s.
In Figure 4.10, the velocity profile of the path is represented and it can
be observed that as soon as the helicopter reaches 10 m/s it slows down
in order to make the turn with the compatible velocity. This was an early
test, where the roll angle limitation was quite strict (around 8 deg). This
explains the consistent decrease in velocity. In addition, the acceleration
phase was missing. In fact, the commanded target velocity, represented by
the dashed line, starts at 10 m/s. This resulted in an abrupt pitch input
at the beginning of the flight.
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Table 4.1 shows the results of several paths flown with different wind
conditions and different velocities. The table reports three flight sessions
(separated by horizontal lines) flown on three different days so as to cover
three different wind conditions. In order to give more generality to the
results, representative paths of typical flight maneuvers have been chosen.
In the HR path the helicopter describes a complete turn in the horizontal
plane turning right, in the DR path the helicopter makes the same turn
while it is descending from 40 to 10 meters and in the CR path the he-
licopter turns while climbing from 10 to 40 meters. The same flights are
repeated turning left instead. Figure 4.9 for example is a DL path.

The first column of the table shows the kind of path flown, the second,
third and fourth column are the average error, maximum error and standard
deviation error, and the fifth and sixth columns show the maximum ground
speed reached and the average wind speed. The error is the distance of
the helicopter to the reference path and is calculated using the INS/GPS
signal, which is also used as control signal during flight (an independent
source would have been a better reference for the purpose of this statistics).

To summarize the results of the table, the first session gives the worst
results because of the wind, moreover the right turn gave better results
than the left one because the wind was blowing from the side. In the
second session the overall performance increases because of less wind. In
the third session several straight lines of 170 meters at low speed were
flown, during the test the wind was negligible.

Although the PFCM just described has exhibited a satisfactory perfor-
mance in terms of robustness, the tracking capabilities in case of maneu-
vered flight (when path curvature change rapidly) were not satisfactory.
For this reason, the possibility to improve the tracking performance was
investigated in the case of maneuvered flight without a major redesign of
the control system.

The lateral control has been modified by adding an extra control loop on
the roll channel besides the YACS control system. The new lateral control
loop is depicted in Figure 4.11 b). From the diagram one can compare
the difference between the previous control scheme, Figure 4.11 a), and the
new one Figure 4.11 b).

The inner compensator that was added provides a phase lead compen-
sation with an integral action and has the following structure:
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Path Av Err Max Err St Dev Speed Wind

[-] [m] [m] [m] [m/s] [m/s]
HR 1.2 3.4 0.7 10 4
HL 1.9 4.1 1.3 10 4
DR 1.5 2.8 0.7 10 4
DL 1.8 3.5 1.1 10 4
CR 1.7 3.3 0.7 10 4
CL 1.9 4.1 1.3 10 4
HR 1.1 2.7 0.8 10 2
HL 0.8 2.2 0.6 10 2
DL 0.9 1.8 0.5 10 2
SLN 0.3 0.8 0.2 3 ≈ 0
SLN 0.5 1.4 0.3 3 ≈ 0
SLN 0.5 1.9 0.5 3 ≈ 0
SLN 0.6 1.4 0.3 3 ≈ 0
SLN 0.4 1.3 0.3 3 ≈ 0

HR = Horizontal Right HL = Horizontal Left
DR = Descending Right DL = Descending Left
CR = Climbing Right CL = Climbing Left
SLN = Straight Line

Table 4.1: Experimental data

C(s) = K(α
1 + s

1 + αs
) +KI

1
s

(4.26)

The phase lead compensation increases the bandwidth and, hence, makes
the closed loop system faster, but it also increases the resonance frequency
with the danger of undesired amplification of system noise. The control
system has been tuned in simulation but a second tuning iteration was
needed on the field due to the presence of damped oscillations on the roll
channel.

An experimental comparison between the modified control system and
the previous one is shown in Figure 4.12. The target velocity in both cases
was set to 10 m/s. Figure 4.13 depicts the target velocity and the actual
helicopter velocity relative to the path on the right side of Figure 4.12. The
diagram on the right side in Figure 4.12 depicts the path flown with the
basic PFCM controller (Figure 4.11 a). One can observe that in the dy-
namic part of the path, where the curvature changes rapidly, the controller
is slow. This results in a relevant tracking error.
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Figure 4.11: a)Previous lateral control. b)Modified lateral control loop
using a lead compensator.

The diagram on the left in Figure 4.12 depicts a test of the same path
flown with the modified roll control loop (Figure 4.11 b). The new lateral
control scheme improves the tracking capability in the presence of fast
curvature change. The helicopter can follow the dynamic part of the path
with considerably lower tracking error.

4.6 Conclusions

The PFCM developed here has been integrated in the helicopter software
architecture and it is currently used in a number of flight missions carried
out in an urban area used for flight-tests. The goal has been the devel-
opment of a reliable and flexible flight mode which could be integrated
robustly with a path planner. Safety mechanisms have been built-in to the
PFCM in order to handle communication failures with the path planner
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Figure 4.12: Comparison of path tracking performances using two different
roll control strategy. On the right side is depicted the flight-test of the
modified roll control loop with the lead compensator added. On the left
the same test is done using the old roll control configuration. The flight-
tests were performed at 36 km/h velocity for both paths.
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Figure 4.13: Target velocity and actual helicopter velocity.

(this can happen since the path planner is implemented on a separate com-
puter). More details on this topic can be found in [14]. Moreover, since
the path planner was developed before the PFCM, a number of constraints
have been inherited and have shaped the development of the PFCM. For
example, the fact that a geometric segment was precomputed and given
to the control system without taking into account the dynamic constraints
of the helicopter, has led to the development of the feedback algorithm to
update the control point on the reference path.
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Part II

Vision-based Navigation
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Chapter 5

Terrain Relative
Navigation Based on
Geo-reference Imagery

5.1 Introduction

In this chapter, an approach to vision-based state estimation using geo-
referenced aerial imagery to navigate in outdoor environments without GPS
is presented. The content of this chapter has been published in [13].

One of the main concerns which prevents the use of UAV systems in
populated areas is the safety issue. State of the art UAV systems are still
not able to guarantee an acceptable level of safety to convince aviation
authorities to authorize their use in populated areas (except in rare cases
such as war zones).

There are several problems which have to be solved before unmanned
aircraft can be introduced into civilian airspace. One of them is GPS vul-
nerability [32]. A standard UAV navigation system often relies on GPS
and inertial sensors (INS). If the GPS signal for some reason becomes un-
available or corrupted, the state estimation solution provided by the INS
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alone drifts in time and will be unusable after a few seconds (especially
for small-size UAVs which use low-cost INS). The GPS signal can also be
unreliable when operating close to obstacles due to multi-path reflections.
In addition, jamming of GPS has arisen as a major concern for users due
to the availability of GPS jamming technology on the market. Therefore
UAVs which rely blindly on a GPS signal are quite vulnerable to malicious
actions. For this reason, a navigation system for autonomous UAVs must
be able to cope with short and long term GPS fallouts.

The problem addressed in this chapter is concerned with finding tech-
niques for a UAV to be able to navigate to home-base in case its GPS
signal is lost (”homing” problem). The Yamaha Rmax helicopter presented
in chapter 2 is used as a test-bed for the development and testing of a
vision-based navigation architecture which can cope with GPS failures. The
approach developed fuses information obtained from an inertial measure-
ment unit (IMU) composed of three accelerometers and three gyros with
information extracted from a passive monocular video camera. A passive
video camera is an appealing sensor which can be used to solve navigation
related problems. Almost every UAV already has a video camera as a stan-
dard sensor in its payload package. Compared to other sensors, e.g. laser,
video cameras are quite light and less power hungry. On the other hand,
passive video cameras are quite sensitive to environmental light conditions.
The navigation system proposed here, replaces the GPS signal by combin-
ing visual odometry with an algorithm which registers the on-board video
to geo-referenced satellite or aerial images. Such images must be available
on-board the UAV beforehand or downloaded in flight. The growing avail-
ability of high resolution satellite images (for example provided by Google
Earth) makes this topic very interesting and timely.

The vision-based architecture proposed is depicted in Figure 5.3. It is
composed of an error dynamics Kalman filter (KF) that estimates the nav-
igation errors of the INS and a separate Bayesian filter, called point-mass
filter (PMF) [6], which estimates the absolute position of the UAV on the
horizontal plane fusing information from two image processing techniques
called feature tracking and geo-reference image registration. The 2D posi-
tion estimated from the PMF together with barometric altitude information
obtained from an on-board barometer, are used as position measurement
updates for the KF.
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Feature tracking and image registration are complementary position in-
formation sources. The KLT feature tracker [61] is used to track corner fea-
tures in an on-board video image from subsequent frames. A homography-
based odometry function uses the KLT results to calculate the distance
traveled by the UAV. Since the distance calculated by the odometry func-
tion is affected by drift, a mechanism which compensates for the drift error
is still needed. For this purpose the information from a geo-reference im-
age registration module is used. When the image registration is performed
correctly, it is possible to calculate the absolute position of the UAV in a
drift-free manner. In other words, the position information obtained is sim-
ilar to the one provided by a GPS. Visual odometry is used since it provides
robustness to the position estimation problem. It is capable of providing
position information over rural terrain where the image registration module
is usually less reliable.

This work proposes a navigation architecture that, taking advantage of
geo-reference information, is capable of providing high-rate and drift-free
full state estimation without using a GPS. The state estimation is suitable
for autonomous flight control. The approach is validated using flight-test
data collected from the Rmax UAV helicopter. The architecture is also
implemented on the Rmax helicopter computers and tested on-board in
vision-based autonomous flight experiments.

The first contribution of this work is to explore the possibility of using
one video camera both as a velocity meter (odometry) and a positioning
device (image registration). We believe that this is a very practical and
innovative concept. The second contribution is the development of a sensor
fusion architecture which combines vision-based information together with
inertial information in an original way. The third contribution is a real-
time implementation and experimental results in field trials of the approach
proposed on the Yamaha Rmax unmanned helicopter.

5.2 Related work

The terrain relative navigation problem is of great interest not only for
terrestrial applications but also for future space missions. One of the re-
quirements for the next lunar mission in which NASA/JPL is involved is to



64 5.2. RELATED WORK

autonomously land within 100 meters of a predetermined location on the
lunar surface. Traditional lunar landing approaches based on inertial sens-
ing do not have the navigational precision to meet this requirement [33]. A
survey of different terrain navigation approaches can be found in [33] where
methods based on passive imaging and active range sensing are described.

Many research groups are focusing on non-GPS navigation problems.
One technique which could be applied is Simultaneous Localization and
Mapping (SLAM). The goal of SLAM is to localize a robot in the envi-
ronment while mapping it at the same time. Prior knowledge of the envi-
ronment is not required. In SLAM approaches, an internal representation
of the world is built on-line in the form of a landmarks database. Such
a representation is then used for localization purposes. For indoor robotic
applications SLAM is already a standard localization technique. More chal-
lenging is the use of such technique in large outdoor environments. Some
examples of SLAM applied to aerial vehicles can be found in [34, 35, 36].

The use of reference images for aircraft localization purposes is also
investigated in [57]. A reference image matching method which makes use
of the Hausdorff distance using contour images representation is explored.
This work focuses mainly on the image processing issues and gives less
emphasis to architectural and fusion schemes which are of focus in this
chapter. The results in [57] cannot be properly compared to the work in
this thesis as the position error results are obtained at a substantially higher
flight altitude.

There are also other kinds of terrain navigation methods which are not
based on aerial images but on terrain elevation models. In this case a mea-
surement of the flight altitude relative to the ground is required. Matching
the ground elevation profile, measured with a radar altimeter for exam-
ple, to an elevation database allows for aircraft localization. A commercial
navigation system called TERNAV (TERrain NAVigation) is based on such
a method. The navigation system has been implemented successfully on
some military jet fighters and cruise missiles. In the case of small UAVs and
more specifically for unmanned helicopters, this method does not appear
to be appropriate. Compared to jet fighters, UAV helicopters cover short
distances at very low speed so the altitude variation is quite poor in terms
of allowing ground profile matching.

Advanced cruise missiles implement a complex navigation system based
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on GPS, TERNAV and DSMAC (Digital Scene Matching Area Correla-
tion). During the cruise phase the navigation is based on GPS and TER-
NAV. When the missile approaches the target the DSMAC is used to in-
crease the position accuracy. The DSMAC matches the on-board camera
image to a reference image using correlation methods.

Although the use of reference images for navigation purposes has al-
ready been investigated in previous works, it is not straight forward to
transfer the technology to small UAVs. The limited payload capability and
sensor accuracy of such platforms, compared to jet fighters or cruise mis-
siles, imposes additional constraints which require a specialized solution
to the problem. It has been demonstrated through real-time experimental
results that the method developed in this thesis is applicable to small size
UAV platforms which uses commercial off-the-shelf computers.

5.3 Assumptions and limitations

The vision-based navigation approach proposed makes use of aerial or satel-
lite 2D images available beforehand on-board the UAV. The fact that 2D
reference images are used implies that the observation of the world from the
UAV must be approximately 2D. The approximation holds as long as the
UAV flight altitude is substantially larger than the typical ground object
height. If this is true the world can be assumed to be flat. The assumption
adopted here is that the UAV flight altitude satisfies this requirement.

The inherent limitation of using reference images for navigation pur-
poses is that the terrain characteristics must have distinctive features which
allow a robust correlation with the reference image. For instance a match-
ing algorithm applied in rural areas will not perform equally well as for
urban areas where the features are more structured. Another factor to
be considered is the scene stability. Since the reference images are usually
taken months or years in advance, changes in the landscape could represent
a problem. In addition, repetitive scenes with periodic structures could also
lead to false matching locations.

To mitigate the impact of such problems, it could be wise to classify
beforehand the reference images according to certain navigability criteria.
In [65, 12, 29], methods for selecting scene matching areas suitable for ter-
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rain navigation are proposed. Such methods could be used during the flight
planning phase in order to detect and avoid areas with poor navigability
properties.

5.4 Reference systems and camera projection
model

In this section, a brief overview of the coordinate reference systems and
transformations between them will be given. In section 3.4, the navigation
and body frames together with the transformation between the two systems
were introduced. Now, since the camera is used for navigation purposes, the
position and displacement computed using the camera must be transformed
into the navigation reference system. The position of a feature, imaged
by the video camera, is first computed in pixel coordinates in the image
reference system. The position is then transformed into the navigation
reference system passing through the camera system, the gimbal system
and the body system. The camera is mounted on a gimbal system below the
helicopter allowing rotations in azimuth (β) and elevation (α) as depicted
in Figure 5.1.

The gimbal reference system is an orthogonal axis set which has its
origin coinciding with the center of rotation of the camera’s gimbal, the
Xg axis aligned to the camera’s optical axis, the Y g axis pointing right in
the image plane and the Zg pointing down in the image plane (Figure 5.1).

The camera reference system is an orthogonal axis set which has its
origin coinciding with the camera’s optical center, the Xc axis pointing
upward in the image plane, the Y c axis pointing to the right in the image
plane and the Zg in the same direction of the optical axis (Figure 5.1).

The image reference system (Xi, Y i) is represented in Figure 5.2. The
projection of a real world point pworld in the image plane pi is expressed
in pixel coordinates. The origin of the system is in the upper left corner of
the image plane, the Xi axis points to the right direction while the Y i axis
points downward.

The camera projection model used in this thesis is a simple pin-hole
model. The transformation between the image reference system and the
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Figure 5.1: Reference system representation.

