
Linköping Studies in Science and Technology

Dissertation No. 937

TALplanner
and Other Extensions to Temporal Action Logic

by

Jonas Kvarnström

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2005

Parts of this doctoral thesis appear in other publications:

Doherty, P., & Kvarnström, J. (2001). TALplanner: A temporal logic-based planner. AI
Magazine, 22(3), 95–102. See also http://www.aaai.org/Library/Magazine/Vol22/22-03/

vol22-03.html.

Doherty, P., & Kvarnström, J. (1999). TALplanner: An empirical investigation of a temporal
logic-based forward chaining planner. In Dixon, C., & Fisher, M. (Eds.), Proceedings
of the Sixth International Workshop on Temporal Representation and Reasoning (TIME’99),
pp. 47–54, Orlando, Florida, USA. IEEE Computer Society Press. Available at ftp:

//ftp.ida.liu.se/pub/labs/kplab/people/patdo/time99-�nal.ps.gz.

Doherty, P., & Kvarnström, J. (1998). Tackling the qualification problem using fluent depen-
dency constraints: Preliminary report. In Khatib, L., & Morris, R. (Eds.), Proceedings of
the Fifth International Workshop on Temporal Representation and Reasoning (TIME-98), pp.
97–104, Los Alamitos, California, USA. IEEE Computer Society Press.

Gustafsson, J., & Kvarnström, J. (2001). Elaboration tolerance through object-orientation.
In Proceedings of the Fifth Symposium on Logical Formalizations of Commonsense Rea-
soning (Common Sense-2001). Available at http://www.cs.nyu.edu/faculty/davise/

commonsense01/�nal/kvarnstrom.ps.

Gustafsson, J., & Kvarnström, J. (2004). Elaboration tolerance through object-orientation.
Artificial Intelligence, 153, 239–285. c© 2003 Elsevier B. V.

Kvarnström, J. (2002). Applying domain analysis techniques for domain-dependent con-
trol in TALplanner. In Ghallab, M., Hertzberg, J., & Traverso, P. (Eds.), Proceedings of
the Sixth International Conference on Artificial Intelligence Planning and Scheduling (AIPS-
2002), pp. 101–110, Toulouse, France. AAAI Press, Menlo Park, California, USA.

Kvarnström, J., & Doherty, P. (2000a). Tackling the qualification problem using fluent de-
pendency constraints. Computational Intelligence, 16(2), 169–209. c© 2000 Blackwell
Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford,
OX4 1JF, UK.

Kvarnström, J., & Doherty, P. (2000b). TALplanner: A temporal logic based forward chaining
planner. Annals of Mathematics and Artificial Intelligence, 30, 119–169.

Kvarnström, J., Doherty, P., & Haslum, P. (2000). Extending TALplanner with concurrency
and resources. In Horn, W. (Ed.), Proceedings of the Fourteenth European Conference on
Artificial Intelligence (ECAI-2000), Frontiers in Artificial Intelligence and Applications,
pp. 501–505, Berlin, Germany. IOS Press, The Netherlands. Available at ftp://ftp.ida.
liu.se/pub/labs/kplab/people/patdo/www-ecai.ps.gz.

Kvarnström, J., & Magnusson, M. (2003). TALplanner in the Third International Planning
Competition: Extensions and control rules. Journal of Artificial Intelligence Research, 20,
343–377. Available at http://www.jair.org/contents/v20.html.

Abstract

Though the exact definition of the boundary between intelligent and non-intelligent
artifacts has been a subject of much debate, one aspect of intelligence that many
would deem essential is deliberation: Rather than reacting “instinctively” to its en-
vironment, an intelligent system should also be capable of reasoning about it, rea-
soning about the effects of actions performed by itself and others, and creating and
executing plans, that is, determining which actions to perform in order to achieve
certain goals. True deliberation is a complex topic, requiring support from several
different sub-fields of artificial intelligence. The work presented in this thesis spans
two of these partially overlapping fields, beginning with reasoning about action and
change and eventually moving over towards planning.

The qualification problem relates to the difficulties inherent in providing, for
each action available to an agent, an exhaustive list of all qualifications to the action,
that is, all the conditions that may prevent this action from being executed in the
intended manner. The first contribution of this thesis is a framework for modeling
qualifications in Temporal Action Logic (TAL).

As research on reasoning about action and change proceeds, increasingly com-
plex and interconnected domains are modeled in increasingly greater detail. Un-
less the resulting models are structured consistently and coherently, they will be
prohibitively difficult to maintain. The second contribution of this thesis is a frame-
work for structuring TAL domains using object-oriented concepts.

Finally, the second half of the thesis is dedicated to the task of planning. TLPlan
pioneered the idea of using domain-specific control knowledge in a temporal logic
to constrain the search space of a forward-chaining planner. We develop a new
planner called TALplanner, based on the same idea but with several new exten-
sions, some of which are enabled by fundamental differences in the way the plan-
ner verifies that a plan satisfies control formulas. TALplanner generates concur-
rent plans and can take resource constraints into account. The planner also applies
several new automated domain analysis techniques to control formulas, further in-
creasing performance by orders of magnitude for many problem domains.

Acknowledgements

Although I had always planned to leave the university after my undergraduate
studies, some of the last courses I took served to pique my interest in research and
made me consider applying to become a graduate student. One of them was a
course in Knowledge Representation, given by Patrick Doherty, who later became
my supervisor and main thesis advisor. I would like to thank him both for (un-
knowingly) helping to lead me towards this path and for his help and support over
the years.

I am also grateful to all of my colleagues in the AIICS division for a great deal
of help and inspiration. I would especially like to thank Joakim Gustafsson, with
whom I have co-authored one of the first articles in this thesis. Working in the
same room during the first part of my graduate studies led to many interesting
discussions, both strictly research-related and otherwise. At a later stage, Patrik
Haslum and Martin Magnusson co-authored two articles on the subject of planning.
Once again, this lead to some very fruitful discussions, without which this thesis
would probably have been quite different.

Finally, I would like to thank my mother and father, and my friends at work and
outside work, for their support and encouragement during these years. I couldn’t
have done this without you.

This work has been supported in part by the Wallenberg Foundation, the Swedish Research Council
for Engineering Sciences (TFR) and the ECSEL / ENSYM graduate studies program.

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Background: Reasoning about Action and Change 3
1.2 TAL and the Qualification Problem . 4
1.3 Growing Pains: Modeling Complex Domains 5
1.4 A New Task: Moving towards Planning 6
1.5 Brief Contents . 8

2 TAL: Temporal Action Logics 9
2.1 History . 9
2.2 Basic Concepts . 13
2.3 The TAL-C Surface Language L(ND) 14
2.4 The TAL-C Base Language L(FL) . 22

II Extensions to TAL 29

3 Tackling the Qualification Problem using Fluent Dependency Constraints 31
3.1 Abstract . 31
3.2 Introduction . 32
3.3 The Qualification Problem . 34
3.4 The Russian Airplane Hijack Scenario 42
3.5 TAL-Q: Temporal Action Logic with Qualification 43
3.6 Representing the RAH Scenario . 43
3.7 Representing the Qualification Problem in TAL-Q 46
3.8 Additional Aspects of the Qualification Problem 50
3.9 Alternative Approaches to the Qualification Problem 54
3.10 Additional Examples . 56
3.11 Comparisons . 59
3.12 Conclusion . 65

i

ii Contents

4 Elaboration Tolerance through Object-Orientation 71
4.1 Introduction . 71
4.2 The TAL family and the TAL-C Logic 73
4.3 Basic Object-Oriented Modeling in TAL-C 73
4.4 Inheritance and Overriding . 79
4.5 Additional Object-Oriented Concepts 81
4.6 Elaboration Tolerance through Object-Orientation 83
4.7 Missionaries and Cannibals . 84
4.8 Elaborations of the MCP Domain . 90
4.9 Solving the Missionaries and Cannibals Problems 102
4.10 Traffic World . 109
4.11 Related Work . 109
4.12 Conclusions . 110
4.13 Acknowledgements . 110

III TALplanner 111

5 Planning 113
5.1 Introduction to Planning . 115
5.2 Forward-Chaining Planning . 128
5.3 Blockhead, TLPlan, and Control Formulas 132

6 TALplanner 139
6.1 An Overview of TALplanner . 139
6.2 Representing Planning Problems in TAL 142
6.3 The Basic TALplanner Algorithm . 163
6.4 TALplanner with TAL-based Control Rules 167
6.5 Tense Control Rules and Progression 179
6.6 Completeness, Control and the Definition of Plans 184
6.7 Evaluation vs Progression: Initial Benchmark Tests 186

7 Concurrency and Resources 191
7.1 Concurrent TALplanner . 192
7.2 Preventing Interference in Concurrent Plans 195
7.3 Modeling Limited Resources . 201
7.4 Concurrency, Resources and Cycle Checking 207
7.5 Concurrent TALplanner . 208

8 Domain Analysis Techniques for Domain-Dependent Control 211
8.1 General Optimization Framework . 215
8.2 Equivalence Optimizations . 216
8.3 Context-Dependent Optimizations . 217
8.4 Using State Invariants . 220

Contents iii

8.5 Eliminating Quantifiers . 222
8.6 Generating Precondition Control . 230
8.7 Empirical Benchmark Tests . 231
8.8 Related Work . 237

9 Planning Competitions 239
9.1 International Planning Competition 2000 240
9.2 International Planning Competition 2002 246

10 Discussion 281
10.1 TALplanner and the WITAS Project . 281
10.2 Hand-Tailored versus Fully Automated Planning 282
10.3 Using Control Rules . 284
10.4 Using TAL in TALplanner . 285
10.5 Future Work . 287
10.6 Acknowledgments . 288

Bibliography 289

iv Contents

Part I

Introduction and Background

1

Chapter 1
Introduction

Today, there is an abundance of “intelligent” consumer electronics available in any
electronics store. My new digital camera has “artificial intelligence auto-focus”, de-
termining automatically how to adjust the focus settings so that the most relevant
parts of a picture are in focus. My twelve-year-old stereo system has an “AI” but-
ton, which determines the best order in which to copy tracks from a CD to a tape,
and believe it or not, my laptop has an “intelligent battery pack”.

But ever since its inception in the 1950s, the field of artificial intelligence (AI) has
always aimed much higher than this. Though the exact definition of the boundary
between intelligent and non-intelligent artifacts has been a subject of much debate,
one aspect of intelligence that many would deem essential is deliberation: An intelli-
gent system should not only be able to react “instinctively” to its environment, but
should also be capable of reasoning about it, reasoning about the effects of actions
performed by itself and others within this environment, and creating and execut-
ing plans, that is, determining which actions to perform in order to achieve certain
goals. Sadly, this ability appears to be missing from my laptop battery.

True deliberation is a complex topic, requiring support from several different
sub-fields of AI. The work presented in this thesis spans two of these partially over-
lapping fields, beginning with reasoning about action and change (RAC) and eventu-
ally moving over towards planning.

1.1 Background: Reasoning about Action and Change

The field of reasoning about action and change (RAC) is concerned with reason-
ing about dynamic worlds, where properties of the world change over time due
to actions being invoked by the reasoner (and possibly others) as well as due to
processes taking place in the world. The tasks a reasoner might be expected to
perform in such a domain include prediction, determining what will happen if cer-

3

4 1.2. TAL and the Qualification Problem

tain actions are performed, and postdiction, inferring facts about the world at earlier
timepoints given some knowledge of what did happen as a result of certain actions
being taken. Planning, determining which actions to perform in order to achieve
a given goal, would also seem to fit into the boundaries of reasoning about action
and change but is nevertheless generally considered to be a separate research area.

Performing these reasoning tasks naturally requires some information about the
world, and this information should preferably be represented in some principled
and structured manner, in a form amenable to automated reasoning. Thus, any for-
malism for reasoning about action and change is generally developed concurrently
with a formalism for modeling a dynamic domain and the actions that can be per-
formed therein, and there is considerable overlap between this field and the area of
knowledge representation (KR).

A large number of different approaches to modeling and reasoning about ac-
tions have been proposed in the literature, some of them applicable only to very
limited domains and some closer to being suitable for real world problems.

Many researchers, ever since McCarthy (1959) wrote about programs with com-
mon sense, have used logic as the main means for representing knowledge as well
as for actually reasoning about the facts that are known to be true and the actions
that could be performed to change these facts. Two of the main advantages of this
approach are that logic provides a succinct means for describing incomplete knowl-
edge about one’s environment, which is certainly necessary in any real-world sce-
nario, and that there is a well-defined formal semantics, which is a prerequisite for
being able to trust the conclusions that can be drawn from a model of a domain.

As for any other approach to knowledge representation and reasoning, logic-
based approaches naturally have their own set of difficulties that need to be dealt
with and overcome – otherwise, KR and RAC would no longer be active research
areas. Some of these difficulties are representational in nature, related to the prob-
lem of finding compact and comprehensible ways of describing certain kinds of
knowledge. This tends to lead to extending the power of a logic, for example by
going from first-order to second-order logic in order to be able to use techniques
such as circumscription (McCarthy, 1980). Other problems are computational, since
inference in a first-order or higher-order logic is not necessarily the most efficient
way of performing a task, which often leads to attempts to find more restricted log-
ics that are nevertheless powerful enough for the task at hand. Fortunately there
has been steady progress towards solving many of these problems, and the applica-
bility and efficiency of the logics and reasoning mechanisms being used is continu-
ously being improved.

1.2 TAL and the Qualification Problem

Some of the more powerful logics currently used in the area of reasoning about ac-
tion and change belong to the Temporal Action Logics (TAL) family. These logics

Chapter 1. Introduction 5

have been developed specifically for reasoning about action and change, and there-
fore provide explicit representations for time, in order to reason about dynamic
aspects of a domain, as well as fluents (state variables whose values change over
time), actions, and other entities.

TAL originates in a logic called PMON (Doherty, 1994), which was consider-
ably less complex than current TAL logics but nevertheless provided an unusually
robust and flexible solution to the frame problem (McCarthy & Hayes, 1969) – essen-
tially, how to succinctly specify all the facts about the world that are not changed
by each action. Extensions to PMON lead to the logic PMON-RC (Gustafsson &
Doherty, 1996), which provided one solution to the representational aspect of the
ramification problem (named by Finger, 1987) – the problem that any action can have
many side effects, some of which may trigger other side effects in finite or infinite
chains, and there should be a modular way of describing such indirect effects rather
than specifying them in a monolithic action definition.

Further extensions included the logic PMON+ (Doherty, 1996), later renamed
TAL 1.0, and the logic TAL-C (Chapter 2; Karlsson & Gustafsson, 1999), which
introduced support for concurrent actions. But even with the extensions made in
these logics, only two of the three standard problems in reasoning about action
and change using logic had been tackled within the PMON/TAL framework: The
qualification problem had still been left unexplored.

The qualification problem relates to the fact that the set of preconditions for an
action is usually far larger than we would intuitively think. Some of these condi-
tions would appear to be quite natural, such as the need to have the right car key
in order to start a car, and are best modeled as preconditions within the main ac-
tion specification. Some are less obvious, such as the fact that there should not be
a potato in the tailpipe, that no-one should have put sugar in the gasoline and that
the engine should not have been removed. If such conditions need to be modeled
explicitly, they should be specified as separate constraints rather than as part of a
monolithic action specification, in order to improve modularity.

Solving this aspect of the qualification problem in the context of TAL was the
focus of an article coauthored with Patrick Doherty (Doherty & Kvarnström, 1998;
Kvarnström & Doherty, 2000a). This article forms the first topic of this thesis (Chap-
ter 3).

1.3 Growing Pains: Modeling Complex Domains

At this stage in the evolution of TAL, it was possible to model far more complex
domains than in the original PMON logic that had been used a few years earlier.
Instead of tiny sequential toy scenarios that could be formalized in three short logic
formulas, we had now modeled a number of medium-sized domains with indirect
effects, qualified actions, and concurrency, formalized in dozens of TAL formulas.
This had worked out very well, and it was time to find new, even more complex

6 1.4. A New Task: Moving towards Planning

domains to be modeled in order to truly test the applicability and scalability of the
TAL logics.

Though this was a very promising development, it was quickly becoming clear
that the old ways of structuring domains according to statement type – all action
definitions in one section, all indirect effects in another section, and so on – were
no longer sufficient when domains grew in size and complexity. It was all too easy
to end up with the logical equivalent of “spaghetti code”, making it difficult to
verify the correctness of the domain descriptions and to reuse suitable parts from
one domain when modeling new but similar domains. In order to avoid this, it was
necessary to find a more principled modeling strategy.

Gustafsson started working on this problem and decided to apply object-orien-
ted modeling techniques to TAL. After some time I also got involved in the ef-
fort, and our work resulted in a paper (Gustafsson & Kvarnström, 2001) describing
how applying object-orientation to reasoning about action and change could lead
to more structured models exhibiting a higher degree of elaboration tolerance (Mc-
Carthy, 1998). An extended version of this paper was accepted for publication in
Artificial Intelligence (Gustafsson & Kvarnström, 2004), and forms the second topic
of this thesis.

1.4 A New Task: Moving towards Planning

Even before the object-oriented extensions were developed, the TAL logics had
grown quite powerful. But despite this, they could in themselves only be used for
reasoning about what would happen given a fixed set of actions to be performed, or
what had happened given a fixed set of actions that had been performed. These rea-
soning tasks are important, but so is the ability to determine which actions should
be performed in order to achieve a certain goal within a given environment – in
other words, the ability to create plans.

Our first concrete application for planning was found at the end of 1998 in the
WITAS project (Doherty, Haslum, Heintz, Merz, Persson, & Wingman, 2004; Do-
herty, Granlund, Kuchcinski, Sandewall, Nordberg, Skarman, & Wiklund, 2000;
Doherty, 2004; Heintz & Doherty, 2004b; Merz, 2004), a research project aimed at
developing an autonomous UAV (an unmanned aerial vehicle, in this case a heli-
copter). This UAV would be able to fly and navigate autonomously, and would
be able to perform a number of different tasks using its onboard computer and
various sensors mounted on the platform, including delivering packages, tracking
and following cars and other vehicles, detecting conventional and unconventional
(possibly dangerous) maneuvers performed by vehicles, and assisting emergency
vehicles in finding the best path to their destination.

The software running on board the UAV would include image recognition sys-
tems, geographical information systems, and newly developed helicopter control
software handling all the intricacies of flying a helicopter in varying environments.

Chapter 1. Introduction 7

It would also include numerous high-level deliberative systems, supported by a
path planner (Pettersson, 2003; Pettersson & Doherty, 2004) finding paths around
obstacles and most likely also an action planner generating action sequences for
various tasks to be performed by the helicopter. Unfortunately none of the plan-
ners available at the time appeared to be completely suitable for this project. Many
planners were unable to handle operators with complex preconditions and condi-
tional effects. Most could not generate true concurrent plans, where the execution
intervals of two operators can overlap completely or partially, which would be re-
quired in order to take proper advantage of the parallelism inherent in the domain.
Despite a focus on efficiency, and despite significant progress being made in the
field, most algorithms that were available at the time did not appear to be effi-
cient enough to be run in real time on board an autonomous helicopter, requiring
minutes to solve even rather small problem instances from common benchmark
domains. And finally, despite the fact that the TAL logics were developed specif-
ically for reasoning about action and change, making them eminently suitable for
use in a planner, there were no planners based on the TAL semantics for actions.
This would have facilitated interfacing the planner to other parts of the higher level
deliberative systems on board the UAV, where it was envisioned that TAL would
be used as a modeling language for the UAV domain.

As a first step towards developing a planner for the UAV domain, we wanted
to take an existing planning algorithm and adapt it to the use of TAL, creating a
new implementation that supported a limited subset of the TAL syntax and seman-
tics and then integrating this implementation with the existing tools for TAL. This
prototype would be limited to sequential plans and would not necessarily be very
efficient, but it would nevertheless provide a way of learning more about the state
of the art in planning, about the difficulties specific to integrating a planner with
TAL, and about the requirements a planner would need to satisfy in order to be
useful in the project. After this prototype was finished, it would be time to con-
sider whether the initial approach was suitable for our needs or whether another
planning paradigm would perhaps be more amenable to being used in the project.

One planning algorithm which seemed quite interesting was TLPlan (Bacchus
& Kabanza, 1996b, 2000), which used a forward-chaining search technique with a
twist: A set of temporal logic formulas could be used to constrain the plans that
were generated, allowing users to guide the planner towards the goal in a way that
could increase planning efficiency by several orders of magnitude for a number
of common benchmark domains. This was not the first planner to allow users to
specify control information, but it did so in a flexible and rather intuitive manner,
and the use of a temporal logic for control would be quite compatible with the
modeling of actions and planning domains in a temporal action logic such as TAL.

It seemed reasonable to believe that much if not all of the efficiency gains that
were possible through the additional pruning would carry over to the UAV plan-
ning domain. These efficiency gains would be extremely significant given the na-
ture of the UAV project, and would be well worth the additional effort that would

8 1.5. Brief Contents

have to be spent when creating suitable domain-specific control rules, making the
TLPlan approach a prime candidate for use in the project. Another advantage of
this approach was that it was reasonably expressive – and although TLPlan itself
did not support all the expressivity that would be required for the UAV project,
its forward-chaining nature meant that it would most likely be feasible to develop
a variation of the planner that would support concurrency, metric time and other
desirable extensions while staying within the basic framework of forward-chaining
with control rules. Consequently, we decided to use this framework as the basis for
a new planner: TALplanner.

Adapting the idea of using control rules to TAL was not too difficult, and since
it was possible to reuse some code from VITAL (Kvarnström, 2005), a tool for visu-
alizing and reasoning about domain models formalized in TAL, the first phase of
the project took only a couple of months. To our surprise, the new prototype TAL-
planner was also considerably faster than TLPlan, though given that the high-level
algorithms were very similar in this version, this would mainly have to be due to
low-level algorithms (for state storage and formula evaluation) and differences in
implementation.

After this initial prototype was evaluated, it was decided that the TALplanner
project should continue, and from this point in time TALplanner has developed
independently from TLPlan. A number of extensions have been developed, in-
cluding both increases in expressivity, support for concurrency and resources, and
efficiency improvements through optimizations as well as new formula analysis
techniques developed specifically for TALplanner. Most of the extensions have
been published in a number of papers and articles (Doherty & Kvarnström, 1999;
Kvarnström & Doherty, 2000b; Kvarnström, Doherty, & Haslum, 2000; Doherty &
Kvarnström, 2001; Kvarnström, 2002; Kvarnström & Magnusson, 2003), and these
form the basis for a new, updated and integrated description of TALplanner in the
final part of this thesis.

1.5 Brief Contents

The first part of this thesis mainly provides some background for my work. It
consists of the introduction you have just read together with a chapter describing
the PMON and TAL logics and their evolution over the years (Chapter 2).

The second part of the thesis contains two chapters related to the use of TAL in
reasoning about action and change. Chapter 3 contains a journal article on tackling
the qualification problem in TAL, while Chapter 4 contains an article on achieving
elaboration tolerance through object-oriented modeling in TAL.

Finally, the third part of the thesis (Chapters 5 through 10) describes the current
version of TALplanner.

Chapter 2
TAL: Temporal Action Logics

Logic is often used as the main means for reasoning about actions and the way they
affect the environment in which the reasoner is operating. This chapter introduces
Temporal Action Logics (TAL), one of several frameworks used for reasoning about
action and change in logic. Though no new results will be presented in this chapter,
understanding TAL will be important when reading other parts of this thesis.

2.1 History

TAL is not a single logic, but a family of logics. Some of these logics are exten-
sions to older versions, while others branch out to provide alternative approaches
to solving particular types of reasoning problems, often being incorporated into the
main branch of the TAL development tree after having proven their usefulness.

The logic which will be used in much of this thesis is called TAL-C. Before defin-
ing TAL-C, though, we will take a look at the history that led to the development
of the TAL logics.

2.1.1 The Beginning

In the beginning, there was chaos.
To be more exact (and somewhat less dramatic), quite a few logics for reasoning

about action and change have been proposed over the years, but for a long time
there was no principled formal method for determining whether a logic always
yielded the intended results.

Given a (possibly partial) description of a world and the actions taking place in
that world, one would like to have some kind of formal guarantee that the conclu-
sions that can be drawn from that description, the facts that can be inferred from
that logical theory, are sound and preferably also complete. Proving this might

9

10 2.1. History

be reasonably straight-forward for an ordinary monotonic first order logic, where
there is more or less universal agreement on what soundness and completeness
means, but a logic for reasoning about action and change is usually expected to
be non-monotonic. While adding new facts to a theory in a monotonic logic al-
ways extends the set of valid conclusions that should be drawn from this theory,
non-monotonic logics are able to “jump to conclusions”, and adding new facts may
invalidate some previous conclusions. This leads to the question of exactly what
conclusions should be jumped to, and when they should be retracted.

For example, non-monotonic inferences are used in many solutions to the frame
problem (McCarthy & Hayes, 1969), the problem that when you formally define
what happens when you perform an action (such as moving a box from A to B),
you only want to specify the facts that will be changed (the box will now be at
location B) and not all the myriad facts that will not be changed (the box will not
change color, other boxes will not move, the speed of the car going by outside will
not be affected, and so on). A logic for reasoning about action and change should
automatically infer, or jump to the conclusion, that the only actions that occur are
those that are explicitly specified and that all facts that are not explicitly stated to
change at any given point in time will indeed remain unchanged – but if a new
action is added to the theory, some of these conclusions will have to be withdrawn.
For example, if an action is added that paints a block red, it should no longer be
possible to conclude that no blocks ever change colors. This non-monotonicity,
where previous conclusions are no longer valid when new facts are added, renders
the classical definition of soundness for first-order logic useless.

Without a suitable formal framework providing a definition of what should be
entailed by a theory, logics could only be tested against a researcher’s intuitive
idea of how they should work. This was usually done with the help of a small
set of benchmark examples for which the logic did yield the intended conclusions.
Unfortunately logic sometimes does not behave intuitively, and now and then new
problem instances were found for which some existing logics gave some rather
surprising results. For example, some logics had a partial solution to the frame
problem that initially appeared correct but would allow you to infer that if you
load a gun, wait, and shoot, the gun might magically become unloaded during the
waiting action (for some reason these benchmark tests are often quite violent). This
scenario is also known as the Yale Shooting Problem (Hanks & McDermott, 1986).

Once such a deficiency was found in a logic, the logic might have to be dis-
carded. Even if the logic could be patched to handle the new test, the presence of
one flaw indicated that there could still be others waiting to be found, making it
difficult to completely trust any of the logics to provide the intended results.

2.1.2 Features and Fluents

In his book Features and Fluents (1994), Sandewall developed a formal framework
for assessing the correctness (soundness and completeness) of a logic for reasoning

Chapter 2. TAL: Temporal Action Logics 11

about action and change.
The events taking place in the Yale Shooting Problem could be seen as an action

scenario, a kind of story line or plot that tells us what has happened or what will
happen. Like other approaches to reasoning about action and change using logic,
the Features and Fluents framework provides a way of formally describing such
scenarios. An action scenario description contains a set of observations of facts that
hold at various points in time (the gun is not loaded in the initial state at time 0),
together with a generic definition of actions that can be performed (the Fire action
means that if the gun is loaded when the action is invoked, the turkey will be dead
at the end of the action) and a specification of which actions do in fact occur (Fire
occurs between time 5 and time 7). Action scenario descriptions are sometimes
called scenario descriptions or narratives.

Reasoning problems were then classified according to their ontological and epis-
temological characteristics.

The ontological characteristics relates to the structure of the (abstract) world an
agent is reasoning about, and specifies properties such as whether inertia can be
assumed (that is, whether facts only change when explicitly caused to change),
whether surprises can occur, whether actions can be performed concurrently, and
whether effects of actions can be delayed. Note that explicitly specifying these char-
acteristics often provides additional information about the world in which the sce-
nario is taking place, information that cannot necessarily be inferred from the action
scenario description itself.

The epistemological characteristics specifies constraints on the knowledge pro-
vided to the agent by the world, such as whether the agent knows all actions that
are performed, whether all preconditions for being able to execute a given action
are explicitly known to the agent, whether it knows all effects of all actions, and
whether it has complete knowledge about the initial state.

Sandewall then defined the exact conclusions that a logic should be able to pro-
duce from a reasoning problem belonging to a number of such classes of character-
istics. A set of preferential entailment methods1 were developed, many of which
corresponded directly to the behavior of existing logics for reasoning about action
and change. These preferential entailment methods were then analyzed, giving up-
per and lower bounds in terms of the classes of reasoning problems for which they
produced exactly the intended conclusions.

PMON, Pointwise Minimization of Occlusion with Nochange premises, was
one of the few preferential entailment methods that were assessed correct for the
K–IA class of action scenario descriptions, where K is an epistemological char-
acteristics stating approximately that explicit, correct and accurate knowledge is
provided (with no requirements on complete knowledge in the initial state and no
restrictions on knowledge about other states), and IA is an ontological character-

1Preferential entailment reduces the set of classical models of a theory by only retaining those models
that are minimal according to a given preference relation, a strict partial order over logical interpreta-
tions (Shoham, 1987).

12 2.1. History

istics stating approximately that discrete integer time is used together with plain
inertia (without surprises or other complicating factors). Though ramifications and
qualifications were not allowed in K–IA, the class is in fact quite broad, permitting
the use of conditional effects, non-deterministic effects, and incomplete specifica-
tion of states and the timing of actions.

2.1.3 PMON and TAL

While the original PMON was a preferential entailment method, Doherty later de-
veloped an equivalent classical logic, with a circumscription axiom capturing the
PMON definition of preferential entailment (Doherty, 1994; Doherty & Łukaszewicz,
1994). This new logic is also called PMON, and uses two languages for repre-
senting and reasoning about narratives. The surface language L(SD), Language
for Scenario Descriptions, provides a convenient high-level notation for describing
narratives, and can be seen as a set of macros easily translated into the base lan-
guage L(FL), which was initially a many-sorted first-order language and was later
altered to be an order-sorted2 first-order language. The L(SD) language was later
renamed to L(ND), Language for Narrative Descriptions.

Though the circumscription axiom was a second-order formula, PMON action
definitions were structured in a way that guaranteed the possibility of using quan-
tifier elimination techniques to reduce the axiom to a first-order formula, enabling
the use of standard first-order theorem proving techniques to reason about PMON
narratives.

The original PMON logic was further extended and generalized in several steps,
while still retaining the use of the original base L(FL) together with the possibility
to reduce circumscribed narratives to first-order logic. Although the extended log-
ics belong to what we now call the TAL family, each is essentially an incremental
addition to the base logic PMON.

PMON-RC, proposed by Gustafsson and Doherty (1996), provides a solution to
the ramification problem for a broad, but as yet unassessed class of action scenarios.
The main idea is the addition of a new statement type for causal constraints, where
changes taking place in the world can automatically trigger new changes at the
same timepoint or at a specified delay from the original change. The solution is
very fine-grained in the sense that one can easily encode dependencies between
individual objects in the domain, work with both boolean and non-boolean fluents
and represent both Markovian and non-Markovian dependencies (Giunchiglia &
Lifschitz, 1995). PMON-RC also correctly handles chains of side effects.

PMON+, developed by Doherty (1996), is an extended version of the original
PMON logic incorporating the changes made in PMON-RC together with addi-
tional extensions. This logic was later renamed TAL 1.0.

2Essentially, an order-sorted language allows the use of sub-sorts; for example, car and bicyclemay
be sub-sorts of the vehicle sort.

Chapter 2. TAL: Temporal Action Logics 13

TAL-C, proposed by Karlsson and Gustafsson (1999), uses fluent dependency
constraints (an extended form of causal constraints) as a basis for representing con-
current actions. A number of phenomena related to action concurrency such as
interference between one action’s effects and another’s execution, bounds on con-
currency, and conflicting, synergistic, and cumulative effects of concurrent actions
are supported.

TAL-C has been used as the basis for several articles in this thesis. This logic
will be described below in sufficient detail for understanding those articles, omit-
ting some details regarding type structures and constraints on sorts in order to
improve readability. We refer the reader to Karlsson and Gustafsson (1999) and
Doherty, Gustafsson, Karlsson, and Kvarnström (1998) for a complete definition of
this logic and to Doherty (1994), Doherty and Łukaszewicz (1994) and Gustafsson
and Doherty (1996) for further background information and descriptions of earlier
logics in the TAL family.

2.2 Basic Concepts

We assume there is an agent interested in reasoning about a specific world. This
world might be formally defined, or it might be the “real world”, in which case the
agent can only reason about a formally defined abstraction of the real world. In
either case, it is assumed that the world is dynamic, in the sense that the various
properties or features of the world can change over time.

The formal version of the Yale Shooting Problem could be seen as an abstraction
of a real shooting situation, where the only properties being modeled are loaded

and alive, two simple boolean features representing whether the gun is loaded and
whether the turkey is alive, respectively.

The TAL framework also permits the use of multiple value domains, which can be
used for modeling different types of objects that might occur in the world which is
being modeled. For example, the well-known blocks world contains blocks that can
be stacked on top of each other. The blocks world can be modeled using a value
domain for blocks, containing values such as A, B and C, together with features
such as on(block1, block2), which holds iff block1 is on top of block2, and clear(block),
which holds iff there is no block on top of the given block. Of course, values can
also be used to represent properties of objects rather than the objects themselves.
For example, if the color of each block should be modeled, then this could be done
using a value domain for colors containing values such as red, green and blue,
together with a color-valued (non-boolean) feature color(block).

Time itself could be viewed differently depending on the nature of the world
being reasoned about and the reasoning abilities of the agent. TAL uses linear time,
as opposed to branching time, and allows the use of either continuous real-valued
time or discrete integer time. Research within the TAL framework has mostly been

14 2.3. The TAL-C Surface Language L(ND)

state

fluent

feature

on(A,A)

on(A,B)

on(B,A)

on(B,B)

ontable(A)

ontable(B)

clear(A)

clear(B)

handempty

time 0

false

true

false

false

false

true

true

false

true

time 1

false

false

false

false

false

true

false

true

false

time 2

false

false

false

false

true

true

true

true

true

time 3

false

false

false

false

true

false

true

false

false

time 4

false

false

true

false

true

false

false

true

true

Figure 2.1: Viewing a Development as Fluents or States

focused on discrete non-negative integer time, and this will be used throughout
this thesis.

The development of the world over a (possibly infinite) period of discrete time
can be viewed in two different ways. Figure 2.1 shows what would happen in a
simple blocks world scenario where block A is initially on top of B, which is on
the table, and where one unstacks A from B, places it on the table, picks up B, and
finally stacks this block on top of A. The information about this scenario can be
viewed as a sequence of states, where each state provides a value to all features (or
“state variables”) for a single common timepoint, or as a set of fluents, where each
fluent is a function of time which specifies the development of a single feature. We
sometimes use the terms “feature” and “fluent” interchangeably to refer to either a
specific property of the world or the function specifying its value over time.

Since there is an agent, there is usually also a set of actions that the agent can
perform. Such actions can only be performed when the requisite preconditions are
satisfied. Performing an action changes the state of the world according to a set of
given rules. Such rules are not necessarily deterministic. For example, the action
of tossing a coin can be modeled within the TAL framework, and there will be two
possible result states.

All of these concepts are modeled in the language L(ND). We will now provide
an overview of this language and the translation from L(ND) to the order-sorted
first-order base language L(FL).

2.3 The TAL-C Surface Language L(ND)

A narrative in L(ND) can be said to consist of two parts: The narrative background
specification (NBS), which provides background information that is common to all

Chapter 2. TAL: Temporal Action Logics 15

narratives for a particular domain, and the narrative specification (NS), which pro-
vides information specific to a particular instance of a reasoning problem.

All information about a narrative is represented as a set of labeled narrative
statements in L(ND), except for the vocabulary, which defines the constant sym-
bols, feature symbols, action symbols, and other symbols that are available for use
in narrative formulas. Since narrative examples used in the literature have tradi-
tionally been quite simple, the vocabulary has usually either been considered to be
implicit in the remainder of the narrative specification or been described informally
in the main text of the article. In this thesis, however, vocabularies will generally be
described in terms of labeled narrative declaration statements using a syntax bor-
rowed from the software tools VITAL (Kvarnström, 2005) and TALplanner (Chap-
ter 6).

Before providing a formal definition of the L(ND) language, we will introduce
most of the macros, formula types and statement classes using an example narra-
tive: An extended version of the Hiding Turkey Scenario (Sandewall, 1994).

Example 2.3.1 (Extended Hiding Turkey Scenario)
In the extended hiding turkey scenario, there is a turkey that may or may not be
deaf, and there is also a gun. First, we load the gun. Loading the gun makes some
noise, and unless the turkey is deaf, it will hide whenever there is noise. However,
if the turkey has been hiding for a while and there has been no noise, the turkey
will decide to come out in the open again. After a while, we fire the gun, and if the
turkey is not hiding at that time, it will die.

This scenario can be represented in TAL-C as the following narrative, the com-
ponents of which will be described in further detail in the following sections:

domain turkey :elements { T1 }
domain gun :elements { G1 }
feature alive(turkey), deaf(turkey), hiding(turkey) :domain boolean

feature loaded(gun) :domain boolean

feature noise :domain boolean

action Load(gun), Fire(gun,turkey)

per1 ∀t, turkey [Per(t, alive(turkey)) ∧ Per(t, deaf(turkey)) ∧ Per(t, hiding(turkey))]
per2 ∀t, gun [Per(t, loaded(gun))]
per3 ∀t [Dur(t, noise, false)]
dom1 ∀t, turkey [[t] noise ∧ ¬deaf(turkey) → [t + 1] hiding(turkey)]
acs1 [t1, t2] Load(gun) R((t1, t2] loaded(gun)) ∧ I((t1, t2] noise)
acs2 [t1, t2] Fire(gun, turkey)

([t1] loaded(gun) ∧ ¬hiding(turkey) → R((t1, t2] ¬alive(turkey))) ∧
([t1] loaded(gun) → R((t1, t2] ¬loaded(gun)))

dep1 ∀t, turkey [[t] ¬hiding(turkey) ∧ ¬deaf(turkey) ∧ CT([t] noise) →
R([t + 1] hiding(turkey))]

dep2 ∀t, turkey [[t, t + 9] hiding(turkey) ∧ ¬noise → R([t + 10] ¬hiding(turkey))]

16 2.3. The TAL-C Surface Language L(ND)

obs1 [0] alive(T1) ∧ ¬loaded(G1) ∧ ¬hiding(T1)
occ1 [1, 4] Load(G1)
occ2 [5, 6] Fire(G1, T1)

Since the narrative does not specify whether or not the turkey was deaf, there will
be two classes of models; one where the turkey is deaf, does not hide, and ends up
being shot, and one where it hears the noise, hides, and emerges from hiding ten
timepoints later. �

2.3.1 Narrative Background Specification

In the narrative background specification, persistence statements (labeled per) allow
each fluent to be specified as being persistent (normally retaining its value from
the previous timepoint), durational (normally reverting to a default value), or dy-
namic (varying freely, subject to other constraints involving this fluent). Domain
constraints (labeled dom) characterize acausal information which is always true in
the world being modeled. Action type specifications (labeled acs) provide generic
definitions of action types, while dependency constraints (labeled dep) characterize
causal dependencies among fluents. The narrative background specification also
contains the vocabulary for the narrative.

Vocabulary

The vocabulary for the hiding turkey scenario requires three value domains: The
standard boolean domain, together with two domains for turkeys and guns. There
are five boolean fluents (alive, deaf, hiding, loaded, and noise), some of which take
turkeys or guns as parameters, and there are two actions (Load and Fire).

domain turkey :elements { T1 }
domain gun :elements { G1 }
feature alive(turkey), deaf(turkey), hiding(turkey) :domain boolean

feature loaded(gun) :domain boolean

feature noise :domain boolean

action Load(gun), Fire(gun,turkey)

The boolean domain is always present in all narratives, and behaves as if it had
been specified in the following manner:

domain boolean :elements { true, false }

Persistence Statements

Intuitively, the first four fluents in the extended hiding turkey scenario describe
properties that do not change unless something changes them, while the fifth, noise,
is different – there is no noise unless someone is currently making noise. This dis-
tinction between persistent and durational fluents is important. A persistent fluent

Chapter 2. TAL: Temporal Action Logics 17

can only change when an action or dependency constraint allows it to change (the
persistence assumption or inertia assumption). Otherwise, it retains the same value
it had at the previous timepoint. A durational fluent is associated with a default
value, and can only take on another value when an action or dependency constraint
allows it to (the default value assumption). At timepoints when no action or depen-
dency constraint explicitly allows it to take on another value, it will immediately
revert to its default value. Though this is not used in this narrative, a fluent can also
be dynamic if it is not declared to be persistent or durational. Since no persistence
or default value assumption is applied, dynamic fluents can vary freely over time
to satisfy observations and domain constraints.

Whether a fluent is persistent or durational – or neither – is defined in a set
of persistence statements, using the L(ND) macros Per and Dur. For a persistent
fluent f , Per(t, f) should be true, and for a durational fluent f with default value ω,
Dur(t, f , ω) should be true; the temporal argument allows persistence properties to
vary over time, though this flexibility is usually not used. Note that some earlier
TAL logics used a fixed nochange axiom instead of persistence statements, forcing all
fluents to be persistent. Using persistence statements provides a more flexible and
fine-grained approach to controlling the default behavior of fluents.

per1 ∀t, turkey [Per(t, alive(turkey)) ∧ Per(t, deaf(turkey)) ∧ Per(t, hiding(turkey))]
per2 ∀t, gun [Per(t, loaded(gun))]
per3 ∀t [Dur(t, noise, false)]

Domain Constraints

Domain constraints represent knowledge about logical fluent dependencies which
are not specific to a particular reasoning problem instance but which are known
to hold in every possible scenario taking place within a domain. In domain con-
straints, as well as other TAL formulas, the fact that a fluent f takes on a particular
value ω is denoted by the elementary fluent formula f =̂ ω. For the boolean do-
main, the formula f =̂ true (f =̂ false) can be abbreviated f (¬ f). Elementary flu-
ent formulas can be combined using boolean connectives and quantification over
values to form fluent formulas. The fixed fluent formula [τ] φ states that the fluent
formula φ holds at the timepoint τ.

Although no domain constraints are strictly needed for this scenario, we will
show one possible constraint as an example: If there is noise at some timepoint,
then all turkeys that are not deaf will be hiding at the next timepoint.

dom1 ∀t, turkey [[t] noise ∧ ¬deaf(turkey) → [t + 1] hiding(turkey)]

Action Types

Actions can be invoked by the agent in order to change some properties in the
world. Loading a gun g in the extended hiding turkey scenario should cause

18 2.3. The TAL-C Surface Language L(ND)

loaded(g) to become true, for example. But since the loaded fluent is persistent,
simply stating that loaded(g) will be true at the end of the action invocation is not
sufficient. Instead, it is necessary to use a reassignment macro to explicitly release
this fluent from the persistence assumption at the specific point in time where it
should change values from false to true.

There are three different reassignment macros: X, R and I. They can all be
used with a temporal interval, for example R((τ, τ′] α), or a single timepoint, for
example I([τ] α). Each of these operators has the effect of releasing the fluents
occurring in α from the persistence and default value assumptions during the given
interval or at the given timepoint. However, the operators differ in whether they
place further constraints on the values of these fluents, and if so, at what time.

The X operator is used for occlusion. Its purpose is simply to allow the value
of the fluents in the formula α to vary at a timepoint or during an interval, and
therefore it does not further constrain the fluents occurring in α. Intuitively, the
X operator occludes (hides) any changes in a fluent value from the persistence or
default value constraints generated by the persistence statements in the narrative.

The R operator is used for reassignment, and ensures that α will hold at the final
timepoint in the interval. During the rest of the interval, the fluents occurring in α

are allowed to vary freely, unaffected by the persistence or default value assump-
tion (but still subject to other constraints that may also be present in the narrative).

The I operator is used for interval reassignment and is often but not always used
in combination with durational fluents. It ensures that α will hold during the entire
interval.

An action type specification uses reassignment macros to define what will happen
if and when a particular action is invoked. Note that it does not state that an action
does occur; this is specified in the narrative specification using action occurrence
statements.

In the extended hiding turkey scenario, there are two actions at our disposal.
We can Load a gun (acs1), which ensures that this particular gun is loaded when the
action has been executed but also makes some noise throughout the duration of the
action: The action definition forces noise to be true in the entire interval (t1, t2], and
thereafter noise will automatically revert to its default value, false. We can also Fire

a gun (acs2), which results in the gun no longer being loaded – and if the gun was
loaded when the Fire action was invoked, and the turkey we were aiming at was not
hiding, the turkey will no longer be alive.

acs1 [t1, t2] Load(gun) R((t1, t2] loaded(gun)) ∧ I((t1, t2] noise)
acs2 [t1, t2] Fire(gun, turkey)

([t1] loaded(gun) ∧ ¬hiding(turkey) → R((t1, t2] ¬alive(turkey))) ∧
([t1] loaded(gun) → R((t1, t2] ¬loaded(gun)))

Chapter 2. TAL: Temporal Action Logics 19

Dependency Constraints

Actions must be explicitly triggered using action occurrence statements. Some
changes or activities in the world are instead triggered by conditions that hold or
that become true in the world. Such changes can be modeled using dependency con-
straints.

An interesting property of the turkeys in this domain is that they are afraid
of sounds: If a turkey is not deaf and there is some noise, it will immediately hide.
This fact cannot be modeled as an acausal domain constraint, since such constraints
cannot provide a sufficient cause for the noise fluent to change values. Neither can
it be modeled by an action, since actions must be invoked explicitly and cannot be
triggered automatically by conditions that hold in the world. Instead, it is modeled
using a dependency constraint. The constraint dep1 states that if a turkey is not
deaf and not hiding, and a noise begins (the CT macro, “changes to true”), then at the
next timepoint, hiding is explicitly assigned the value true. Similarly, if a turkey has
been hiding for ten timepoints, and there has been no noise during that time, it will
stop hiding (dep2).

dep1 ∀t, turkey [[t] ¬hiding(turkey) ∧ ¬deaf(turkey) ∧ CT([t] noise) →
R([t + 1] hiding(turkey))]

dep2 ∀t, turkey [[t, t + 9] hiding(turkey) ∧ ¬noise → R([t + 10] ¬hiding(turkey))]

2.3.2 Narrative Specification

In the narrative specification, observation statements (labeled obs) are intended to
represent observations of fluent values at specific timepoints while action occurrence
statements (labeled occ) specify which instances of the generic action types occur
and during which time intervals.

Observation Statements

Observation statements are intended to describe specific facts that have been ob-
served to hold in the world. They provide information about a particular reasoning
problem instance within a domain, and are therefore part of the narrative specifi-
cation. In the example scenario, a number of facts have been observed in the initial
state: The turkey is alive but not hiding, and the gun is not loaded. We do not ob-
serve whether the turkey is deaf or not, and there is no need to state that there is no
noise, since the durational fluent noise is false by default.

obs1 [0] alive(T1) ∧ ¬loaded(G1) ∧ ¬hiding(T1)

Action Occurrence Statements

Action occurrence statements specify which actions actually do take place in a nar-
rative. Like observations, they are part of the narrative specification – the instance-
specific part of the narrative.

20 2.3. The TAL-C Surface Language L(ND)

For the hiding turkey scenario, two action occurrence statements are required,
specifying that the gun is loaded and fired.

occ1 [1, 4] Load(G1)
occ2 [5, 6] Fire(G1, T1)

2.3.3 The Language L(ND)

This section defines the surface language L(ND). The translation to the first-order
language L(FL) is presented in Section 2.4.1. The overline is used as abbreviation
of a sequence, when the contents of the sequence are obvious. For example, f (x, y)
means f (x1, ..., xn, y1, ..., ym).

Definition 2.3.1 (Basic Sorts)
There are a number of sorts for values Vi, including the boolean sort B with the
constants {true, false}. TAL is order-sorted, and a sort may be specified to be a
subsort of another sort. The sort V is a supersort of all value sorts.

There are a number of sorts for features Fi, each one associated with a value
sort dom(Fi) = Vj for some j. The sort F is a supersort of all fluent sorts.

There is also a sort for actions A and a temporal sort T . �

The sort T is assumed to be interpreted, but can be axiomatized in first-order logic
as a subset of Presburger arithmetics (Koubarakis, 1994) (natural numbers with
addition).

Definition 2.3.2 (Terms)
A value term, often denoted by ω, is a variable v or a constant v of sort Vi for some i,
an expression value(τ, f) where τ is a temporal term and f is a fluent term, or an
expression g(ω1, . . . , ωn) where g : Vk1 × . . .×Vkn → Vi is a value function symbol
and each ωj is a value term of sort Vkj

.
A temporal term, often denoted by τ, is a variable t or a constant 0, 1, 2, 3, . . . or

s1, t1, . . ., or an expression of the form τ1 + τ2, all of sort T .
A fluent term, often denoted by f , is a feature variable or a feature expression

f(ω1, . . . , ωn) where f : Vk1 × . . . × Vkn → Fi is a feature symbol and each ωj is a
value term of sort Vkj

.
An action term Ψ is an expression A(ω1, . . . , ωn) where A : Vk1 × . . .× Vkn → A

is an action symbol and each ωj is a value term of sort Vkj
. �

Variables are typed and range over the values belonging to a specific sort. Although
the sort is sometimes specified explicitly in narratives, it is more common to simply
give the variable the same name as the sort but (like all variables) written in italics,
possibly with a prime and/or an index. For example, the variables turkey, turkey′

and turkey3 would be of the sort turkey. Similarly, variables named t or τ are
normally temporal variables, and variables named n are normally integer-valued
variables.

Chapter 2. TAL: Temporal Action Logics 21

The function value(τ, f) returns the value of the fluent f at the timepoint τ,
where [τ] f =̂ v iff value(τ, f) = v. The expression [τ] f =̂ g, where f and g are
fluent terms, is shorthand notation for [τ] f =̂ value(τ, g).

Definition 2.3.3 (Temporal and Value Formulas)
If τ and τ′ are temporal terms, then τ = τ′, τ < τ′ and τ ≤ τ′ are temporal for-
mulas. A value formula is of the form ω = ω′ where ω and ω′ are value terms, or
r(ω1, . . . , ωn) where r : Vk1 × . . .× Vkn is a relation symbol and each ωj is a value
term of sort Vkj

. �

We will sometimes write τ ≤ τ′ < τ′′ to denote the conjunction τ ≤ τ′ ∧ τ′ < τ′′,
and similarly for other combinations of the relation symbols ≤ and <.

Definition 2.3.4 (Fluent Formula)
An elementary fluent formula, sometimes called an isvalue expression, has the form
f =̂ ω where f is a fluent term of sort Fi and ω is a value term of sort dom(Fi). A
fluent formula is an elementary fluent formula or a combination of fluent formulas
formed with the standard logical connectives and quantification over values. �

The elementary fluent formula f =̂ true (f =̂ false) can be abbreviated f (¬ f).

Definition 2.3.5 (Timed Formulas)
Let τ and τ′ be temporal terms and α a fluent formula. Then:

• [τ, τ′] α, (τ, τ′] α, [τ, τ′) α, (τ, τ′) α, [τ, ∞) α, (τ, ∞) α and [τ] α are fixed fluent
formulas,

• CT([τ] α), CF([τ] α) and C([τ] α) are change formulas,

• R([τ, τ′] α), R((τ, τ′] α), R([τ, τ′) α), R((τ, τ′]) α) and R([τ] α) are reassign-
ment formulas, and

• X([τ, τ′] α), X((τ, τ′] α), X([τ, τ′) α), X((τ, τ′]) α) and X([τ] α) are occlusion
formulas.

Fixed fluent formulas, change formulas, reassignment formulas and occlusion for-
mulas are called timed formulas. �

Definition 2.3.6 (Static Formula)
A static formula is a temporal formula, a value formula, a fixed fluent formula, a
change formula, true, false, or a combination of static formulas formed using the
standard logical connectives together with quantification over values and time. �

Note that the formulas true and false are not the same as the boolean values true
and false.

22 2.4. The TAL-C Base Language L(FL)

Definition 2.3.7 (Change Formula)
A change formula is a formula that has (or is rewritable to) the formQv(α1 ∨ ...∨ αn)
where Qv is a sequence of quantifiers with variables, and each αi is a conjunction
of static, occlusion and reassignment formulas. The change formula is called bal-
anced iff the following two conditions hold. (a) Whenever a feature f (ω) appears
inside a reassignment or occlusion formula in one of the αi disjuncts, it must also
appear in all other αi’s inside a reassignment or occlusion formula with exactly the
same temporal argument. (b) Any existentially quantified variable v in the for-
mula, whenever appearing inside a reassignment or occlusion formula, only does
so in the position f =̂ v. �

Definition 2.3.8 (Application Formula)
An application formula is any of the following: (a) a balanced change formula; (b)
Λ → ∆, where Λ is a static formula and ∆ is a balanced change formula; or (c) a
combination of elements of types (a) and (b) formed with conjunction and universal
quantification over values and time. �

Definition 2.3.9 (Occurrence Formula)
An occurrence formula has the form [τ, τ′] Ψ, where τ and τ′ are temporal terms and
Ψ is an action term. �

Definition 2.3.10 (Persistence Formula)
A persistence formula is an expression of the form Per(τ, f) where τ is a temporal
term and f is a fluent term, an expression of the form Dur(τ, f , ω) where τ is a
temporal term, f is a fluent term and ω is a value term, or a combination of persis-
tence formulas formed with conjunction and universal quantification over values
or time. �

Definition 2.3.11 (Narrative Statements)
An action type specification or action schema (labeled acs) has the form [t, t′] Ψ→ φ,
where t and t′ are temporal variables, Ψ is an action term and φ is an application
formula.

A dependency constraint (labeled dep) is an application formula.
A domain constraint (labeled dom) is a static formula.
A persistence statement (labeled per) is a persistence formula.
An observation statement (labeled obs) is a static formula.
An action occurrence statement (labeled occ) is an occurrence formula [τ, τ′] Ψ

where τ and τ′ are variable-free temporal terms and Ψ is a variable-free action term.
�

2.4 The TAL-C Base Language L(FL)

In order to reason about a particular narrative, it is first mechanically translated
into the base language L(FL), an order-sorted classical first-order language with

Chapter 2. TAL: Temporal Action Logics 23

+ Foundational Axioms
+ Circ(T)

+ Quantifier EliminationL(FL)

L(FL)

L(ND)

Trans()

1st−order
theory T

TAL
Narrative

1st−order
theory

Figure 2.2: The relation between L(ND) and L(FL)

equality using a linear discrete time structure (Figure 2.2). A circumscription policy
is applied to the resulting theory, foundational axioms are added, and quantifier
elimination techniques are used to reduce the resulting second order theory to first
order logic.
L(FL) uses the predicates Holds : T × F × V , Occlude : T × F , and Occurs :

T ×T ×A, where T is the temporal sort, F is a supersort of all fluent sorts and V is
a supersort of all value sorts. The Holds predicate expresses what value a fluent has
at each timepoint, and is used in the translation of fixed fluent formulas; for exam-
ple, the formula [0] alive(turkey) =̂ true∧ loaded(gun) =̂ false can be translated into
Holds(0, alive(turkey), true)∧Holds(0, loaded(gun), false). The Occlude predicate ex-
presses the fact that a persistent or durational fluent is exempt from its persistence
or default value assumption, respectively, at a given timepoint. It is used in the
translation of the R, I and X operators, which are intended to change the values of
fluents. Finally, the Occurs predicate expresses that a certain action occurs during a
certain time interval, and is used in the translation of action occurrence statements
and action type specifications.

2.4.1 Translation from L(ND) to L(FL)

The following translation function is used to translate L(ND) formulas into L(FL).

Definition 2.4.1 (Trans Translation Function)
Trans is called the expansion transformation, and is defined as follows. All variables
occurring only on the right-hand side are assumed to be fresh variables.

24 2.4. The TAL-C Base Language L(FL)

The formulas true and false need no translation:

Trans(true) = true
Trans(false) = false

Basic macros are translated into L(FL) predicates:

Trans([τ] f (ω)) = Holds(τ, f (ω), true)
Trans([τ] f (ω) =̂ ω) = Holds(τ, f (ω), ω)

Trans(X([τ] f (ω))) = Occlude(τ, f (ω))
Trans(X([τ] f (ω) =̂ ω)) = Occlude(τ, f (ω))

Trans([τ, τ′] A(ω)) = Occurs(τ, τ′, A(ω))

In some versions of TAL, the L(ND) functions Per and Dur are also translated into
L(FL) predicates. Here, they are translated directly into constraints on fluent val-
ues and occlusion.

Trans(Per(τ, f)) = ∀t.τ = t + 1∧ ¬Occlude(t + 1, f)→
∀v[Holds(t + 1, f , v)↔ Holds(t, f , v)]

Trans(Dur(τ, f , ω)) = ¬Occlude(τ, f)→ Holds(τ, f , ω)

Top-level connectives and quantifiers are left unchanged:

Trans(¬α) = ¬Trans(α)
Trans(α C β) = Trans(α) C Trans(β), where C ∈ {∧,∨,→,↔}.
Trans(Qv[α]) = Qv[Trans(α)], where Q ∈ {∀, ∃}.

Fixed fluent formulas can contain nested connectives and quantifiers, which are
transferred outside the scope of the temporal context [τ].

Trans([τ] Qv[α]) = Qv[Trans([τ] α)], where Q ∈ {∀, ∃}.
Trans([τ] ¬α) = ¬Trans([τ] α)

Trans([τ] α C β) = Trans([τ] α) C Trans([τ] β), where C ∈ {∧,∨,→,↔}.

Nested connectives and quantifiers can also occur within occlusion formulas. How-
ever, the translation of these formulas has to be modified somewhat to take into
account the fact that any occlusion formula should occlude all fluents occurring
within the scope of the occlusion operator: Even a disjunctive formula such as
X([τ] α ∨ β) should occlude all fluents in α and all fluents in β and is therefore
not equivalent to X([τ] α) ∨ X([τ] β) but to X([τ] α) ∧ X([τ] β). The translation
procedure takes this into account by removing negations inside the X operator,
translating connectives occurring inside X into conjunctions, and converting all
quantifiers inside X into universal quantification.