Figure 5.2: Image reference system and camera projection model.

camera reference system is realized through the calibration matrix K:
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K =

 0 fx ox
−fy 0 oy

0 0 1

 (5.1)

where fx, fy are the camera focal lengths in the x and y directions
(represented with f in Figure 5.2) and ox, oy is the center point of the image
in pixels. The camera’s lens distortion compensation is not applied in this
approach since the camera being used has a relatively large focal length
(approximately 45 degrees horizontal angle of view), therefore the image
distortion is considered to be small for the precision required. In addition,
the image center ox and oy is considered coinciding with the camera’s
principal point. A feature in the image plane of coordinates ~p i = (u, v, 1)
is expressed in the navigation frame with the following relation:

~pn = d
(
K Ccg C

g
b C

b
n

)−1
~p i (5.2)

where d is the feature’s depth, Cgb is the body-gimbal rotation matrix
given by:

Cgb =

 cosα cosβ cosα sinβ sinα
− sinβ cosβ 0

− sinα cosβ − sinα sinβ cosα

 (5.3)

and Ccg , the gimbal-camera rotation matrix given by:

Ccg =

 0 0−1
0 1 0
1 0 0

 (5.4)

The camera is rigidly mounted on the gimbal system so the relative
orientation is fixed. Tha angles α and β are usually given by the gimbal
unit. In Equation 5.2 the Cbn navigation-body rotation matrix is also used.
Its definition was given in section 3.4. The offset between the origin of the
different reference systems is neglected because it is small for the platform
used in this thesis.
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5.5 Vision-based navigation architecture

The sensor fusion architecture developed is presented in Figure 5.3 and is
composed of several modules. It can work in GPS modality or vision-based
modality if the GPS is not available.

Figure 5.3: Sensor fusion architecture.

A traditional KF (sub-system 1) is used to fuse data from the inertial
sensors (3 accelerometers and 3 gyros) with a position sensor (GPS or
vision system in case the GPS is not available). An INS mechanization
function performs the time integration of the inertial sensors while the
KF function estimates the INS errors. The KF is implemented in the
error dynamics form and uses 12 states: 3 dimensional position error, 3
dimensional velocity error, 3 attitude angle error (pitch, roll, heading) and
3 accelerometer biases. In appendix A of this thesis, more details on the KF
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implementation adopted for this work can be found. The error dynamics
formulation of the KF is widely used in INS/GPS integration [40, 59, 56].
The estimated errors are used to correct the INS solution.

The vision system (sub-system 2) is responsible for computing the ab-
solute UAV position on the horizontal plane. This position is then used
as a measurement update for the KF. The visual odometry computes the
helicopter displacement by tracking a number of corner features in the
image plane using the KLT algorithm [61]. The helicopter displacement
is computed incrementally from consecutive image frames. Unfortunately
the inherent errors in the computation of the features location accumulate
when old features leave the frame and new ones are acquired, producing
a drift in the UAV position. Such drift is less severe than the position
drift derived from a pure integration of typical low-cost inertial sensors
used on small UAVs. The drift of pure INS integration will be compared
to the odometry drift in the experimental section. The image matching
module provides drift-free position information which is integrated in the
scheme through a grid-based Bayesian filtering approach. The matching
between reference and on-board image is performed using the normalized
cross-correlation algorithm [49].

5.6 Visual odometry

Visual odometry for aerial navigation has been an object of great inter-
est during the last decade [4, 28, 41, 10]. The results in [4] have shown
how visual odometry is capable of stabilizing an autonomous helicopter in
hovering conditions. In that work the odometry was based on a template
matching technique where the matching between subsequent frames was ob-
tained through use of the sum of squared differences (SSD) minimization
of the gray scale pixel values of the templates. The helicopter’s attitude
information was taken from an IMU sensor. Specialized hardware was ex-
pressly built for this experiment in order to properly synchronize attitude
information with the video frame. Most of the recent work [28, 41, 10] on
visual odometry for airborne applications is based on homography estima-
tion under a planar scene assumption. In this case, the relation between
points of two images can be expressed as x2 ≈ Hx1 where x1 and x2 are
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corresponding points, expressed in homogeneous coordinates, observed from
two image views 1 and 2 and H is the 3x3 homography matrix. The symbol
≈ indicates that the relation is valid up to a scale factor. A point is ex-
pressed in homogeneous coordinates when it is represented by equivalence
classes of coordinate triples (k x, k y, k) where k is a multiplicative factor.
The camera rotation and displacement between two camera positions c1
and c2, can be computed from the homography matrix decomposition [30]:

H = K

(
Cc2c1 +

1
d
~t c2~n c1T

)
K−1 (5.5)

where K is the camera calibration matrix introduced in section 5.4,
~t c2 is the camera translation vector expressed in the camera 2 reference
system, Cc2c1 is the rotation from camera 1 to camera 2, ~n c1 is the unit
normal vector to the plane being observed and expressed in the camera 1
reference system and d is the distance of the principal point of the camera
1 to the plane.

The visual odometry system implemented in this work is based on ro-
bust homography estimation. Comprehensive theoretical and practical de-
tails on robust homography estimation can be found in [30]. The back-
ground theory on robust homography estimation has been reported in ap-
pendix B of this thesis.

The homography matrix H is estimated from a set of corresponding cor-
ner features being tracked from frame to frame. H can be estimated using
the direct linear transformation algorithm (DLT) with a minimum number
of four feature points in a non-degenerate configuration (see appendix B).
In practice the homography is estimated from a higher number of corre-
sponding feature points (50 or more) and the random sample consensus
(RANSAC) algorithm [26] is used to identify and then discard incorrect
feature correspondences. The RANSAC is an efficient method to deter-
mine among the set of tracked features S the subset Si of inlier features
and the outlier subset So so that the estimate H is unaffected by outliers
in the data. The RANSAC algorithm is described in appendix B.

The feature tracker used in this work is based on the KLT algorithm.
The algorithm selects a number of features in an image according to a
”goodness” criteria described in [55]. Then it tries to re-associate the same
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features in the next image frame. The association is done by minimizing
the sum of squared differences over patches taken around the features in
the second image. Such association criteria gives good results when the
feature displacement is not too large. Therefore it is important that the
algorithm has a low execution time. The faster the algorithm is, the more
successful is the association process.

In Figure 5.4 the RANSAC algorithm has been applied on a set of
features tracked in two consecutive frames. On the left are represented the
feature displacements computed by the KLT algorithm while on the right
the set of outlier features has been detected and removed using RANSAC.

Figure 5.4: On the left is displayed the set of features tracked with the
KLT algorithm. On the right the outlier feature set has been identified and
removed using the RANSAC algorithm.

Once the homography matrix has been estimated it can be decomposed
into its rotation and translation components in the form of Equation 5.5
using singular value decomposition as described in [30]. However, homog-
raphy decomposition is a poorly-conditioned problem especially when using
cameras with a large focal length [45]. The problem also arises when the
ratio between the flight altitude and the camera displacement is high. For
this reason it is recommended to use inter-frame rotation information from
other sensor sources if available. If the camera rotation is available the ho-
mography can be reduced to the rotation-free case of planar homology. The
known camera rotation transformation C can be applied to the set of points
of the first image, then the homology decomposition can be expressed as
follows:
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H = I − ~t~nT (5.6)

Equation 5.6 has six degrees of freedom, three degrees associated with
the translation vector ~t, two degrees with the unitary normal vector ~n and
the last one associated with the unknown absolute scale (usually measured
with an altimeter sensor). The reader can find information about the ho-
mology decomposition solution in [45, 30].

The odometry presented in this work makes use of inter-frame rotation
information coming from the KF but does not compute the homology de-
composition. The solution presented in the remainder of this section makes
use of the knowledge of the terrain slope, in other words the direction of
the normal vector of the terrain is assumed to be known. In the experi-
ment presented here the terrain will be considered non-sloped. Information
about the terrain slope could also be extracted from a database if available.

The goal then is to compute the helicopter translation in the naviga-
tion reference system from Equation 5.5. The coordinate transformation
between the camera and the INS sensor is realized with a sequence of rota-
tions. The translation between the two sensors will be neglected since the
linear distance between them is small.

The rotations sequence (5.7) aligns the navigation frame (n) to the
camera frame (c) passing through intermediate reference systems named
helicopter body frame (b) and camera gimbal frame (g) as follows:

Cnc = Cnb C
b
gC

g
c (5.7)

Cnb is given by the KF described in section 5.5, Cbg is measured by
the pan/tilt camera unit, and Cgc is constant since the camera is rigidly
mounted on the pan/tilt unit. The transformation between the camera
reference system and the image reference system (pixels) is given by the
calibration matrix K (5.1). The rotation matrices are defined according to
the reference system definitions and are given in section 5.4.

If c1 and c2 are two consecutive camera positions, then considering the
following relationships:
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Cc2c1 = Cc2n C
n
c1

~t c2 = Cc2n ~t
nT

~n c1 = Cc1n ~n
nT

and substituting in Equation 5.5 give:

H = KCc2n

(
I +

1
d
~tn~nnT

)
Cnc1K

−1 (5.8)

Considering that the rotation matrices are orthogonal, implies that the
inverse coincides with the transposed, so Equation 5.8 can be rearranged
as:

~tn~nnT = d
(
Cc2n

T
K−1H∗KCnc1

T − I
)

(5.9)

where, in order to eliminate the scale ambiguity [30], the homography
matrix has been normalized with the ninth element of H as follows:

H∗ =
H

H3,3

The distance to the ground d can be measured from a laser altimeter
mounted on the helicopter. In case of flat ground, the differential baro-
metric altitude measured from an on-board barometric sensor between the
take-off and the current flight position, can be used. Since in our environ-
ment the terrain is considered to be flat then ~nn = [0, 0, 1]. Using RHS to
indicate the right hand side of Equation 5.9, the north and east helicopter
displacement are given by:

tnorth = RHS1,3

teast = RHS2,3 (5.10)
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5.6.1 Visual odometry error analysis

The error characteristics of the odometry displacement calculated from
Equation 5.9 is evaluated through Monte Carlo simulations. It is assumed
that the error distribution for the location of each point feature is Gaussian
with zero mean and standard deviation σπ, therefore the effect of outliers
in the data is not represented in this analysis. In addition, a Gaussian error
distribution with zero mean and standard deviation σα is assumed for the
camera’s attitude angles (pitch, roll, heading) represented in Equation 5.9
through the rotation matrices Cnc1 and Cc2n . It can also be assumed that
the ground altitude d is affected by Gaussian noise. However, the influence
of such an error is neglected since it has low impact on the analysis. This is
due to the fact that the camera is pointing mostly perpendicular downward
and that the flight altitude is substantially larger than the measurement
noise of the barometric sensor used.

A uniform distribution of n features is first generated in image 1. The
same feature distribution is considered in image 2 so that the homography
matrix transformation between the two images is the identity. Each feature
is then perturbed with zero mean Gaussian error and standard deviation
σπ in each image. Subsequently, the normalized DLT algorithm (see ap-
pendix B) is applied to the noisy point correspondences and a homography
matrix H is estimated.

The rotation matrices Cnc1 and Cc2n are obtained from Ccn = CcgC
g
bC

b
n

(see sections 3.4 and 5.4). A Gaussian error with zero mean and standard
deviation σα is added to the pitch, roll, heading angles in the matrix Cbn
while Ccg and Cgb are taken as constant transformations. In reality, the
camera platform used in this thesis is connected to the helicopter body
through a set of dampers so that Cgb should also be affected by random
error (due to vibrations). In this analysis, the value used for the standard
deviation σα takes into account both the UAV attitude error and the camera
mounting error caused by the vibrations.

In the first analysis it will be assumed a uniform distribution of point
features on the whole image. Subsequently, the same analysis is repeated
using features distributed only on a limited part of the image.

1. Uniform feature distribution in the whole image.
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A set of n feature points are generated in a 360x288 image using a
uniform random distribution as shown in Figure 5.5.

Figure 5.5: Example of a uniform random feature distribution in a 360x288
image.

After the features have been generated in the image, Equation 5.9
is evaluated N times adding Gaussian distributed zero mean noise
at every iteration to the feature locations and attitude angles. The
result is the odometry error sample distribution in the two directions
tinorth and tieast, computed from Equation 5.10. Since the features are
uniformly distributed in the image, the sample distributions tinorth
and tieast will be similar in the two directions. In addition, from
Equation 5.9 it can be observed that the ground altitude d can be
considered as a final multiplicative factor to the analysis. Therefore,
the results from the Monte Carlo simulation will be represented in
terms of normalized standard deviation error in one of the direction,
for example tinorth:

στ =

√√√√ 1
N

N∑
i=1

(tinorth − t̄north)2 (5.11)
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where t̄north indicates the mean of the distribution and N the num-
ber of samples. The term normalized standard deviation indicates
that the computation of Equation 5.9 has been performed using the
unitary depth value d = 1.

Figure 5.6 shows στ for several pixel noise levels σπ and for several
numbers of point features used in the image. Each point of the plot
has been extracted using N = 1000 iterations. To separate the effects
of the noise relative to the point feature and to the attitude angles, the
results displayed in Figure 5.6 have been obtained applying Gaussian
noise only on the pixels but without noise on the attitude angles
(σα = 0). From the graph, one can observe how the output noise στ
increases with the increasing of the feature noise level and decreases
with the increasing of the feature number per image. The slope of the
graph tends to zero with the increasing of the feature number, which
means that the advantage of increasing the feature number becomes
less and less relevant.
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Figure 5.6: Effect of the feature noise level σπ (in pixels) and the number
of features used per image on the normalized odometry noise στ .

Figure 5.7 shows the value of στ for different noise levels on the at-
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titude angles. In this case the pixels are not corrupted by noise and
the homography matrix is the identity. The values of στ due to the
attitude noise appear to be larger than the values obtained from noisy
point features location. Assuming σα = 0.5 and σπ = 2, the effect
of σα on στ is one order magnitude larger than the effect of σπ, in
other words the odometry is affected predominantly from the attitude
noise.
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Figure 5.7: Effect of the attitude noise level σα on the normalized odometry
noise στ .

The final odometry noise characteristic can be extracted assuming
the realistic standard deviation values of σπ = 2 pixels for the feature
noise, σα = 0.5 degrees for the camera attitude angles and an average
number of 50 features each image. Figure 5.8 shows the odometry
noise characteristics function of the ground altitude (the normaliza-
tion has been removed). The result represents the odometry standard
deviation error calculated for one axis.

2. Non-uniform feature distribution in the image.

This case analyzes the effects of having a non-uniform feature distri-
bution in the image. An example of non-uniform feature distribution
is represented in Figure 5.9 where the features are concentrated in
the left part of the image.

The results of the Monte Carlo analysis, as just described at the
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Figure 5.8: Odometry standard deviation noise (for one axis), function of
the altitude. A standard deviation of σπ = 2 pixel has been used for the
feature noise and σα = 0.5 for the camera attitude noise. 50 features have
been used for each image.
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Figure 5.9: Example of a non-uniform feature distribution in a 360x288
image.

previous point, are represented in Figure 5.10. It can be observed how
a non-uniform feature distribution leads to worse results compared to
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a uniform distribution (Figure 5.6). It can also be observed that the
non-symmetry of the odometry noise along the two image axes is as
expected. The feature distribution used is similar to the one displayed
in Figure 5.9 where the features lie on the left part of the image. As
intuition suggests, the odometry behavior along the x image axis is
worst than the y direction. It can also be observed that the behavior
is unstable when using a small feature number.
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Figure 5.10: Effect of the feature noise level σπ (in pixels) and the number
of features used per image on the normalized odometry noise στ . A non-
uniform feature distribution in the image was used, therefore στ is different
along the two image axes direction.

Using the same noise level and number of features as for the previous
analysis (σπ = 2, σα = 0.5 and n = 50), the final odometry noise char-
acteristic can be plotted for the two image directions (Figure 5.11).
The results are slightly worse than the previous case (Figure 5.8) but
not as worse as one would expect thanks to the use of camera rota-
tion information from the inertial sensors. This case would be much
worse if external rotation information would not be used but had to
be extracted from homography decomposition.
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Figure 5.11: Odometry standard deviation noise (for both axes), function
of the altitude. A standard deviation of σπ = 2 pixel has been used for
the feature noise and σα = 0.5 for the camera attitude noise. 50 features
non-uniformly distributed have been used for each image.

To conclude this section, some considerations about the planar scene
assumption will be made. Even if the terrain is not sloped, altitude varia-
tions between the ground level and roof top or tree top level are still present
in the real world. The planar scene assumption is widely used for airborne
applications, however a simple calculation can give a rough idea of the error
being introduced.

For a UAV in a level flight condition with the camera pointing perpen-
dicularly downwards, the 1D pin-hole camera projection model can be used
to make a simple calculation:

∆xp = f
∆xc
d

(5.12)

where f is the camera focal length, d is the distance to the ground plane,
∆xp is the pixel displacement in the camera image of an observed feature
and ∆xc the computed odometry camera displacement. If the observed
feature is not on the ground plane but at a δd from the ground, the true
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camera displacement ∆xtc can be expressed as a function of the erroneous
camera displacement ∆xc as:

∆xtc = ∆xc(1−
δd

d
) (5.13)

with ε = δd
d being the odometry error due to the depth variation. Then,

if δd is the typical roof top height of an urban area, the higher the flight
altitude d the smaller is the error ε. Considering an equal number of fea-
tures picked on the real ground plane and on the roof tops, the reference
homography plane can be considered as at average roof height over the
ground and the odometry error can be divided by 2. If a UAV is flying at
an altitude of 150 meters over an urban area with a typical roof height at
15 meters, the odometry error derived from neglecting the height variation
is about 5%.

5.7 Image registration

Image registration is the process of overlaying two images of the same scene
taken at different times, from different viewpoints and by different sensors.
The registration geometrically aligns two images: the reference and sensed
images. Image registration has been an active research field for many years
and it has a wide range of applications. A literature review on image
registration can be found in [8, 66]. In this context it is used to extract
global position information for terrain relative navigation.

Image registration is performed with a sequence of image transforma-
tions, including rotation, scaling and translation which bring the sensed
image to overlay precisely with the reference image. In this work, the ref-
erence and sensed images are aligned and scaled using the information pro-
vided by the KF. Once the images are aligned and scaled, the final match
consists in finding a 2D translation which overlays the two images. The ori-
entation between the sensed and reference images can also be found using
image processing methods. An approach based on the Hough transform is
proposed in [15]. In such a case the UAV heading information extracted
from the image registration process could be used as a measurement to
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update the KF. The approach proposed in [15] is not adopted here since it
requires a structured environment (i.e. road network) in order to perform
properly.

Two main approaches can be adopted to image registration: correlation-
based matching and pattern matching. In correlation-based matching, the
sensed image is placed at every pixel location in the reference image, then,
a similarity criteria is adopted to decide which location gives the best fit.
In pattern matching approaches on the other hand, salient features (or
landmarks) are detected in both images and the registration is obtained
by matching the set of features between the images. Both methods have
advantages and disadvantages.

Methods based on correlation can be implemented very efficiently and
are suitable for real-time applications. They can be applied also in areas
with no distinct landmarks. However they are typically more sensitive to
differences between the sensed and reference image than pattern matching
approaches.

Methods based on pattern matching do not use image intensity values
directly. The patterns are information on a higher level typically repre-
sented with geometrical models. This property makes such methods suit-
able for situations when the terrain presents distinct landmarks which are
not affected by seasonal changes (i.e. roads, houses). If recognized, even a
small landmark can make a large portion of terrain unique. This character-
istic makes these methods quite dissimilar from correlation-based matching
where small details in an image have low influence on the overall image sim-
ilarity. On the other hand these methods work only if there are distinct
landmarks in the terrain. In addition, a pattern detection algorithm is re-
quired before any matching method can be applied. A pattern matching
approach which does not require geometrical models is the Scale Invariant
Feature Transform (SIFT) method [37]. The reference and sensed images
can be converted into feature vectors which can be compared for matching
purposes. Knowledge about altitude and orientation of the camera rela-
tive to the terrain is not required for matching. Correlation methods are
in general more efficient than SIFT because they do not require a search
over image scale. In addition SIFT features do not have the capability
to handle variation of illumination condition between reference and sensed
images [62, 33].
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This work makes use of a matching technique based on a correlation
approach. The normalized cross-correlation of intensity images [49] is uti-
lized. Before performing the cross-correlation, the sensed and reference
images are scaled and aligned. The cross-correlation is the last step of the
registration process and it provides a measure of similarity between the two
images.

The image registration process is represented in the block diagram in
Figure 5.13. First, the sensed color image is converted into gray-scale,
then it is transformed to the same scale of the reference image. Scaling is
performed converting the sensed image to the resolution of the reference
image. The scale factor s is calculated using Equation 5.14:

(
sx
sy

)
=

(
1
fx
1
fy

)
d · Ires (5.14)

where d, as for the odometry, is the UAV ground altitude and Ires is
the resolution of the reference image. The alignment is performed using
the UAV heading estimated by the KF.

After the alignment and scaling steps, the cross-correlation algorithm is
applied. If S is the sensed image and I is the reference image, the expression
for the two-dimensional normalized cross-correlation is:

C(u, v) =

∑
x,y[S(x, y)− µS ][I(x− u, y − v)− µI ]√∑

x,y[S(x, y)− µS ]2
∑
x,y[I(x− u, y − v)− µI ]2

(5.15)

where µS and µI are the average intensity values of the sensed and the
reference image respectively. Figure 5.12 depicts a typical cross-correlation
result between a sensed image taken from the Rmax helicopter and a re-
stricted view of the reference image of the flight-test site.

Image registration is performed only on a restricted window of the ref-
erence image. The UAV position predicted by the filter is used as center of
the restricted matching area. The purpose is to disregard low probability
areas to increase the computational efficiency of the registration process.
The window size depends on the position uncertainty estimated by the
filter.
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Figure 5.12: At the top of the figure is depicted the normalized cross-
correlation result and, at the bottom, the sensed image (white square)
matched to the reference image.

5.8 Sensor fusion algorithms

In this work, the UAV state is computed fusing inertial sensor data with
vision data coming from the odometry and image registration modules. The
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Figure 5.13: Image registration schematic.

state estimation problem has been split into two parts. The first part is
represented by a standard Kalman filter (KF) which estimates the full UAV
state (position, velocity and attitude), the second part is represented by a
point-mass filter (PMF) which estimates the absolute 2D UAV position.
The two filters are interconnected as shown in Figure 5.3.

Basics concepts on the probabilistic approach to filtering and on the
Bayesian recursion equations will be given in the following two sections. A
good and accessible reference on this topic is available in [60].

5.8.1 Basic concepts

In general it is impossible to know the state of a robotic system with infi-
nite accuracy. In fact, when one tries to measure for example the position,
a certain degree of uncertainty is always present due to unavoidable mea-
surement errors. It is natural than to represent quantities such as the state
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of a robot in probabilistic terms.

In this work, the Bayesian estimation framework is used to fuse data
from different sensor sources and estimate the UAV state. Suppose that ~x is
a state vector and ~y is a measurement vector which is used to measure ~x, in
the Bayesian estimation framework, such vectors are random variables and
they are represented in terms of probability density functions (PDF) p(~x)
and p(~y). The conditional or posterior PDF p(~x|~y) represents the PDF of
the state vector ~x after the measurement ~y and represents the solution to
the Bayesian filtering problem.

For on-line applications, p(~x|~y) must be computed recursively each time
a new measurement update is available. If a dynamic model describing
the time evolution of the system’s states is available, it can be used in the
estimation process to make a time prediction of the system state p(~xt+1|~xt).

The Bayesian filtering problem aims at finding the posterior PDF p(~xt|~yt)
given the PDF for the state transition p(~xt+1|~xt) and the measurement like-
lihood p(~yt|~xt), which is the probability of measuring ~y from a given state
~x. Once the posterior is known, an estimate for the state can be computed
from it.

5.8.2 Bayesian filtering recursion

In general, the state transition PDF p(~xt+1|~xt) and the measurement like-
lihood p(~yt|~xt) are computed from a state-space model. A non-linear state-
space model with additive process noise ~v and measurement noise ~e can be
represented with the following form:

~̇xt = f(~xt−1, ~ut−1) + ~v

~yt = h(~xt, ~ut) + ~e
t = 1, 2, ... (5.16)

If the state vector ~x is n-dimensional, the recursive Bayesian filtering
solution for such a model is:
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p(~xt|~y1:t−1) =
∫
<n

pv(~xt − f(~xt−1, ~ut−1))p(~xt−1|~y1:t−1)d~xt (5.17)

αt =
∫
<n

pe(~yt − h(~xt, ~ut))p(~xt|~y1:t−1)d~xt (5.18)

p(~xt|~y1:t) = α−1
t pe(~yt − h(~xt, ~ut))p(~xt|~y1:t−1) (5.19)

The aim of recursion (5.17)-(5.19) is to estimate the posterior density
p(~xt|~y1:t) of the filter. Equation 5.17 represents the time update while
Equation 5.19 is the measurement update. pv and pe represent the proba-
bility density functions of the process and measurement noise respectively.
The iterations must be initialized with p(~x1|~y0) = p(~x0). p(~x0) is also called
the prior.

Once the posterior p(~xt|~y1:t) is known, the estimation of the minimum
variance (MV) system state and its uncertainty are computed from Equa-
tions 5.20 and 5.21 respectively.

~̂xMV
t =

∫
<n

~xtp(~xt|~y1:t)d~xt (5.20)

Pt =
∫
<n

(~xt − ~̂xMV
t )(~xt − ~̂xMV

t )T p(~xt|~y1:t)d~xt (5.21)

In general, it is very hard to compute the analytical solution of the
integrals in (5.17)-(5.21). A closed form solution exists only for special
cases. If the state-space system (5.16) is linear, the noises ~v and ~e are
Gaussian and the prior p(~x0) normally distributed, the closed form solution
is represented by the popular Kalman filter. The Kalman filter represents
PDFs in terms of mean and covariance and it is therefore addressed as a
parametric solution. In case of non-linearity of the state-space model, an
approximate solution can be obtained through a linearization of the model
usually via Taylor expansion. After linearization the KF solution can be
applied. This class of filters are addressed as extended Kalman filters.

If, besides the linearity, the Gaussian hypothesis is also not fulfilled,
other methods must be employed to solve the Bayesian recursion. Several
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methods have been developed for this purpose, the most popular belong
to the class of non-parametric solutions. The particle filter (PF) is an ex-
ample of a non-parametric solution in which the posterior is represented
by a set of random state samples. The solution is approximate but can
represent more general probability distributions than the Gaussian one.
Another non-parametric solution which can be applied to non-linear and
non-Gaussian systems is represented by the point-mass filter (PMF). The
key idea is to solve the Bayesian recursion over a grid. The integrals in
Equations (5.17)-(5.21) are discretized and approximated with finite sums
over the grid. Particle filters and point-mass filters have the limitation
that they are efficient only for low-dimension state vectors (in general up
to dimension 2 for PMF and up to dimension 5 for PF). For higher dimen-
sions, the computational complexity of the algorithms requires specialized
hardware solutions for real-time applications.

The vision-based navigation problem addressed in this chapter is non-
linear and non-Gaussian therefore a solution based only on a Kalman filter
cannot be applied. The main source of non-linearity comes from the video
camera measurements. The relation between a point in the image plane and
the corresponding point in the real world is represented by Equation 5.2.
Such a relation is non-linear due to the presence of the UAV’s attitude
angles (in Cbn) and the depth d. In addition, the problem is non-Gaussian
since the image registration likelihood does not have a Gaussian distribu-
tion (see top of Figure 5.12).

It appears that the use of the PMF or PF techniques might be appro-
priate for this case. However, since the state dimension used in this work
is 12 (3-position, 3-velocity, 3-attitude and 3-accelerometer bias) a direct
application of such techniques poses computational problems for on-line
applications. In order to make PF techniques suitable for on-line applica-
tions even for larger state vectors, the research community has developed
a marginalized particle filter (MPF) approach. The idea is to explore any
linear Gaussian substructure in the system in a way that the Kalman fil-
ter can be applied to such substructure, while for the remaining part the
PF is applied. Preliminary results of the MPF approach applied to UAV
navigation can be found in [34].

In this thesis a different filtering solution has been explored. A standard
12-state error dynamics Kalman filter is used to fuse inertial data with an
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absolute position sensor. The position sensor is a 2-state point-mass filter
which fuses the visual odometry data with the absolute position informa-
tion coming from the image registration module (Figure 5.3). A certainty
equivalence approximation has been used in the scheme since the PMF uses
the estimated attitude information from the Kalman filter as deterministic
values. The approach has shown excellent results as will be shown later.

5.8.3 Kalman filter

The KF implemented is based on the standard structure in airborne navi-
gation systems and is used to estimate the error states from an integrated
navigation system. The KF implementation, together with the INS mech-
anization is described in detail in appendix A.

The linear state-space error dynamic model used in the KF is derived
from a perturbation analysis of the motion equations [7] and is represented
with the model (5.22)-(5.23) where system (5.22) represents the process
model while system (5.23) represents the measurement model.

 δ~̇r
n

δ~̇v
n

~̇ε
n

=


Frr Frv 0

Fvr Fvv

0 −ad ae
ad 0 −an
−ae an 0

Fer Fev −(~ω nin×)


 δ~r n

δ~v n

~εn

+

 0 0
Cn

b 0
0 −Cn

b

~u (5.22)

 ϕins − ϕvision
λins − λvision

hins − (∆hbaro + h0)

=
[
I 0 0

] δ~r n

δ~v n

~εn

+ ~e (5.23)

with:
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δ~r n = (δϕ δλ δh)T = latitude, longitude and altitude error states;

δ~v n = (δvn δve δvd)T = north, east and down velocity error states;

~εn = (δφ δθ δψ)T = pitch, roll and heading error states;

~u = (δ ~fTacc δ~ω
T
gyro) = accelerometers and gyros system noise;

~e = represents the measurement noise;

~ω nin = rotation rate of the navigation frame;

an, ae, ad = north, east and vertical acceleration components;

Fxx = elements of the system’s dynamics matrix;

The KF implemented uses 12 states including 3 accelerometer biases
as mentioned before. However, the state-space model (5.22)-(5.23) uses
only 9 states without accelerometer biases. The reason for using a reduced
representation is to allow the reader to focus only on the relevant part of
the model for this section. The accelerometer biases are modeled as first
order Markov processes. The gyro biases can be modeled in the same way
but they were not used in this implementation. The acceleration elements
an, ae and ad are left in the explicit form in the system (5.22) as they will
be needed for further discussions.

It can be observed how the measurements coming from the vision system
in the form of latitude and longitude (ϕvision, λvision) are used to update
the KF. The altitude measurement update is done using the barometric
altitude information from an on-board pressure sensor. In order to compute
the altitude in the WGS84 reference system required to update the vertical
channel, an absolute reference altitude measurement h0 needs to be known.
For example if h0 is taken at the take-off position the barometric altitude
variation ∆hbaro relative to h0 can be obtained from the pressure sensor
and the absolute altitude can finally be computed. This technique works
if the environmental static pressure remains constant. The state-space
system, as represented in (5.22)-(5.23) is fully observable. The elements
of the matrix Fer, Fev and (~ω nin×) are quite small as they depend on
the Earth’s rotation rate and the rotation rate of the navigation frame
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due to the Earth’s curvature. These elements are influential in the case
of a very sensitive IMU or high speed flight conditions. For the flight
conditions and typical IMU used in a small UAV helicopter, such elements
are negligible, therefore observability issues might arise for the attitude
angles. For example in case of hovering flight conditions or, more generally,
in case of non-accelerated flight conditions, the elements an and ae are zero.
It can also be observed that the heading angle error δψ (third component
of ~εn) is not observable. Therefore, for helicopters that are supposed to
maintain the hovering flight condition for an extended period of time, an
external heading aiding (i.e. compass) is required. On the other hand,
the pitch and roll angle are observable since the vertical acceleration ad is
usually different from zero (except in case of free fall but this is an extreme
case).