Trans(X([τ] ¬α)) = Trans(X([τ] α))
Trans(X([τ] α C β)) = Trans(X([τ] α) ∧ X([τ] β)), where C ∈ {∧,∨,→,↔}.
Trans(X([τ]Qv[α])) = ∀v[Trans(X([τ]α))], where Q ∈ {∀, ∃}.

Fixed fluent formulas can contain infinite temporal intervals. This is a shorthand
notation; infinity is not part of the temporal sort and disappears in the translation.

Chapter 2. TAL: Temporal Action Logics 25

Trans([τ, ∞) α) = ∀t[τ ≤ t→ Trans([t]α)]
Trans((τ, ∞) α) = ∀t[τ < t→ Trans([t]α)]

Finite temporal intervals are permitted both in fixed fluent formulas and in the
occlusion operator. Only one form of interval is shown; the extension to allow
open, closed and semi-closed intervals is trivial.

Trans([τ, τ′] α) = ∀t[τ ≤ t ≤ τ′ → Trans([t]α)]
Trans(X((τ, τ′] α)) = ∀t[τ < t ≤ τ′ → Trans(X([t]α))]

The R and I operators are defined as follows. Again, one form of interval is shown.

Trans(R((τ, τ′] α)) = Trans(X((τ, τ′], α)) ∧ Trans([τ]α)
Trans(R([τ] α)) = Trans(X([τ] α)) ∧ Trans([τ] α)

Trans(I((τ, τ′]α)) = Trans(X((τ, τ′] α)) ∧ Trans((τ, τ′] α)
Trans(I([τ] α)) = Trans(X([τ] α)) ∧ Trans([τ] α)

Finally, the CT “changes to true” operator is defined as follows, with the operators
CF (changes to false) and C (changes) added for symmetry.

Trans(CT([τ] α)) = ∀t[τ = t + 1→ Trans([t]¬α)] ∧ Trans([τ] α)
Trans(CF([τ] α)) = ∀t[τ = t + 1→ Trans([t]α)] ∧ Trans([τ] ¬α)
Trans(C([τ] α)) = Trans(CT([τ] α) ∨ CF([τ] α)) �

Example 2.4.1 (Extended Hiding Turkey Scenario, continued)
The following is the translation of the Extended Hiding Turkey Scenario intoL(FL).
Here, ¬Holds(τ, f , true) has sometimes been simplified into Holds(τ, f , false). Free
variables are assumed to be universally quantified.

per1 ∀t, turkey[(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, alive(turkey))→
∀boolean.Holds(t′ + 1, alive(turkey), boolean)↔ Holds(t′, alive(turkey), boolean)) ∧
(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, deaf(turkey))→
∀boolean.Holds(t′ + 1, deaf(turkey), boolean)↔ Holds(t′, deaf(turkey), boolean)) ∧
(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, hiding(turkey))→
∀boolean.Holds(t′ + 1, hiding(turkey), boolean)↔ Holds(t′, hiding(turkey), boolean))]

per2 ∀t, gun[(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, loaded(gun))→
∀boolean.Holds(t′ + 1, loaded(gun), boolean)↔ Holds(t′, loaded(gun), boolean))]

per3 ∀t[¬Occlude(t, noise)→ Holds(t, noise, false)]
dom1 Holds(t, noise, true) ∧ ¬Holds(t, deaf(turkey), true)→

Holds(t + 1, hiding(turkey), true)
acs1 Occurs(t1, t2,Load(gun))→

Holds(t2, loaded(gun), true) ∧
∀t[t1 < t ≤ t2 → Occlude(t, loaded(gun))] ∧
∀t[t1 < t ≤ t2 → Holds(t, noise, true)] ∧
∀t[t1 < t ≤ t2 → Occlude(t, noise)]

acs2 Occurs(t1, t2,Fire(gun, turkey))→
((Holds(t1, loaded(gun), true) ∧Holds(t1, hiding(turkey), false)→

Holds(t2, alive(turkey), false) ∧ ∀t[t1 < t ≤ t2 → Occlude(t, alive(turkey))]) ∧
(Holds(t1, loaded(gun), true)→

Holds(t2, loaded(gun), false) ∧ ∀t[t1 < t ≤ t2 → Occlude(t, loaded(gun))]))

26 2.4. The TAL-C Base Language L(FL)

dep1 ¬Holds(t, hiding(turkey), true) ∧ ¬Holds(t, deaf(turkey), true) ∧Holds(t, noise, true) ∧
∀u[t = u + 1→ ¬Holds(u, noise, true)]→
Holds(t + 1, hiding(turkey), true) ∧Occlude(t + 1, hiding(turkey))

dep2 ∀u[t ≤ u∧ u ≤ t + 9→ Holds(u, hiding(turkey), true) ∧ ¬Holds(u, noise, true)]→
¬Holds(t + 10, hiding(turkey), true) ∧Occlude(t + 10, hiding(turkey))

obs1 Holds(0, alive(T1), true) ∧Holds(0, loaded(G1), false) ∧Holds(0, hiding(T1), false)
occ1 Occurs(1, 4,Load(G1))
occ2 Occurs(5, 6,Fire(G1, T1)) �

2.4.2 Circumscription Policy

The logical theory which is the result of the translation is still under-constrained in
the sense that a number of implicit assumptions about fluent change in the world
remain to be characterized. In general, we want to encode the blanket assumption
that fluent values do not change unless there is a good reason for this to happen.
There are a number of legitimate reasons for fluents to change value, such as action
occurrences where the effects of the action change fluent values, or causal depen-
dencies between fluents where changes in some fluents force changes in others.
In the TAL formalism, all such legitimate reasons for change are represented ex-
plicitly using the reassignment macros R, I and X in dependency constraints and
action type definitions. When translated, these statements result in constraints on
the Occlude predicate.

In the logical theory, we want to formally encode the assumption that these are
the only reasons for fluents to be occluded. This can be achieved using a special
form of circumscription (McCarthy, 1980) called filtered circumscription (Doherty
& Łukaszewicz, 1994) which involves adding a second-order formula to the narra-
tive logical theory.

The formal definition of TAL circumscription policy will use the following ter-
minology:

• Let N denote the collection of narrative statements contained in a narrative
in L(ND), and letNper,Nobs,Nocc,Nacs,Ndomc, andNdepc denote the sets of
persistence statements, observation statements, action occurrence statements,
action type specifications, domain constraint statements, and dependency
constraint statements in N , respectively.

• Let Γ denote the translation ofN into L(FL) using the Trans translation func-
tion, and let Γper, Γobs, Γocc, Γacs, Γdomc, and Γdepc denote the persistence for-
mulas, observation formulas, action occurrence formulas, action type specifi-
cations, domain constraint formulas, and dependency constraint formulasin
Γ, respectively.

• Let Γfnd denote the set of foundational axioms in L(FL), containing unique
names axioms, unique values axioms, etc.

Chapter 2. TAL: Temporal Action Logics 27

The Occlude predicate is circumscribed relative to the action definitions in Γacs and
the dependency constraints in Γdepc with all other predicates fixed, and Occurs is
circumscribed relative to the action occurrence formulas in Γocc with all other pred-
icates fixed. Due to structural constraints on L(ND) statements, as specified in
the definitions of application formulas and balanced change formulas, quantifier
elimination techniques can then be used to translate the two second-order circum-
scriptive theories into logically equivalent first-order theories (Doherty et al., 1998;
Doherty, 1996), denoted by Circ(Γacs ∧ Γdepc; Occlude) and Circ(Γocc; Occurs), re-
spectively.

The two resulting theories are combined and filtered with theL(FL) translations
of the persistence statements in Γper (forcing persistent and durational fluents to
adhere to the persistence or default value assumptions), the domain constraints
in Γdomc, and the observations and timing constraints in Γobs, yielding the theory
Γ′ = Γper ∧ Γobs ∧ Γdomc ∧ Circ(Γocc; Occurs) ∧ Circ(Γdepc ∧ Γacs; Occlude). Adding
the L(FL) foundational axioms in Γfnd then yields the theory ∆ = Γ′ ∧ Γfnd.

The theory ∆ is still a first-order theory, but lacks one important component:
There is no formal characterization of the linear discrete temporal structure used by
TAL. There are two alternatives: One can use an interpreted theory for the temporal
structure, or an axiomatization can be added in the shape of a second-order theory
Γtime corresponding to the Peano axioms without multiplication.

The expression Trans+(N) will denote the result of translating the narrative N
into L(FL) and applying this filtered circumscription policy. The L(ND) formula
γ is preferentially entailed by the L(ND) narrative N iff Trans+(N) |= Trans(γ).

Example 2.4.2 (Extended Hiding Turkey Scenario, continued)
The circumscription of the Occurs predicate in the action occurrences (occ) above
(that is, Circ(Γocc; Occurs)) is equivalent to the following first-order formula:
∀s, t, a[Occurs(s, t, a)↔ (s = 1∧ t = 4∧ a = Load(G1)) ∨ (s = 5∧ t = 6∧ a = Fire(G1, T1))]

The circumscription of the Occlude predicate in the action schemas (acs) and depen-
dency constraints (dep) above (that is, Circ(Γdepc ∧ Γacs; Occlude)) is equivalent to
the following set of first-order formulas:
∀t, turkey[Occlude(t, alive(turkey))↔
t = 6∧ turkey = T1∧Holds(5, loaded(G1), true) ∧Holds(5, hiding(turkey), false)]

∀t, gun[Occlude(t, loaded(gun))↔
gun = G1∧ (2 ≤ t ≤ 4∨ t = 6∧Holds(5, loaded(G1), true))]

∀t, turkey[Occlude(t, deaf(turkey))↔ false]

∀t, turkey[Occlude(t, hiding(turkey))↔
turkey = T1∧
∃t′[t = t′ + 1∧Holds(t′, hiding(turkey), false) ∧Holds(t′, deaf(turkey), false) ∧

Holds(t′, noise, true) ∧ ∃u[t′ = u + 1∧Holds(u, noise, false)]] ∨
turkey = T1∧
∃t′[t = t′ + 10∧ ∀τ[t′ ≤ τ ≤ t′ + 9→ Holds(τ, hiding(turkey), true) ∧Holds(τ, noise, false)]]]

∀t[Occlude(t, noise)↔ 2 ≤ t ≤ 4] �

28 2.4. The TAL-C Base Language L(FL)

Part II

Extensions to TAL

29

Chapter 3
Tackling the Qualification
Problem using Fluent
Dependency Constraints

Since the first version of PMON, the TAL logics have provided a flexible and pow-
erful solution to the frame problem. Many aspects of the ramification problem were
solved in PMON-RC. This chapter contains an article called Tackling the Qualification
Problem using Fluent Dependency Constraints, written together with Patrick Doherty,
which presents one TAL-based approach for dealing with the qualification prob-
lem, one of the three well-known problems within the area of reasoning about ac-
tion and change. Except for removing those parts of the TAL description that were
already presented in this thesis, reformatting some narrative statements to ensure
a consistent style and fixing one or two minor typos, this article is unchanged from
the final version published in Computational Intelligence (Kvarnström & Doherty,
2000a).

3.1 Abstract

In the area of formal reasoning about action and change, one of the fundamental
representation problems is providing concise, modular and incremental specifica-
tions of action types and world models, where instantiations of action types are
invoked by agents such as mobile robots, and provided the preconditions to the
action are true, their invocation results in changes to the world model concomitant
with the goal-directed behavior of the agent. One particularly difficult class of re-
lated problems, collectively called the qualification problem, deals with the need
to find a concise, incremental and modular means of characterizing the plethora of

31

32 3.2. Introduction

exceptional conditions which might qualify an action, but generally do not, with-
out having to explicitly enumerate them in the preconditions to an action. We show
how fluent dependency constraints together with the use of durational fluents can
be used to deal with problems associated with action qualification using a tempo-
ral logic for action and change called TAL-Q. We demonstrate the approach using
action scenarios which combine solutions to the frame, ramification and qualifi-
cation problems in the context of actions with duration, concurrent actions, non-
deterministic actions and the use of both boolean and non-boolean fluents. The cir-
cumscription policy used for the combined problems is reducible to the first-order
case.

3.2 Introduction

The primary focus of research in the area of formal reasoning about action and
change considers representation problems associated with an autonomous agent,
such as a mobile robot (UGV) or an unmanned aerial vehicle (UAV), interacting
with a highly complex and dynamic environment in which the agent behaves in
a goal-directed manner. A primary goal of the research is to develop modeling
and verification tools which can be used by engineers in the development of such
agents and by the agents themselves, who require both representations of the envi-
ronment and limitations of their behavior in the environment, in order to execute
tasks to achieve goals. Due to the dynamic and causal nature of an agent’s interac-
tion with its environment, temporal logic formalisms are ideal candidates for world
modeling, task and planning specification and causal reasoning. The use of tempo-
ral logic formalisms provides a suitable basis for both specifying and verifying the
complex activity associated with agent interaction with complex environments.

When focusing on the type of complex environments associated with UGVs and
UAVs, it immediately becomes clear that it is in general computationally, epistemo-
logically, and ontologically infeasible to completely represent the environment an
agent is embedded in and the action types it has at its disposal when interacting
with its environment. This leads to the use of nonmonotonic extensions to temporal
formalisms which contribute to providing succinct and modular representations of
incomplete world model specifications and action type specifications. This article
will focus on the representation of action type specifications and agent task repre-
sentations in terms of narratives. In our approach, narratives consist of different
classes of statements, which include action type specifications, timed action occur-
rences, observations, domain and dependency constraints, and additional timing
information relating statements to each other. Narratives can be viewed as agent
programs to be executed by an agent, or as hypothetical courses of action an agent
can reason about when generating its own plans, or simply trying to understand
how its future actions will affect its external environment, or to what degree its past
actions have achieved its previous goals.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 33

Three difficult modeling problems associated with the formal specification of
action types in the context of complex, dynamic environments are the frame, rami-
fication, and qualification problems. These problems have been a topic of continual
research in the action and change community. Briefly, the frame problem concerns
the need to find a concise and efficient means of representing and reasoning about
what does not change when an action or actions are executed by an agent. The
ramification problem concerns the need to separate the representation of the direct
effects of an action type description from the plethora of indirect effects that may
ensue when the action is executed successfully. An important aspect of the problem
is to deal with the context dependent and causal nature of the chains of indirect ef-
fects which may ensue. The qualification problem, which is the problem we will fo-
cus on in this article, concerns the need to find a concise, incremental and modular
means of characterizing the plethora of exceptional conditions which might qual-
ify an action, but generally do not, without having to explicitly enumerate them in
the precondition to the action type. A solution to one of these problems generally
implies a solution to the other two due to the interactions between preconditions,
postconditions, and indirect effects of action occurrences.

Ascertaining whether one has solutions to each of these problems is as difficult
as finding the solutions themselves. The reason for this is due to the fact that solu-
tions that may work well when based on a particular set of assumptions regarding
the ontological nature of the environment an agent is embedded in and particu-
lar epistemological constraints placed on the agent itself, may not work well when
these assumptions and constraints are relaxed. Rather than there being one frame,
ramification and qualification problem, we would claim that there are different so-
lutions for different combinations of epistemological and ontological assumptions.
This working hypothesis is well in-line with the approach used by Sandewall (1994)
in his study of the frame problem using the Features and Fluents framework.

For example, some ontological assumptions concerning action types are wheth-
er actions with duration, non-deterministic actions, or concurrent actions are pos-
sible. An epistemological assumption would be whether an agent has complete
knowledge about all the effects of an action, or whether one can assume complete
and accurate sensory data about the environment. An additional factor when eval-
uating a solution pertains to what types of reasoning tasks one has in mind for the
agent. If one is concerned with a predictive mechanism for the agent used when
generating a plan, a solution to the qualification problem which works here might
not work if one is concerned with a postdictive mechanism for the agent used after
executing a number of actions in a plan and gathering sensor data about the results.

In this article, we will first informally discuss some of the different ontological
and epistemological choices that may affect the nature of solutions to the qualifi-
cation problem. We will then present a complex narrative description, the Russian
Airplane Hijack Scenario (RAH), which in order to be adequately represented in any
logical formalism, would require robust solutions to the frame, ramification and
qualification problems. We say robust because a description of the RAH world re-

34 3.3. The Qualification Problem

quires the representation of concurrent actions, incomplete specification of states,
ramification with chaining, the use of non-boolean fluents, fine-grained dependen-
cies among objects in different fluent value domains, actions with duration, two
types of qualification (weak and strong) and the use of explicit time, in addition
to other features. To our knowledge, this provides one of the more challenging
benchmark examples in the literature. It is challenging in the sense that it involves
solutions to all three representation problems and the ontological assumptions per-
taining to allowable action types are relatively complex.

The RAH narrative description will be used as a vehicle for considering dif-
ferent facets of the qualification problem and demonstrating our solutions to the
problem. To do this, we will first introduce TAL-Q (Temporal Action Logic with
Qualification), an extension to the already existing TAL family of logics (Doherty
et al., 1998) which has sufficient expressivity to model the RAH scenario. TAL-Q is
an incremental extension of an earlier logic called TAL-C (Karlsson & Gustafsson,
1999), just as TAL-C is an incremental extension of TAL-RC (Gustafsson & Doherty,
1996). In fact, the logical language and minimization policy is roughly the same for
TAL-RC, TAL-C, and TAL-Q. The advantages of leaving the logic and minimization
policy intact are that the new class of narrative descriptions that can be represented
in TAL-Q subsumes previous classes and that any circumscribed scenario in TAL-Q
is provably and automatically reducible to a first-order theory implemented in an
on-line research tool developed by our group called VITAL (Kvarnström, 2005),
which permits the visualization and querying of narrative descriptions.

After introducing TAL-Q, we will use it to represent the RAH narrative descrip-
tion. This will be done in stages. Initially, we will represent the narrative under
the assumption that actions always succeed. We will then modify the representa-
tion with qualification conditions for action types and a mechanism for reasoning
about qualified action types based on the use of durational fluents and dependency
constraints. The use of durational fluents in combination with a simple form of cir-
cumscription provides a flexible means for incorporating a default mechanism into
TAL-Q.

We will then use TAL-Q to consider a number of additional aspects pertaining
to qualification in the context of different ontological choices such as the use of
concurrent actions. In addition, we will briefly consider two alternative approaches
to qualification that can be represented using TAL-Q. Finally, we will direct our
attention toward a number of benchmark examples in the literature, representing
them using TAL-Q, and then compare our approach to qualification with a number
of other approaches in the literature.

3.3 The Qualification Problem

Before it is possible to design or assess any approach to solving the qualification
problem, we must define in more detail what the qualification problem is.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 35

Let us assume that there is an environment, a “real world”, in which actions can
be executed by one or more agents. Let us also assume that each action has a well-
defined intended effect. For example, in the well-known blocks world, the intended
effect of the action putdown(x) is that in the resulting state, the block x the agent is
currently holding should be on the table and all other blocks should be unaffected
by the action.

When reasoning about this world using a temporal action logic, we need a cor-
rect description of the preconditions and effects of each action type that can be used
by an agent. If it is possible to find a model of the world that is both simple and cor-
rect, at least at some level of abstraction, it should be straightforward to find such
a description of preconditions and effects of actions. However, in more complex
worlds, describing an action may be far more difficult, and the resulting precondi-
tions may be extremely complicated. This complexity is often due to a large number
of conditions that are almost always false, but when satisfied, can cause the action
to fail to achieve its intended effects. We will call such exceptional conditions qual-
ifications, and if one or more of an action’s qualifications hold, the action will be
said to be qualified. (In some cases, even “non-exceptional” conditions will also be
considered as qualifications.)

The potentially large number of qualifications to an action leads to a number
of representational and implementational difficulties that are collectively called the
qualification problem. Some of these difficulties will be discussed below.

3.3.1 Restricting the Problem

The qualification problem is a complex problem with many different aspects, and it
would be very optimistic to assume that we can design a single solution that covers
all these aspects. Instead, it is necessary to determine in advance which aspects of
the problem should be addressed by the solution we are designing or assessing,
which reasoning tasks (such as prediction or planning) should be supported by
the solution, and which ontological and epistemological assumptions will be made
regarding the worlds for which the solution should be applicable and the agents
that will apply it. Below, we will consider these questions in some more detail.

Aspects of the Qualification Problem

Although the difficulties associated with the qualification problem are closely re-
lated, it is possible to isolate several aspects of the problem that may be tackled
separately. Some of these aspects pertain to the following:

• Due to incomplete knowledge about the world one is reasoning about, it may
be impossible, or at least very difficult, to find and enumerate all qualifica-
tions to an action. A classical example of this aspect of the qualification prob-
lem is the “potato in tailpipe” problem (Ginsberg & Smith, 1988): In order to
start a car, there must be nothing wrong with the battery, there must be gas in

36 3.3. The Qualification Problem

the tank, there must not be a potato in the tailpipe, and so on. No matter how
many conditions we manage to think of, there will surely always be more.

• Even when it is possible to know all qualifications to an action, the complex-
ity of these conditions may require a highly expressive logic, unless we are
willing to abstract away from some aspects of the world and be satisfied with
incomplete specifications and a mechanism to deal with this incompleteness.

• The information we do have about the conditions under which an action is
qualified needs to be represented in a modular manner, so that conditions
may be added or removed incrementally.

• Assuming that actions are normally not qualified, the need to explicitly prove
that each qualification condition does not hold may be computationally inef-
ficient.

In this article, we will mainly concentrate on the representational problems associ-
ated with qualification, that is, modular and incremental representations of quali-
fied action types.

Reasoning Tasks

In order to assess or design a solution to the qualification problem, we also need
to specify the reasoning tasks that will be used by an agent in achieving goals via
execution of actions. For example, an agent interested in determining why an action
failed using postdiction may need a different solution than an agent that is solely
interested in predicting the results of invoking a sequence of actions.

We will mainly consider off-line reasoning tasks such as prediction, postdiction
and planning.

Ontological and Epistemological Assumptions

It is also necessary to determine which ontological assumptions will be made re-
garding the world in which the solution will be applied, as well as which episte-
mological assumptions will be made about the agent’s knowledge of the world and
of the effects of its actions. Perhaps the most important such assumption is that of
what will happen in the world if the agent invokes a qualified action. The following
are some of the assumptions that may be reasonable, depending on the world that
is being modeled:

• Invoking a qualified action has no effect at all on the world.

• Invoking a qualified action affects the world, but we always know what ef-
fects it will have even when it is qualified.

• Invoking a qualified action affects the world in an unknown way, but only
during the time interval when the action is being executed.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 37

• Invoking a qualified action affects the world in an unknown way, and may
trigger unknown chains of events that continue affecting the world after the
action has finished executing.

However, there are also many other assumptions that may affect the applicability
of a solution. The following are some examples of additional questions that need
to be answered:

• Is there complete information about the initial state in a narrative? Is there
any information about any other state in terms of observations made by the
agent?

• Can actions be context-dependent? Can they be non-deterministic? Can they
have duration, and if they can, do they have internal state (that is, may fluents
change, discretely or continuously, within the duration of an action)? Can
they have delayed effects? Can there be concurrent actions? If so, can actions
overlap partially?

• Can there be dynamic processes continuously taking place independently of
the actions invoked by the agent?

• In the presence of incomplete information and non-deterministic actions, are
there domain constraints that exclude certain “impossible” states? Are there
domain constraints that exclude certain “impossible” sequences of states? Can
domain constraints vary over time?

• Are actions allowed to have indirect side effects? Can side effects be delayed
(take place after the action has finished executing)? Can they trigger other
side effects?

Clearly, the more complex the ontological and epistemological assumptions are,
the more restricted our choices will be when attempting to solve the qualification
problem for that particular class of worlds. Consequently, we need to determine
these assumptions in advance.

Ideally, we would like to formally assess the correctness of different solutions to
the qualification problem relative to a given class of narrative descriptions, speci-
fied via epistemological and ontological assumptions as Sandewall (1994) has done
for the frame problem. However, extending Sandewall’s framework for qualifi-
cation – as well as ramification, concurrent actions, and other extensions we may
want to use in combination with qualification – is outside the scope of this arti-
cle. Instead, we will discuss in a more informal manner both some of the different
questions that need to be considered when a solution to the qualification problem is
designed and some of the effects the choice of reasoning task and our assumptions
about the class of worlds we are reasoning about may have on the answers to these
questions. We will then provide formal, but formally unassessed solutions using
TAL-Q. Some of the existing solutions in the literature will also be considered from
this point of view in Section 3.11.

38 3.3. The Qualification Problem

3.3.2 Designing a Solution

We have now considered four questions: Which aspects of the qualification prob-
lem a solution should address, which reasoning tasks it should support, which
ontological assumptions should be made regarding the worlds to which it is ap-
plicable, and which epistemological assumptions should be made regarding the
agents that should apply it. For each of these questions, the answer will depend
mainly on the class of problems we are trying to solve. For example, for anyone de-
veloping an agent controlling a UAV (unmanned aerial vehicle), the computational
aspects of the qualification problem are very important, both prediction, postdic-
tion and planning may be useful, and one must probably be able to model context-
dependent concurrent actions with duration.

However, there are also certain design choices that may be made more or less
independently of the problem or class of problems that should be solved. Some of
these choices will be discussed in this section.

How should qualification conditions be expressed?

By definition, an action is qualified if it is somehow prevented from having its in-
tended effects. There are basically two aspects to the problem. In an off-line mode,
for example, when an agent is generating a plan, a predictive mechanism might
simulate the possible future state of the world given that the agent executes a se-
quence or partially-ordered sequence of actions and find that the sequence violates
certain domain or dependency constraints. In this case, either the domain or depen-
dency constraints have been incorrectly specified, or the action type descriptions
are not precise enough and a qualification condition for one or more actions has to
be added. In an on-line mode, the agent actually executes sequences of actions and
finds that one or several have not achieved their intended effects. This information
is derived from actual sensory data. Since the world is its own model, either one
has inaccurately specified the ontological assumptions which pertain to the world,
or one of those rare qualifications has arisen and that qualification condition should
be added to the agent’s action type specification in an incremental manner so the
next time the condition arises, the action will not be executed due to the explicit
qualification. So, the qualification problem does not rule out adding a number of
qualifications to an action, but any solution tries to minimize the number of ex-
plicit qualifications per action, and those that are added are added in a modular
and incremental manner. Note that very little research has been done regarding the
on-line execution and modification of action types. Most of the research has focused
on generating the proper conclusions in off-line or simulation mode, assuming one
already has explicit information about at least some of the qualifications per action,
and on specifying a mechanism for adding new qualifications in an incremental
and modular manner. In this article, we will also focus on the off-line mode.

Most formalisms for reasoning about action and change are based on the two-
state assumption. There is an initial state in which an action is invoked and a result

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 39

state in which the effects of the action become true provided the preconditions to
the action are true in the initial state. TAL-Q is an exception due to its use of ac-
tions with duration and its use of explicit time. There are basically two classes of
solutions in the literature, one focusing on the initial state of an action and the other
focusing on the effect state.

When focusing on the initial state, one very straight-forward solution would
be to strictly treat qualification constraints as preconditions to actions – conditions
that must or must not hold in the state in which an action is invoked. For example,
the start action can be considered qualified if potato-in-tailpipe is true in the state
where an action will be executed. Most solutions in this class encode an assumption
that if one can not explicitly prove that a known qualification to an action is true
then that action can be executed. If actions may have duration and internal state,
this approach can be extended by also allowing conditions at any time within the
interval when the action is executed – for example, even if there was no potato
in the tailpipe when the start action was invoked, one may be inserted during its
execution.

In approaches focusing on the effect state, such as (Ginsberg & Smith, 1988;
Lin & Reiter, 1994), an action is considered qualified whenever its intended effect
would contradict a domain constraint in the effect state. In a sense, this implies a
form of hypothetical reasoning which could only be used in off-line mode, where
one checks whether the execution of an action would lead to a contradiction in the
result state. In Ginsberg and Smith (1988), if this is the case, the action has no effect
and the execution and effect states for the action are the same. In the case of Lin
and Reiter (1994), a form of precompilation is used to modify the specified precon-
ditions of each action to include the negation of every condition that would cause
a contradiction. This assumes that one already has explicit qualification conditions
in the theory. As before, this approach can of course be extended to actions with
duration and internal state by considering an action qualified whenever it would
contradict a domain constraint at any time during its execution. Also, if domain
constraints can span multiple states (for example, relating fluents in one state to
fluents in its successor), an action could be considered qualified whenever execut-
ing it must eventually result in such a domain constraint being contradicted.

We will pursue the precondition-based approach with TAL-Q, but with a much
richer ontology of actions. This richer ontology would lead to problems in the latter
approach. For example, if actions can be executed concurrently, it could be the case
that the combined effect of two concurrent actions contradicts a domain constraint,
but either action alone does not. Do we predict that one action succeeds, which may
sometimes be the case, or that neither one does? Additional problems would arise
if we allowed delayed side effects, non-deterministic actions, or any of a number of
other features that have generally not been considered together with qualification.
These problems make the latter approach much less intuitive for these extensions
to the logics than it is for a situation calculus-type logic or belief-update approach
described in Lin and Reiter (1994) and Ginsberg and Smith (1988). Due to the added
expressivity of TAL-Q, these issues must be dealt with in our solution.