It should be mentioned that the vision system uses the attitude angles
estimated by the KF for the computation of the absolute position, as can
be observed in Figure 5.3 (sub-system 2), where this can be interpreted as
a linearization of the measurement update equation of the KF. This fact
might have implications on the estimation of the attitude angles since an
information loop is formed in the scheme. The issue will be discussed later
in section 5.8.5.

An alternative solution is to estimate the attitude angles independently
using the assumption of non-accelerated flight condition. In this case the di-
rection of the gravity vector can be measured by the IMU and consequently
the attitude angles can be estimated. In any case the attitude estimation
fails in situations where the vehicle flies in a persistent accelerated flight
conditions. For this reason, this work does not rely on this assumption.

5.8.4 Point-mass filter

The point-mass filter (PMF) is used to fuse measurements coming from
the visual odometry system and the image matching system. The PMF
computes the solution to the Bayesian filtering problem on a discretized
grid [9]. In [6] such a technique was applied to a terrain navigation problem
where a digital terrain elevation model was used instead of a digital 2D
image as in the case presented here. The PMF is particularly suitable for
this kind of problem since it handles general probability distributions and
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non-linear models.
The problem can be represented with the following state-space model:

~xt = ~xt−1 + ~uodomt−1 + ~v (5.24)

p(~yt|~xt, ~zt) (5.25)

Equation 5.24 represents the process model where ~x is the two-dimensional
state (north-east), ~v the process noise and ~uodom is the position displace-
ment between time t− 1 and t computed from the visual odometry (~uodom

was indicated with ~t in section 5.6). For the process noise ~v, a zero mean
Gaussian distribution has been used and a standard deviation value ac-
cording to Figure 5.8.

The observation model is represented by the PDF (5.25) and represents
the probability of measuring ~yt given the state vector ~xt and ~zt. The latter
is a parameter vector given by ~zt = (φ̂ θ̂ ψ̂ d). The first three components
are the estimated attitude angles from the Kalman filter while d is the
ground altitude measured from the barometric sensor. A certainty equiva-
lence approximation has been used here since the components of vector ~zt
are taken as deterministic values. The measurement PDF (5.25) is com-
puted from the cross-correlation (5.15) and its distribution is non-Gaussian.
The distribution given by the cross-correlation (5.15) represents the corre-
lation of the on-board camera view with the reference image. In general,
there is an offset between the position matched on the reference image and
the UAV position due to the camera view angle. The offset must be re-
moved in order to use the cross-correlation as probability distribution for
the UAV position. The attitude angles and ground altitude are used for
this purpose.

As discussed earlier, in the PMF approximation the continuous state-
space is discretized over a two-dimensional limited size grid so the integrals
are replaced with finite sums over the grid points. The grid used in this
application is uniform with N number of points and resolution δ. The



94 5.8. SENSOR FUSION ALGORITHMS

Bayesian filtering recursion (5.17)-(5.21) can be approximated as follows:

p(~xt(k)|~y1:t−1)=
N∑
n=1

pv(~xt(k)− ~uodomt−1 − ~xt−1(n))p(~xt−1(n)|~y1:t−1)δ2 (5.26)

αt=
N∑
n=1

p(~yt(n)|~xt(n), ~zt)p(~xt(n)|~y1:t−1)δ2 (5.27)

p(~xt(k)|~y1:t) = α−1
t p(~yt(n)|~xt(n), ~zt)p(~xt(k)|~y1:t−1) (5.28)

~̂xMV
t =

N∑
n=1

~xt(n)p(~xt(n)|~y1:t)δ2 (5.29)

Pt=
N∑
n=1

(~xt(n)− ~̂xMV
t )(~xt(n)− ~̂xMV

t )T p(~xt(n)|~y1:t)δ2 (5.30)

Before computing the time update (5.26) the grid points are translated
according to the displacement calculated from the odometry:

~xt(k) = ~xt−1(k) + ~uodomt−1 k = 1, 2, ..., N (5.31)

The convolution (5.26) requires N2 operations and computationally is
the most expensive operation of the recursion. In any case, due to the
problem structure, the convolution has separable kernels. For this class of
two-dimensional convolutions, there exist efficient algorithms which reduce
the computational load. More details on this problem can be found in [6].

Figure 5.14 depicts the evolution of the filter PDF. From the prior (t0),
the PDF evolves developing several peaks. The images and flight data
used were collected during a flight-test campaign and for the calculation a
200x200 grid of 1 meter resolution was used.

The interface between the KF and the PMF is realized by passing the
latitude and longitude values computed from the PMF to the KF measure-
ment model (Equation 5.23). The PMF position covariance is computed
with Equation 5.30 and it could be used in the KF for the measurement
update. However, the choice of an empirically determined covariance for
the KF measurement update has been preferred. The constant value of
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Figure 5.14: Evolution of the filter’s probability density function (PDF).
The capability of the filter to maintain the full probability distribution over
the grid space can be observed.

2 meters for the horizontal position uncertainty and 4 meters for the verti-
cal position uncertainty (derived from the barometric altitude sensor) have
been used.

5.8.5 Stability analysis from Monte Carlo simulations

In this section, the implications of using the attitude angles estimated by
the KF to compute the vision measurements will be analyzed. As men-
tioned before, since the vision measurements are used to update the KF,
an information loop is created which could limit the performance and sta-
bility of the filtering scheme. First, the issue will be analyzed using a
simplified dynamic model. Then, the complete KF in closed loop with the
odometry will be tested using Monte Carlo simulations.

The velocity error dynamic model implemented in the KF is derived
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from a perturbation of the following velocity dynamic model [52]:

~̇v
n

= Cnb ~a
b − (2~ω nie + ~ω nen)× ~v n + ~g n (5.32)

with ~a b representing the accelerometers output, ~ω nie and ~ω nen the Earth
rotation rate and the navigation rotation rates which are negligible, as
discussed in section 5.5, and ~g n the gravity vector. Let us analyze the
problem for the 1D case. The simplified velocity dynamics for the xn axis
is:

v̇nx = abx cos θ + abz sin θ

where θ represents the pitch angle. Suppose that the helicopter is in
hovering but the estimated pitch angle begins to drift due to the gyro
error. An apparent velocity will be observed due to the use of the attitude
angles in the measurement equation from the vision system. Linearizing
the model around the hovering condition results in the following velocity
dynamics and observation equations:

v̇nx = abx + abzθ (5.33)
h θ̇ = vnx (5.34)

where h is the ground altitude measured by the barometric sensor. The
coupling between the measurement equation (5.34) with the dynamic equa-
tion (5.33) can be observed (θ is in fact used to disambiguate the transla-
tion from the rotation in the measurement equation). Substituting Equa-
tion 5.34 in Equation 5.33 results in:

hθ̈ = abx + abzθ (5.35)

It can be observed that Equation 5.35 is a second order differential
equation similar to the equation for a spring-mass dynamic system (abz has
a negative value) where the altitude h plays the role of the mass. One
should expect that the error introduced by the information loop has an
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oscillatory behavior which changes with the change in altitude. Since this
is an extremely simplified representation of the problem, the behavior of
the Kalman filter in closed loop with the odometry was tested through
Monte Carlo simulations.

Gaussian distributed accelerometer and gyro data were generated to-
gether with randomly distributed features in the images. Since the analysis
has the purpose of finding the effects of the attitude coupling problem, the
following procedure was applied. First, Kalman filter results were obtained
using the noisy inertial data and constant position measurement update.
Than, the KF was fed with the same inertial data as the previous case but
the measurement update came from the odometry instead (the features in
the image were not corrupted by noise since the purpose was to isolate the
coupling effect).

Figure 5.15: Difference between the pitch angle estimated by the KF with a
constant position update and the KF updated using odometry position. It
can be noticed how, the increase in the flight altitude, makes the oscillatory
behavior of the system more evident with an increase in amplitude.

The KF results for the first case (constant update) were considered as
the reference, then the result for the second case was compared to the ref-
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Figure 5.16: Difference between the roll angle estimated by the KF with a
constant position update and the KF updated using odometry position. It
can be noticed how, the increase in the flight altitude, makes the oscillatory
behavior of the system more evident with an increase in amplitude.

erence case. What it is shown in the plots is the difference of the estimated
pitch angle (Figure 5.15) and roll angle (Figure 5.16) between the two cases
at different altitudes (obviously the altitude influences only the results of
the closed loop case).

For altitudes up to 100 meters the difference between the two filter
configurations is less than 0.5 degree. However, the increase in the flight
altitude makes the oscillatory behavior of the system more evident with an
increase in amplitude (as expected from the previous simplified analysis).
A divergent oscillatory behavior was observed from an altitude of about
700 meters.

This analysis shows that the updating method used in this work in-
troduces an oscillatory dynamics in the filter state estimation. The effect
of such dynamics has a low impact for altitudes below 100 meters while
becomes more severe for larger altitudes.
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5.9 Experimental results

In this section, the performance of the vision-based state estimation ap-
proach described will be analyzed. The proposed filter architecture has
been tested on real flight-test data and on-board the autonomous UAV
helicopter described in chapter 2. Experimental evaluation based on off-
line real flight data as well as on-line on-board test results are presented.
The flight-tests were performed in a rural area of the Swedish country side
(the reference images of the area were downloaded from Google Earth)
but mainly in an emergency services training area in the south of Swe-
den. The reference image of this area is an ortho-rectified aerial image of
1 meter/pixel resolution with a sub-meter position accuracy (Figure 1.1).

The video camera sensor is a standard CCD analog camera with ap-
proximately 45 degrees horizontal angle of view. The camera frame rate
is 25Hz and the images are reduced to half resolution (384x288 pixels) at
the beginning of the image processing pipeline to reduce the computational
burden. During the experiments, the video camera was looking downwards
and fixed with the helicopter body. The PMF recursion was computed in
all experiments on a 80x80 meters grid of one meter resolution. The IMU
used is provided by the Yamaha Motor Company and integrated in the
Rmax platform. Table 5.1 provides available specification of the sensors
used in the experiment.

Table 5.1: Available characteristics of the sensor used in the navigation
algorithm.

The results of the vision-based navigation algorithm are compared to
the navigation solution given by an on-board INS/GPS KF running on-line.
The KF fuses the inertial sensors with GPS position data and provides
the full helicopter state estimate. The position data used as reference are
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provided by a real-time kinematic GPS receiver with a sub-meter position
accuracy.

5.9.1 Performance evaluation using off-line flight data

Sensor data and on-board video were recorded during an autonomous flight.
The helicopter autonomously flew a pre-planned path using a path follow-
ing functionality implemented in the software architecture. The video was
recorded on-board and synchronized with the sensor data. The synchro-
nization is performed by automatically turning on a light diode when the
sensor data begins to be recorded. The light diode is visible in the camera
frame. The video is recorded on tape using an on-board video recorder and
the synchronization with the sensor data is done manually off-line. The
video sequence is recorded at 25Hz frame rate. For the experiment de-
scribed here, the video frames were sampled at 4Hz. The on-board sensor
data was recorded at different sample rates.

The idea behind this experiment is to show the capability of the UAV to
fly back to home-base once the GPS is lost. A GPS failure is simulated by
disconnecting the GPS from the navigation filter. Subsequently the vision-
based filter is engaged with the initial UAV state taken from the last GPS
reading. The position update to the KF is then provided by the vision
system. The inertial data is sampled and integrated at a 50Hz rate, while
the vision system provides a position update rate at 4Hz.

Figure 5.17 shows the UAV flight path reconstructed using the naviga-
tion approach described in this work without using the GPS. The helicopter
flew a closed loop path of about 1 kilometer length at 60 meters constant
altitude above the ground. The left picture of Figure 5.17 presents a com-
parison between the helicopter path computed by the vision-based system
(PMF output) with the GPS reference. The vision-based position is always
close to the GPS position indicating a satisfactory localization performance.
The odometry position results are also displayed in the left picture. The
right picture of Figure 5.17 shows the position uncertainty along the path
estimated from the PMF (Equation 5.30) and graphically represented with
ellipses. The ellipse axes are oriented along the north-east directions (the
uncertainty is in fact estimated along such axes by the PMF). The uncer-
tainty would be better represented with ellipses oriented along the direction
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of maximum and minimum uncertainty. In any case it is interesting to no-
tice that above a road segment the uncertainty increases along the road
and decreases along the direction perpendicular to the road. This can be
noticed along the first path’s leg (between points 1 and 2) and at point 4
of the path. This fact is a consequence of the impossibility for the image
registration module to find the proper matching location along the road
direction. It can also be noticed how the uncertainty increases when the
helicopter passes above the pond (leg 3-4). This is a sign that this area does
not have good properties for image registration. The position uncertainty
was initialized to 25 meters at the beginning of the path (point 1).

The pictures in the top row of Figure 5.18 shows the north and east
vision-based KF velocity estimation while the bottom right picture shows
the horizontal velocity error magnitude. The bottom left picture shows the
horizontal position error magnitude of the PMF, visual odometry and stand
alone inertial solution. It can be observed how the PMF position error is
always below 8 meters during the flight while the odometry accumulates
25 meters error in about 1 km of flight path length. The inertial solution
has a pronounced drift showing the low performance characteristics of the
IMU used and giving an idea of the improvement introduced just by the
odometry alone.

Figure 5.19 shows the attitude angles estimated by the KF (left col-
umn) and the attitude angle errors (right column). From the pitch and
roll error plots, does not appear to be any tendency to drift during the
flight. The heading error plot shows instead a tendency to drift away. The
low acceleration of the helicopter during the flight experiment makes the
heading angle weakly observable (section 5.5), therefore the use of external
heading information (i.e. compass) is required in the KF in order to allow
for a robust heading estimate.

In Figure 5.20 the influence of the number of features tracked and the
effects of the RANSAC algorithm are analyzed. The plots in the left column
are relative to the case of the KLT tracking a maximum number of 50
features per frame while the right column shows the case of KLT tracking a
maximum number of 150 features. When the maximum number of features
is set, the tracking algorithm tries to track them but usually, a number of
features will be lost each frame so the number of features tracked are less
than the maximum number. In addition, when the RANSAC algorithm is
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running, an additional number of features are discarded because they are
considered outliers. In the top left plot, the odometry error is shown in
the cases with and without the use of RANSAC and with a maximum of
50 features tracked. It can be observed how the use of RANSAC does not
improve the odometry drift rate but it helps to filter out the position jumps.
It has been observed that the jumps occur during sudden helicopter attitude
variation resulting in a large feature displacement in the image. Such a
correlation can be observed comparing the pitch plot with the odometry
error plot. As the images were sampled at a 4Hz rate, the problem could
be mitigated by increasing the feature tracking frame rate. The figure also
shows the number of features tracked and discarded from the RANSAC
algorithm. In the top right plot the same test is done with a maximum of
150 features tracked in each frame. If the top left and top right plots are
compared, it can be observed that increasing the number of features tracked
produces a worse result (comparing the blue plots without RANSAC). This
effect is somehow predictable as the KLT selects the feature quality in a
decreasing order. Comparing the two cases with RANSAC (red plots) there
are basically no relevant differences meaning that the RANSAC detects the
great part of outliers introduced by tracking a larger number of features
(compare the two plots at the bottom of Figure 5.20). The fact that the
cases without RANSAC finish with a lower position error does not have
any relevance as it is mostly a random effect. From these considerations
the solution with 50 features and RANSAC is preferable.

Figure 5.21 and Figure 5.22 show the results based on the same flight
data set but the vision-based navigation system has been initialized with
5 degrees error in pitch, roll and heading angles. It can be observed in
Figure 5.22 how the pitch and roll converge rapidly to the right estimate
while the heading was between 5 to 10 degrees off during the whole test. It
is interesting to notice from Figure 5.21 the effects of the off-heading con-
dition. The odometry is rotated by approximately the heading angle error.
The PFM solution is degraded due to the increased odometry error and due
to the fact that there is an image misalignment error between the sensed
and reference images. Despite the image misalignment, the PMF position
estimate closes the loop at the right location (point 5) thanks to the robust-
ness of the image cross-correlation in respect to small image misalignment.
It appears that the image correlation was especially robust around corner
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4 of the path. This fact is verified by the sudden decrease of the position
uncertainty which can be observed in the left plot of Figure 5.21.

5.9.2 Real-time on-board flight-test results

Flight-test results of the vision-based state estimation algorithm imple-
mented on-board the Rmax helicopter platform will be presented here. The
complete navigation architecture is implemented on two on-board comput-
ers in the C language. The Sub-system 1 (Figure 5.3) is implemented on
the primary flight computer PFC (PC104 PentiumIII 700MHz) and runs
at a 50Hz rate. The Sub-system 2 is implemented on the image processing
computer IPC (also a PC104 PentiumIII 700MHz) and runs at about 7Hz
rate. The image processing is implemented using the Intel OpenCV library.
The real-time data communication between the two computers is realized
using a serial line RS232C. The data sent from the PFC to the IPC is the
full vision-based KF state while the data sent from the IPC to the PFC
is the latitude and longitude position estimated by the PMF and used to
update the KF.

The on-board flight-test results are displayed in Figure 5.23, Figure 5.24
and Figure 5.25. The odometry ran with a maximum number of 50 fea-
tures tracked in the image without RANSAC as it was not implemented
on-board at the time of the experiment. The helicopter was manually put
in hovering mode at an altitude of about 55 meters above the ground (po-
sition 1 of Figure 5.23). Then the vision-based navigation algorithm was
initialized from the ground station. Subsequently the helicopter from man-
ual was switched into autonomous flight with the control system taking
the helicopter state from the vision-based KF. The helicopter was com-
manded to flight from position 1 to position 2 along a straight line path.
Observe that during the path segment 1-2, the vision-based solution (red
line) resembles a straight line as the control system was controlling using
the vision-based data. The real path taken by the helicopter is instead
the blue one (GPS reference). The helicopter was then commanded to fly
a spline path (segment 2-3). With the helicopter at the hovering point 3
the autonomous flight was aborted and the helicopter taken into manual
flight. The reason the autonomous flight was aborted was that in order for
the helicopter to exit the hovering condition and enter a new path segment
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the hovering stable condition must be reached. This is a safety check pro-
grammed in a low-level state machine which coordinates the flight mode
switching. The hovering stable condition is fulfilled when the helicopter
speed is less then 1 m/s. As can be seen from the velocity error plot in
Figure 5.24 this is a rather strict requirement which is at the border of the
vision-based velocity estimation accuracy. In any case, the vision-based
algorithm was left running on-board while the helicopter was flown man-
ually until position 4. The vision-based solution was always rather close
to the GPS position during the whole path. Even the on-board solution
confirms what was observed during the off-line tests for the attitude angles
(Figure 5.25) with a stable pitch and roll estimate and a non stable heading
estimate. Considering the error in the heading estimate the PMF position
results (Figure 5.23) confirm a certain degree of robustness of the image
matching algorithm with respect to the image misalignment error.

5.10 Conclusions

The experimental results of this work confirm the validity of the approach
proposed. A vision-based sensor fusion architecture which can cope with
short and long term GPS outages has been proposed and tested on-board
an unmanned helicopter. The main contribution of this work can be sum-
marized in the following points.

• Exploring the possibility of using one video camera both as a velocity
meter (odometry) and a positioning device (image registration). We
believe that this is a very practical and innovative concept.

• Development of a sensor fusion architecture which combines vision-
based information together with inertial information in an original
way. The envelope of the method proposed has been explored using
Monte Carlo simulations. The main findings are the degradation of
the performance when increasing the flight altitude.

• Real-time implementation and experimental results in field trials of
the approach proposed on the Yamaha Rmax unmanned helicopter.
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Figure 5.17: On the top is displayed the comparison between the flight path
computed with the point-mass filter (red), the odometry (dashed white)
and the GPS reference (blue). On the bottom, is shown the PMF result
with the position uncertainty represented with ellipses along the path.
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Figure 5.18: The top row depicts the north and east velocity components estimated
by the Kalman filter while the bottom right picture depicts the horizontal velocity error
magnitude. At the bottom left, the position error comparison between PMF, odometry
and stand alone INS is given.

Figure 5.19: Estimated Kalman filter attitude angles with error plots.
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Figure 5.20: Comparison between odometry calculation using at most 50
features (left column) and at most 150 features (right column). The com-
parison also shows the effects of the RANSAC algorithm on the odometry
error.
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Figure 5.21: Vision-based navigation algorithm results in off-heading error
conditions. The navigation filter is initialized with a 5 degree error in
pitch, roll and heading. While the pitch and roll angle converge to the
right estimate rapidly, the heading does not converge to the right estimate
affecting the odometry and the image cross-correlation performed in off-
heading conditions.
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Figure 5.22: Estimated Kalman filter attitude angles with an initial 5 de-
grees error added for roll, pitch and heading angles. It can be observed how
the pitch and roll angles converge quite rapidly, while the heading shows a
weak converge tendency.



110 5.10. CONCLUSIONS

Figure 5.23: Real-time on-board position estimation results. The comparison between
the flight path computed with the PMF (red) and the GPS reference (blue) is displayed.

Figure 5.24: Real-time on-board results. In the top row are shown the north and
east velocity components estimated by the Kalman filter while the bottom right picture
displays the horizontal velocity error magnitude. At the bottom left, the position error
comparison between PMF and odometry is given.
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Figure 5.25: Real-time on-board results. Estimated Kalman filter attitude
angles with error plots.
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Chapter 6

State Estimation for
Vision-based Landing

6.1 Introduction

This chapter presents experimental results of an autonomous vision-based
landing technique based on vision and inertial sensing. The image process-
ing system is not part of this thesis, details on this topic and on the control
approach can be found in [43]. The chapter focuses on the integration be-
tween inertial and vision data and emphasizes the benefits derived from
fusing these two sensor modalities compared to a pure vision solution.

The vision-based autonomous landing mode developed has been tested
on an Rmax helicopter. It allows the helicopter to successfully complete a
landing maneuver autonomously from an altitude of about 20 meters using
only a single camera and inertial sensors (GPS is not used). An artificial
landing pattern has been designed [43] and placed on the ground during
the landing maneuver. A picture of the pattern is shown in Figure 6.1.
An on-board video camera, mounted on a pan-tilt mechanism, locks on the
pattern while an image processing algorithm computes the relative position
of the on-board camera with the pattern. The relative position is then used
to update a Kalman filter (KF) similar to the one described in appendix A
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which estimates the inertial navigation errors.
During the landing phase a pan-tilt controller tracks the pattern keeping

it in the middle of the image. This feature increases the robustness of
the landing approach described here, minimizing the possibility of losing
the pattern from the camera view due to accidental, abrupt helicopter
movements.

Figure 6.1: Pattern used for the vision-based autonomous landing.

The pose estimation algorithm presented in [43], computes the camera
pose using three circles of known dimension placed in a triangular config-
uration. The special configuration of the landing pad (Figure 6.1) allows
a vision-based landing approach from about 20 meters to the touch-down.
The image processing algorithm selects always the larger three circle con-
figuration available in the image to provide the best possible accuracy.

The motivations for the development of a vision-based landing mode are
similar to those described in section 5.1. It must be pointed out that for
an helicopter which lands in proximity of buildings or other structures, the
multi-path phenomena can be a serious problem for the correct functioning
of the GPS system.

Vision and inertial sensors are combined together because of their com-
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plementarity. Vision provides drift-free position data, while inertial sensors
provide position, velocity and attitude information at higher frequency but
affected by drift. Depending on the price of the sensor, the drift of the
inertial sensor can be more or less large. A very expensive inertial naviga-
tion unit allows an airplane to navigate for minutes or even hours without
large drift. Usually, military and civilian aircraft or military submarines
are equipped with such sensors. Small UAVs, such as the Rmax cannot
be equipped with such accurate sensors. The reason is that the high costs
of these sensors would make the platform too expensive. A second rea-
son is that a small UAV has limited payload capacity and accurate sensors
are usually quite heavy to be carried on-board a small UAV. This is the
reason why for small UAVs it is common practice to fuse together several
relatively cheap sensors with different characteristics. Figure 6.2 shows a
classification of inertial sensor performance. The data is taken from [56].

Figure 6.2: Inertial sensor performance classification. The data are taken
from [56].

A vision-based landing approach which relies only on a vision system
suffers from several problems. The vision system is sensitive to illumi-
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nation conditions such as sun reflection or shadows which can partially
cover the pattern. In these situations the vision system is blind and does
not deliver any position data. A clever landing strategy must choose the
proper landing direction in order to avoid these situations taking advan-
tage of the knowledge of the sun position as explained in [43], but this
is not always compatible with the wind direction which is also a factor
when determining the landing approach. In addition, the pattern view can
be accidentally lost shortly before the touch-down since it is hard for the
camera pan-tilt control to track the pattern in this situation. Therefore
in case the vision system does not deliver position information for a short
time, the dead-reckoning capability of the INS can still deliver useful infor-
mation to continue the landing maneuver. Fusing inertial and vision data
together using the Kalman filter technique, allows for high frequency and
drift-free helicopter state estimation. Sensor integration also allows low
latency velocity estimation which is essential for stable helicopter control.
Nevertheless the filter provides more accurate attitude information than
the one given by vision only.

The vision-based landing problem for an unmanned helicopter has been
addressed by other research groups. A good overview can be found in [54].

The following section provides an overview description of the landing
approach.

6.2 System overview

The vision-based landing architecture is depicted in Figure 6.4. The image
processing, the camera exposure control and the camera pan/tilt control
(PTU) are implemented on a PC104 computer (IPC) while the KF and
the helicopter control run on a separate PC104 (PFC). Details about the
helicopter hardware architecture can be found in chapter 2. The image
processing computes the complete helicopter pose (position and attitude)
relative to the pattern. Only the position is used to update the KF though.
The sensor fusion architecture follows a standard scheme where the vision
position output is used as a measurement to update the KF which esti-
mates the inertial navigation errors. The KF implementation is reported
in appendix A.
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Figure 6.3: The Rmax helicopter approaching the landing pad.

In Figure 6.4 are also displayed the update rates of the different sensor
modalities. The vision system provides a position update rate of 20Hz.
The accelerometers and gyros output data at a rate of 66Hz and 200Hz
respectively. The KF delivers helicopter states at 50Hz rate.

6.3 Experimental results

The results presented in this section show the benefits resulting from fusing
inertial sensors with a vision sensor during an autonomous vision-based
landing approach. The sensors used to validate the fused vision-based
results are a GPS system (centimeter accuracy) and the Yamaha Attitude
System (YAS) for the attitude angles (around 2 deg accuracy).

The plots from Figure 6.5 to Figure 6.10 show flight-test data from
an autonomous vision-based landing. In this particular test, the landing
procedure starts around 910 sec and finishes with the touch-down around
965 sec.

Figure 6.5 shows the comparison between the filtered position and the
raw vision position. Figures 6.6, 6.7 and 6.8 show the velocity components
calculated by the filter compared with the GPS velocity. The upper plots
of the 3 figures show an attempt at deriving the velocity from the raw
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Figure 6.4: Vision-based landing system architecture.

vision position. The resulting velocity is quite noisy at the beginning of
the landing due to the large distance from the pattern (around 15 meters).
As it is shown in [43], the errors of the vision system are larger when the
pattern is far from the helicopter. From the plots, it can be observed that
as soon as the helicopter approaches the pattern the velocity derived from
the vision position is less noisy. Early attempts have been made in applying
a low-pass filter to this velocity to remove the noise but the increased delay
made the tuning of the control system more difficult. The velocity data
provided by the Kalman filter has low latency as can be observed from the
comparison with the GPS velocity. This is due to the fact that the Kalman
filter takes advantage of the high frequency and low latency information
from the accelerometers. The use of low latency velocity information allows
for stable control during the landing approach.

Figures 6.9 and 6.10, show a comparison between the attitude angles
provided by the vision system alone, the attitude angles calculated by the
Kalman filter and the attitude given by the YAS (attitude sensor built-
in the Rmax helicopter used as reference). The attitude calculated by
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Figure 6.5: Comparison between vision and filtered position data during
autonomous landing.
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Figure 6.6: Comparison between velocity derived from raw vision position,
sensor fusion and GPS for the North component.
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Figure 6.7: Comparison between velocity derived from raw vision position,
sensor fusion and GPS for the East component.
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Figure 6.8: Comparison between velocity derived from raw vision position,
sensor fusion and GPS for the vertical component.
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the vision system alone suffer from bias errors and high noise level when
compared to the YAS data. The reason for the bias is the mounting error
in angle between the camera platform and the helicopter body. The video
camera is fixed on a suspended platform mounted on springs in order to
damp helicopter vibrations and this produces alignment errors. The angles
given by the filter do not suffer from this problem and are in good agreement
with the YAS measurements.

Figure 6.9: Comparison between roll angle calculated by the vision system,
sensor fusion and YAS.

Figure 6.11 shows an altitude plot from one of the several landing tests.
It is possible to observe that when the helicopter was at about 0.6 meters
above the ground the vision system stopped delivering valid data because
the pattern disappeared accidentally out of the camera’s field of view. The
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Figure 6.10: Comparison between pitch angle calculated by the vision sys-
tem, sensor fusion and YAS.
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filter continued to deliver position information using its dead-reckoning
capability until the landing was terminated safely.
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Figure 6.11: Altitude plot of an autonomous landing completed with the
vision lost before touch down.

6.4 Conclusion

In this chapter, the benefit of integrating inertial sensors with a vision
system as part of a vision-based autonomous landing system for an au-
tonomous helicopter has been shown. The sensor fusion algorithm is based
on a Kalman filter where the inertial sensor errors are estimated using posi-
tion observation from a single camera vision system. The major benefits in
fusing inertial sensors with a vision system can be summarized as resulting
in a higher frequency state estimation, lower latency velocity estimation,
more accurate attitude angle estimation and the possibility of surviving
temporary black-out in the vision system.
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Chapter 7

Vision-based Ground
Target Geo-location

7.1 Introduction

This chapter deals with the problem of vision-based ground target geo-
location from a fixed-wing Micro Aerial Vehicle (MAV) platform of a few
hundred grams. What makes the MAV platforms interesting is their small
size (order of centimeters) and affordable price. Their area of application
includes target detection and localization but also more general tasks such
as monitoring and surveillance. The method presented makes use of geo-
referenced imagery to improve the ground target geo-location accuracy.
The content of this chapter has been published in [15].

Since the method used here relies on geo-referenced imagery, the prob-
lems related to this method are similar to those already discussed for vision-
based navigation in chapter 5. However, the matching method used for this
application is different from the one used in chapter 5, it is in fact based on
contour images instead of gray-scale images. The reason for this is that in
this application the reference and sensed images are aligned using an image
processing approach based on contour images. In fact, the inaccuracy of
the MAV sensors does not allow for precise image alignment using only
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on-board heading information. In any case, it is possible to find proper
alignment using the contour image representation and, when aligned, per-
forming the final 2D correlation between the images using the gray scale
representation.

Besides working with Rmax size UAVs, the division of Artificial Intel-
ligence and Integrated Computer System (AIICS) at Linköping University
began work with MAV platforms in 2004. Since then, a small autonomous
coaxial rotorcraft [21] called LinkMav was designed and developed. The
LinkMav won the 1st US-European MAV Competition (MAV05) as ”best
rotary wing”. In the beginning of 2007, the AIICS began development
of a fixed-wing MAV called the PingWing depicted in (Figure 7.1). The
PingWing took part and won the 3rd US-European Micro Aerial Vehicle
Competition (MAV07) in Toulouse, September 2007. One of the tasks
assigned during the MAV07 competition was to search for a vehicle in a
specified region and compute its GPS coordinates. During the competition
the car was localized with an error of about 4 meters computed by the
judges. This turned out to be the best accuracy among the competitors.