40 3.3. The Qualification Problem

What should be entailed about the effects of invoking a qualified action?

In a number of formalisms, one can reason not only about the effects of actions
that are unqualified, but also those that are qualified. In other words, an action is
invoked even though not all conditions which would guarantee its intended effects
are satisfied. Reasoning about this type of situation is perhaps more appropriate
when considering the on-line mode, but still has to be defined even for off-line
mode reasoning if the formalism allows invocation of qualified actions. Ideally,
we would like our approach to the qualification problem to be able to represent
whatever knowledge – or lack of knowledge – we have regarding the effects of
invoking actions, whether qualified or not.

However, there are cases where this might not make sense, or is simply unnec-
essary. Suppose for instance, we have an interest in the planning task in off-line
mode. In this case, reasoning about the effects of qualified actions does not make
much sense, since the point to generating a plan is to generate a sequence of ac-
tions we assume are all executable and have their intended effects. What would
be important is being able to reason about under what conditions an action might
be qualified so as to avoid using it under those conditions in the plan generation
phase. On the other hand, if one is using the formalism in on-line mode, reasoning
about the effects of invoking qualified actions may be very important because an
agent might on occasion invoke an action without being aware it is qualified – due
to faulty sensors, for example. In this case, being able to reason about at least some
of the effects of the action would be quite useful in a postdictive or diagnostic phase
of reasoning.

Whatever choice is made, it should be made very clear why the choice is being
made and what the ontological justification is. Quite often, the choice is simply a
side effect of the solution chosen for solving the qualification problem. As we shall
see in Section 3.11, many formalisms behave differently in this respect.

Should it be possible to reason about qualification within the logic?

One final design issue is whether qualifications to actions should be first-class ob-
jects which can be explicitly reasoned about in the formalism itself. This is particu-
larly important in on-line reasoning mode, where execution monitoring is a central
part of an agent’s execution mechanism and determines future courses of action
and modification of existing courses of action.

3.3.3 Reasoning about Undesirable Actions

A problem that often appears during planning is that of determining which actions
would have effects that are undesirable. Although this may at a first glance seem
unrelated to the qualification problem, it turns out that both problems can often be
specified in terms of conditions that hold when an action is invoked or constraints
that should not be violated by the effects of an action. Recall that this is the basis for
the two classes of solutions to the qualification problem discussed previously. The

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 41

difference between reasoning about qualified actions and reasoning about undesir-
able effects of actions may better be determined in terms of ontological assump-
tions placed on the worlds we are interested in. For example, should one make
explicit distinctions between types of qualifications to actions such as those that if
satisfied would make it physically impossible to execute the action satisfactorily,
or those that simply involve contingent restrictions associated with the domain in
question?

This appears to be the reason why some qualification examples in the litera-
ture are in fact examples of actions which would have their defined, intended, well-
known effects, but which are invoked in a context in which those effects are not
desirable. For example, in the lenient emperor scenario (Lin & Reiter, 1994), there is
a robot that can paint blocks, but an emperor allows at most one block to be yellow
at any given time. This is ensured by considering the action paint(block, yellow) to
be qualified whenever there is already a yellow block (and, of course, by preventing
the robot from executing any qualified action).

This approach works well when attempting to define a plan while avoiding
undesirable actions. On the other hand, suppose that there is already a yellow
block and that we want to predict what would happen if the robot tried to paint
another block yellow. Certainly, there is nothing inherently problematic about this
course of events even in the context of the emperor’s strange rule. Intuitively, the
action should succeed, with the conclusion that the robot invoked an action that
violates correct social behavior. In the example above, the action is considered to
be qualified and the conclusion will be that the action has in fact, failed.

Therefore, undesirable actions should probably not be handled in exactly the
same way as qualified actions, but they can probably be handled in a technically
very similar manner, and any solution to the qualification problem may also be
interesting in this respect. Several examples in the literature which relate to this
issue will be considered.

3.3.4 Summary

In summary, a solution to the qualification problem that works well for one rea-
soning task, under one ontological assumption, might not work well given another
reasoning task or another ontological assumption, and when the set of problems
one considers is extended, one may have to use a different approach previously
considered less than optimal.

Due to these considerations, there is probably no single “best” solution to the
qualification problem. Instead, there is likely to exist a set of good solutions, each
of which is useful for a given expressivity and for a given task. Unfortunately, the
solutions found in the literature often do not state explicitly what task and expres-
sivity they are intended to handle. This makes it difficult to compare solutions, or
build on one another’s work. This section’s intent was to point these issues out and
create a context for the rest of the article. We will now consider the RAH scenario
and its formalization in TAL-Q.

42 3.4. The Russian Airplane Hijack Scenario

3.4 The Russian Airplane Hijack Scenario

In the remainder of this article, we will use the methodology of representative ex-
amples as a means of considering and proposing a solution to the qualification
problem for a certain class of worlds. The scenario we will use is the Russian Air-
plane Hijack Scenario (RAH)1, previously published in Doherty and Kvarnström
(1998).

A Russian businessman, Boris, travels a lot and is concerned about both his hair and
safety. Consequently, when traveling, he places both a comb and a gun in his pocket. A
Bulgarian businessman, Dimiter, is less concerned about his hair, but when traveling by
air, has a tendency to drink large amounts of vodka before boarding a flight to subdue his
fear of flying. A Swedish businessman, Erik, travels a lot, likes combing his hair, but is
generally law abiding.

Now, one ramification of moving between locations is that objects in your pocket will
follow you from location to location. Similarly, a person on board a plane will follow the
plane as it flies between cities.

Generally, when boarding a plane, the only preconditions are that you are at the gate
and you have a ticket. However, if you try to board a plane carrying a gun in your pocket,
which will be the case for Boris, this should qualify the action. Also, a condition that could
sometimes qualify the boarding action is if you arrive at the gate in a sufficiently inebriated
condition, as will be the case for Dimiter. When the boarding action is qualified, attempting
to board should have no effect.

Boris, Erik and Dimiter already have their tickets. They start (concurrently) from their
respective homes, stop by the office, go to the airport, and try to board flight SAS609 to
Stockholm. Both Erik and Boris put combs in their pockets at home, and Boris picks up a
gun at the office, while Dimiter is already drunk at home and may or may not already have
a comb in his pocket. Who will successfully board the plane? What are their final locations?
What will be in their pockets after attempting to board the plane and after the plane has
arrived at its destination?

If the scenario is encoded properly and our intuitions about the frame, ramifi-
cation and qualification problems are correct then we should be able to entail the
following from the RAH scenario, assuming that Boris, Erik and Dimiter own the
combs comb1, comb2 and comb3, respectively:

1. Erik will board the plane successfully, eventually ending up at his destina-
tion.

2. An indirect effect of flying is that the person ends up at the same location as
the airplane. In addition, because items in pockets follow the person, a transi-
tive effect results where the items in the pocket are at the same location as the
plane. Consequently, Erik’s comb comb2 will also end up at his destination.

1This scenario is an elaboration and concretization of a sketch for a scenario proposed by Vladimir
Lifschitz in on-line discussions in the Electronic Transactions on Artificial Intelligence (ETAI/ENAI).

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 43

3. Boris will get as far as the airport with a gun and comb1 in his pocket. He
will be unable to board the plane.

4. Dimiter will get as far as the airport, and may or may not be able to board
the plane. If he is able to board the plane, he will eventually end up at his
destination. Otherwise, he will remain at the airport. In any case, if he initially
carried a comb, it will end up in the same location.

For this scenario, we assume that we know all possible reasons why an action may
be qualified, and we are mainly interested in representing qualifications in a mod-
ular and intuitive manner. We are also mainly interested in prediction.

This is a rather complex scenario, and modeling it requires a relatively expres-
sive logic. Unfortunately, many approaches to the qualification problem in the lit-
erature have been defined with very strong constraints placed on action types and
also use the two-state assumption. Modeling this scenario in such logics, or scaling
up the expressivity of such a logic to be able to model this scenario, would be diffi-
cult. In the next section, we will take advantage of the expressivity already part of
TAL-Q in defining a solution.

3.5 TAL-Q: Temporal Action Logic with Qualification

Our approach to handling the qualification problem is based on the use of TAL-Q
(Temporal Action Logic with Qualification), a member of the TAL (Temporal Action
Logics) family of logics for reasoning about action and change.

As it turns out, the approach we will present does not require any new predi-
cates or other changes to the high-level concepts used in previous TAL logics. In-
stead, it uses well-known concepts from older logics such as TAL-C (Karlsson &
Gustafsson, 1999) in a new and different way. Therefore, we will begin by describ-
ing the logic TAL-Q without considering the qualification problem. In Section 3.6,
we show how the RAH scenario can be modeled in TAL-Q under the assumption
that actions never fail, and in Section 3.7, we define our approach to solving the
qualification problem within TAL-Q and demonstrate it by applying it to the RAH
scenario. Since TAL-C has already been introduced in Chapter 2, the description of TAL-C
in this section has been removed.

3.6 Representing the RAH Scenario

In this section, we will show how the Russian Airplane Hijack Scenario can be
represented in TAL-Q if we do not consider qualifications to actions. This will
result in a scenario in which it is assumed that any attempt to board a plane always
succeeds, regardless of whether the person carries a gun or is drunk. In Section 3.7,
we will show how the scenario presented here can be modified in order to deal with
the qualification problem.

44 3.6. Representing the RAH Scenario

In order to simplify the presentation, being at the airport will be the only normal
precondition for boarding a plane.

All formulas in this section are written in the surface language L(ND). Appen-
dix 1 contains the same formulas, with the exception that the action type definitions
have been modified as in Section 3.7 and some new dependency constraints have
been added. Appendix 2 contains the translation of the formulas in Appendix 1
into the base logic L(FL).

3.6.1 Narrative Background Specification

First, it is necessary to determine which value domains, fluents and actions are
needed. For the Russian Airplane Hijack Scenario, we will need the standard bool-
ean value domain boolean = {true, false}, a domain location = {home1, home2,
home3, office, airport, run609, run609b, air} for locations, and a domain thing =
{ gun, comb1, comb2, comb3, boris, dimiter, erik, sas609 } containing everything
that has a location. We also define the subdomains runway = {run609, run609b}
for locations that are runways, plane = {sas609} for things that are airplanes,
person = {boris, dimiter, erik} for things that are people, and pthing = {gun,
comb1, comb2, comb3} for things that people can pick up.

We also need four fluents: loc(thing) : location, inpocket(person, pthing) :
boolean, onplane(plane, person) : boolean, and drunk(person) : boolean.

Four actions are necessary in this scenario: pickup(person, pthing) for picking
up things, travel(person, location, location) for traveling between locations in
the same city, board(person, plane) for boarding an airplane, and �y(plane, runway,
runway) for flying between two runways.

Finally, we need to declare each of the four fluents persistent at all timepoints
using a set of persistence statements:
per1 ∀t, thing [true→ Per(t + 1, loc(thing))]
per2 ∀t, person, pthing [true→ Per(t + 1, inpocket(person, pthing))]
per3 ∀t, person [true→ Per(t + 1, drunk(person))]
per4 ∀t, plane, person [true→ Per(t + 1, onplane(plane, person))]

3.6.2 Initial State

The initial state in a TAL narrative (as well as any other state) can be completely
or incompletely specified using observation statements. For this scenario, we must
define the initial locations of all things, as well as who is drunk in the initial state.
On the other hand, we do not observe which things are in whose pockets.
obs1 [0] loc(boris) =̂ home1∧ loc(gun) =̂ office∧ loc(comb1) =̂ home1∧¬drunk(boris)
obs2 [0] loc(erik) =̂ home2∧ loc(comb2) =̂ home2∧ ¬drunk(erik)
obs3 [0] loc(dimiter) =̂ home3∧ loc(comb3) =̂ home3∧ drunk(dimiter)
obs4 [0] loc(sas609) =̂ run609

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 45

3.6.3 Action Definitions

Four actions were declared in the narrative background specification. The follow-
ing action type specification defines the meaning of those actions. For example,
if �y(plane, runway1, runway2) is invoked between t1 and t2, then assuming the air-
plane is initially at runway1, it will be in the air in the interval (t1, t2) and finally
end up at runway2 at time t2.
acs1 [t1, t2] �y(plane, runway1, runway2) ; [t1] loc(plane) =̂ runway1 →

I((t1, t2) loc(plane) =̂ air) ∧ R([t2] loc(plane) =̂ runway2)
acs2 [t1, t2] pickup(person, pthing) ; [t1] loc(person) =̂ value(t1, loc(pthing))→

R((t1, t2] inpocket(person, pthing))
acs3 [t1, t2] travel(person, loc1, loc2) ; [t1] loc(person) =̂ loc1 → R([t2] loc(person) =̂ loc2)
acs4 [t1, t2] board(person, plane) ; [t1] loc(person) =̂ airport→

R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))

The following action occurrences are also needed. The exact timepoints used below
were not specified in the RAH scenario, but have been chosen arbitrarily. Alterna-
tively, exact timepoints could have been avoided by using non-numerical temporal
constants. Note, however, that many of the actions are concurrent, sometimes with
partially overlapping intervals.

occ1 [1, 2] pickup(boris, comb1)
occ2 [1, 2] pickup(erik, comb2)
occ3 [2, 4] travel(dimiter, home3, office)
occ4 [3, 5] travel(boris, home1, office)
occ5 [4, 6] travel(erik, home2, office)
occ6 [6, 7] pickup(boris, gun)
occ7 [5, 7] travel(dimiter, office, airport)

occ8 [7, 9] travel(erik, office, airport)
occ9 [8, 10] travel(boris, office, airport)
occ10 [9, 10] board(dimiter, sas609)
occ11 [10, 11] board(boris, sas609)
occ12 [11, 12] board(erik, sas609)
occ13 [13, 16] �y(sas609, run609, run609b)

3.6.4 Domain Constraints

We will define three domain constraints: No pthing can be carried by two persons
at the same time, no person can be on board two planes at the same time, and any
pthing in a person’s pocket must be at the same location as that person.
dom1 ∀t, pthing, person1, person2

[person1 6= person2 ∧ [t] inpocket(person1, pthing)→ [t] ¬inpocket(person2, pthing)]
dom2 ∀t, person, plane1, plane2

[plane1 6= plane2 ∧ [t] onplane(plane1, person)→ [t] ¬onplane(plane2, person)]
dom3 ∀t, person, pthing [[t] inpocket(person, pthing)→ [t] loc(pthing) =̂ value(t, loc(person))]

3.6.5 Dependency Constraints

Now, apart from qualifications, only the side effects of actions remain to be mod-
eled: Anything on board an airplane should follow the airplane, and anything
a person carries should follow the person. The following two dependency con-
straints are sufficient for achieving this. For example, if someone is on board a

46 3.7. Representing the Qualification Problem in TAL-Q

plane and the location of the plane changes to loc, the location of the person also
changes to loc.
dep1 ∀t, plane, person, loc [

[t] onplane(plane, person) ∧ CT([t] loc(plane) =̂ loc)→ R([t] loc(person) =̂ loc)]
dep2 ∀t, person, pthing, loc [

[t] inpocket(person, pthing) ∧ CT([t] loc(person) =̂ loc)→ R([t] loc(pthing) =̂ loc)]

3.7 Representing the Qualification Problem in TAL-Q

We have now modeled most of the Russian Airplane Hijack Scenario in TAL-Q, but
we have not yet taken care of the qualifications defined by the scenario: Someone
who carries a gun cannot board a plane, and someone who is drunk may or may
not be able to board.

There are already a number of solutions to various aspects of the qualification
problem in the literature, some of which would be applicable to the TAL logics.
However, many of these solutions are dependent on the two-state assumption with
highly constrained action types. We would like to provide a solution that retains
the following features of TAL:

• Any state, including the initial state, can be completely or incompletely spec-
ified using observations and domain constraints.

• Actions can be context-dependent and non-deterministic. They can have du-
ration and internal state, and the duration may be different for different exe-
cutions of the action. There may be concurrent actions with partially overlap-
ping execution intervals.

• There can be dynamic processes continuously taking place independently of
any actions that may occur.

• Domain constraints can be used for specifying logical dependencies between
fluents generally true in every state or across states. They may vary over time.

• Actions can have side effects, which may be delayed and may affect the world
at multiple points in time. They may in turn trigger other delayed or non-
delayed side effects.

We would also like to retain the first-order reducibility of the circumscription ax-
iom. The following restrictions and assumptions will apply. As discussed in Sec-
tion 3.3.2, we will be satisfied with a solution where invoking a qualified action ei-
ther has no effect or has some well-defined effect. We will also restrict the solution
to the off-line planning and prediction problems, and not claim a complete solution
for the postdiction problem, which would require being able to conclude that an
action was qualified because its successful execution would have contradicted an
observation of some fluent value after that action was invoked.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 47

3.7.1 Enabling Fluents

To handle the qualification problem, we will propose a solution based on defaults
where each action type in a narrative is associated with an enabling fluent, a boolean
durational fluent with default value true and with the same number and type of
arguments as the action type. This fluent will be used in the precondition of the
action, and will usually be named by prefixing “poss-” to the name of the action.
For example, the boarding action in the RAH scenario will be associated with an
enabling fluent poss-board(person, plane). We add a persistence statement for this
fluent and modify acs4 as follows:
per5 ∀t, person, plane [true→ Dur(t, poss-board(person, plane), true)]
acs4′ [t1, t2] board(person, plane)

[t1] poss-board(person, plane) ∧ loc(person) =̂ airport→
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))

The other action types are modified in a similar way (see Appendix 1 for more
details).

Now, suppose that board(person, plane) is executed between timepoints t1 and t2.
If poss-board(person, plane) is false at t1 for some reason, the action is qualified, or
disabled. On the other hand, if the fluent is true at t1, the action is enabled. Of course,
it can still be the case that the action has no effects, if other parts of its precondition
are false.

To generalize this, a context-independent action that should have no effect at all
when qualified can be defined using a simple action definition of the form2

acsm [t1, t2] action [t1] poss-action∧ α→ R([t2] β)

where α is the precondition and β specifies the direct effects of the action (context-
dependent actions are defined analogously). However, we also wanted to be able
to define actions that do have some effects when they are qualified. This can be
done by defining a context-dependent action that defines what happens when the
enabling fluent is false:
acsn [t1, t2] action ([t1] poss-action∧ α1 → R([t2] β1)) ∧

([t1] ¬poss-action∧ α2 → R([t2] β2))

For example, suppose that whenever anyone tries to board a plane but the action
is qualified, they should be thrown in jail. In order to model this, we would add
a new persistent fluent in-jail(person) : boolean and modify the boarding action
from Section 3.6.3 as follows:
acs4′′ [t1, t2] board(person, plane)

([t1] poss-board(person, plane) ∧ loc(person) =̂ airport→
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))) ∧

([t1] ¬poss-board(person, plane) ∧ loc(person) =̂ airport→
R([t2] in-jail(person)))

2Note that due to the regularity of the solution, such extensions could be implicit in an action macro,
thus avoiding unneeded clutter in the representation.

48 3.7. Representing the Qualification Problem in TAL-Q

In this alternative scenario, if anyone is at the airport and tries to board a plane,
and the action is qualified, they will be thrown in jail. If they are at the airport but
the action is not qualified, they will board the plane. If they are not at the airport,
none of the preconditions will be true, and invoking the action will have no effect.

Regardless of whether a qualified action has an effect or not, its enabling fluent
is a durational fluent with default value true. Therefore, the fluent will normally be
true, and the action will normally be enabled. In the remainder of this section, we
will examine some of the ways in which we can disable an action using strong and
weak qualification.

3.7.2 Strong Qualification

Let us start with strong qualification. When an action is strongly qualified, it should
definitely not succeed. This can be accomplished by forcing its enabling fluent to
be false at the timepoint at which the action is invoked.

For example, suppose that when a person has a gun in his pocket, it should be
impossible for that person to board a plane. Then, whenever inpocket(person, gun)
holds, we must make poss-board false. This can be achieved using a dependency
constraint:
dep3 ∀t, person, plane [[t] inpocket(person, gun)→ I([t] ¬poss-board(person, plane))]

At any timepoint t when a person has a gun in his pocket, we use the I macro both
to occlude poss-board(person, plane) for all airplanes, thereby releasing it from the
default value axiom, and to make it false. This implies that as long as a person has
a gun in his pocket, poss-board will be false for that person on all airplanes. If the
gun is later removed from the pocket, this dependency constraint will no longer be
triggered. At that time, assuming no other qualifications affect the enabling fluent,
it will automatically revert to its default value, true.

3.7.3 Weak Qualification

Although strong qualification can often be useful, we may sometimes want to ex-
press the fact that an action may succeed, or it may fail, depending on circum-
stances we may or may not be aware of. We call this weak qualification.

For example, we may want to model the fact that when a person is drunk, he
may or may not be able to board an airplane, depending on whether airport secu-
rity discovers this or not. We may not be able to determine within our model of
the RAH scenario whether airport security does discover that any given person
is drunk, and even if we could, it may be of no interest. In this case, whenever
drunk(person) holds, we must release poss-board from the default value assumption:
dep4 ∀t, person [[t] drunk(person)→ X([t] ∀plane [¬poss-board(person, plane)])]

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 49

At any timepoint t when a person is drunk, we occlude poss-board(person, plane)
for all airplanes, but since we do not state anything about the value of the enabling
fluent, it is allowed to be either true or false.

Although being able to state that an action may fail is useful in its own right,
it is naturally also possible to restrict the set of models further by adding more
statements to the scenario, which could make it possible to infer whether poss-board
(dimiter, sas609) is true or false at some or all timepoints. For example, we may
know that people boarding sas609 are always checked more carefully, so that it is
impossible for anyone who is drunk to be on board that airplane, which could be
expressed using a domain constraint. In the context of postdiction, observation
statements could be used in a similar manner. For example, adding the observation
statement obs5 [13] onplane(sas609, boris) to the narrative would allow us to infer
that Boris did in fact board the plane and that poss-board(boris, sas609) was in fact
true. He would then end up at his intended destination. If instead we added the
observation statement obs6 [13] ¬onplane(sas609, boris), we could infer that he
was unable to board the plane and he did not end up at his destination.

The TAL-Q representation of the Russian Airplane Hijack Scenario from Section 3.4
is now complete. The full L(ND) narrative is listed in Appendix 1, and the trans-
lation into L(FL) is shown in Appendix 2.

The translation into L(FL) was done using VITAL (Kvarnström, 2005), a re-
search tool that can be used to study problems involving action and change within
TAL and generate visualizations of action scenarios and preferred entailments. VI-
TAL was also used for generating Figure 3.1 on page 66 which is a color-coded
summary of facts true in all preferred models of the RAH scenario. Light gray and
dark gray stand for true and false values for boolean fluents. Medium gray stands
for an unknown value, while black stands for a value which is unknown but will
be the same as that of the previous timepoint due to inertia. For non-boolean flu-
ents, “∗n∗” means that there are n possible values; the values are not shown in the
diagram due to lack of space.

In this scenario, Dimiter is drunk at all timepoints, and he attempts to board a
plane at time 9. There will be two classes of preferred models: In one class, Dimiter
will successfully board the plane, and in the other, he will not. As shown in Fig-
ure 3.1, we can not infer poss-board(dimiter, sas609) or its negation at any time-
point. In other words, we will not assume that the action succeeds merely because
it is possible that it will succeed.

It should be noted that this approach has similarities to a standard default so-
lution to the qualification problem, but with some subtle differences. For example,
it permits more control of the enabling precondition, even allowing it to change
during the execution of an action. More importantly, it involves no changes to the
minimization policy already used in TAL to deal with the frame and ramification
problems, and the circumscription policy inherits first-order reducibility.

50 3.8. Additional Aspects of the Qualification Problem

3.8 Additional Aspects of the Qualification Problem

3.8.1 Qualification and Concurrency

One of the requirements we stated previously was that our solution should be
able to handle concurrent actions. Here, there are two different cases, depend-
ing on whether the effects of the actions are independent or can interact in various
ways. As we have seen when modeling the RAH scenario, the former case does not
present a problem: Any number of people could attempt to board the plane at the
same time, and the correct, intuitive conclusions would be obtained.

However, the latter case is far more interesting, and presents a problem for ap-
proaches where actions are qualified when their successful execution would contra-
dict a domain constraint, due to the difficulties associated with determining exactly
which of all concurrent actions was the cause of the contradiction. It is more eas-
ily handled with an approach where qualifications are conditions evaluated in the
state where the action is invoked, such as our TAL-Q approach.

Assume, for example, that it is impossible for two people to board the same
airplane at the same time (a resource limitation problem). Similar situations have
already been considered in the context of TAL-C in Karlsson and Gustafsson (1999),
where bounds on concurrency and limited resources were handled using fluent
dependency constraints. In this approach, actions are decoupled from their effects
using influences, boolean durational fluents that indicate that the world is inclined
to change in some specific way, and a similar approach can be used for qualification.
Below, we will show how the specific problem mentioned above can be modeled in
TAL-Q using the same approach.

First, we add a new durational influence fluent want-to-board(person, plane)
with default value false. We change the definition of board so that instead of alter-
ing the onplane fluent directly, the action simply makes want-to-board(person, plane)
true at a single timepoint. Then, we add a new dependency constraint dep5 that is
triggered whenever want-to-board(person, plane) is true. This dependency constraint
contains what were previously the direct effects of the action.
acs4′′′ [t1, t2] board(person, plane) I([t2] want-to-board(person, plane))
dep5 ∀t, person, plane [[t] want-to-board(person, plane) ∧ poss-board(person, plane)→

I([t] onplane(plane, person))]

The scenario above is essentially a reformulation of the original RAH scenario, and
will entail exactly the same facts. However, it is modeled using the TAL-C influence
framework, which provides some additional flexibility in reasoning about actions
and their effects. Specifically, there is now a simple way to define what should
happen when two people try to board the same plane at the same time. Clearly,
for that airplane, want-to-board(person, plane) will be true for more than one person,
and we must make poss-board(person, plane) false for all except one of them. We
add a new fluent can-board(plane) : person whose value at any given time is the
unique person that can board the plane at that time. We then add two dependency

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 51

constraints: One stating that if there is at least one person trying to board a certain
plane plane, then can-board(plane) will be one of those people, and one stating that
can-board(plane) is the only person who can board plane.
dep6 ∀t, plane [∃person [[t] want-to-board(person, plane)]→

∃person2 [[t] want-to-board(person2, plane) ∧ I([t] can-board(plane) =̂ person2)]]
dep7 ∀t, plane, person

[¬([t] can-board(plane) =̂ person)→ I([t] ¬poss-board(person, plane))]

It is easy to imagine several variations on this problem. For example, if two or more
people try to board a plane simultaneously, it could be the case that none of them
should succeed, or that there should be priorities (the “strongest” one should suc-
ceed). This can easily be modeled by adapting other techniques presented in Karls-
son and Gustafsson (1999).

3.8.2 Qualification: Not Only For Actions

As we have shown, this approach to qualification is based on general concepts
already present in earlier TAL logics, such as durational fluents and fluent de-
pendency constraints, instead of introducing new predicates, entailment relations
or circumscription policies specifically designed for dealing with the qualification
problem. This is appealing not only because we avoid introducing new complex-
ity into the logic, but also because reusing these more general concepts adds to the
flexibility of the approach. In this section, we will show how we can use exactly
the same approach to specify qualifications not only for actions but for any generic
rule or constraint.

Qualifying Qualification Constraints

When we initially considered the boarding action, the “natural” preconditions were
that one had to be at the airport; this is the precondition encoded in the definition
of board (acs4). Later, we found another condition that should qualify the action:
No one should be able to board a plane carrying a gun. Now, however, we may
discover that this qualification does not always hold: Airport security should be
able to board a plane carrying a gun.

Assuming that there is a fluent is-security(person) : boolean, this exception to
the general qualification rule could of course be modeled by changing the depen-
dency constraint dep3 in the following way:
dep3′ ∀t, person, plane

[[t] inpocket(person, gun) ∧ ¬is-security(person)→ I([t] ¬poss-board(person, plane))]

However, we may later discover additional conditions under which it should be
possible for a person to board a plane with a gun, and we do not want to mod-
ify dep3 each time. Instead, the qualification itself should be qualified. This can
easily be done using the same approach as for actions. A new enabling fluent
guns-forbidden(person, plane) : boolean is added for the qualification constraint,
and dep3 is modified as follows:

52 3.8. Additional Aspects of the Qualification Problem

dep3′′ ∀t, person, plane [[t] inpocket(person, gun) ∧ guns-forbidden(person, plane)→
I([t] ¬poss-board(person, plane))]

Now, we can qualify the qualification dep3 simply by making guns-forbidden false
for some person and airplane. In order to do this, we add a new dependency con-
straint:
dep8 ∀t, person, plane [[t] is-security(person)→ I([t] ¬guns-forbidden(person, plane))]

Weakening Qualifications

It may also be the case that we want to qualify a strong qualification in order to
“replace” it with a weak qualification. For example, suppose that a gun is made
of a special kind of plastic that may or may not be detected by airport security.
Assuming that we have already added dependency constraints dep3′′ and dep8 as
defined above, and that there is a fluent gun-is-plastic : boolean, we can achieve this
in two different ways. First, we can use strong qualification for the guns-forbidden

fluent, so that having a gun is definitely not a qualification to board, and then add
a new weak qualification for the boarding action:
dep9 ∀t, person, plane

[[t] inpocket(person, gun) ∧ gun-is-plastic→ I([t] ¬guns-forbidden(person, plane))]
dep10 ∀t, person, plane

[[t] inpocket(person, gun) ∧ gun-is-plastic→ X([t] ¬poss-board(person, plane))]

Second, we can use weak qualification for the guns-forbidden fluent, so that having
a gun may or may not qualify the boarding action:
dep11 ∀t, person, plane

[[t] inpocket(person, gun) ∧ gun-is-plastic→ X([t] ¬guns-forbidden(person, plane))]

Qualifying Dependency Constraints

As we have just shown, the same technique we used for qualifying actions could
also be used for qualifying qualifications. Obviously, we could also apply the same
technique to other parts of a narrative, such as ordinary dependency constraints.
This allows us to express qualified side effects in TAL-Q, which we will demon-
strate in Section 3.10.2.