Figure 7.1: PingWing micro aerial vehicle platform developed at Linköping
University.

Precise ground target localization is an interesting problem and relevant
not only for military, but also for civilian applications. For example, an
UAV that will be used to automatically monitor road traffic behavior must
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be able to discriminate if an object (in this specific case a car) is on a road
segment or off road. The target geo-location accuracy required to solve
this kind of problem must be at least the road width. The ground target
localization error of this method can be potentially lower than 3 meters.
Achieving such accuracy is a great challenge when using MAV platforms
due to the fact that MAVs of a few hundred grams can only carry very
light sensors. Such sensors usually have poor performance which prevents
localizing a ground target with the necessary accuracy. The most common
sensors used to geo-locate ground objects from a MAV platform are passive
video cameras. The reason is that such sensors can be very light and also
have low power consumption. The drawback is that they are sensitive to
illumination conditions and do not provide direct range information. The
miniaturization of active devices, such as radars and lasers, has not yet
developed enough to support airborne applications on micro platforms.

When a ground target is within an image frame, detection (picking the
target out of the clutter) can be performed manually (i.e. by an operator
”clicking” on the screen), or automatically using image processing methods.
Subsequently, the world coordinates can be calculated using the MAV po-
sition, attitude and the camera orientation relative to the MAV body. The
MAV position is given by an on-board GPS receiver, while the attitude
angles are computed from a navigation filter which integrates the inertial
sensors (gyroscopes and accelerometers) and the GPS. The problem is that
the measurement of the MAV position, attitude and camera angles are af-
fected by several error sources which lead to a ground target localization
error of the order of tens of meters.

The target geo-location method developed in this chapter is based on
satellite image registration. Instead of using the MAV and camera state in-
formation to compute the geo-location of a ground object, the MAV camera
view is registered to a geo-referenced satellite image with the coordinate
of the ground object being calculated from the reference image. The fact
that the availability of high resolution satellite or aerial images is rapidly
growing and accessible to everybody makes this approach very attractive.
In any case, even if this information would be missing, it is possible to
imagine operational scenarios where the region of interest is photographed
in advance. The experiment described in this chapter makes use of satellite
images downloaded from Google Earth.
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The advantage of this method is that the errors related to the MAV and
camera pose do not affect the target localization accuracy because they are
not directly used for the calculation. The MAV sensor information is used
instead as a first estimate to restrict the search zone in the satellite image.
The major advantage of this method is the capability of instantaneous per-
formance versus the asymptotic performance of other methods. In principle
it is enough to get one frame shot of the target to obtain a localization ac-
curacy approximately equivalent to the geo-reference image accuracy. On
the other hand, other methods usually require many measurement samples
to decrease the localization error to an acceptable level. In addition, they
require flying with a specific flight path around the target to be able to re-
move systematic errors. In order to acquire many measurement samples of
a target, the loop between image processing and flight control system must
be closed. For a platform of only a few hundred grams this still represents a
challenge. Last but not least, the synchronization problem between a video
image and flight data is not an issue when using the method proposed in
this chapter.

7.2 Related work

The problem of target geo-location has been addressed previously in the
literature [5, 38, 46, 11, 16] and continues to be of great research interest.

One of the major challenges when using MAV platforms is the estima-
tion of the ground altitude which is essential for solving the ground object
geo-location task. The problem lies in the fact that, due to limited payload
capabilities, a MAV cannot carry a range sensor capable of measuring dis-
tances of hundreds of meters. Most of the methods found in the literature
rely on a flat world assumption. In other words, it is assumed that there
is no height difference between the take-off site and any other point on the
ground. With such an assumption it is possible to compute the ground al-
titude simply by using a calibrated barometric sensor. The ground altitude
is then computed by converting in relative altitude the differential pressure
between the take-off position and any other point in space. Of course when
the flat world assumption is violated an error will be introduced in the
target geo-location calculation.
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Target geo-location methods applied to MAV platforms can be divided
into the following four categories, as discussed in [38].

• Map-based methods. With these methods the geo-location of a ground
object is computed by intersecting the ray starting from the camera
center and passing through the target pixel location in the image
plane with the ground (Figure 7.2). The camera location and atti-
tude must be known. A digital elevation model (DEM) of the terrain
or the flat world assumption hypothesis must be employed for the
calculation.

Figure 7.2: Mab-based geo-location geometry.

The accuracy of map-based geo-location methods depends strongly on
how accurate the camera attitude is known and also on the accuracy
of the camera position. Other error sources arise from the inaccuracy
of the DEM or on how well the flat world assumption holds for the
area of interest. The sensors typically installed on-board a MAV plat-
form are of low accuracy due to limited payload capabilities, therefore
the error of a single measurement sample of the target can be on the
order of 40-60 meters when flying at about 100 meters altitude as
shown in [5, 38]. The error sources affecting the target measurement
can be divided in zero mean error noise, systematic errors and those
related to the DEM accuracy.
The influence of the zero mean error noise can be attenuated by mak-
ing an average on multiple target observations. The systematic errors
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are usually biases in the estimation of the camera orientation. They
can be the consequence of misalignment between the IMU sensor and
the camera gimbal unit, inaccuracy in the calibration of the compass
sensor or biases in the MAV’s attitude estimation. The influence of
systematic errors can be reduced by flying circular paths around the
target. In [5] it is shown that with a least square filter applied to
multiple observations with a MAV flying in circular paths, the error
in the geo-location estimate decreases from 20-40m to less than five
meters. The flat world assumption was employed in the experiment.
The results were obtained using off-line flight data taken from an
in-house built MAV with avionics.

• Line-of-sight filtering. This method is similar to the map-based method
in the sense that the camera pose must be known but eliminates the
need of having a DEM or using the flat world assumption hypothesis.
The idea is to find the intersection point of the rays from multiple
observations passing through the camera and the target, such inter-
section identifies the 3D coordinates of the target. Due to sensor
errors the rays might not intersect each other, therefore the problem
is to find the closest point to all the rays. Such a point is assumed to
be the 3D target position. The problem can be solved using a Kalman
filter estimator where bias and noise errors can be modeled explicitly.
Multiple target observations are still required though in this case, in
order to decrease the target position uncertainty. Such a method is
evaluated in [38] and produces a horizontal targeting accuracy on the
order of 10 meters at about 100 meters altitude. The results were
obtained using off-line flight data taken from a commercial Raven-B
MAV.

• Structure From Motion (SFM). This method is potentially more pow-
erful compared to the previously described methods. The camera at-
titude is estimated purely by vision and not influenced by the attitude
errors related to the attitude measurement sensor or misalignment of
camera gimbal. This method was tested again in [38] where the GPS
camera position was used as input in the algorithm to find the world
coordinates of the target. The GPS errors influence the accuracy of
this method. SFM requires the tracking of several targets through
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several image frames. Therefore the level of complexity is higher than
for the other two methods. The authors report a best case accuracy
of about 5 meters for this method. The results have been derived
using the same flight data as in the previous method.

• Geo-referenced imagery. This method can be very powerful since it is
independent from the camera pose accuracy. It consists in registering
the on-board aerial video on a geo-referenced image and extracting
the target coordinates directly from the reference image. On-board
sensor information can be used as a first estimate for the target posi-
tion, but the final position is computed after the registration process.
Therefore, the camera pose errors do not influence the geo-location
accuracy. The main limitation here is the dependency on the avail-
ability of reference imagery for a particular area. On the other hand,
the rapid development of imagery tools such as Google Earth makes
this method very promising.

The accuracy of the method also depends on the accuracy of the ref-
erence image. If the reference image is affected by uncompensated
distortion or offset in the reference coordinates, the localization ac-
curacy is affected. As an example, for the flight-test site used for
the experiment reported below, an offset of about 3 meters was mea-
sured between our reference GPS and the Google Earth image. The
offset was measured with a stationary high accuracy GPS (which was
assumed to be the true position) and removed before flight. The
ground altitude could be extracted from the image registration using
a search in the image scale. Such an option increases the computa-
tional cost of the method and was not investigated in this work. The
flat world assumption has been adopted in this case. Although image
registration has been and continues to be an active research topic,
an experimental evaluation of the accuracy of this method on MAV
platforms is not found in the literature. Such evaluation will be the
topic of this chapter.
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7.3 Ground target geo-location based on im-
age registration

The MAV system used for the experimental tests will be described in de-
tail in section 7.4. It is important to mention that the MAV platform is
equipped with an autopilot which allows it to fly autonomously. This allows
automated planning of optimized search patterns and relieves the operator
from flight control tasks, allowing him to concentrate on detection and clas-
sification task (tasks where the human is still better than the machine). In
addition, a video camera is placed in the bottom part of the airframe and is
mounted on a pitch-roll unit which allows it to rotate around the platform’s
pitch and roll axes (Figure 7.6). The pitch-roll camera unit is controlled
from the MAV autopilot and programmed to counteract the MAV’s pitch
and roll rotations in order to keep the video camera always looking down-
wards perpendicularly to the terrain. By doing this, the deformation due
to perspective can in practice be neglected and the video frames, after com-
pensating for lens distortion, can be directly matched with ortho-rectified
reference images.

The video stream is transmitted to a laptop on the ground which per-
forms the image processing tasks and calculates the geo-location of the
ground target. The reference image of the area where the MAV will per-
form the target identification and localization tasks is stored in the image
processing laptop beforehand. The sensed images transmitted from the
MAV are grabbed and processed on-line. Subsequently, the images are
aligned and matched with the reference image. A second laptop is used
to communicate with the MAV autopilot and receive telemetry data. The
telemetry data is transmitted through an Ethernet connection to the image
processing laptop and used for ground object localization.

The ground object is identified and the tracker initialized manually in
the down-linked video from a ground operator. After the initialization, the
object is tracked in subsequent image frames automatically using a template
tracking algorithm. Details of the tracking method are presented in section
7.4. The result from the tracking algorithm is a pixel coordinate of the
object in the image frame. The calculation from pixel to GPS coordinates
is done automatically by the system using the method presented in this
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section.

7.3.1 Image registration

The discussion about the different approaches to the image-to-map registra-
tion problem has been already addressed in section 5.7. In this application a
correlation-based matching approach of contour images is used. The image
registration scheme used is represented in the block diagram in Figure 7.3.
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Figure 7.3: Image registration schematic.

The sensed image is pre-processed as follows. The image is converted
into gray scale and compensated for the camera lens distortion. A median
filter is applied in order to remove small details which are visible from the
sensed image but not visible from the reference image. The median filter,
has the well-suited property of removing small details while preserving the
sharpness of the edges. After filtering, the Sobel edge detector is applied.
The edge image must then be scaled and aligned to the reference image.
Scaling is performed by converting the edge image to the resolution of the
reference image as explained in section 5.7.
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The ground distance is calculated using the flat world assumption as
already mentioned in section 7.2 using a barometric pressure sensor (the
atmospheric pressure at the ground level is taken before take-off so that the
differential pressure during flight can be converted into ground altitude).

The sensed image is then aligned to the same orientation as the ref-
erence image. The alignment can be made using the heading information
available on-board the MAV. Unfortunately, the heading accuracy needed
for a successful matching is not enough. Therefore a method as to how to
accurately align the sensed images to the reference image was developed
and will be described in subsection 7.3.3. The on-board heading is used as
an initial guess in the alignment calculation.

The reference image is processed as follows. It is converted into gray
scale and the Sobel edge detector is applied. This is done only once, prior
to flight, the resulting edge image is then kept in memory and used during
flights. The MAV position taken from the on-board GPS receiver is used as
the center of a restricted search area in the reference image. The purpose
is to speed up the registration process, disregarding areas of the image too
far from the ground target.

After both images have been processed and aligned as explained above,
a correlation-based matching algorithm computes the 2D image translation
which gives the best matching position. Once the match is obtained, the
sensed image containing the target can be geo-referenced. A screen shot
which shows how the two images are processed and then matched is shown
in Figure 7.4.

7.3.2 Image distortion compensation

Prior to acquiring any images during flight the on-board camera is cal-
ibrated using a Calibration Toolbox for Matlab [1]. It is a convenient
tool for determining the intrinsic camera parameters, namely focal length
(fx,fy), principal point (cx,cy), radial distortion (k1,k2,k3), tangential dis-
tortion (k4,k5) and the skew coefficient (alpha). Distortion from the images
acquired by the on-board camera is removed at the beginning of the image
processing pipeline.
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Figure 7.4: Processing of the reference and sensed images with final match.

7.3.3 Image alignment

This subsection describes the algorithm developed to align the sensed image
to the reference image. During the experiment the camera is pointing
downwards.

Algorithm 1 represents the image alignment block in Figure 7.3. It
is based on the Standard Hough Transform which is a well known im-
age processing technique used to detect lines in an image. The lines are
parametrized as follows:

ρ = x · cos(θ) + y · sin(θ) (7.1)

where ρ is the distance from the origin to the line along a vector per-
pendicular to the line and θ is the angle between the image x axis and
this vector. The Hough Transform finds the parameter space θ-ρ which
identifies the eventual lines in the image.
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Algorithm 1 Algorithm for image alignment

1. Rotate the sensed image after scaling (see Figure 7.3), to
the north direction (the reference image is also oriented to
north) using the MAV heading information resulting from
the telemetry data. The resulting image is called image1.

2. Extract a cropped image from the reference image where
the center point coincides with the MAV GPS coordinates
and window size equal to the size of image1. This image
is called image2.

3. Compute the Standard Hough Transform of image1 and
image2 and detect the corresponding lines in both images.

4. Compute the angle differences between the corresponding
lines of image1 and image2 and calculate the average angle
difference θavg.

5. If |θavg| is less than 45 degrees, rotate image1 of θavg de-
grees otherwise keep the orientation of image1 (this step
assumes that the maximum heading error resulting from
the telemetry data is 45 degrees).

Using Algorithm 1, the matching success rate improves dramatically.
Experimental results have shown that using Algorithm 1 to align the images
results in up to 3 times less false matches than using only the heading
resulting from telemetry.

7.3.4 Ground object position calculation

The final ground object position is obtained as follows. After an object
is selected by the ground operator, the template tracking algorithm is ini-
tialized and every time the object is in view it is automatically recognized
by the tracker and the relative image saved together with the pixel coor-
dinates of the template (the middle point of the template is considered to
be the target position). Subsequently, the stored images (sensed images)
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are automatically registered to the reference image using the method previ-
ously described. After the sensed image has been geo-referenced, the world
coordinates of the object can be calculated using the pixel coordinates of
the tracked template. Since the sensed image has been rotated before the
matching, the template coordinates must be rotated using the same angle
before the object world position can be extracted. The final object position
is estimated using a recursive least square filter.

7.4 MAV system overview

The following section describes the system which has been used as a flying
testbed for the validation of the method presented. All functional sub-
components and interconnections between them are depicted in Figure 7.5.
The main components of the MAV system are a fixed-wing MAV flying
platform and a ground control station which includes 2 laptop computers.
Three types of communication links are used as depicted in Figure 7.5.

Onboard MAV System

2.4GHz Video 

Transmitter

Video

Camera
Flight Control

Board

MicroPilot 2028g

868MHz

Wireless

Modem

868MHz

Wireless

Modem

Connections:

Backup Pilot SystemGround Station System

2.4GHz Video 

Receiver Image 

Processing 

Computer

Ground Control 

Computer

Analog VideoRS232 Ethernet PWM signals

R/C

Receiver

Figure 7.5: MAV system setup.

1. The communication with the autopilot is realized using an AeroCom
AC4868 868MHz modem. The communication is bidirectional as can
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be seen from Figure 7.5. A ground control computer can interact with
the MAV sending flight instructions to the autopilot. The operator
can change or add new waypoints dynamically during autonomous
flight. The autopilot delivers the MAV state at 5Hz rate which is
transmitted to the ground control computer for flight monitoring.
In addition, the MAV state is transmitted to the image processing
computer through an Ethernet connection and used for image regis-
tration.

2. An on-board analog video transmitter working on 2.4GHz frequency
transmits the video to the ground. A diversity video receiver is con-
nected to the image processing computer where the video is sent for
image analysis. Both transmitter and receiver are from the Black
Widow A/V company.

3. The third communication link is between the backup pilot and the
MAV. It is realized using a standard R/C transmitter and receiver
and used in case of emergency, such as loss of navigation capability
(GPS unlock) or failure of the autopilot.

7.4.1 Airframe

The PingWing (Figure 7.1) is an in-house designed and manufactured flying
wing. It is electrically powered with a brushless engine and Li-Po batteries.
It has a wing span of 41 centimeters and a total weight of 434 grams. The
flight endurance is 25 minutes with a cruise speed of 19 m/s. The PingWing
weight distribution is shown in Table 7.1.

7.4.2 Autopilot

The autopilot used on-board is a commercial flight control board MP2028g
manufactured by the Micropilot company. It is a lightweight system equipped
with a 3-axis gyro, 3-axis accelerometer, a 4Hz Ublox GPS receiver, a pres-
sure altimeter and a pressure airspeed sensor integrated on a single board.
The autopilot is furnished with a standard control system implemented but
can also be programmed and personalized by the user using the Xtendermp
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Airframe 108 g
Propulsion (incl. batt.) 122 g
Servos/receiver 31 g
Video system (incl. camera gimbal) 62 g
Data link 25 g
Autopilot 86 g
TOTAL 434 g

Table 7.1: PingWing weight distribution.

Image sensor 1/4” CCD
Resolution 490 TV lines
Sensitivity 1 lux
Lens f=3.6mm (53◦ FOV)
Dimensions 25 x 25 x 22 mm

Table 7.2: Details of the video camera and lens used for the experiment.

software. The software is used to configure the autopilot telemetry in or-
der to send the flight data from the ground control computer to the image
processing computer. The compass sensor was not used in this experiment
and heading information is derived from the GPS.

7.4.3 Video system

The PingWing is equipped with a lightweight CCD camera Videotronik
VTQ-56. Details of the video camera and lens used are reported in Ta-
ble 7.2.

The camera is mounted in an in-house developed pitch-roll gimbal (Fig-
ure 7.6) which allows automatic image stabilization.

The image processing functionalities have been implemented in the Lab-
VIEW software environment. The software developed is capable of the fol-
lowing tasks: simultaneous recording of camera images and corresponding
telemetry, tracking of a ground object, computation of the target’s position
in world coordinates with a map-based method (see section 7.2) and with



142 7.4. MAV SYSTEM OVERVIEW

Figure 7.6: Pitch-roll camera gimbal.

the automatic image registration method described in this chapter.
The images coming from the video receiver are grabbed using the IM-

PERX VCE-PRO frame grabber with a resolution of 720x576 pixels. To
reduce the amount of data only those images in which the ground target
is visible are recorded. This is accomplished by utilizing a color pattern
tracker provided by the NI Vision module available in the LabVIEW envi-
ronment. For an extensive description of the color tracker the reader may
refer to [2, 3].

The ground target geo-location procedure is implemented as follows.
The first step consists in creating a template image representing the search
object. This is done by the user only at the beginning when the object
is first seen in the transmitted camera image. The object to be tracked
has to be selected by the operator and a window with a predefined size
is automatically drawn with the selected point as middle pixel. Subse-
quently, to creating the template image the algorithm has to learn the rel-
evant features of the template. The learning process depends on the setup
parameters specified for the learning phase. The appropriate parameters
used in the learning phase and during the matching process have been de-
termined empirically and depend on the object to be tracked and differing
environmental conditions. The pattern matching algorithm searches for the
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template in each of the following images using color and shape information.
Since searching the entire image for matches is extremely time consuming
a coarse-to-fine search strategy first locates a rough position. The loca-
tion is refined in a second step using a hill climbing algorithm around each
match [2]. The result of the template tracker is the position of the template
in the image plane (pixel coordinates). The object’s position is assumed
to be at the center of the template. The size of the template is predefined
for convenience and it is chosen according to the predicted object size and
the typical flight altitude. The calculation from the pixel coordinates to
world coordinates is done using the image registration approach described
in section 7.3. Before the sensed images are registered, they are reduced
to half resolution 360x288 to speed up the computation. The results are
compared with the actual coordinates of the target, in our case measured
with a stationary GPS, and employed for error analysis.

The program can be utilized for various scenarios, i.e. in any environ-
ment because any geo-referenced image can be loaded. Parameters speci-
fying essential attributes of the reference image, e.g. image dimensions and
image resolution, as well as camera parameters, e.g. focal length, princi-
pal point, radial and tangential distortion, have to be entered in the user
interface.

7.5 Experimental results

This section presents the experimental results of ground object geo-location
using the approach described in this chapter. The MAV system used for
the experiment has been described in section 7.4.

Two different scenarios will be analyzed. In the first scenario a truck,
placed on a structured road system, was geo-located from the PingWing in
an automated manner. The results of this experiment are used to evaluate
the accuracy of the method. In the second scenario, a target car was placed
in an area of 300x300 meters and the PingWing was programmed to scan
the area, search for the car and compute its GPS coordinates.

1. First scenario

In this experiment a truck was parked on a road system without mov-
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ing. The PingWing was commanded to fly above the truck location
and, as soon as the truck was in the camera view, the ground operator
selected the template window in the image and started the tracking
algorithm (Figure 7.7).

The PingWing flew autonomously in a figure of eight pattern centered
on the ground target (Figure 7.7) at a constant altitude of 70 meters.
Every time the template tracking algorithm recognized the target, it
saved the image together with the target pixel position. Subsequently,
the images were registered to a geo-referenced image of the area and
the truck position calculated as described in section 7.3. The images
containing the target were saved at about 5Hz frame rate which is
the rate of the template tracking algorithm.

Figure 7.7: On the left picture is displayed the MAV’s flight path during
the ground object localization task. On the right, the ground object is
automatically tracked in the image (red square).

The geo-referenced image used for this experiment was acquired from
Google Earth. The truck position was measured on the ground with
a GPS receiver (used as a reference position instrument) which has
an accuracy of about 2-3 meters. The measurement samples were av-
eraged to decrease the truck position uncertainty. A bias of 3 meters
was found between the measurement taken with the reference GPS
and the corresponding position calculated using the Google Earth
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image. In order to avoid errors introduced by the reference GPS,
the bias of the Google Earth image was compensated using the GPS
measurement.

Figure 7.8 shows the results of the target geo-location calculated with
the image registration method. It can be observed that there are some
outliers due to incorrect matches. The incorrect matches occur be-
cause, as can be seen in Figure 7.7, the road system presents repetitive
structures which are quite similar to each other. It can be the case
that the matching algorithm registers the sensed image to a similar
location which is not the right one. In any case, the number of false
matches are sporadic and can be filtered out. Figure 7.9 displays the
position error of the measurement samples (top) and the result of the
recursive least square filter applied to the measurement data (bot-
tom). The error stabilizes after 20-30 samples. The estimated target
position error is about 2.3 meters. The outlier measurements are also
included in the filtering process but do not have a major influence in
the final result.

Figure 7.8: Ground target position measured from the MAV system using
the image registration technique described in this chapter. The target
position is in (0,0).
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Figure 7.9: Top figure: target collocation error using image registration
technique. Bottom figure: estimated target error using recursive least
square filter.

As a comparison, using the same data set, the ground target position
was calculated with the map-based method described in section 7.2.
For this calculation the MAV sensor data coming from the telemetry
was used. In Figure 7.10, it can be observed how the measurement
samples are spread over a larger area compared to Figure 7.8. In ad-
dition the sample distribution has a bias which leads to an estimated
target position error of about 22 meters as it is displayed at the bot-
tom of Figure 7.11. The bias could be compensated by choosing a
flight path which makes a circle around the target as is shown in [5].

2. Second scenario

The second experiment described was executed as part of the com-
petition mission during the 3rd US-European Micro Aerial Vehicle
Competition (MAV07) in Toulouse, September 2007. The specific
task was to search for a military car placed at about 1 km distance
from the take-off position and compute its geo-location coordinate.
The reference image of the competition area, shown at the top of
Figure 7.12, was downloaded from Google Earth. The area is less
structured compared to the previous experiment.
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Figure 7.10: Ground target position measured from the MAV system using
the map-based method. The target position is in (0,0).

Figure 7.11: Top figure: target collocation error using the map-based
method. Bottom figure: estimated target error using recursive least square
filter.
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Figure 7.12: The upper picture is the reference image of the competition
site downloaded from Google Earth. The lower picture is the target car
spotted from the PingWing flying at an altitude of 80 meters from the
ground.

At the bottom of Figure 7.12 is displayed the car spotted by the
PingWing while scanning the assigned search zone. The flight path
of the complete mission is depicted in Figure 7.13. The search zone of
300x300 meters was placed at about 1 km from the take-off position
and ground station. As can be observed (bottom of Figure 7.12), the
on-board video transmitted to the ground station was of low qual-
ity due to the large distance and the low power video transmitter
installed on board. For this reason the geo-location required a su-



CHAPTER 7. VISION-BASED GROUND TARGET
GEO-LOCATION 149

pervision from the ground operator. After selecting the best image
available of the target, the registration procedure was applied. Due
to the strong image noise, the registration required a further man-
ual adjustment which was in any case simplified from the automatic
pre-registration step.

The car coordinate were computed and transmitted to the judges
which confirmed an error of 4 meters according to their calculations.
The experiment shows how, even in case of few noisy frames (in this
case only one frame was used), this technique allows to localize a
ground target with a good accuracy.

Figure 7.13: Flight path of the PingWing flown during the competition. It
can be observed on the right, the scanning pattern during the search for
the target car at about 1 km distance from the ground station. The flight
was performed in autonomous mode.
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7.6 Conclusion

The main advantages using the method presented in this chapter can be
summarized as follows:

1. High accuracy ground target localization can be achieved even using
low performance sensors.

2. Instantaneous performance (vs. asymptotic). In contrast to other
approaches which require many measurement samples, this method
allows high accuracy with only a few samples.

3. A specific flight path around the target is not required to remove
systematic sensor errors.

The disadvantages of the method can be summarized as follows:

1. A geo-referenced image of the environment is needed to localize the
target.

2. The structural properties of the landscape must be suitable for image
registration applications.

3. The accuracy of the method depends on the accuracy of the reference
image. A calibration of reference image might be required beforehand.

In summary, when the method is applicable, it is very powerful and
capable of high accuracy performance. It would be useful to detect in
advance the areas of the map where the method can be applied reliably so
that it would be possible to build in the system the capability to choose
the most appropriate localization method for each area.

The image registration technique used in the experiment presented is
based on correlation measure between the reference and sensed image after
they are converted into binary contour images. The use of correlation
based matching with contour images might not be the best choice from the
success rate point of view. More sophisticated methods can be used which
give better results on a larger variety of landscapes with the drawback of
an increase in computational complexity. It is a user choice to select the
method which is more appropriate for the hardware in use.
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Chapter 8

Conclusions

This thesis has covered several topics related to navigation of unmanned
aircraft systems. The Yamaha Rmax unmanned helicopter has been used
as an experimental testbed where the algorithms proposed have been im-
plemented and tested during real flight-tests.

The Rmax helicopter has a built-in digital attitude stabilization system,
called YACS, which was used in the control system architecture. A math-
ematical model of the helicopter dynamics including the YACS dynamics
was identified for control purposes. The model was described in chapter 3.

A guidance method which enables the helicopter to follow 3D paths was
described in chapter 4. The method is general and can be used to follow any
kind of parametrized 3D curve. The guidance method is implemented on
the Rmax helicopter and it is currently used in autonomous flight missions.

Chapter 5 addressed the problem of vision-based state estimation for
autonomous navigation without GPS. The method proposed fuses informa-
tion from inertial sensors with position information from a vision system
using a Kalman filter technique. The vision system computes the absolute
UAV position robustly by fusing relative position information (visual odom-
etry) with absolute position information obtained through registration of
the on-board video with geo-referenced imagery. A discretized Bayesian
filtering approach, called point-mass filter, is used to fuse the two different
sources of visual position information. The method is implemented on the
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Rmax helicopter and flight-test trials have demonstrated the capability of
such method to provide the necessary state information for navigating a
UAV in situations of GPS outage.

Chapter 6 has presented experimental results of a vision-based landing
approach which uses inertial sensor data and position data from a vision
system relying on an artificial marker placed on the ground.

The last topic of the thesis was presented in chapter 7 where a vision-
based ground target localization approach for aerial platforms was pro-
posed. The approach has the capability to localize a ground target with
high accuracy even using platforms with poor sensor performance. The
method proposed relies on prior landscape information (geo-referenced im-
agery) and has been applied on a micro aerial vehicle system of a few
hundred grams.
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Appendix A

A.1 Kalman filter architecture

The Kalman filter (KF) used in chapters 5 and 6 uses a linear model for
the measurement and process equations. The filter is implemented in the
error dynamics formulation where the filter state represents the errors of
the inertial navigation system.

The integration between the inertial sensors and the absolute position
sensor is realized through an error feedback scheme depicted in Figure A.1.
The INS (inertial navigation system) mechanization process is responsible
for the time integration of the gyros and accelerometers sensors providing
a full navigation solution (position, velocity and attitude) affected by drift.

Figure A.1: INS aided integration scheme.
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The KF, estimates the position, velocity and attitude errors (δr̂n, δv̂n,
ε̂n) of the INS and feeds them back into the INS mechanization process to
avoid unbounded error growth. Provided that the position sensor (usually
a GPS) supplies absolute position information (not affected by drift), the
scheme of Figure A.1 is capable of computing high-rate and drift-free full
state estimation.

The scheme presented in Figure A.1 is used in chapters 5 and 6 where the
position update comes from the relative image processing. In the following
part of this appendix the basic equations of the INS mechanization process
and of the KF will be given. The sensor fusion approach described in this
appendix follows a standard scheme widely used in the literature. For more
details, the reader can refer to [40, 59, 56].

A.1.1 INS mechanization

The task of the INS mechanization process is the time integration of the in-
ertial sensors (gyros and accelerometers) to provide the navigation parame-
ters (position, velocity and attitudes). The relation between the navigation
parameters and the inertial sensor measurements (3 axis accelerations and 3
axis angular rates) are represented with the following differential equations:

~̇r n = ~v n

~̇v n = Cnb
~f b − (2~ω nie + ~ω nen)× ~v n + ~g n (A.1)

Ċnb = Cnb (~Ω b
ib − ~Ω b

in)

where ~r n is the position, ~v n the velocity and Cnb the direction cosine
matrix of the attitude angles. The accelerometer and gyro inputs are rep-
resented respectively by ~f b and ~Ω b

ib, ~g
n is the gravity vector, ~ω nie the Earth

rotation rate, ~ω nen is the rotation rate of the navigation system relative to
the Earth and ~Ω b

in is the rotation rate of the navigation system relative to
the inertial system. The INS mechanization algorithm performs the time
integration of the set of Equations in A.1.

The calculation of the attitude angles is done using a quaternion repre-
sentation. Such a representation is advantageous since the linearity of the
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differential equations of the quaternion dynamics allows for an efficient im-
plementation [25]. Details of the implementation of the INS mechanization
can be found in [56].