3.8.3 Defining Enabling Fluents

In some approaches, qualification conditions are directly tied to specific actions,
which can have certain advantages. For example, in our approach, it would have
been possible to avoid the need to declare each enabling fluent and to explicitly
include them in the corresponding action preconditions. This could be done by in-
troducing a fixed qualified(t, a) predicate expressing the fact that a specific action a
is qualified at a timepoint t, and then modifying the translation of action type speci-
fications from L(ND) into L(FL) in the appropriate manner. However, the fact that

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 53

enabling fluents are ordinary fluents turns out to give us some additional flexibility
in the way they are defined and used.

First, there is no strict requirement that a fluent must be enabling; we can also re-
verse its meaning and define a disabling fluent, if that is better suited for a particular
scenario.

Second, there is of course also no formal requirement that the name of an en-
abling fluent is named by prefixing “poss-” to the name of the action – this is only
a useful convention, which may be relaxed, especially when an enabling fluent is
used for qualifying something other than an action.

Third, although our examples always associate a single unique enabling fluent
with each action, it is possible to let multiple actions share the same enabling fluent,
and one can also use multiple enabling fluents for the same action in order to model
the fact that an action can be qualified for any of a set of possible reasons. This may
be very useful when modeling larger scenarios. For example, if there is a robot that
can move in four directions (actions move-north, move-south, move-east and move-

west), and anything that makes the robot unable to move affects either all or none
of these actions, we may want to use a single enabling fluent poss-move.

3.8.4 Interacting Qualifications

Since we are using two kinds of qualification – weak and strong – we must consider
what will happen when an action is weakly and strongly qualified at the same time.
By definition, this means that both X([t] ¬poss-action) and I([t] ¬poss-action) hold
at the same timepoint t. But the X operator only releases the enabling fluent from
the default value assumption, while the I operator both releases it and constrains
its value – in this case, it forces poss-action to be false. In other words, the strong
qualification takes precedence, and the action is strongly qualified.

3.8.5 Ramifications as Qualifications

Another problem related to the qualification problem occurs in formalisms where
ramification constraints and qualification constraints are expressed as domain con-
straints (Ginsberg & Smith, 1988; Lin & Reiter, 1994). Assume, for example, that
we are reasoning about the blocks world, and that we have the following domain
constraint (expressed using TAL syntax), stating that no two blocks can be on top
of the same block:
dom ∀t, x, y, z [[t] on(x, z) ∧ on(y, z)→ x = y]

Now, suppose that the direct effect of the action put(A, C) is on(A, C), and the ac-
tion is executed in a state where on(B, C) is true. Then, we cannot determine syn-
tactically whether the domain constraint should be interpreted as a ramification
constraint (since no two blocks can be on top of C, B must be removed) or as a
qualification constraint (since no two blocks can be on top of C, the action should
fail).

54 3.9. Alternative Approaches to the Qualification Problem

In TAL-Q, however, all indirect effects of an action must be expressed as directed
dependency constraints. Therefore, this problem simply does not arise. For ex-
ample, if we want a ramification constraint, we can use the following dependency
constraint:
dep ∀t, x, y, z [[t] on(x, z) ∧ CT([t + 1] on(y, z)) ∧ x 6= y→ R([t + 1] ¬on(x, z))]

If x is on z, and we then place y on z, then an indirect effect is that x is removed
from z.

On the other hand, if we want a qualification constraint, we can introduce an
enabling fluent poss-put(block, block) and add the following qualification condi-
tion:
dep ∀t, x, y, z [[t] on(x, z) ∧ x 6= y→ I([t] ¬poss-put(y, z))]

Clearly, the problem of determining whether a constraint should be interpreted as
a qualification or a ramification does not arise in this approach.

3.9 Alternative Approaches to the Qualification Problem

We have now presented one approach to solving the qualification problem within
the TAL framework, but this approach is certainly not the only one. Below, we will
examine in somewhat less detail some alternative approaches.

3.9.1 Using Domain Constraints

Although our main approach to the qualification problem is based on qualifying
an action whenever a condition holds in the state in which it is invoked, it is also
interesting to investigate approaches based on qualifying an action whenever its
execution would contradict a domain constraint.

One variation of this approach would involve simply adding the proper domain
constraints to the scenario, and concluding that an action is qualified whenever the
resulting narrative is inconsistent. For example, the constraint that no guns are
allowed on board airplanes can be stated as follows:
dom4 ∀t, plane [[t] ¬(loc(gun) =̂ value(t, loc(plane)))]

Now, assume that we add this constraint to the initial version of the RAH sce-
nario (from Section 3.6), where qualification was not considered. Since Boris tries
to board the plane carrying a gun, we can infer that the gun will be on board the
plane, but from dom4 we can infer that no gun will ever be on board a plane, so the
scenario is inconsistent, which means that some action must be qualified.

Obviously, this approach does not provide the correct conclusions about the re-
sults of invoking a qualified action, and due to the inconsistency it may not even
seem like a solution at all. However, as discussed in Section 3.3.2, there are some
cases where such approaches may still be useful, such as when we are doing plan-
ning. But even if this is the case, a more serious problem still occurs when this

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 55

approach is used together with non-deterministic actions or incomplete informa-
tion about the initial state. For example, suppose that Dimiter may (or may not)
have a gun in the initial state. If he tries to board a plane, dom4 will allow us to
infer that he did not have a gun, when the intuitive conclusion would have been
that the action may or may not be qualified.

3.9.2 Fault Fluents

By modifying the previous approach slightly, we can define another approach that
may also have its uses. Instead of stating that a certain domain constraint must
hold, we state that whenever it does not hold, a fault fluent should become true. For
example, dom4 from the previous section can be modified as follows:
dom4′ ∀t, plane [[t] loc(gun) =̂ value(t, loc(plane))→ I([t] fault-gun-on-airplane)]

Now, whenever someone is on board a plane and is carrying a gun, fault-gun-on-
airplane will be true. From this, the agent can infer that an action must have been
qualified.

This approach has several advantages. First, if some action is qualified, it is
easier to find out which one and why it was qualified, since only the fault fluents
need to be considered. Second, invoking a qualified action does not make the entire
narrative inconsistent. And third, incomplete information and non-deterministic
actions are not a problem. As before, suppose that Dimiter may (or may not) have
a gun in the initial state. If he tries to board a plane, there will be two classes
of models: One in which he did not have a gun and boards the plane without
triggering the fault-gun-on-airplane fault fluent, and one where he did have a gun,
boards the plane, and does make fault-gun-on-airplane true.

Unfortunately, the fault fluent approach still does not provide the correct con-
clusions if there is some qualified action, since it assumes that all actions succeed.
However, there is another use for this approach, for which it appears to be per-
fectly suited. As mentioned in Section 3.3.3, qualification has sometimes been used
for predicting whether the result of invoking a certain action would be undesirable.
This has usually resulted in predicting that invoking an undesirable action is im-
possible or has no effect, when in reality, invoking the action would be possible and
the action would have its undesirable effects.

Probably, what is needed for such scenarios is not the use of qualification but
the use of a similar mechanism for providing “undesirability” conditions in an intu-
itive and modular way. That can be provided by the fault fluent approach, since it
always predicts that an action succeeds, but can “flag” undesirable results by mak-
ing a fault fluent true. For this task, the fault fluent approach would provide the
correct results.

An interesting feature of this approach is that it can easily be combined with
our main approach: True qualifications may be expressed as conditions holding in
the invocation state, while undesirable results are expressed in terms of conditions
that should hold in the resulting state.

56 3.10. Additional Examples

3.10 Additional Examples

In this section, we will show how some qualification examples from the literature
can be represented in TAL-Q, and we will also show an extension to one of those
examples. Since the narrative type specifications are obvious from the examples,
they will be omitted.

3.10.1 Dead Birds Don’t Walk

We will begin with a relatively straightforward qualification example. There is a
turkey, Fred, who can take walks. One constraint on this world is that it is not
possible to walk when you are dead. Therefore, if Fred dies, one should conclude
that he is no longer walking. On the other hand, if the walk action for Fred is
invoked, we would intuitively want the action to be qualified – Fred should not
suddenly become alive in order to satisfy the domain constraint (McCain & Turner,
1995).

In the TAL-Q representation of this scenario, we use the two boolean fluents alive
and walking mentioned above, but we also need one enabling fluent per action type
(acs1, acs2). If Fred is not alive, he can not be walking (dom1). A domain constraint
is not adequate for inferring directed side-effects for actions. In this case, we use a
dependency constraint (dep1) stating that when Fred dies (not at every timepoint
where he is dead – note the use of CT , “changes to true”), he stops walking. We
also need a qualification (dep2) stating that when Fred is dead (CT is not used), he
cannot start walking. Together with the observation statement obs1 and the action
occurrences occ1 and occ2, this allows one to infer that Fred is initially walking,
then dies (and stops walking), and then cannot resume walking.
acs1 [t1, t2] Die [t1] poss-die→ R([t2] ¬alive)
acs2 [t1, t2] Walk [t1] poss-walk→ R([t2] walking)
dom1 ∀t [[t] ¬alive→ ¬walking]
dep1 ∀t [CT([t] ¬alive)→ R([t] ¬walking)]
dep2 ∀t [[t] ¬alive→ I([t] ¬poss-walk)]
obs1 [0] alive∧walking
occ1 [0, 1] Die
occ2 [1, 2] Walk

3.10.2 A Simple Electric Circuit

Thielscher (1997) discusses qualified ramifications and presents a scenario in which
there is an electric circuit with two batteries bat1 and bat2, two switches sw1 and
sw2, and one light bulb. There is only one action, toggle(switch), whose only direct
effect is that the given switch is toggled.

If you close switch sw1, the first battery is connected to the light bulb. Normally,
this has the side effect that the light is turned on. But there are three qualifications

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 57

to this ramification: The light is not turned on if the bulb is broken, if bat1 is mal-
functioning, or if the wiring is loose. Similarly, if you close switch sw2, the second
battery is connected to the light bulb. Unfortunately, the voltage is too high, so usu-
ally, this will have the side effect that the bulb breaks. But here, there are also some
qualifications: The bulb does not break if bat2 is malfunctioning, or if the wiring is
loose. Finally, there is normally no light when the bulb is broken.

Although our approach does not handle qualification for postdiction, we can
easily handle the prediction problem for this scenario. One possible formalization
is the following, using the persistent fluents closed(switch), light, broken, malfunc

(battery) and loose-wiring and the enabling fluents poss-light, poss-break and no-

light-when-broken.
obs1 [0] ¬closed(sw1) ∧ ¬closed(sw2)
obs2 [0] ¬broken∧ ¬loose-wiring∧ ∀battery [¬malfunc(battery)]
acs1 [t1, t2] toggle(switch) ([t1] closed(switch)→ R([t2] ¬closed(switch))) ∧

([t1] ¬closed(switch)→ R([t2] closed(switch)))
dom1 ∀t [[t] no-light-when-broken→ (broken→ ¬light)]
dep1 ∀t [[t] poss-light∧ CT([t] closed(sw1))→ R([t] light)]
dep2 ∀t [[t] poss-break∧ CT([t] closed(sw2))→ R([t] broken)]
dep3 ∀t [[t] broken∨malfunc(bat1) ∨ loose-wiring→ I([t] ¬poss-light)]
dep4 ∀t [[t] malfunc(bat2) ∨ loose-wiring→ I([t] ¬poss-break)]

3.10.3 Yellow Blocks are Forbidden

Returning once more to scenarios where only actions are qualified, we will now
consider a scenario presented in Lin and Reiter (1994): A blocks world scenario
where blocks may have different colors. There is a single robot which can paint
blocks (paint(block, color)), but since yellow is traditionally reserved for the em-
peror, the robot is not allowed to paint any block yellow. In Lin and Reiter (1994),
this is handled using qualification, by adding a domain constraint stating that no
block may be yellow. Consequently, in that approach, the preconditions of the ac-
tion paint(block, yellow) will always be false.

One possible translation to TAL-Q would use two domains, block and color,
a fluent col(block) : color representing the color of a block, and an enabling flu-
ent poss-paint(block, color) : boolean with default value true, together with the
following L(ND) statements. (Note that in Lin and Reiter (1994), all fluents will
be undefined in the state resulting from invoking paint(x, yellow), while in our
approach, the action will have no effect.)
obs1 [0] ∀b [¬(col(b) =̂ yellow)]
acs1 [t1, t2] paint(b, c) [t1] poss-paint(b, c)→ R([t2] col(b) =̂ c)
dep1 ∀t, b [I([t] ¬poss-paint(b, yellow))]

However, the fault fluent approach (Section 3.9.2) may be more appropriate, since
it is more likely that the action would actually succeed, even though its effects were
“illegal”:

58 3.10. Additional Examples

acs2 [t1, t2] paint(b, c) R([t2] col(b) =̂ c)
dep2 ∀t, b [[t] col(b) =̂ yellow→ I([t] fault-block-is-yellow(b))]

Using this approach, we will predict that painting a block yellow will succeed, but
also that the fault fluent fault-block-is-yellow will become true for that block: We
have performed an action that has undesirable results.

3.10.4 The Lenient Emperor

There is also a variation of the previous scenario in which the emperor is more
lenient and allows at most one yellow block to exist. If we had thought ahead
and provided an enabling fluent for dep1 above, we could have handled this by
qualifying the old qualification. Since we did not, we have to modify the existing
qualification dep1. For example, it can be replaced with the following constraint:
dep1′ ∀t [∃b [[t] col(b) =̂ yellow]→ ∀b [I([t] ¬poss-paint(b, yellow))]]

If we want to be able to paint a yellow block yellow again, we can use the following
alternative:
dep1′′ ∀t [∃b [[t] col(b) =̂ yellow]→

∀b [[t] ¬(col(b) =̂ yellow)→ I([t] ¬poss-paint(b, yellow))]]

Again, the fault fluent approach may be more appropriate: If more than one block
is yellow, we signal an error for each yellow block.
dep2′ ∀t [∃b1, b2 [[t] col(b1) =̂ yellow∧ col(b2) =̂ yellow∧ b1 6= b2]→

∀b [[t] col(b) =̂ yellow→ I([t] fault-block-is-yellow(b))]]

3.10.5 The Lenient Emperor – with Concurrency

An interesting variation of the lenient emperor scenario, which has not previously
been considered in the literature, arises when there may be more than one agent
in the world. For example, it may be the case that when no block is yellow, but a
number of agents concurrently attempt to paint two or more blocks yellow, exactly
one of them will succeed.

A similar scenario was discussed in Section 3.8.1, where at most one person
could board a plane at any given timepoint. That, however, would be analogous to
allowing at most one new yellow block at each timepoint. However, it turns out that
the concurrent lenient emperor scenario can be modeled in a similar manner. First,
we will reformulate the scenario using the TAL-C approach, using a durational
influence fluent want-to-paint(block, color):
obs1 [0] ∀b [¬(col(b) =̂ yellow)]
acs1 [t1, t2] paint(b, c) I([t2] want-to-paint(b, c))
dep1 ∀t, b, c [[t] want-to-paint(b, c) ∧ poss-paint(b, c)→ R([t] col(b) =̂ c)]

Although the influence fluent is not strictly necessary for this example, it can still
be an advantage to model the scenario in this way due to the added flexibility in
case the scenario ever needs to be changed. In this case, however, the important

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 59

difference in the new scenario is that in dep1, poss-paint must be true at the same
timepoint when the block should change color. This means that we only need to
make sure that whenever any block is yellow, no block except possibly that one can
be painted yellow. Note that this allows us to repaint a yellow block with the same
color, and it also allows us to concurrently paint one block yellow and paint an-
other, previously yellow block in another color.
dep2 ∀t, b1, b2 [[t] col(b1) =̂ yellow∧ b1 6= b2 → I([t] ¬poss-paint(b2, yellow))]

For this scenario, the fault fluent approach would be identical to that for the non-
concurrent lenient emperor scenario.

3.11 Comparisons

Having considered some qualification examples and how they can be represented
in TAL-Q, we will now compare our approach to some other approaches in the
literature, beginning with McCarthy’s introduction of circumscription (1980, 1986)
and continuing with Lifschitz (1987), Shanahan (1997), Ginsberg and Smith (1988),
Lin and Reiter (1994), McCain and Turner (1995), and finally Thielscher (1996a,
1996b).

Although these approaches have many differences, there are also many impor-
tant similarities. Perhaps the most important of these similarities is that all of these
approaches are based on the assumption that there is a single agent executing a
simple sequence of actions without duration, and that all change in the world is
caused by that agent. For example, there can be no concurrent actions, no delayed
side effects, and no dynamic processes taking place in the background. Sometimes,
not even non-deterministic actions are allowed. In other words, these approaches
are not expressive enough to model the Russian Airplane Hijack Scenario.

For some of the approaches, it may be possible to extend them for more complex
worlds without requiring major changes, in other words, a graceful scaling up. As
we will see, however, several approaches are strongly dependent on the fact that
actions and side effects can be represented as a function from the current state and
the action to be performed to the successor state, or possibly the set of successor
states. This is especially true for the approaches where qualification is based on
constraints that must not be violated by an action, rather than on conditions that
must or must not hold when the action is invoked (Ginsberg & Smith, 1988; Lin &
Reiter, 1994).

3.11.1 McCarthy

McCarthy (1980) introduces circumscription and discusses how it can be used for
conjecturing that any action will succeed unless there is something preventing its
success. This is achieved using a prevents(reason, action, state) predicate which holds
whenever some specific reason prevents an action from having its usual effects in

60 3.11. Comparisons

the given state. Each such reason is then defined explicitly. For example, in a blocks
world, we may say that heavy blocks cannot be moved: ∀x, y, s.(tooheavy(x) →
prevents(weight(x), move(x, y), s)). The prevents predicate is circumscribed relative
to the conjunction of all such reasons, which allows us to predict that the action will
succeed unless one of its qualifications holds when the action is invoked.

Clearly, this is very similar to the way we defined our main approach in Sec-
tion 3.7. Like our approach, it can not be used for inferring qualifications based
on observing that an action failed, since prevents is only circumscribed relative to
the explicit qualification conditions. One important difference, however, is that our
approach does not minimize qualifications – we minimize the occlusion predicate,
which means that we minimize potential qualification. This is what allows us to
express weak qualification.

In McCarthy (1986), a slightly different approach is used within the situation
calculus. Instead of using a prevents predicate for qualification, a single ab (“abnor-
mal”) predicate is used for both qualification and many other tasks. The argument
of ab is an aspect, an abstract object. For example, in the blocks world, we can move
a block to a location unless the move action is abnormal in the first aspect: ∀x, l, s.
¬ab(aspect1(x, move(x, l), s)) → loc(x, result(move(x, l), s)) = l. Then, we may not
be able to lift heavy blocks: ∀x, l, s.(tooheavy(x)→ ab(aspect1(x, move(x, l), s))). An
interesting aspect of this approach is that if a qualified action is invoked, each fluent
which would normally have been affected is released from the inertia assumption,
but is not given a new value and is therefore allowed to vary freely. Fluents which
would not have been affected retain their previous values.

3.11.2 Lifschitz: Formal Theories of Action

Unfortunately, as Lifschitz (1987) notes, global minimization of abnormality is not
sufficient, since it sometimes leads to unintended models. He presents an alterna-
tive solution for the prediction task (or temporal projection), where it is assumed that
all changes in the values of fluents are caused by actions.

Two new predicates are added to the situation calculus: causes(a, p, f) expresses
that the action a causes the primitive fluent p to have the same value that the flu-
ent f had when the action was invoked, and precond(f , a) expresses that the fluent f
is a precondition to the action a. Given these new predicates, it is possible to define
any number of preconditions to an action in an incremental manner. The situation-
independent predicates causes and precond are then circumscribed, and an action is
assumed to succeed iff all its preconditions hold when the action is invoked. If any
of its preconditions do not hold, the action will be assumed to have no effect on the
world.

This approach produced the correct results for the scenarios where McCarthy’s
earlier approach failed. However, apart from allowing more complex worlds to
be modeled, the approach presented in Section 3.7 is also more flexible in the way
qualification conditions can be specified. For example, our qualification conditions

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 61

may vary over time, and may also depend on states other than the state in which
the action is invoked. Due to the fact that enabling fluents are not directly tied
to actions, we can also represent qualified qualifications and qualified side effects,
while Lifschitz’ approach does not allow side effects at all.

3.11.3 Shanahan: Solving the Frame Problem

Shanahan (1997) uses an approach similar to that of Lifschitz (1987), the main dif-
ference being that the precond predicate takes three arguments: precond(f , v, a) ex-
presses the fact that the action a is only executable when the fluent f has the value v.
Consequently, the two approaches share many of the same advantages and disad-
vantages. As in Lifschitz’ approach, if any precondition does not hold, an action
will be assumed to have no effect on the world.

3.11.4 Ginsberg and Smith:
Reasoning about Action II – The Qualification Problem

Ginsberg and Smith (1988) argue that specifying qualifications as preconditions to
actions often leads to complicated formulas, due to the need to take all possible
ramifications into account. Accordingly, they define a possible worlds approach in
which each action is associated with a set of qualification constraints having the
form of domain constraints. Given an action, the set of possible successors of the
current world is first calculated without considering the qualification constraints.
Then, any such world which does not satisfy all qualification constraints is dis-
carded. If no possible successor remains, the action was qualified, and is assumed
not to change the world at all.

This approach works very well for the examples examined by Ginsberg and
Smith. However, if concurrent actions or delayed side effects were allowed, it
would no longer be possible to reason about whether a single action would vio-
late a domain constraint: For concurrent actions, it would be necessary to take into
account all actions being performed at the same time, and it would be more difficult
to determine exactly which action should be qualified. Similarly, if delayed side ef-
fects were allowed, one would have to know exactly which actions are invoked up
to the time when the delayed side effect takes place. Qualified side effects would
of course be even more problematic, since one would have to determine somehow
whether it is the action itself or one of its side effects that should be qualified. In
other words, this approach would be quite difficult to extend to handle complex
scenarios such as the Russian Airplane Hijack Scenario.

3.11.5 Lin and Reiter: State Constraints Revisited

Lin and Reiter (1994) present a solution to the qualification problem within the
situation calculus. The solution is based on generating an exact definition of the

62 3.11. Comparisons

Poss(a, s) predicate, which states that it is possible to execute the action a in the
state s. The definition of Poss is generated using both a set Dnec of formulas of the
form Poss(a, s) ⊃ φ and a setDqual of domain constraints that must hold in the state
resulting from executing any action. The domain constraints in Dqual are regressed,
and the results are combined with the formulas in Dnec to form an exact definition
of Poss.

Since all qualification conditions are compiled into the definition of the Poss
predicate, it is possible to infer that an action is qualified by evaluating Poss in the
current situation. The situation do(a, s) resulting from executing a qualified action a
is completely undefined, since the successor state axioms only define fluent values
in situations resulting from executing actions whose preconditions hold.

Like the approach used by Ginsberg and Smith, this solution also depends on
the restricted expressivity of the logic being used – in fact, it does so to an even
greater degree, due to the compilation of qualification conditions into a definition
of Poss.

For example, if non-deterministic actions were allowed, we may only know
that an action may contradict a domain constraint, so finding an exact definition
of Poss would not be possible. Similarly, if actions with duration and internal state
were introduced, the compilation procedure would be far more complicated due
to the need to ensure that no intermediate state contradicts the domain constraints
in Dqual. If concurrent actions, delayed side effects or domain constraints referring
to multiple states or domain constraints depending on time were allowed, this ap-
proach could not be used at all, since it would not be sufficient to consider the single
action and situation used as arguments to the Poss predicate.

On the other hand, if the world one is reasoning about is simple enough, this
solution does provide a way of specifying qualification constraints that is often
more intuitive than using enabling fluents.

3.11.6 McCain and Turner:
A Causal Theory of Ramifications and Qualifications

McCain and Turner (1995) provide a combined solution to the ramification and
qualification problems in which every change must be caused. An action is qualified
if it would imply a change that it did not cause. Causal laws are expressed using the
form φ ⇒ ψ (if φ holds, ψ is caused to hold). Pure ramifications can be expressed
using the form True ⇒ φ, and pure qualifications using the form ¬φ ⇒ False, but
other forms of constraints can also be used.

A pure qualification ¬φ ⇒ False essentially defines a condition that must hold
in any state resulting from executing an action. It does not cause fluents to change
as a side effect of executing the action, but if the condition φ does not hold, False
must hold in any resulting state – so there can be no resulting state, which means
that the action was qualified. It is also possible to express “combined” ramification
and qualification constraints. For example, the constraint ¬Alive⇒ ¬Walking may

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 63

act as a ramification when Alive is caused to become false, but as a qualification
when Walking is caused to become true.

Since the result of invoking a qualified action in this approach is an empty set
of possible resulting states, it is not possible to reason about which value a fluent
would take on after a qualified action was invoked – it is only possible to determine
that the action would be qualified. Therefore, this approach is mainly useful for
planning, or for prediction in the case where we are not interested in the result of
invoking a qualified action.

If we consider an empty set of possible resulting states in this approach to be
equivalent to an inconsistent scenario in the TAL formalism, any qualification con-
straint that can be expressed in this approach – pure or not pure – can also be ex-
pressed using our alternative approach from Section 3.9.1. Each qualification con-
straint becomes an ordinary domain constraint, while each ramification constraint
is expressed as a fluent dependency constraint.

On an abstract level, this solution is very similar to the approaches used by
Ginsberg and Smith (1988) and Lin and Reiter (1994), in the sense that pure qualifi-
cations are domain constraints that must not be violated by an action. The solution
also has similar limitations in expressivity. However, the technical solution and
the reasoning behind it are different, and so are the sets of possible states resulting
from invoking a qualified action: In Ginsberg and Smith (1988) there was a single
possible resulting state where nothing had changed, in Lin and Reiter (1994) the
result was undefined, and in McCain and Turner (1995), there is no resulting state.

3.11.7 Thielscher: Causality and the Qualification Problem

Thielscher’s approach to the qualification problem (1996a, 1996b) is quite differ-
ent from the previous three approaches. In fact, it turns out to be more similar to
the approach we have presented in Section 3.7, in that it uses fluents to represent
qualifications. On the other hand, there are also quite a few differences.

Thielscher uses persistent disqualification fluents, which are assumed to be false
in the initial state unless something forces them to be true, while our enabling flu-
ents are durational, and are normally true in every state. While using durational
fluents has the advantage of not needing to explicitly make a disqualification fluent
false when a qualification no longer holds, Thielscher’s approach has the advantage
of being able to handle some cases of postdiction. For example, if the start action
can only be qualified when potato is true, and if we observe that the action is qual-
ified, then the conclusion would be that potato must have been true in the initial
state.

This, of course, does not handle the case where we initially observed that there
was no potato, then waited a while and tried to start the car, and starting failed.
Thielscher handles this using miraculous disqualification, which allows an action to
be qualified even though every explanation for its qualification is proven to be false,
and which is globally minimized at a higher priority than ordinary qualification.

64 3.11. Comparisons

(Unfortunately, this also allows us to prove that there was in fact no potato.) There
is also a method for qualifying ramification constraints within the same frame-
work (Thielscher, 1997).

The result of executing a sequence 〈a1, . . . , an〉 of actions is a state defined by the
function Res(〈a1, . . . , an〉), which is undefined when some action in the sequence is
qualified. However, an observation of the form F after 〈a1, . . . , an〉 is still defined
in this case, although it is always false for any formula F. This is yet another differ-
ent definition of the state resulting from invoking a qualified action: Not even the
tautology > is considered to hold.

But although this approach has certain advantages, it once again assumes a
world where there are no concurrent actions, no actions with duration and inter-
nal state, no dynamic processes in the background, no delayed side effects, and no
qualified side effects, and therefore, it would not be possible to model the Russian
Airplane Hijack Scenario with this approach.

3.11.8 Summary

We have compared our approach to six other approaches in the literature. There
turns out to be some similarities between all of these approaches, perhaps most
importantly that they are designed for simple worlds in which a single agent per-
forms actions in a sequential manner, and where any side effects – if allowed at all
– take place in the ending state of the action. Therefore, none of these approaches
are powerful enough to model the Russian Airplane Hijack Scenario, although for
simpler scenarios, they sometimes provide more intuitive methods for specifying
which actions are qualified.