Since the inertial sensor inputs ~f b and ~Ω b
ib are affected by several error

sources, when performing the integration of Equations A.1, the sensor er-
rors are integrated as well producing an unbounded drift in the navigation
parameters. The purpose of the KF described in the following section is to
estimate the navigation parameter errors so that they can be fed back to the
INS mechanization process and the errors subtracted from the navigation
parameters.

A.1.2 Kalman filter

Given a state-space system, the associated recursive Bayesian filtering prob-
lem was presented in section 5.8.4 of this thesis and represented with Equa-
tions (5.17)-(5.21). Under the hypothesis of linear state-space system and
Gaussian noise distribution, a recursive solution to the Bayesian filtering
problem can be found and is represented by the Kalman filter.

The continuous linear state-space system is represented as:

~̇x = F~x+G~u (A.2)
~y = H~x+ ~e (A.3)

where Equation A.2 represents the process model and Equation A.3
represents the measurement model. In addition, ~x represents the state of
the system to be estimated, ~u and ~e the system and measurement noises
and ~y the measurement vector.

The KF is implemented using a state vector ~x = (δ~r n δ~v n ~εn δ~a)T of
12 components representing the INS errors:

δ~r n = (δϕ δλ δh)T = latitude, longitude and altitude error states;

δ~v n = (δvn δve δvd)T = north, east and down velocity error states;

~εn = (δφ δθ δψ)T = pitch, roll and heading error states;

δ~a = (δax δay δaz)T = accelerometer biases.
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The dynamics matrix F of the process model (Equation A.2) represents
the INS error dynamics expressed by the following system of differential
equations:

δ~̇r = −~ωen × δ~r + δ~v

δ~̇v = −(~ωie + ~ωin)× δ~v − ~ε× ~f + δ~a (A.4)

~̇ε = −~ωin × ~ε
δ~̇a = −β δ~a

with ~ωen the rotation rate of the navigation reference system relative
to the Earth reference system, ~ωin, the rotation rate of the navigation ref-
erence system relative to the inertial reference system and ~ωie the rotation
rate of the Earth reference system relative to the inertial reference system.
~f is the acceleration vector expressed in the navigation reference system.

The KF recursion solves the Bayesian filtering problem for the following
discretized state-space model:

~xk+1 = Φk~xk + ~wk (A.5)
~yk = Hk~xk + ~ek (A.6)

where φk is the state transition matrix which can be approximated as
follows:

Φk ≈ I + F∆t (A.7)

with ∆t the integration time interval. The following equations represent
the well known discrete KF recursion:

Prediction

x̂−k = Φkx̂+
k−1

P−k = ΦkP+
k−1ΦTk +Qk−1

Update

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

P+
k = P−k −KkHkP

−
k



APPENDIX A. 157

where P is the estimation covariance. The uncertainty in the system is
injected through the matrix Qk. An approximate expression for Qk is :

Qk ≈ ΦkGQGTΦTk ∆t (A.8)

where G is a matrix which depends on the problem structure and was
introduced in Equation A.2 and Q represents the spectral density matrix
and it is defined as:

Q = diag(σ2
ax σ

2
ay σ

2
az σ

2
ωx σ

2
ωy σ

2
ωz) (A.9)

with σa and σω the standard deviations of accelerometers and gyro-
scopes respectively. Rk represents the measurement covariance matrix de-
fined as:

Rk = diag(σ2
φ σ

2
λ σ

2
h) (A.10)
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Appendix B

The content of this appendix has been derived from [30] and summarizes
the basic background theory used in section 5.6 of this thesis.

B.1 Homography estimation from point fea-
tures

The homography matrix H is a projective transformation which describes
the relation between corresponding 3D coplanar world points observed in
two camera images. A homography relation exists also between correspond-
ing 3D non-coplanar world points if the camera has a purely rotational
motion.

The relation between coplanar points observed in two images can be
expressed as ~x2 ≈ H~x1 where ~x1 and ~x2 are the corresponding projection
of the same 3D point in two different camera views (1 and 2) expressed in
homogeneous coordinates. H is the 3 x 3 homography matrix. The symbol
≈ indicates that the relation is valid up to a scale factor. Such points are
normally expressed in homogeneous coordinates ~x = (u, v, 1) where u and
v are the pixel coordinates in the image plane. A point is expressed in
homogeneous coordinates when it is represented by equivalence classes of
coordinate triples (k x, k y, k) where k is a multiplicative factor.

The 3 x 3 homography matrix has 9 entries but it is defined up to a
scale factor. Consequently the total number of degrees of freedom is 8.
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In addition, each point ~x has 3 components but is represented in homoge-
neous form meaning that it is defined up to a scale factor (the magnitude).
It follows that each point correspondence gives 2 independent equations
hence a minimal configuration requires a set of 4 corresponding points for
homography estimation. Since the point locations identified in an image
are corrupted by noise or, in the worst case, wrong correspondences might
occur between points in the two images, the number of point features nor-
mally used for homography estimation is higher than 4, the problem is then
over-constrained. The use of minimal point configurations is in any case
relevant when using the RANSAC algorithm as it will be discussed later.

There exist configurations of points called degenerate which must be
avoided when estimating H since they do not identify a unique class of
transformations. When estimating the homography transformation using
4 points, if 3 of the 4 points are collinear the configuration is degenerate,
in other words the problem is not sufficiently constrained. Such a configu-
ration must be avoided.

As stated previously, the point feature correspondences can be affected
by noise or by wrong feature association (outliers). The effect produced by
the feature noise in the final displacement computed by the odometry is
evaluated in section 5.6.1 of this thesis. The RANSAC algorithm is used to
detect and discard the outliers in the feature data set. More details about
RANSAC can be found in section B.3 of this appendix.

B.2 The direct linear transformation (DLT)
algorithm

The DLT is the algorithm used to compute the homography matrix H given
a set of corresponding points of a planar 3D scene in two image views. The
relation ~x2 = H~x1 can be expressed in terms of the vector cross product:

~x i2 ×H~x i1 = 0 i = 1, ..., N (B.1)

with N the number of point correspondences and the subscripts 1 and
2 indicating the two image views. Denoting with ~hTj the j-th row of the
matrix H:
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H~x i1 =

 ~hT1 ~x
i
1

~hT2 ~x
i
1

~hT3 ~x
i
1

 (B.2)

If ~x i2 = (xi2, y
i
2, z

i
2)T , the cross product can be written as:

~x i2 ×H~x i1 =

 yi2
~hT3 ~x i1 − zi2~hT2 ~x i1

zi2
~hT1 ~x i1 − xi2~hT3 ~x i1

xi2
~hT2 ~x i1 − yi2 ~hT1 ~x i1

 (B.3)

Equation B.1 can be finally rewritten as follows:

 0T −zi2 ~x i T1 yi2 ~x
i T
1

zi2 ~x
i T
1 0T −xi2 ~x i T1

−yi2 ~x i T1 xi2 ~x
i T
1 0T


 ~h1

~h2

~h3

 = 0 (B.4)

which is a linear homogeneous system of three equations with ~h a 9-
dimensions vector in the entries of H:

~h1 = (h11 h12 h13)T (B.5)
~h2 = (h21 h22 h23)T (B.6)
~h3 = (h31 h32 h33)T (B.7)

In system (B.4) only two of the three equations are independent, there-
fore the third equation can be omitted as it is obtained up to scale. The
system (B.4) can be rewritten as:

[
0T −zi2 ~x i T1 yi2 ~x

i T
1

zi2 ~x
i T
1 0T −xi2 ~x i T1

] ~h1

~h2

~h3

 = 0 (B.8)



162
B.2. THE DIRECT LINEAR TRANSFORMATION (DLT)

ALGORITHM

which can be represented in the form Ai~h = 0 with Ai a 2 x 9 matrix.

The system of equations (B.8) hold for any homogeneous representation
of the point ~x = (x, y, z). If the third component is taken as z = 1 then x
and y represent the pixel coordinates of the point in the image.

If a minimal configuration of points is taken (i = 4), the system (B.8)
becomes a 8 x 9 homogeneous system. The matrix Ai of the system has
rank 8 therefore the homography matrix H can be recovered up to a scale
factor. Usually the additional arbitrary constraint ‖~h‖ = 1 is used to
compute a scale for the system.

If a higher number of point correspondences is used (i > 4) the system
(B.8) is over-determined. In any case, if the point feature correspondences
are exact, the matrix Ai will always have rank 8 and an exact solution for
the system Ai~h = 0 exists. In a real case, the point feature correspondences
are not exact because they are corrupted by noise. Therefore, an exact
solution for Ai~h = 0 which is different from zero cannot be found (the
matrix Ai does not have rank 8). The problem is then to find a solution
which minimizes the norm ‖Ai~h‖ with the constraint ‖~h‖ = 1 which is
equivalent of minimizing ‖Ai~h‖/‖~h‖. The solution is the unit singular
vector corresponding to the smallest singular value of Ai. The algorithm
which solves the problem is known as the basic DLT algorithm.

It is common, before applying the DLT algorithm, to perform a normal-
ization on the point data set. The point set in both images are translated
and scaled in a way that the centroid of the point configuration corre-
sponds to the origin of the image (usually the upper left corner) and the
mean distance of the points to the origin is

√
2. The average point will have

coordinate (1, 1, 1). The two point sets in the two images are normalized
independently from each other. Without entering into details, without the
normalization step the matrix Ai might have a large condition number so
that in the presence of noisy data the solution might diverge from the right
one. After the DLT algorithm, a denormalization step is applied.

The normalized DLT algorithm is reported in Algorithm 2 and is taken
from [30].
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Algorithm 2 Normalized DLT algorithm.
Given (N > 4) point correspondences

{
~x i1 ↔ ~x i2

}
, compute the

homography matrix H such that ~x i2 = H~x i1

1. Normalization of ~x i1: normalize the data set ~x i1 by com-
puting a similarity transformation T such that ~̃x i1 = T~x i1,
where ~̃x i1 is the normalized point set with centroid in the
image origin (0, 0) and an average distance of the points
to the origin equal to

√
2.

2. Normalization of ~x i2: repeat the normalization on the
data set ~x i2 computing T ′ such that ~̃x i2 = T ′~x i2.

3. Assemble AN : assemble the 2N x 9 matrix AN as in
system (B.8) using the point correspondences

{
~̃x i1 ↔ ~̃x i2

}
.

4. Compute H̃: compute the singular value decomposition
(SVD) of AN . The solution for ~̃h is the unit singular vector
corresponding to the smallest singular value. The SVD
decompose the matrix AN = UDV T where D is a diagonal
matrix with positive entries arranged in descending order.
~̃h is the last column of V . The matrix H̃ can be assembled
from ~̃h.

5. Denormalization: denormalize the homography matrix
H = T

′−1H̃T .

The DLT algorithm searches for the minimum of the norm of the resid-
ual vector ‖~ε‖ = ‖Ai~h‖ minimizing the norm ‖Ai~h‖. The residual vector ~ε
is called algebraic error vector and the norm ‖~ε‖ is a scalar called algebraic
distance:

‖~εi‖ = dalg(~x i2, H~x
i
1) (B.9)

For two vectors ~x1 and ~x2, the algebraic distance can be written as:
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dalg(~x2, ~x1)2 = a2
1 + a2

2 where ~a = (a1, a2, a3)T = ~x1 × ~x2

In general, the algebraic distance does not coincide with the geometric
distance. Therefore the minimization of the algebraic distance might not
have an intuitive meaning. One would like to achieve a global minimization
of the geometric error between points as the intuition might also suggest.
However, the minimization of the algebraic distance is in general preferred
because it is computationally cheaper then minimizing the geometric dis-
tance. The reader interested in finding more details on the techniques used
to minimize the geometric error and the relation between the algebraic and
geometric error can refer to [30].

B.3 Robust outliers detection algorithm

The RANdom SAmple Consensus (RANSAC) algorithm, first presented in
[26], is used to detect and discard outliers from a set of data for model
estimation. In the case of odometry estimation, the RANSAC algorithm is
an efficient method to determine among the set of point correspondences
S the inlier subset Si and the outlier subset So. The homography matrix
H will be estimated from the Si subset or consensus set. The goal is to
estimate H from a data set containing as few outliers as possible.

A hypothesis for H is computed from a minimal subset s of point corre-
spondences (four in a non-degenerate configuration as explained in section
B.1) randomly chosen among the complete set. Then, the hypothesis H is
tested on the other points of the set S and a consensus set Si is incremen-
tally built. New points are added to the consensus set if the residual error
from the model H is lower than a predefined threshold t. If the number
of points in Si become greater than a threshold value T then Si is taken
as final consensus set and H is recomputed with the DLT algorithm using
the set Si. On the other hand, if the condition Si > T is not reached
within a maximum number of iterations N , the algorithm ends and H is
computed from the largest Si. It can be observed that the computation
is not performed on all possible combinations of minimal subsets of point
correspondences since it would be too expensive. Statistical considerations
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are applied to find the parameters T and N in order to limit the search to
a statistically relevant number of points.

Algorithm 3 presents the basic steps for homography estimation using
the RANSAC method [30, 26].

Algorithm 3 RANSAC algorithm for homography estima-
tion.

1. Random selection of a minimal subset of four point corre-
spondences s in a non-degenerate configuration from the
complete set S and compute H from s.

2. Determine the set of data point Si whose residual error
(for each point) is within a predefined threshold t from the
model H.

3. If the dimension of the inlier set Si is greater than a thresh-
old T , the algorithm terminates and H can be re-estimated
from the inlier set Si.

4. If the condition Si > T is not fulfilled, the process repeats
again from (1.) with a selection of a new minimal subset
s.

5. N is the upper limit for the number of minimal subset s
which have to be tested before terminating the algorithm.
In case the condition Si > T is not satisfied, the largest Si
is taken as the largest consensus set and H estimated from
it.

In Algorithm 3, three parameters have to be defined: t, T and N . In
the remainder of this section, it will be explained how these parameters are
computed.

• The threshold t is used in order to decide if a point correspondence
belongs to the current hypothesis for H. If the point belongs to the
model, it is assumed that the distance error d of the point to the
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model is Gaussian with zero mean and standard deviation σ. Then,
a value for the threshold t can be determined from statistical consid-
erations. The square of the distance error d2 is the sum of squared
Gaussian variables and it follows the χ2

m probability distribution with
m degrees of freedom. In this case m = 2 since a 2D point has two
degrees of freedom.

The probability that the value of the random variable χ2
m is less than

k2 is represented by the cumulative chi-squared distribution defined
as:

Fm(k2) =
∫ k2

0

χ2
m(ξ)dξ (B.10)

The inverse cumulative distribution k2 = F−1
m (α) is a function of the

probability α and can be used to calculate the threshold value t. If
α = 0.95 and m = 2 then k2 = 5.99. Finally, a point is considered to
be an inlier with 95% probability if d2 < 5.99σ2.

The threshold value t can also be determined empirically.

• The consensus set Si is considered to be large enough when the num-
ber of inliers is equal to the number of inliers believed to be in the
data. If ε is the fraction of outliers in a data set of dimension n, then
T = (1− ε)n is the sufficient size of Si to terminate the search.

• If the consensus set does not reach the sufficient dimension T , the
search would continue until all the possible minimal subsets s are
tested. This could be expensive and unnecessary since, a maximum
number of iterations N could guarantee with a certain probability
that at least one correct subset s has been tested during the trials.

Suppose that w = 1 − ε is the fraction of inliers in the data or the
probability that a point selected is an inlier. Then, the number N of
selections, of 4 points each, can be computed which gives the proba-
bility p that at least one correct subset is selected. The relation can
be expressed as (1− ws)N = 1− p which gives:
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N =
log(1− p)

log(1− (1− ε4))
(B.11)

A conservative value for the probability p = 0.99 is a common choice.

The problem is that in order to compute T and N , the knowledge of
the fraction of outliers ε is required and such information is not always
available. An adaptive estimation of ε can be applied starting from a worst
case value. Then the value is updated every time a smaller outlier fraction
is found during the iterations.
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