There also appear to be two main approaches to the way in which qualification
conditions are specified: Either as conditions holding in the initial state or as do-
main constraints that must not be violated by actions. Here, Thielscher’s approach
is an exception: It is possible to directly observe the qualification of an action, after
which one can postdict the reasons for the qualification.

However, there is also one aspect in which the approaches are quite different:
If we execute a qualified action, what can be said about the resulting state? Most
approaches turn out to have their own answer to this question:

• In McCarthy (1986), the fluents that would ordinarily be affected by the action
are released from the inertia assumption in the resulting state, but all other
fluents remain inert. This could be emulated in TAL-Q using the X operator.

• In Lifschitz (1987), Shanahan (1997) and Ginsberg and Smith (1988), the action
has no effect on the world. This is normally also the case in TAL-Q, unless an
alternative effect has been specified.

• In Lin and Reiter (1994), the resulting state is completely undefined.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 65

• In McCain and Turner (1995), there is no resulting state. This could be con-
sidered equivalent to an inconsistent scenario in TAL-Q.

• In Thielscher (1996a) and Thielscher (1996b), the result is a “state” in which
nothing holds – not even a tautology.

3.12 Conclusion

We have presented an approach to the qualification problem based on the use of
dependency constraints and durational fluents in the context of a highly expressive
temporal logic of action and change called TAL-Q. TAL-Q permits the use of action
types that are non-deterministic, context dependent, durational, and concurrent.
This degree of expressivity introduces additional issues in solving the qualification
problem not present in any of the previously proposed formalisms and solutions
in the literature. We have also tried to show that whether any given approach to
solving the qualification problem is useful or not often depends on both the reason-
ing task and the characteristics of the class of worlds we are interested in reasoning
about. Although many solutions have been proposed in the literature, they often
do not make such assumptions explicit, and often turn out to be useful only for
a small class of worlds. The intent of this article was to present a solution to the
qualification problem for TAL-Q in this context. Several of the ideas in the article
are tentative and will be pursued in future research. One of the more important
topics of research is to clarify the distinctions between on- and off-line reasoning
modes and how these modes affect solutions to the qualification problem. In ad-
dition, pursuing the formal assessment of correctness for the proposed solutions to
the qualification problem using TAL-Q is an important future research issue as are
more formal comparative analyses of the alternative formalisms considered in the
article.

Appendix 1: RAH Narrative in L(ND)

For a narrative background specification for this scenario, see Section 3.6.1.

PERSISTENCE STATEMENTS
per1 ∀t, thing [true→ Per(t + 1, loc(thing))]
per2 ∀t, person, pthing [true→ Per(t + 1, inpocket(person, pthing))]
per3 ∀t, person [true→ Per(t + 1, drunk(person))]
per4 ∀t, plane, person [true→ Per(t + 1, onplane(plane, person))]
per5 ∀t, person, plane [true→ Dur(t, poss-board(person, plane), true)]
per6 ∀t, person, pthing [true→ Dur(t, poss-pickup(person, pthing), true)]
per7 ∀t, person, loc1, loc2 [true→ Dur(t, poss-travel(person, loc1, loc2), true)]
per8 ∀t, plane, runway1, runway2 [true→ Dur(t, poss-�y(plane, runway1, runway2), true)]

66 3.12. Conclusion

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

lo
c(

gu
n)

:
V

al
ue

of
fic

e
of

fic
e

of
fic

e
of

fic
e

of
fic

e
of

fic
e

of
fic

e
of

fic
e

of
fic

e
of

fic
e

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

lo
c(

co
m

b1
):

V
al

ue
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

of
fic

e
of

fic
e

of
fic

e
of

fic
e

of
fic

e
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t

lo
c(

co
m

b2
):

V
al

ue
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
of

fic
e

of
fic

e
of

fic
e

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ru
n6

09
ru

n6
09

ai
r

ai
r

ru
n6

09
b

lo
c(

co
m

b3
):

V
al

ue
ho

m
e3

ho
m

e3
ho

m
e3

ho
m

e3
*2

*2
*2

*2
*2

*2
*3

*3
*3

*3
*3

*3
*3

lo
c(

bo
ris

):
V

al
ue

ho
m

e1
ho

m
e1

ho
m

e1
ho

m
e1

ho
m

e1
of

fic
e

of
fic

e
of

fic
e

of
fic

e
of

fic
e

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

ai
rp

or
t

lo
c(

di
m

ite
r)

:
V

al
ue

ho
m

e3
ho

m
e3

ho
m

e3
ho

m
e3

of
fic

e
of

fic
e

of
fic

e
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t
*2

*2
*2

*2
*2

*2
*2

lo
c(

er
ik

):
V

al
ue

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

ho
m

e2
ho

m
e2

of
fic

e
of

fic
e

of
fic

e
ai

rp
or

t
ai

rp
or

t
ai

rp
or

t
ru

n6
09

ru
n6

09
ai

r
ai

r
ru

n6
09

b

lo
c(

sa
s6

09
):

V
al

ue
ru

n6
09

ru
n6

09
ru

n6
09

ru
n6

09
ru

n6
09

ru
n6

09
ru

n6
09

ru
n6

09
ru

n6
09

ru
n6

09
ru

n6
09

ru
n6

09
ru

n6
09

ru
n6

09
ai

r
ai

r
ru

n6
09

b

in
po

ck
et

(b
or

is
, g

un
):

V
al

ue
in

po
ck

et
(b

or
is

, c
om

b1
):

V
al

ue
in

po
ck

et
(b

or
is

, c
om

b2
):

V
al

ue
in

po
ck

et
(b

or
is

, c
om

b3
):

V
al

ue
in

po
ck

et
(d

im
ite

r,
 g

un
):

V
al

ue
in

po
ck

et
(d

im
ite

r,
 c

om
b1

):
V

al
ue

in
po

ck
et

(d
im

ite
r,

 c
om

b2
):

V
al

ue
in

po
ck

et
(d

im
ite

r,
 c

om
b3

):
V

al
ue

in
po

ck
et

(e
rik

, g
un

):
V

al
ue

in
po

ck
et

(e
rik

, c
om

b1
):

V
al

ue
in

po
ck

et
(e

rik
, c

om
b2

):
V

al
ue

in
po

ck
et

(e
rik

, c
om

b3
):

V
al

ue
po

ss
_b

oa
rd

(b
or

is
, s

as
60

9)
:

V
al

ue
os

s_
bo

ar
d(

di
m

ite
r,

 s
as

60
9)

:
V

al
ue

po
ss

_b
oa

rd
(e

rik
, s

as
60

9)
:

V
al

ue
dr

un
k(

bo
ris

):
V

al
ue

dr
un

k(
di

m
ite

r)
:

V
al

ue
dr

un
k(

er
ik

):
V

al
ue

on
pl

an
e(

sa
s6

09
, b

or
is

):
V

al
ue

on
pl

an
e(

sa
s6

09
, d

im
ite

r)
:

V
al

ue
on

pl
an

e(
sa

s6
09

, e
rik

):
V

al
ue

pi
ck

up
(b

or
is

, c
om

b1
)

pi
ck

up
(e

rik
, c

om
b2

)

tr
av

el
(d

im
ite

r,
 h

om
e3

, o
ffi

ce
)

tr
av

el
(b

or
is

, h
om

e1
, o

ffi
ce

)

tr
av

el
(e

rik
, h

om
e2

, o
ffi

ce
)

pi
ck

up
(b

or
is

, g
un

)

tr
av

el
(d

im
ite

r,
 o

ffi
ce

, a
irp

or
t)

tr
av

el
(e

rik
, o

ffi
ce

, a
irp

or
t)

tr
av

el
(b

or
is

, o
ffi

ce
, a

irp
or

t)

bo
ar

d(
di

m
ite

r,
 s

as
60

9)

bo
ar

d(
bo

ris
, s

as
60

9)

bo
ar

d(
er

ik
, s

as
60

9)

fly
(s

as
60

9,
 r

un
60

9,
 r

un
60

9b
)

Figure 3.1: Timelines for the Russian Airplane Hijack Scenario

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 67

OBSERVATIONS, ACTION OCCURRENCES AND TIMING
obs1 [0] loc(boris) =̂ home1∧ loc(gun) =̂ office∧ loc(comb1) =̂ home1∧ ¬drunk(boris)
obs2 [0] loc(erik) =̂ home2∧ loc(comb2) =̂ home2∧ ¬drunk(erik)
obs3 [0] loc(dimiter) =̂ home3∧ loc(comb3) =̂ home3∧ drunk(dimiter)
obs4 [0] loc(sas609) =̂ run609
occ1 [1, 2] pickup(boris, comb1)
occ2 [1, 2] pickup(erik, comb2)
occ3 [2, 4] travel(dimiter, home3, office)
occ4 [3, 5] travel(boris, home1, office)
occ5 [4, 6] travel(erik, home2, office)
occ6 [6, 7] pickup(boris, gun)
occ7 [5, 7] travel(dimiter, office, airport)
occ8 [7, 9] travel(erik, office, airport)
occ9 [8, 10] travel(boris, office, airport)
occ10 [9, 10] board(dimiter, sas609)
occ11 [10, 11] board(boris, sas609)
occ12 [11, 12] board(erik, sas609)
occ13 [13, 16] �y(sas609, run609, run609b)

ACTION TYPES
acs1 [t1, t2] �y(plane, runway1, runway2) ;

[t1] poss-�y(plane, runway1, runway2) ∧ loc(plane) =̂ runway1 →
I((t1, t2) loc(plane) =̂ air) ∧ R([t2] loc(plane) =̂ runway2)

acs2 [t1, t2] pickup(person, pthing) ;

[t1] poss-pickup(person, pthing) ∧ loc(person) =̂ value(t1, loc(pthing))→
R((t1, t2] inpocket(person, pthing))

acs3 [t1, t2] travel(person, loc1, loc2) ;

[t1] poss-travel(person, loc1, loc2) ∧ loc(person) =̂ loc1 → R([t2] loc(person) =̂ loc2)
acs4 [t1, t2] board(person, plane) ; [t1] poss-board(person, plane) ∧ loc(person) =̂ airport→

R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person))

DOMAIN CONSTRAINTS
dom1 ∀t, pthing, person1, person2

[person1 6= person2 ∧ [t] inpocket(person1, pthing)→ [t] ¬inpocket(person2, pthing)]
dom2 ∀t, person, plane1, plane2

[plane1 6= plane2 ∧ [t] onplane(plane1, person)→ [t] ¬onplane(plane2, person)]
dom3 ∀t, person, pthing [[t] inpocket(person, pthing)→ [t] loc(pthing) =̂ value(t, loc(person))]

DEPENDENCY CONSTRAINTS
dep1 ∀t, plane, person, loc [[t] onplane(plane, person) ∧ CT([t] loc(plane) =̂ loc)→

R([t] loc(person) =̂ loc)]
dep2 ∀t, person, pthing, loc [[t] inpocket(person, pthing) ∧ CT([t] loc(person) =̂ loc)→

R([t] loc(pthing) =̂ loc)]
dep3 ∀t, person, plane [[t] inpocket(person, gun)→ I([t] ¬poss-board(person, plane))]
dep4 ∀t, person, plane [[t] drunk(person)→ X([t] ¬poss-board(person, plane))]

68 3.12. Conclusion

INTERMEDIATE SCHEDULE STATEMENTS
The following statements are generated from the action type specifications.3

scd1 ∀t1, t2, plane, runway1, runway2. [t1, t2] �y(plane, runway1, runway2)→
([t1] poss-�y(plane, runway1, runway2) ∧ loc(plane) =̂ runway1 →
I((t1, t2) loc(plane) =̂ air) ∧ R([t2] loc(plane) =̂ runway2))

scd2 ∀t1, t2, person, pthing. [t1, t2] pickup(person, pthing)→
([t1] poss-pickup(person, pthing) ∧ loc(person) =̂ value(t1, loc(pthing))→
R((t1, t2] inpocket(person, pthing)))

scd3 ∀t1, t2, person, loc1, loc2. [t1, t2] travel(person, loc1, loc2)→
([t1] poss-travel(person, loc1, loc2) ∧ loc(person) =̂ loc1 → R([t2] loc(person) =̂ loc2))

scd4 ∀t1, t2, person, plane. [t1, t2] board(person, plane)→
([t1] poss-board(person, plane) ∧ loc(person) =̂ airport→
R([t2] loc(person) =̂ value(t2, loc(plane)) ∧ onplane(plane, person)))

Appendix 2: RAH Narrative in L(FL)

PERSISTENCE STATEMENTS
per1 ∀t, thing, v [¬Occlude(t + 1, loc(thing))→

(Holds(t, loc(thing), v)↔ Holds(t + 1, loc(thing), v))]
per2 ∀t, person, thing, v [¬Occlude(t + 1, inpocket(person, thing))→

(Holds(t, inpocket(person, thing), v)↔ Holds(t + 1, inpocket(person, thing), v))]
per3 ∀t, person, v [¬Occlude(t + 1, drunk(person))→

(Holds(t, drunk(person), v)↔ Holds(t + 1, drunk(person), v))]
per4 ∀t, plane, person, v [¬Occlude(t + 1, onplane(plane, person))→

(Holds(t, onplane(plane, person), v)↔ Holds(t + 1, onplane(plane, person), v))]
per5 ∀t, person, plane [¬Occlude(t, poss-board(person, plane))→

Holds(t, poss-board(person, plane), true)]
per6 ∀t, person, pthing [¬Occlude(t, poss-pickup(person, pthing))→

Holds(t, poss-pickup(person, pthing), true)]
per7 ∀t, person, loc1, loc2 [¬Occlude(t, poss-travel(person, loc1, loc2))→

Holds(t, poss-travel(person, loc1, loc2), true)]
per8 ∀t, plane, runway1, runway2 [¬Occlude(t, poss-�y(plane, runway1, runway2))→

Holds(t, poss-�y(plane, runway1, runway2))]

OBSERVATIONS, ACTION OCCURRENCES AND TIMING
obs1 Holds(0, loc(boris), home1) ∧Holds(0, loc(gun), office) ∧

Holds(0, loc(comb1), home1) ∧ ¬Holds(0, drunk(boris), true)
obs2 Holds(0, loc(erik), home2) ∧Holds(0, loc(comb2), home2) ∧

¬Holds(0, drunk(erik), true)
obs3 Holds(0, loc(dimiter), home3) ∧Holds(0, loc(comb3), home3) ∧

Holds(0, drunk(dimiter), true)
obs4 Holds(0, loc(sas609), run609)
occ1 Occurs(1, 2, pickup(boris, comb1))

3In this variation of TAL-C, the Occurs predicate is not used. Instead, action type specifications are
viewed as templates that are instantiated using action occurrence statements.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 69

occ2 Occurs(1, 2, pickup(erik, comb2))
occ3 Occurs(2, 4, travel(dimiter, home3, office))
occ4 Occurs(3, 5, travel(boris, home1, office))
occ5 Occurs(4, 6, travel(erik, home2, office))
occ6 Occurs(6, 7, pickup(boris, gun))
occ7 Occurs(5, 7, travel(dimiter, office, airport))
occ8 Occurs(7, 9, travel(erik, office, airport))
occ9 Occurs(8, 10, travel(boris, office, airport))
occ10 Occurs(9, 10, board(dimiter, sas609))
occ11 Occurs(10, 11, board(boris, sas609))
occ12 Occurs(11, 12, board(erik, sas609))
occ13 Occurs(13, 16, �y(sas609, run609, run609b))

SCHEDULE STATEMENTS
scd1 ∀t1, t2, plane, runway1, runway2 [Occurs(t1, t2, �y(plane, runway1, runway2))→

(Holds(t1, poss-�y(plane, runway1, runway2)) ∧Holds(t1, loc(plane), runway1)→
∀t [t1 < t∧ t < t2 → Holds(t, loc(plane), air) ∧Occlude(t, loc(plane))] ∧
Holds(t2, loc(plane), runway2) ∧Occlude(t2, loc(plane)))]

scd2 ∀t1, t2, person, pthing [Occurs(t1, t2, pickup(person, pthing))→
(Holds(t1, poss-pickup(person, pthing)) ∧
Holds(t1, loc(person), value(t1, loc(pthing)))→
Holds(t2, inpocket(person, pthing), true) ∧Occlude(t2, inpocket(person, pthing)))]

scd3 ∀t1, t2, person, loc1, loc2 [Occurs(t1, t2, travel(person, loc1, loc2))→
(Holds(t1, poss-travel(person, loc1, loc2)) ∧Holds(t1, loc(person), loc1)→
Holds(t2, loc(person), loc2) ∧Occlude(t2, loc(person)))]

scd4 ∀t1, t2, person, plane [Occurs(t1, t2, board(person, plane))→
(Holds(t1, poss-board(person, plane), true) ∧Holds(t1, loc(person), airport)→
Holds(t2, loc(person), value(t2, loc(plane))) ∧Holds(t2, onplane(plane, person), true) ∧
Occlude(t2, loc(person)) ∧Occlude(t2, onplane(plane, person)))]

DOMAIN CONSTRAINTS
dom1 ∀t, pthing, person1, person2 [person1 6= person2 ∧

Holds(t, inpocket(person1, pthing), true)→ ¬Holds(t, inpocket(person2, pthing), true)]
dom2 ∀t, person, plane1, plane2 [plane1 6= plane2 ∧Holds(t, onplane(plane1, person), true)→

¬Holds(t, onplane(plane2, person))]
dom3 ∀t, person, pthing [Holds(t, inpocket(person, pthing), true)→

Holds(t, loc(pthing), value(t, loc(person)))]

DEPENDENCY CONSTRAINTS
dep1 ∀t, plane, person, loc [Holds(t, onplane(plane, person), true) ∧Holds(t, loc(plane), loc) ∧

∀u [t = u + 1→ ¬Holds(u, loc(plane), loc)]→
Holds(t, loc(person), loc) ∧Occlude(t, loc(person))]

dep2 ∀t, person, pthing, loc [Holds(t, inpocket(person, pthing), true) ∧
Holds(t, loc(person), loc) ∧ ∀u [t = u + 1→ ¬Holds(u, loc(person), loc)]→
Holds(t, loc(pthing), loc) ∧Occlude(t, loc(pthing))]

dep3 ∀t, person, plane [Holds(t, inpocket(person, gun), true)→
¬Holds(t, poss-board(person, plane), true) ∧Occlude(t, poss-board(person, plane))]

dep4 ∀t, person, plane [Holds(t, drunk(person), true)→ Occlude(t, poss-board(person, plane))]

70 3.12. Conclusion

TEMPORAL STRUCTURE AND FOUNDATIONAL AXIOMS
Apart from the narrative formulas above, we need axioms Γtime for the temporal
structure: The Peano axioms without multiplication. We also need the foundational
axioms, Γfnd, which contain unique names axioms for the value sorts, fluent sorts,
and actions. The foundational axioms also contain a set of axioms that relate the
Holds predicate to the value function and ensure that each fluent has exactly one
value at each timepoint:
∀t, thing, loc [Holds(t, loc(thing), loc)↔ value(t, loc(thing)) = loc]
∀t, person, pthing, v
[Holds(t, inpocket(person, pthing), v)↔ value(t, inpocket(person, pthing)) = v]
∀t, person, v [Holds(t, drunk(person), v)↔ value(t, drunk(person)) = v]
∀t, plane, person, v [Holds(t, onplane(plane, person), v)↔ value(t, onplane(plane, person)) = v]
∀t, person, plane, v

[Holds(t, poss-board(person, plane), v)↔ value(t, poss-board(person, plane)) = v]
∀t, person, pthing, v

[Holds(t, poss-pickup(person, pthing), v)↔ value(t, poss-pickup(person, pthing)) = v]
∀t, person, loc1, loc2, v

[Holds(t, poss-travel(person, loc1, loc2), v)↔ value(t, poss-travel(person, loc1, loc2)) = v]
∀t, plane, runway1, runway2, v [Holds(t, poss-�y(plane, runway1, runway2), v)↔

value(t, poss-�y(plane, runway1, runway2)) = v]

Chapter 4
Elaboration Tolerance through
Object-Orientation

TAL separates domain information into different statement classes such as obser-
vations, domain constraints and dependency constraints. This is sufficient for do-
mains simple enough to be modeled in only a few logical statements, but for more
complex domains, more structure is needed. This is especially true if one wants to
build reusable domain models where individual aspects can be modified to suit
new variations and new changes in the domain. This chapter contains an arti-
cle called Elaboration Tolerance through Object-Orientation, which shows how object-
oriented modeling can be applied in order to structure TAL narratives and fa-
cilitate reuse. This article was published in Artificial Intelligence (Gustafsson &
Kvarnström, 2004), and like the article in the previous chapter, the only significant
changes that have been made are related to reformatting the article and removing
parts of the section describing the TAL logic.

4.1 Introduction

Traditionally, the semantic adequacy of formalisms for reasoning about action and
change (RAC) has primarily been tested using very small specialized domains that
highlight some particular point an author wants to make. These domains can usu-
ally be represented as a small number of simple formulas that are normally grouped
by type rather than structure.

However, with some of the classical RAC problems completely or partially solv-
ed, and with powerful tools available for reasoning about action scenarios, it is now
possible to model larger and more realistic domains. As soon as we start doing this,
it becomes apparent that there is an unfortunate lack of methodology for handling

71

72 4.1. Introduction

complex domains in a systematic manner. There are few (if any) principles of good
form, like the “No Structure in Function” principle from the qualitative reasoning
community (de Kleer & Brown, 1984).

The following are some questions that must be answered in order to develop
such a methodology:

Consistency: How can complex domains be modeled in a consistent and sys-
tematic way, to allow several developers to work on the same domain description
and to enable others to understand the resulting domain more easily?

Elaboration tolerance (McCarthy, 1998): How do we ensure that domains can
initially be modeled at a high level of abstraction, with the possibility to add fur-
ther details at a later stage without completely redesigning the domain description?
How do we design domain descriptions that can be modified in a convenient man-
ner to take account of new phenomena or changed circumstances?

Modularity and reusability: How can particular aspects of a domain be de-
signed as more or less self-contained modules? How do we provide support for
reusing modules?

In this article, we investigate the applicability of the object-oriented paradigm
(Abadi & Cardelli, 1996; Booch, 1991) to answering these questions. We model
the entities that appear in a domain as objects, encapsulated abstractions that offer
a well-defined interface to the surrounding world and hide the implementation-
specific details. The interface consists of methods that can be called by other objects.
Objects are instances of classes sharing the same attributes and methods. Classes
are ordered in an inheritance hierarchy where a class can be created as a subclass of
another class, inheriting the attributes and methods of the superclass and possibly
adding its own attributes and methods or redefining some of the inherited meth-
ods.

Modeling entities as objects and interacting with them using methods provides
a high degree of consistency in the domain model. The fact that attributes are hid-
den and accessed using methods increases elaboration tolerance, as does the ability
to extend existing classes with new functionality in a structured and well-defined
manner and to override existing functionality by re-implementing inherited meth-
ods. The modularity and reusability of a model are improved by modeling self-
contained classes that are independent of the implementations of other classes.

The object-oriented concepts used in this article could potentially be applied to
many different logics for reasoning and change, as long as they provide a certain
minimum amount of expressivity. However, a proper demonstration of the viabil-
ity of the approach requires a varied set of concrete examples. For these examples
we have chosen to use a single logic: TAL-C (Karlsson & Gustafsson, 1999).

In the first part of the article, we will introduce TAL-C (Section 4.2), show
how domains can be modeled in TAL-C in an object-oriented manner (Sections 5.3
and 5.4) and discuss some more complex issues related to object-orientation (Sec-
tion 5.5) and how this affects elaboration tolerance (Section 5.6). Then, the ideas
covered in the first part will be applied to the Missionaries and Cannibals domain

Elaboration Tolerance through OO 73

(Section 5.7). The 19 elaborations of this domain defined by McCarthy in his pa-
per on elaboration tolerance (1998) will also be covered (Section 5.8), and a way of
actually solving the problems within the logic is discussed (Section 5.9). An object-
oriented model of the Traffic World domain (Sandewall, 1999) is briefly mentioned
(Section 5.10). Finally, we conclude with related work (Section 5.11) and a discus-
sion of the results (Section 5.12).

4.2 The TAL family and the TAL-C Logic

This article will use TAL-C as a basis for applying concepts from object-oriented
modeling. A subset of this logic is implemented in the research tool VITAL (Kvarn-
ström, 2005), a platform-independent Java tool that can be downloaded from the
WWW. All narratives belonging to the subset supported by VITAL have a finite
number of models, and VITAL uses constraint propagation techniques to generate
all models (or any given number of models) of such narratives. This provides us
with an experimental platform where object-oriented narratives can be tested.

Since TAL-C has already been introduced in this thesis, most of the description of TAL-
C in this section has been removed. Please refer to Chapter 2 and the description of the
Extended Hiding Turkey Scenario in Section 2.3.

One new macro was introduced in this section: The Set macro, an alias for the interval
reassignment macro previously called I.

Apart from being more complex than many traditional benchmark problems
in the RAC community (the even more well-known Stanford Murder Mystery re-
quires only four short statements), the Extended Hiding Turkey Scenario presented
in Section 2.3 is fairly representative of the area. The statements are ordered by
type, with no special regard to the structure of the problem. The fluents are also
unstructured in the sense that there is no indication that alive and hiding refer to
properties of a turkey while loaded and noise do not.

Although the hiding turkey domain is still comprehensible in this unorganized
form, it is clear that some additional structure will be valuable when modeling
more complex domains. The following section presents a way of applying the
object-oriented paradigm to modeling such domains.

4.3 Basic Object-Oriented Modeling in TAL-C

As has been shown previously (Karlsson & Gustafsson, 1999; Karlsson, Gustafs-
son, & Doherty, 1998; Kvarnström & Doherty, 2000a), the TAL logics are flexible
and fine-grained logics suitable for handling a wide class of domains. We will now
show how to use object-oriented modeling as a structuring mechanism for domain
descriptions, thereby supporting the modeling of more complex domains and in-
creasing the possibility of being able to reuse existing models when modeling re-
lated domains.

74 4.3. Basic Object-Oriented Modeling in TAL-C

To simplify the task of the domain designer, some extensions to the L(ND) syn-
tax will be introduced. These extensions are not essential, since the new macros
and statement classes can mechanically be translated into the older syntax. The
translations are implemented in the research tool VITAL.

The remainder of this section will show how classes are declared and how to
instantiate objects of a specific class. We will then go on to discuss how to declare
and use attributes (fields), and how to use three different types of methods: Acces-
sors, mutators, and constraint methods. This provides the basic functionality for
the object-oriented modeling of complex domains in TAL-C. Section 4.4 will cover
additional topics such as how to override a method.

4.3.1 Defining Classes and Objects

In TAL, domains are traditionally modeled using an unstructured set of boolean or
non-boolean fluents, each of which can take a number of arguments belonging to
specific value domains.

In our object-oriented approach, we will instead concentrate on classes and ob-
jects. Each class will be modeled as a finite value domain, and each object as a value
in that domain. Due to the order-sorted type structure used in TAL, inheritance hi-
erarchies for classes are easily supported by modeling subclasses as subdomains.
We will assume that the hierarchy has a single root called OBJECT.

Given the approach being used, it would be easy to introduce a class alias for the
ordinary domain declaration statement. However, this would mean that any class
declaration statement would have to explicitly enumerate all objects belonging to
the class. Instead, a new, more flexible syntax is introduced which allows class and
object declarations to be separated.

Defining Classes

The narrative type specification syntax in VITAL is extended to allow two forms
of class declaration statement. A statement of the form class NEWCLASS declares a
new top-level class named NEWCLASS, without a parent. Usually this is only used
for the OBJECT class. A statement of the form class SUB extends SUPER declares a
new subclass named SUB, with the parent class (superclass) SUPER. This makes SUB

a direct subclass of SUPER, and SUPER is a direct superclass of SUB.
A class SUB is a subclass of SUPER iff it is a direct subclass of SUPER or there is an

intermediate class INTER such that SUB is a direct subclass of INTER and INTER is a
subclass of SUPER. The superclass concept is defined similarly.

A simple water tank domain will be used as a running example. This domain
requires the standard root class OBJECT together with a domain TANK for water
tanks. We are also interested in modeling a special type of tank, a FLOWTANK,
which may have a flow of water into or out of the tank, as well as PIPEs between
the tanks.

Elaboration Tolerance through OO 75

class OBJECT

class TANK extends OBJECT

class FLOWTANK extends TANK

class PIPE extends OBJECT

Defining Objects

Objects are declared in the narrative type specification using object statements (la-
beled obj). Declaring an object as a member of a class naturally also makes it a
member of its superclasses: Any FLOWTANK is automatically also a TANK and an
OBJECT.

obj tank1 : TANK

obj tank2, tank3 : FLOWTANK

obj pipe1 : PIPE

Note that since classes correspond to value domains, it is possible to quantify over
all objects belonging to a given class. Also note that objects are not created at any
particular timepoint. They are declared in the narrative specification and exist at
all timepoints.

Translation

Because VITAL requires a single definition for each value domain, class declara-
tions and object declarations cannot be translated in isolation. Instead, the com-
plete set of class and object declarations are translated into TAL-C in the following
manner.

An object o is considered to be explicitly declared to belong to the class CL iff
there is an object declaration statement having the following form:

obj . . . , oi, . . . : CL

Each class declaration statement class NEWCLASS for a top-level class NEWCLASS

is translated into the domain declaration statement domain NEWCLASS :elements

{ o1, . . . , on }, where the objects o1, . . . , on are exactly those objects that are explicitly
declared to belong to NEWCLASS or to a subclass of NEWCLASS.

Each class declaration statement class NEWCLASS extends SUPER for a non-top-
level class NEWCLASS is translated into the domain declaration statement domain

NEWCLASS :extends SUPER :elements { o1, . . . , on }, where the objects o1, . . . , on
are exactly those objects that are explicitly declared to belong to NEWCLASS or to a
subclass of NEWCLASS.

This leads to the following VITAL domain definitions for the classes and objects
declared above:
domain OBJECT :elements { pipe1, tank1, tank2, tank3 }

domain TANK :elements { tank1, tank2, tank3 }

domain FLOWTANK :elements { tank2, tank3 }

domain PIPE :elements { pipe1 }

76 4.3. Basic Object-Oriented Modeling in TAL-C

4.3.2 Using Attributes

As usual in object-oriented languages, each object can be associated with a set of at-
tributes, also known as fields. All objects of a certain class share the same attributes,
but the specific values of the attributes may differ between the objects. Below, we
show how attributes are modeled in TAL-C, how they are initialized, and how they
can be changed at specific points in time.

Defining Attributes

All attributes are specified in attribute declarations (labeled attr). For example, any
TANK has a current volume, a maximum volume, and a base area, all of which are
Real values.1 These attributes are persistent: They will not change unless explicitly
changed. This is specified as follows:

attr TANK.volume : Real
attr TANK.maxvol : Real
attr TANK.area : Real

It is also possible to define attributes with arguments, which provides functionality
similar to the use of arrays or mappings in programming languages. For example,
if any water tank must keep track of exactly which pipes it is connected to, this can
be modeled using a boolean attribute connected taking a pipe as an argument:

attr TANK.connected(PIPE) : boolean

An attribute is automatically translated into a fluent taking one additional argu-
ment – an object of the class to which the attribute belongs. Thus, the declarations
above are translated into the TAL fluents volume(TANK) : Real, maxvol(TANK) :
Real, area(TANK) : Real, and connected(TANK, PIPE) : boolean. Since time-depen-
dent fluents are used, any attribute can vary over time in a natural manner.

More formally, an attribute declaration attr CLS.attr(s1, . . . , sn) : s where n ≥ 0
is translated into a feature declaration feature attr(CLS, s1, . . . , sn) : s.

Using the standard TAL-C syntax, the volume attribute of tank1 would be de-
noted by volume(tank1). To permit the use of the standard object-oriented syntax
tank1.volume, we define obj.attr(x1, . . . , xn) def= attr(obj, x1, . . . , xn), where n ≥ 0; if
n = 0, the parentheses may be omitted. This syntax will also be applied to method
invocations.

Attributes in Subclasses

Due to the use of the order-sorted type structure in TAL-C, subclasses automatically
inherit the attributes of their parents, as in ordinary object-oriented languages. For

1Since TAL currently requires finite domains, it is necessary to specify upper and lower bounds on
the Real domain as well as the desired precision. This is also true for the Integer domain which will
be used in later examples. However, these limitations are not relevant to the modeling issues covered in
this article.

Elaboration Tolerance through OO 77

example, tank1, tank2 and tank3 all have a volume, despite the fact that the latter
two are declared as FLOWTANK objects.

Naturally, subclasses can also add new attributes. For example, the FLOWTANK

class keeps track of the current flow of water in or out of the tank, which is modeled
as a �ow attribute:

attr FLOWTANK.�ow : Real

Initializing Attributes

Although it would have been possible to introduce special syntax for object ini-
tialization, similar to constructors in standard object-oriented languages, this only
appears to be natural in the case where complete information about all objects is
available.

The TAL logics allow the use of incomplete information – for example, due to
sensor accuracy, one might only know that the initial volume of water in a tank
is less than 0.02. Therefore, we still use plain TAL-C observation statements to
partially or completely initialize attributes at time 0.

obs ∀tank.[0] tank.volume ≤ 0.02
obs [0] tank2.�ow =̂ 0∧ tank3.�ow =̂ 0.12

4.3.3 Methods

In a classical object-oriented view, a method is a sequence of code that is procedu-
rally executed when the method is invoked. In our approach, however, a method
is a set of formulas that must be satisfied whenever the method is invoked. Meth-
ods can be invoked over intervals of time, and several methods can be invoked
concurrently.

Three different kinds of methods are defined: Accessors (which query the state
of an object), mutators (which are called in order to change the state of an object),
and constraint methods (which are not explicitly invoked but are active at all time-
points).

Accessors

Accessors are used for querying the state of an object. This can be done simply by
retrieving the current value of an attribute, or by performing arbitrarily complex
calculations as long as these calculations can be expressed within the logic being
used.

An accessor is modeled using a return value fluent, a dynamic (non-persistent,
non-durational) fluent that takes on the desired return value at all timepoints. For
example, a simple query-volume() method for a water tank can be modeled by in-
troducing a dynamic fluent query-volume(TANK) : Real and adding the following
domain constraint:

78 4.3. Basic Object-Oriented Modeling in TAL-C

acc [t] tank.query-volume() =̂ value(t, tank.volume)

Although this type of accessor may not appear very useful at first glance, the inten-
tion is that the attributes of a class (such as volume in TANK) should be considered
private within that class, and that external callers should only use the externally
available interface, such as the query-volume accessor. Actually enforcing this inten-
tion would require additional support from the tools being used to reason about an
object-oriented narrative.

A slightly more complex accessor might determine whether the tank is full,
which is the case if its volume equals its maximum volume (maxvol). This is done by
declaring a dynamic return value fluent query-full(TANK) : boolean and using the
following domain constraint:

acc [t] tank.query-full()↔ value(t, tank.volume) = value(t, tank.maxvol)

Mutators

Mutators can be called to change the internal state of an object, and are modeled as
dependency constraints triggered by boolean invocation fluents.

To define a mutator method with n ≥ 0 arguments of sorts 〈s1, . . . , sn〉 in class
CLASS, it is first necessary to define a durational invocation fluent method(CLASS,
s1, . . . , sn) with default value false. The method implementation consists of a de-
pendency constraint that is triggered for an object obj only when the invocation
fluent obj.method(x1, . . . , xn) is true. For example, a mutator set-volume(Real) can
be defined in class TANK as follows:

per ∀t, tank, v ∈ Real.Dur(t, tank.set-volume(v), false)
dep ∀t, tank, v ∈ Real.[t] tank.set-volume(v)→ Set([t] tank.volume =̂ v)

Calling the method requires making the invocation fluent true for the appropriate
arguments at the timepoint when the method should be invoked. As usual, this is
done using the Set macro, and therefore a TAL dependency constraint is required.
For example, the volume of tank1 can be set to 4.5 at time 2 as follows:

dep Set([2] tank1.set-volume(4.5) =̂ true)

This is simplified further by defining Call(τ, f) def= Set([τ] f =̂ true):
dep Call(2, tank1.set-volume(4.5))

Constraint Methods

Constraint methods model behaviors that should always be active. Instead of being
triggered by invocation fluents, constraint methods are active at all timepoints. In a
sense, they could be viewed as mutators that are continuously invoked. This allows
many common RAC constructions such as state constraints to be expressed while
keeping an object-oriented viewpoint.

The fact that the volume of water in a FLOWTANK changes according to the flow
of water can be encoded as follows:

Elaboration Tolerance through OO 79

dep Set([t + 1]tank.volume =̂ value(t, tank.volume+ tank.�ow))

This concludes the discussion of the most basic concepts in object-orientation: Clas-
ses, objects, attributes, and methods. The following section will show how to
reify the class structure in order to model method overriding in TAL-C, while Sec-
tion 4.5 demonstrates how some additional object-oriented concepts, such as ab-
stract classes and final methods, can be modeled.

4.4 Inheritance and Overriding

Although the concepts presented in the previous section are sufficient for modeling
many domains, it is still possible to improve the elaboration tolerance of the models
considerably by introducing the object-oriented concept of overriding: Allowing a
subclass to re-implement a method in order to refine or specialize it.

This requires a way of disabling a method implementation that is inherited from
a superclass, which is facilitated by providing the logic formulas with some addi-
tional information about the class structure used in a domain model.

4.4.1 Reifying the Class Structure

Since the TAL logics have no built-in support for allowing logic formulas to inspect
the class (sort) structure of a particular domain, it is necessary to reify this structure.
This can of course be done mechanically, and support for this is built into current
versions of VITAL (Kvarnström, 2005).

The class structure is reified by mechanically constructing a TAL value domain
classname containing all class names, and declaring and initializing a persistent
boolean fluent2 subclass(classname, classname), where subclass(c1, c2) is true iff c1
is a subclass of c2. For the water tank example, the definitions would be equivalent
to the following:
domain classname :elements { OBJECT, TANK, FLOWTANK }

feature subclass(classname, classname) :domain boolean

per ∀t, classname1, classname2.t > 0→ Per(t, subclass(classname1, classname2))

obs ∀c1 ∈ classname, c2 ∈ classname
[0] subclass(c1, c2)↔

((c1 = FLOWTANK ∧ c2 = OBJECT) ∨
(c1 = FLOWTANK ∧ c2 = TANK) ∨
(c1 = TANK ∧ c2 = OBJECT))

Note that since subclass is persistent, it is sufficient to provide a value at time 0. This
value will automatically propagate to all timepoints.

2Although we do not intend to change subclass relations over time, TAL-C has no support for time-
independent functions and therefore a fluent must be used.

80 4.4. Inheritance and Overriding

In addition to this, it is sometimes necessary to be able to identify the exact type
of a certain object. To this end, an attribute class of type classname is added to the
root class OBJECT:

attr OBJECT.class : classname

This attribute is also initialized automatically during the translation of the object
declaration statements. In the water tank example, the following observations
would be generated:

obs [0] tank1.class =̂ TANK

obs [0] tank2.class =̂ FLOWTANK

obs [0] tank3.class =̂ FLOWTANK

obs [0] pipe.class =̂ PIPE

It should be emphasized that these domains and fluents are created automatically
during the translation process and need not be explicitly defined by the user.

4.4.2 Overriding Method Implementations

Suppose that a method method is defined and implemented in a class CLASS ∈
classname. This implementation of method will be active for any object of type
CLASS, including objects belonging to subclasses of CLASS.

When a new subclass SUB is created, we may want to override some of the meth-
ods defined in the superclass CLASS. This means not only adding a new implemen-
tation of the method for objects in SUB, but also disabling the old implementation
for those objects.

To allow this to be modeled in TAL-C it is necessary to reify the concept of over-
riding a method. We introduce the boolean fluent override(SUB,method, CLASS) ex-
pressing the fact that for objects belonging to SUB, any implementation of method

in the superclass CLASS is overridden and should be disabled. This fluent is dura-
tional with default value false, since overriding should only occur when explicitly
forced.

All method implementations should then be conditionalized on not being over-
ridden, and should explicitly override implementations in superclasses.

The former is achieved by adding a suitable override expression in the precondi-
tion of each method. For example, when set-volume mutator declared in class TANK

is called for an object tank, the exact type of that object is tank.class (which may be
TANK or FLOWTANK). Thus, the method should be disabled if for objects of this
type (tank.class), the implementation of set-volume in the class TANK is overridden
– in other words, if override(tank.class, set-volume, TANK). The method is therefore
conditionalized as follows:

dep ∀t, tank ∈ TANK, f ∈ Real
[t] tank.set-volume(f) ∧ ¬override(tank.class, set-volume, TANK)→
Set([t] tank.volume =̂ f)

The latter is done by adding a statement on the following form each time a method
method is defined in a class CURRENTCLASS:

Elaboration Tolerance through OO 81

dep ∀t, SUPER ∈ classname, SUB ∈ classname
([t] subclass(CURRENTCLASS, SUPER)) ∧
([t] subclass(SUB, CURRENTCLASS) ∨ SUB = CURRENTCLASS)→
Set([t] override(SUB,method, SUPER))

This states that when a method is re-implemented in CURRENTCLASS, its inherited
implementation from any superclass SUPER is disabled for any object whose type
SUB is either exactly CURRENTCLASS or a subclass of CURRENTCLASS.

For convenience, the macro DisableInherited(CURRENTCLASS,method) will be
used as a shorthand for statements of this type. This yields the following final
definition of the set-volume mutator:

dep DisableInherited(TANK, set-volume)
dep ∀t, tank ∈ TANK, v ∈ Real

[t] tank.set-volume(v) ∧ ¬override(tank.class, set-volume, TANK)→
Set([t] tank.volume =̂ v)

4.5 Additional Object-Oriented Concepts

This section will briefly present some additional ideas regarding the use of object-
oriented modeling in a logic for reasoning about action and change. These ideas
build on the basic concepts presented in the previous two sections, but will not be
developed at the same level of detail. Rather, they are intended to demonstrate
the flexibility of the paradigm and show how it could be extended and modified in
various directions depending on the needs of the user.

4.5.1 Multiple Method Implementations

In the examples presented previously, a method always has a single implementa-
tion. However, there is no reason why this always has to be the case. For example,
a mutator could consist of multiple dependency constraints, all of which are trig-
gered by the same invocation fluent. This allows a more modular implementation
of complex methods. It also permits a subclass to add to the implementation of a
method, rather than replace it, simply by not calling the DisableInherited macro to
disable the implementation provided by the superclass. This resembles the ability
to call a superclass implementation of a method using super.method(. . .) in the Java
programming language.

4.5.2 Preventing Overriding: Final Methods

In some object-oriented programming languages, a method implementation can be
marked as “final”, meaning that it cannot be overridden in a subclass.

Final methods can be defined in TAL-C by stating that they are never overrid-
den. For example, the set-volume method from Section 4.4.2 could be made final by
adding the following statement:

82 4.5. Additional Object-Oriented Concepts

acc ∀t, tank ∈ TANK.[t] ¬override(tank.class, set-volume, TANK)

Unlike most programming languages, this form of type checking is dynamic rather
than static. If a method is overridden despite being final, this will generate an
inconsistent narrative rather than an error during translation. VITAL will detect
such inconsistencies and report the error to the user.

4.5.3 Forcing Overriding: Abstract Methods

While final methods are implemented and cannot be overridden in subclasses, ab-
stract methods are not implemented and must be overridden in all subclasses. The
following statement can be used to declare that the get-color method is abstract in
the class TANK:

acc ∀t, tank ∈ TANK.[t] override(tank.class, get-color, TANK)

Note that this statement in itself is not sufficient for permitting the override fluent
to be true. The fluent is durational, and can only take on the value true if it is
explicitly assigned that value, which is not the case in this formula. Instead, the
formula states that someone else must have assigned it the value true using the Set
macro, which would be done indirectly by an overriding method declaration using
the DisableInherited macro.

4.5.4 Abstract Classes

An abstract class cannot be instantiated. Such a class can be modeled using a simple
constraint of the following form:

acc ∀t¬∃object.[t] object.class =̂ CLASS

4.5.5 Class Methods

All methods shown up to now have been instance methods. For example, set-
volume is called for an instance of the TANK class, and only alters the volume of
that specific instance. It is also possible to model class methods, which are associ-
ated with the class itself rather than with an instance.

A class accessor method can be defined in TAL-C using a return value fluent
that does not take an object as its first argument. Similarly, a class mutator can be
defined using an invocation fluent that does not take an object as its first argument.
For example, all tank volumes can be reset to zero using the following class method
in the TANK class:

dep ∀t.[t] set-zero-volume() ∧ ¬override(TANK, set-zero-volume, TANK)→
∀tank.Set([t] tank.volume =̂ 0.0)

Note that this method is called directly, as in Call(7, set-zero-volume()), without
specifying a tank object as in Call(7, tank1.set-volume(0)).

Elaboration Tolerance through OO 83

4.5.6 Access Control

For mutators, a form of cooperative access control can be implemented by adding
to the invocation fluent another argument representing the caller. Using the set-

volume mutator as an example, the following changes would be made:
dep DisableInherited(TANK, set-volume)
dep ∀t, tank ∈ TANK, caller ∈ TANK, v ∈ Real

[t] tank.set-volume(caller, v) ∧ ¬override(tank.class, set-volume, TANK)→
Set([t] tank.volume =̂ v)

In this definition, the caller argument must be a TANK, and consequently only a
TANK can call the set-volume method. This is similar to a protected method in Java,
and could possibly be used to help ensure that encapsulation is respected. How-
ever, this only provides a purely cooperative form of access control, since anyone
wanting to call set-volume() could in principle simply send an arbitrary tank object
as the caller.

4.6 Elaboration Tolerance through Object-Orientation

According to McCarthy (1998), elaboration tolerance is “the ability to accept chang-
es to a person’s or a computer program’s representation of facts about a subject
without having to start all over”. Several ideas used in the object-oriented par-
adigm facilitate the creation of elaboration tolerant domain models. This is not
surprising, since the reasons behind the object-oriented paradigm include modu-
larization and the possibility to reuse code.

The structuring of objects, fluents, domain constraints and dependency con-
straints into a well-defined set of named classes, attributes and methods is a pow-
erful tool for increasing the readability of a domain definition. This helps provide a
better understanding of the domain, which is in itself a very important prerequisite
for being able to adapt and extend the definition.

The use of inheritance makes it possible to specialize a class, adding new at-
tributes, methods and constraints while reusing those features from the superclass
that are still useful in the new subclass. Using overriding, the behaviors of a super-
class can be changed without knowing implementation-specific details and without
the need for “surgery” (McCarthy’s term for modifying a domain description by
actually changing or removing formulas or terms rather than merely adding facts).

While the creation of a subclass does not alter the behavior of its superclass,
it is also possible to add new attributes and methods directly to an existing class
without the need to modify the existing parts of the class definition.

Adding a new class requires changes to the classname domain and the sub-

class fluent. These changes are done automatically at translation time. Adding new
methods may also yield a new definition of the automatically generated Occlude
predicate (the TAL approach to solving the frame problem, as described in Appen-
dices A and B). However, the new definition can be created by analyzing the new

84 4.7. Missionaries and Cannibals

methods in isolation and adding new disjuncts to the existing definition of Occlude.
It is not necessary to start over from the beginning because a new class is added or
because a method is overridden.

The elaboration tolerance of this approach will now be tested using a concrete
example domain.

4.7 Missionaries and Cannibals

McCarthy (1998) illustrates his ideas regarding elaboration tolerance with 19 elab-
orations of the Missionaries and Cannibals Problem (MCP). We will begin by mod-
eling the basic, unelaborated domain using the object-oriented constructions pre-
sented above. In the next section we will show that the ability to override methods
and to add new methods and attributes in subclasses provides a natural way to
model many of the elaborations. Section 4.9 shows how the problem instances can
be solved by generating plans within the logic.

4.7.1 Overview of the Design

The basic version of the MCP is as follows:

Three missionaries and three cannibals come to a river and find a boat
that holds two. If the cannibals ever outnumber the missionaries on
either bank, the missionaries will be eaten. How shall they cross in order
to avoid anyone being eaten?

Although we know we will eventually need to model some elaborated versions of
the domain, we will attempt to ignore that knowledge and provide a model suitable
for this particular version of the MCP. This will provide a better test for whether the
object-oriented model is truly elaboration tolerant.

We will define classes for objects, boats, places, and banks (Figure 4.1). Like
Lifschitz (2000), we will initially model missionaries and cannibals as groups of a
certain size rather than as individuals, despite the fact that a few of the elaborations
do require individuals to be treated as such; this is also done to provide a better test
for elaboration tolerance. In the standard domain, there will be six (possibly empty)
groups: Missionaries and cannibals at the left bank, at the right bank, and on the
boat.

4.7.2 Object

The root class OBJECT has a pos attribute representing its position, which is a PLACE

(Section 4.7.3):
class OBJECT

attr OBJECT.pos : PLACE

Elaboration Tolerance through OO 85

OBJECT

PLACE BOAT GROUP

CANGROUPBANK MISGROUP

Figure 4.1: Classes in the Missionaries and Cannibals Domain

The following methods are available for accessing and changing the position:

Accessor query-pos(): Returns the position of the object.
dep DisableInherited(OBJECT, query-pos)
dep [t] ¬override(object.class, query-pos, OBJECT)→

Set([t] object.query-pos() =̂ value(t, object.pos))

Mutator set-pos(PLACE): Sets the position of the object.
dep DisableInherited(OBJECT, set-pos)
dep [t] ¬override(object.class, set-pos, OBJECT) ∧ object.set-pos(place)→

Set([t] object.pos =̂ place)

In the remainder of this article, attributes will generally be assumed to have acces-
sors and mutators following this pattern.

4.7.3 Place

The standard problem contains three different places: The left and right river bank
and onboard the boat. This is modeled as a generic class PLACE with a subclass
BANK.

A PLACE may be connected to other places, which is represented using a boolean
attribute connection with a PLACE argument.
class PLACE extends OBJECT

attr PLACE.connection(PLACE) : boolean

Since the PLACE onboard the boat will be connected to the bank where it is cur-
rently located, and since the boat will move between the two banks, the connection

attribute will change dynamically over time. Therefore two mutator methods are
available, in addition to the standard query method.

86 4.7. Missionaries and Cannibals

Accessor query-connection(PLACE): Returns true if this PLACE is connected to the
given PLACE.

dep DisableInherited(PLACE, query-connection)
dep [t] ¬override(place.class, query-connection, PLACE)→

Set([t] place.query-connection(place′) =̂ value(t, place.connection(place′)))

Mutator add-connection(PLACE): Connects this PLACE to another PLACE.
dep DisableInherited(PLACE, add-connection)
dep [t] ¬override(place.class, add-connection, OBJECT) ∧

place.add-connection(place′)→
Set([t] place.connection(place′) =̂ true) ∧
Set([t] place′.connection(place) =̂ true)

Mutator remove-connection(PLACE): Removes the connection from this PLACE to
another PLACE.

dep DisableInherited(PLACE, remove-connection)
dep [t] ¬override(place.class, remove-connection, OBJECT) ∧

place.remove-connection(place′)→
Set([t] place.connection(place′) =̂ false) ∧
Set([t] place′.connection(place) =̂ false)

4.7.4 Bank

A BANK is a PLACE where a boat can be located. The standard MCP has two banks:
The left bank and the right bank.
class BANK extends PLACE

This class adds no new methods or attributes. Instead, the constraints on a BOAT

will guarantee that it is always located at a BANK.

4.7.5 Group

A GROUP represents a group of people in a certain location; subclasses such as
CANGROUP and MISGROUP will be used for specific types of people. It adds two
new methods and a size attribute specifying the number of people in the group.
class GROUP extends OBJECT

attr GROUP.size : Integer

Accessor query-can-move-to(GROUP): In the basic domain, people can move from
one group to another only if they are groups of the same type and the two groups
are connected. For example, people cannot move from a missionary group to a
cannibal group, or teleport from the left bank to the right bank. For simplicity, we

Elaboration Tolerance through OO 87

make the return value fluent durational with default value false, and explicitly set
it to true only when necessary.

dep DisableInherited(GROUP, query-can-move-to)
dep [t] ¬override(group.class, query-can-move-to, GROUP) ∧

group.query-pos().query-connection(group′.query-pos()) ∧
group.class =̂ group′.class)→

Set([t]group.query-can-move-to(group′) =̂ true)

Mutator modify-group(GROUP, n): Calling group.modify-group(group2, n) moves n
people from group to group2, if n is positive – otherwise, it moves |n| people in the
other direction. It is the caller’s responsibility to use query-can-move-to() to ensure
that the change is in fact “legal”, and to ensure that a sufficient number of people
is available in the source group. It is also the caller’s responsibility to ensure that
symmetry is retained: If group.modify-group(group2, n) is called, the corresponding
method group2.modify-group(group,−n) must also be called.

The implementation of this method is somewhat complex due to the fact that
people could potentially move concurrently between multiple groups. For exam-
ple, one person could move from group1 to group2 while another moves from
group2 to group3 and two from group3 to group1. The cumulative effects of these
concurrent method calls must be taken into account.

For this reason, modify-group does not follow the standard pattern where each
invocation triggers a separate instance of a formula. Instead, a single dependency
constraint sums the arguments of all concurrent invocations:3

dep DisableInherited(GROUP,modify-group)
dep [t] ¬override(group.class,modify-group, GROUP)→

Set([t + 1] group.size =̂ value(t, group.size) + ∑
{〈g,x〉 | g∈GROUP∧[t] group.modify-group(g,x)}

x

The macro people_at(τ, GROUP, place) will denote the number of people at place of
the given type GROUP at time τ:

people_at(τ, GROUP, place) =

∑
{g | g∈GROUP∧[τ] g.query-pos()=̂place}

value(τ, g.query-size())

For example, given that left denotes the left bank, the macro expression people_at
(7, CANGROUP, left) denotes the number of cannibals on the left bank at time 7,
and people_at(7, GROUP, left) denotes the total number of people on the left bank
at time 7.

3Throughout this article we will use summation over a set as a shorthand. Since TAL-C uses finite
domains, each expression can be rewritten as a finite expression using plain addition.

88 4.7. Missionaries and Cannibals

4.7.6 Cannibals

A CANGROUP is a group of cannibals. The class extends GROUP and adds one new
method.
class CANGROUP extends GROUP

Constraint eat-missionaries(): Specifies that there cannot be more cannibals than
missionaries at any place. This constraint rules out any state where the cannibals
would be able to eat a missionary.

Note that whenever a boat is at a river bank, anyone in the boat is considered
to be at the same place as anyone on the bank. For this reason we define the macro
people-in-boats-near(τ, GROUP, place), denoting the number of people in boats at
the given place place, belonging to a group of the given type GROUP, at time τ:

people-in-boats-near(τ, GROUP, place) =

∑
{〈boat,g〉 | [τ] g.query-pos()=̂boat.query-onboard()∧boat.query-pos()=̂place}

value(τ, g.query-size())

Then, if totalmis is the total number of missionaries in a certain location (or in boats
at that location), then either this must be zero or it must be greater than the total
number of cannibals.

dep DisableInherited(CANGROUP, eat-missionaries)
acc [t] ¬override(cangroup.class, eat-missionaries, CANGROUP) ∧

cangroup.query-position() =̂ place∧
totalmis = people_at(t, MISGROUP, place) +

people-in-boats-near(t, MISGROUP, place)→
totalmis = 0∨
totalmis >= people_at(t, CANGROUP, place) +

people-in-boats-near(t, CANGROUP, place)

4.7.7 Missionaries

A MISGROUP is a group of missionaries. The class extends GROUP and adds no new
methods or attributes.
class MISGROUP extends GROUP

4.7.8 Boat

A BOAT is used to cross the river. Its onboard attribute points to the PLACE onboard
the boat (which is the pos of any GROUP onboard the boat).

Elaboration Tolerance through OO 89

class BOAT extends OBJECT

attr BOAT.onboard : PLACE

There are two new methods:

Constraint boat-limit(): There must never be more than two passengers onboard a
boat.

dep DisableInherited(BOAT, boat-limit)
dep [t] ¬override(boat.class, boat-limit, BOAT)→

people_at(t, GROUP, value(t, boat.query-onboard())) ≤ 2

Mutator move-to(BANK): The move-to method is a low-level mutator that moves
the boat to another BANK. This involves altering the pos attribute, but also remov-
ing the connection from the boat to its current location as well as adding a new
connection from the boat to its new location.

dep DisableInherited(BOAT,move-to)
dep [t] ¬override(boat.class,move-to, BOAT) ∧

boat.move-to(bank) ∧
boat.query-pos() = oldbank→

Call(t + 1, boat.query-onboard().remove-connection(oldbank)) ∧
Call(t + 1, boat.set-pos(bank)) ∧
Call(t + 1, boat.query-onboard().add-connection(bank))

4.7.9 Setting Up the Problem Instance

In order to set up a problem instance, we first have to instantiate some objects.
The boat will be called vera, there will be two banks (left and right), and there are
groups of missionaries and cannibals in all three places.

obj left, right : BANK

obj onvera : PLACE

obj vera : BOAT

obj cleft, cvera, cright : CANGROUP

obj mleft, mvera, mright : MISGROUP

The following observation statements specify the attributes of these objects:
obs [0] vera.pos =̂ left∧ vera.onboard =̂ onvera
obs [0] cleft.pos =̂ left∧ cleft.size =̂ 3
obs [0] cvera.pos =̂ onvera
obs [0] cright.pos =̂ right
obs [0] mleft.pos =̂ left∧mleft.size =̂ 3
obs [0] mvera.pos =̂ onvera
obs [0] mright.pos =̂ right
acc [0] group.size =̂ 0↔ (group 6= mleft∧ group 6= cleft)

90 4.8. Elaborations of the MCP Domain

acc [0] place1.connection(place2)↔
((place1 = left∧ place2 = onvera) ∨
(place1 = onvera∧ place2 = left))

This completes the modeling of the basic Missionaries and Cannibals Domain. In
the next section we will describe 19 elaborations of this domain, and in Section 4.9,
we will show how to solve the problems within the logic.

4.8 Elaborations of the MCP Domain

McCarthy (1998) considers 19 different elaborations of the basic Missionaries and
Cannibals domain, and discusses the requirements these domains place on a for-
malism used for modeling them and on a system for reasoning about and solving
the problems. These elaborations will now be modeled in TAL-C using the object-
oriented model of the MCP domain as a basis. The relations between the elabora-
tions are shown in Figure 4.2.

The elaborations are often rather vaguely formulated, and we do not claim to
have captured every aspect of each problem or that the formalism always allows
the elaborations to be expressed as succinctly as possible. We concentrate on the
modeling of the domains rather than on the computational properties of a reasoner
finding plans for problem instances or proving that no plan exists. However, we do
feel that most of the main points of the domain elaborations have been modeled in
a reasonable manner.

Earlier versions of the domain definitions are available as part of the VITAL tool,
which can be downloaded from the web (Kvarnström, 2005). The current versions
will be added in the next release of VITAL.

4.8.1 Domain and Problem Specifications

We will consider each problem to consist of two parts. The domain specification de-
fines the classes being used together with their attributes and the inheritance hi-
erarchy, while the problem specification defines the object instances being used in a
specific problem instance together with the initial values of their attributes.

Our focus has been on elaboration tolerance for the domain specification. Each
elaboration may add new classes, or add new methods or attributes to existing
classes. Note that no part of the original L(ND) domain specification is removed
or modified in any of the elaborations.

Although it would have been possible to use similar techniques to model the
problem specification in Section 4.7.9 in a defeasible manner, we instead make the
assumption that one is generally interested in solving many different problems in
the same general domain and that the specific problem instances (such as the num-
ber of missionaries and cannibals, the set of river banks, and which places are con-

Elaboration Tolerance through OO 91

(#7)

(#6)Carry three (#4)

Rowboat (#1)

Four of each (#3) Food (#18)

One oar (#5)

Hats (#2)

Row quickly (#17)Hungry

Individuals

Not everyone rows

Original

Big Cannibal (#8)

Two sets of people (#19)

Island (#16)

Damage (#15)

Leak (#14)

Bridge (#13)

Stolen boat (#12)

Conversion (#11)

Jesus (#10)

Big cannibal, small missionary (#9)

Figure 4.2: Elaborations of the Missionaries and Cannibals domain

nected) are generated from scratch each time. The problem instance definitions for
the elaborations below are generally trivial and will usually be omitted.

4.8.2 The Boat Is a Rowboat (#1)

In the first elaboration by McCarthy, we find out that the boat is in fact a rowboat.
This requires a new class ROWBOAT, subclass of BOAT, and vera must be made an
instance of ROWBOAT.

However, no new information is given regarding rowboats. The elaborated sce-
nario is essentially similar to the original problem – with the important exception
that if further information about rowboats is presented in the future, we will be
able to draw additional or different conclusions about vera.
class ROWBOAT extends BOAT

obj vera : ROWBOAT

4.8.3 Missionaries and Cannibals Have Hats (#2)

In the second elaboration, the missionaries and cannibals have hats, all different.
The hats may be exchanged among the missionaries and cannibals.

92 4.8. Elaborations of the MCP Domain

Viewing Missionaries and Cannibals as Individuals

While missionaries and cannibals used to be interchangeable and could be modeled
as groups, they must now be seen as individuals. A class for persons is added,
together with a group attribute that keeps track of the group to which the person
belongs. This attribute should be initialized to suitable values in the initial state.
class PERSON extends OBJECT

attr PERSON.group : GROUP

What remains is ensuring that a person always belongs to the right group. The only
method moving people between groups is GROUP.modify-group(), but this method
only specifies how many people should move to another group, not which people
should move. Adapting this method to a model containing individuals may seem
to be a quite complicated task, and it might even seem like this elaboration is be-
yond the capabilities of our logic. Fortunately, this is not the case.

The solution lies in making the group attribute dynamic – allowing it to vary
freely over time without a persistence assumption – and then constraining it using
a new addition to modify-group(). The additional constraint essentially states that if
n people should move from group1 to group2, then there should be exactly n indi-
viduals who previously belonged to group1 and now instead belong to group2. Note
that we do not override modify-group: We merely add to its previous definition.

Constraint modify-group(GROUP2, n): Suppose that at some timepoint, the method
group1.modify-group(group2, n) is invoked, where group1 and group2 are two differ-
ent groups.

The definition of this method in the superclass (Section 4.7.5) states that if n is
positive, then n people should move from group1 to group2. This means that exactly
n individuals that used to belong to group1 should now belong to group2. This is
achieved using the first method implementation below.

On the other hand, if n is negative, then −n people should move in the other
direction. But in this case, group2.modify-group(group1,−n) must also be called, ac-
cording to the original constraints on modify-group in Section 4.7.5. Since −n is
positive, this case is also handled by the first method implementation below.

acc [t] ¬override(group1.class,modify-group, GROUP) ∧
[t + 1] group1.modify-group(group2, n) ∧
n ≥ 0∧
group1 6= group2 →
∑{p | p∈PERSON∧[t] p.group=̂group1∧[t+1] p.group=̂group2} 1 = max(0, n)

Yet another case occurs if for some timepoint t and some some distinct pair of
groups group1 and group2, the method is not invoked at all (for any n). In this case,
no person at all should move from group1 to group2. The rule above does not guar-
antee this, since if the method is not invoked at all for a certain pair of groups, the
antecedent of the implication cannot hold. An additional method implementation
is required, which is used when the method is not called:

Elaboration Tolerance through OO 93

acc [t] ¬override(group1.class,modify-group, GROUP) ∧
[t + 1] ¬∃n[group1.modify-group(group2, n)] ∧
group1 6= group2 →
∑{p | p∈PERSON∧[t] p.group=̂group1∧[t+1] p.group=̂group2} 1 = 0

Note that the final line could also be written as follows:
¬∃person[[t] person.group =̂ group1 ∧ [t + 1] person.group =̂ group2]

These two method implementations are sufficient to extend the group model into
a model with individuals, together with a new problem instance definition where
six PERSON objects are declared and placed into the groups on the left bank. This
hybrid group/individual model is admittedly somewhat more complex than a pure
individual-based model, but it is nevertheless interesting to see that the model can
be adjusted in this way without having to remove or completely rewrite existing
classes and methods.

It should be noted that this implementation makes it impossible to move n ≥ 0
people from group to group2 and at the same time move n′ ≥ 0 people from group
to group2, where n 6= n′. Although one could possibly interpret this to mean that
n + n′ people move from group to group2, this would only introduce complications
that are generally unnecessary.

Hats

Given the domain presented above, where the missionaries and cannibals are seen
as individuals, adding hats and the possibility to exchange them is trivial. A new
class for hats is added, together with a new hat attribute for determining which hat
belongs to which person:
class HAT extends OBJECT

attr PERSON.hat : HAT

Accessor and mutator methods for the hat attribute are added. Also, a method for
exchanging hats is added to PERSON:

Mutator exchange-hats(PERSON): Exchange hats with the given person.
dep DisableInherited(PERSON, exchange-hats)
dep [t] ¬override(person.class, exchange-hats, PERSON) ∧

person.exchange-hats(person′)→
Call(t + 1, person.set-hat(value(t, person’.get-hat()))) ∧
Call(t + 1, person′.set-hat(value(t, person.get-hat())))

Finally, six hats must be created and the hat attribute must be initialized.

94 4.8. Elaborations of the MCP Domain

4.8.4 Four of Each (#3)

There are four missionaries and four cannibals.
In our terminology, this is a change in the problem specification rather than in

the domain specification. The problem specification is therefore modified accord-
ingly:

obs [0] cleft.pos =̂ left∧ cleft.size =̂ 4
obs [0] mleft.pos =̂ left∧mleft.size =̂ 4
obs . . .

4.8.5 The Boat Can Carry Three (#4)

In the fourth elaboration, the boat can carry three people, while in the original
MCP, the number of people onboard a BOAT was restricted to two. Although it was
obvious that it would be useful to be able to model boats of varying capacities, we
nonetheless deliberately chose to hardcode the capacity in the original boat-limit

method in order to test the elaboration tolerance of the model. Thus, we now need
to create a subclass that overrides the old constraint. But this time, it will be done
the right way:
class SIZEBOAT extends BOAT

attr SIZEBOAT.capacity : Integer

Constraint boat-limit(): Ensure that the capacity is not exceeded.
dep DisableInherited(SIZEBOAT, boat-limit)
acc [t] ¬override(sizeboat.class, boat-limit, SIZEBOAT)→

people_at(t, GROUP, value(t, sizeboat.query-onboard())) ≤
value(t, sizeboat.query-capacity())

Using the capacity attribute it is now possible to model boats with arbitrary limits
on the number of passengers.

4.8.6 One Oar on Each Bank (#5)

Suppose that the boat is a rowboat, and that there is initially one oar on each bank.
Suppose also that one person can cross the river with a single oar, but that two
people will need both oars to cross together.

Modeling this as an extension of elaboration 1 requires a new class for oars, and
two oars must be created and placed in their initial positions. These oars can later
be moved between connected positions using set-pos().
class OAR extends OBJECT

obj oar1, oar2 : OAR

obs [0] oar1.pos =̂ left
obs [0] oar2.pos =̂ right

Elaboration Tolerance through OO 95

It is also necessary to ensure that the boat only moves when a sufficient number
of oars are available. One person can row using one oar, and two persons can row
using two oars – in other words, the number of people in the boat must not exceed
the number of oars.

dep DisableInherited(ROWBOAT, oar-limit)
acc [t] ¬override(rowboat.class, oar-limit, ROWBOAT) ∧

rowboat.query-onboard() =̂ place→
people_at(t, GROUP, place) ≤ ∑o | o∈OAR∧[t] o.query-pos()=̂place 1

4.8.7 Not Everybody Can Row (#6 and #7)

In elaboration 6, only one cannibal and one missionary can row (which leaves the
problem solvable), while in elaboration 7, no missionary can row (which makes
it unsolvable). These elaborations extend elaboration 1 (the rowboat). Two new
classes for rowing cannibals and rowing missionaries are introduced, and the prob-
lem initialization is changed accordingly (for example, six new groups are added):
class ROWCANGROUP extends CANGROUP

class ROWMISGROUP extends MISGROUP

obj rcleft, rcvera, rcright : ROWCANGROUP

obj rmleft, rmvera, rmright : ROWMISGROUP

obs . . .

The new constraint method BOAT.row-limit() ensures that no boat moves unless
there is someone aboard who can row.

dep DisableInherited(BOAT, row-limit)
acc [t] ¬override(boat.class, row-limit, BOAT) ∧

boat.query-pos() 6=̂ value(t + 1, boat.query-pos())→
people_at(t, ROWCANGROUP, boat.query-onboard()) +
people_at(t, ROWMISGROUP, boat.query-onboard()) > 0

4.8.8 Big Cannibal (#8)

In the eighth elaboration, one cannibal is too big to fit into the boat with another
person. A new group class for big cannibals is introduced, and the problem speci-
fication is changed accordingly:
class BIGCANGROUP extends CANGROUP

obj bcleft, bcvera, bcright : BIGCANGROUP

obs . . .

A new constraint method is added to this class, to ensure that if any big cannibals
are on board a boat, then there is exactly one person on board that boat:

dep DisableInherited(BIGCANGROUP, size-limit)
acc [t] ¬override(bigcangroup.class, size-limit, BOAT) ∧

people_at(t, BIGCANGROUP, boat.query-onboard()) > 0→
people_at(t, GROUP, boat.query-onboard()) =̂ 1

96 4.8. Elaborations of the MCP Domain

4.8.9 Big Cannibal, Small Missionary (#9)

There is a big cannibal and a small missionary. The big cannibal can eat the small
missionary if they are alone in the same place.

To model this elaboration, we add the classes SMALLMISGROUP for small mis-
sionaries and BIGCANGROUP for large cannibals together with a constraint method
eat-small that ensures that a small missionary and a big cannibal are never isolated
together.
class SMALLMISGROUP extends MISGROUP

class BIGCANGROUP extends CANGROUP

dep DisableInherited(BIGCANGROUP, eat-small)
acc [t] ¬override(bigcangroup.class, eat-small, BIGCANGROUP) ∧

people_at(t, BIGCANGROUP, place) = 1∧
people_at(t, SMALLMISGROUP, place) = 1→
people_at(t, GROUP, place) > 2

4.8.10 Jesus (#10)

One of the missionaries is Jesus Christ, who can walk on water. A new group class
is created, and objects are instantiated and initialized for each position:
class JESUSGROUP extends MISGROUP

obj jleft, jvera, jright : JESUSGROUP

obs . . .

The query-can-move-to() method from Section 4.7.5 is then overridden with a varia-
tion that does not require the origin and the destination to be connected.

Accessor query-can-move-to(JESUSGROUP′): Jesus objects can move between non-
connected places (that is, cross the river without a boat).

dep DisableInherited(JESUSGROUP, query-can-move-to)
dep [t] ¬override(jesusgroup.class,move-persons, JESUSGROUP) ∧

jesusgroup.class =̂ jesusgroup′.class)→
Set(jesusgroup.query-can-move-to(jesusgroup′) =̂ true)

4.8.11 Conversion (#11)

Three missionaries together can convert an isolated cannibal. Add a constraint
method convert in class MISGROUP:

dep DisableInherited(MISGROUP, convert)
dep [t] ¬override(misgroup.class, convert, MISGROUP) ∧

people_at(t, MISGROUP, place) ≥ 3∧
people_at(t, CANGROUP, place) = 1→
Call(t + 1, misgroup.modify-group(misgroup, 1)) ∧
Call(t + 1, misgroup.modify-group(cangroup,−1))

Elaboration Tolerance through OO 97

This elaboration takes advantage of the true concurrency in TAL-C (Karlsson &
Gustafsson, 1999). For example, modify-group automatically handles the situation
where a cannibal is boarding a boat while another is being converted to a mission-
ary.

4.8.12 The Boat Might Be Stolen (#12)

Whenever a cannibal is alone in a boat, there is a 1/10 probability that he will
steal it. Although TAL-C has no support for probability reasoning, it is possible
to determine the probability that any particular boat will be stolen using an at-
tribute prob-not-stolen initialized to 1.0. Whenever a cannibal is alone in a boat,
the constraint method update-prob multiplies prob-not-stolen by 0.9; the value of
boat.prob-not-stolen at the final timepoint of a model is the probability of that partic-
ular plan succeeding.

attr BOAT.prob-not-stolen : Real
obs ∀boat.[0]boat.prob-not-stolen =̂ 1.0

dep DisableInherited(BOAT, update-prob)
dep [t] ¬override(boat.class, update-prob, BOAT) ∧ boat.query-onboard() =̂ place∧

people_at(t, GROUP, place) = 1∧
people_at(t, CANGROUP, place) = 1→
Set([t + 1] boat.prob-not-stolen =̂ 0.9 ∗ value(t, boat.prob-not-stolen))

4.8.13 The Bridge (#13)

There is a bridge. The capacity of the bridge is not specified, but as long as at least
two people can cross simultaneously, an arbitrary number of people can cross. Add
a BRIDGE class and ensure that its capacity limit is respected.
class BRIDGE extends PLACE

attr BRIDGE.capacity : Integer
dep DisableInherited(BRIDGE, bridge-limit)
acc [t] ¬override(bridge.class, bridge-limit, BRIDGE)→ people_at(t, GROUP, bridge) ≤

value(t, bridge.query-capacity())

Then instantiate a bridge, provide it with a capacity and connect it to the left and
right banks.

4.8.14 The Boat Leaks (#14)

In elaboration 14, the boat leaks and must be bailed. Add a new durational boolean
attribute bailed with default value false. The intention is that bailing the boat at a
specific timepoint makes bailed true at that timepoint. A constraint method requires
that the boat always be bailed (but does not cause the boat to be bailed – the user,
or the controller, must call the bail method).

98 4.8. Elaborations of the MCP Domain

attr BOAT.bailed : boolean
dep DisableInherited(BOAT, bail)
dep [t] ¬override(boat.class, bail, BOAT)→ I([t] boat.set-bailed(true))
dep DisableInherited(BOAT,must-bail)
acc [t] ¬override(boat.class,must-bail, BOAT)→ [t] boat.query-bailed()

4.8.15 The Boat Can Be Damaged (#15)

The boat may suffer damage and have to be taken back to the left side for repairs.
In this elaboration, the boat cannot move between banks instantaneously. We add a
new bank onriver and a new class SLOWBOAT for boats that spend some time on the
river before arriving at the destination. We also add a temporal constant crosstime
representing the amount of time required to cross the river.
class SLOWBOAT extends BOAT

attr SLOWBOAT.emergency : BOOLEAN

obj onriver : BANK

The move-to method, which is responsible for moving the boat to another BANK,
must also be overridden and split into two parts: (1) move the boat to onriver, and
(2) after crosstime timepoints, if there has been no emergency, move it to the desired
bank. The second part takes advantage of TAL-C’s ability to handle delays (Do-
herty & Gustafsson, 1998; Karlsson et al., 1998).

Mutator move-to(BANK): Move the boat to another bank, with a delay.
dep DisableInherited(SLOWBOAT,move-to)
dep [t] ¬override(slowboat.class,move-to, SLOWBOAT) ∧

slowboat.move-to(bank) ∧
slowboat.query-pos() = oldbank→

Call(t + 1, slowboat.query-onboard().remove-connection(oldbank)) ∧
Call(t + 1, slowboat.set-pos(onriver))

dep [t] ¬override(slowboat.class,move-to, SLOWBOAT) ∧
slowboat.move-to(bank) ∧

[t + 1, t + crosstime] ¬slowboat.query-emergency()→
Call(t + crosstime, slowboat.set-pos(bank)) ∧
Call(t + crosstime, slowboat.query-onboard().add-connection(bank))

If there is an emergency, the second dependency constraint above will not be trig-
gered, and the boat will not end up at its intended destination. Instead, the boat
should move to the left bank and be repaired.

Constraint emergency-behavior: If there are people on board and repairs are neces-
sary, automatically move to the left bank for repairs.

Elaboration Tolerance through OO 99

dep DisableInherited(SLOWBOAT, emergency-behavior)
dep [t] ¬override(slowboat.class, emergency-behavior, SLOWBOAT) ∧

slowboat.query-emergency() ∧
people_at(t, BOAT, slowboat.query-onboard()) > 0→
Call(t + 1, slowboat.set-pos(left)) ∧
Call(t + 1, place.add-connection(left)) ∧
Call(t + 1, slowboat.set-emergency(⊥))]

4.8.16 The Island (#16)

If an island is added, the problem can be solved with four missionaries and four
cannibals. It is sufficient to change the number of people initially present on the
left bank and add an island object:

obj island : BANK

4.8.17 Four Cannibals, Four Missionaries, Row Quickly (#17)

Elaboration 17 is defined as follows by McCarthy:

There are four cannibals and four missionaries, but if the strongest of
the missionaries rows fast enough, the cannibals won’t have gotten so
hungry that they will eat the missionaries. This could be made precise
in various ways, but the information is usable even in vague form.

First, two new group classes are introduced: One for strong missionaries, and one
for cannibals that may or may not be hungry. The necessary instances are created
and initialized.
class HCANGROUP extends CANGROUP

class STMISGROUP extends MISGROUP

obj hcleft, hcvera, hcright : HCANGROUP

obj smleft, smvera, smright : STMISGROUP

obs . . .

A new boolean attribute is introduced to keep track of whether the cannibals in a
certain group are hungry or not. In the initial state, nobody is hungry.

attr HCANGROUP.hungry : boolean
obs ∀hcangroup.[0] hcangroup.hungry =̂ false

The old eat-missionaries constraint stated unconditionally that the missionaries must
never be outnumbered by the cannibals in any location. This constraint must be
weakened slightly: If none of the cannibals at a certain location are hungry, it does
not matter whether the missionaries are outnumbered or not.

100 4.8. Elaborations of the MCP Domain

dep DisableInherited(HCANGROUP, eat-missionaries)
acc [t] ¬override(hcangroup.class, eat-missionaries, HCANGROUP) ∧

hcangroup.query-position() =̂ place∧
hcangroup.query-hungry() ∧

totalmis = people_at(t, MISGROUP, place) +
people-in-boats-near(t, MISGROUP, place)→

totalmis = 0∨
totalmis >= people_at(t, HCANGROUP, place) +

people-in-boats-near(t, HCANGROUP, place)

What remains is determining exactly when the cannibals should become hungry.
The information given by McCarthy could be interpreted in many different ways.
It would be possible to model the strength of each person, let the amount of time
required to cross the river depend on the strength of the rowers, and let every can-
nibal become hungry at, say, time 10. Although this could be modeled in TAL-C, we
choose a simpler interpretation where the cannibals immediately become hungry
when the strong missionary is no longer in the boat.

dep DisableInherited(HCANGROUP, become-hungry)
dep [t] ¬override(hcangroup.class, become-hungry, HCANGROUP) ∧

t ≥ 1∧
people_at(t, STMISGROUP, boat.query-onboard()) < 1→
Call(t + 1, hcangroup.set-hungry(true))

4.8.18 Four Cannibals, Four Missionaries, Food (#18)

Like in the previous elaboration, there are four missionaries and four cannibals,
and the cannibals are initially not hungry. The difference is that in this elaboration,
the missionaries have some food that they can give to the cannibals whenever they
become hungrier. As McCarthy notes, this requires comparing a situation and a
successor situation, which is clearly not a problem in TAL-C.

This is a quite complex elaboration. Since the level of hunger cannot be as-
sociated with a group, it requires treating people as individuals, and we will use
elaboration 2 as the starting point. To this we will have to add a way of determining
when to feed the cannibals, and keep track of how hungry they are and how much
food each missionary has.

We begin by creating the subclasses FOODCANGROUP and FOODMISGROUP, in
which some new methods will be added and others will be overridden. We also
need the classes MISSIONARY and CANNIBAL, subclasses of PERSON (which was
inherited from elaboration 2).
class FOODCANGROUP extends CANGROUP

class FOODMISGROUP extends MISGROUP

class MISSIONARY extends PERSON

class CANNIBAL extends PERSON

Elaboration Tolerance through OO 101

obj cleft, cvera, cright : FOODCANGROUP

obj mleft, mvera, mright : FOODMISGROUP

obj misA, misB, misC, misD : MISSIONARY

obj canA, canB, canC, canD : CANNIBAL

Cannibals can have different levels of hunger, modeled as an integer attribute. Mis-
sionaries have a certain amount of food. This must be initialized at time zero, and
arbitrary numbers have been used below.

attr CANNIBAL.hunger : Integer
attr MISSIONARY.food : Integer
obs [0] canA.hunger =̂ 1∧ canB.hunger =̂ 0∧

canC.hunger =̂ 0∧ canD.hunger =̂ 0
obs [0] misA.food =̂ 3∧misB.food =̂ 1∧

misC.food =̂ 7∧misD.food =̂ 7

The feed method feeds a cannibal a certain amount of food. As in the modify-group

method, two dependency constraints sum the arguments of all concurrent method
invocations.

dep DisableInherited(MISSIONARY, feed)

dep [t] ¬override(missionary.class, feed, MISSIONARY)→
Set([t + 1]missionary.food =̂ value(t, missionary.food)−

∑
{〈c,x〉 | c∈CANNIBAL∧[t] missionary.feed(c,x)}

x

dep [t] ¬override(missionary.class, feed, MISSIONARY)→
Set([t + 1]cannibal.hunger =̂ value(t, cannibal.hunger)+

∑
{〈m,x〉 | m∈MISSIONARY∧[t] m.feed(cannibal,x)}

x

If a cannibal is becoming hungrier, the missionaries may or may not feed him.
dep DisableInherited(MISSIONARY, do-feed)
dep [t] ¬override(missionary.class, do-feed, MISSIONARY) ∧

missionary.query-group() =̂ foodmisgroup∧
cannibal.query-group() =̂ foodcangroup∧
foodmisgroup.query-pos() =̂ foodcangroup.query-pos() ∧

[t + 1] cannibal.query-hunger() > value(t, cannibal.query-hunger())→
∃n.0 ≤ n ≤ 1∧Call(t + 2, missionary.feed(cannibal, n))

The cannibals must become hungrier now and then. For example, they might be-
come hungrier at time 2 and 4:

dep t = 2∨ t = 4→ Set([t + 1] cannibal.hunger =̂ value(t, cannibal.hunger) + 1

Finally, the original eat-missionaries constraint stated unconditionally that the mis-
sionaries must never be outnumbered by the cannibals in any location. Again, this
constraint must be weakened slightly: If none of the cannibals at a certain location
has a hunger level greater than 2, it does not matter whether the missionaries are
outnumbered or not.

102 4.9. Solving the Missionaries and Cannibals Problems

dep DisableInherited(FOODCANGROUP, eat-missionaries)
acc [t] ¬override(foodcangroup.class, eat-missionaries, FOODCANGROUP) ∧

foodcangroup.query-position() =̂ place∧
(∃cannibal.cannibal.get-group() =̂ foodcangroup∧

cannibal.get-hunger() > 2) ∧
totalmis = people_at(t, FOODMISGROUP, place) +

people-in-boats-near(t, FOODMISGROUP, place)→
totalmis = 0∨
totalmis >= people_at(t, FOODCANGROUP, place) +

people-in-boats-near(t, FOODCANGROUP, place)

4.8.19 Two Sets of People (#19)

In the final elaboration, there are two sets of missionaries and cannibals too far apart
along the river to interact. A new attribute same-set keeps track of which banks
belong to the same “set”, and must be initialized using observation statements:

attr BANK.same-set(BANK) : boolean
obs [0] left.same-set(right) ∧ . . .

The following constraint method ensures that the origin and destination are in the
same set.

dep DisableInherited(BOAT,move-same-set)
dep [t] ¬override(boat.class,move-same-set, BOAT)→

boat.query-pos().query-same-set(value(t + 1, boat.query-pos()))

4.8.20 Classes in the
Elaborated Missionaries and Cannibals Problems

In the elaborations presented above we created a number of new classes that extend
the class hierarchy shown in Figure 4.1. An overview of the new class hierarchy is
shown in Figure 4.3.

4.9 Solving the Missionaries and Cannibals Problems

Though the main focus of this article is on modeling, we would also like to actually
solve the Missionaries and Cannibals problem instances presented by McCarthy. In
other words, given that the missionaries and cannibals are located on the left river
bank, a suitable set of actions (or method invocations) should be found that moves
everyone to the right bank without any missionaries being eaten.

Although one could use the model only for prediction and then apply standard
planning algorithms to solve each problem, we instead choose to build on the ideas
for automatic control presented in Gustafsson (2001) and model a controller within
the logic. Since the different elaborations have slightly different demands on the

Elaboration Tolerance through OO 103

OBJECT

OAR
HAT

PERSON

PLACE

BOAT

MISSIONARY
CANNIBAL

BANK
BRIDGE
ROWBOAT
SIZEBOAT
SLOWBOAT
ROWCANGROUP
TOOBIGCANGROUP
BIGCANGROUP
HCANGROUP
FOODCANGROUP
ROWMISGROUP
SMALLMISGROUP
JESUSGROUP
STMISGROUP
FOODMISGROUP

GROUP

Figure 4.3: Classes in the Elaborated Missionaries and Cannibals Problems

controller, it will be modeled as another class whose methods can be overridden in
subclasses, providing another test of the elaboration tolerance of the object-oriented
approach.

The main idea behind the controller is that whenever there is a choice between
different actions that could be invoked, this choice is modeled using an incom-
pletely specified constraint method. For example, whenever a boat can move, a
constraint method in the controller will call the boat’s set-pos method to move it,
but the exact destination will not be specified.

Every logical model of the resulting narrative corresponds to a different set of
actions that could potentially be taken by the missionaries and cannibals, given
that the cannibals never outnumber the missionaries in any location as required by
eat-missionaries() (Section 4.7.6). What remains is choosing a model that actually
achieves the goal, rather than just containing missionaries and cannibals moving
around randomly. To achieve this, we assume (like Lifschitz, 2000) that we know
the length t∗ of the plan to be generated. By constraining the state at time t∗ to
be a solution state, where everyone is at the right river bank, we ensure that any
remaining logical model must correspond to a valid plan.4 The value t∗ is made

4Note that this procedure depends on the fact that all incomplete information corresponds to possible
choices of actions rather than incomplete knowledge about the world.

104 4.9. Solving the Missionaries and Cannibals Problems

available in the narrative as a temporal constant, and will be used in some of the
controller methods.

For the original problem, we know that the minimal plan length is 12. The
plan lengths for the 19 elaborations will be shown together with the timing results
in Section 4.9.3, and the goals must of course also be altered for those elaborations
that involve different group types or a larger number of missionaries and cannibals.

obs t∗ = 12
obs [t∗] mright.size =̂ 3∧ cright.size =̂ 3

4.9.1 A Controller for the Original Problem

The controller for the original problem will consist of a class CONTROLLER with a
set of constraint methods defined below. One instance must be created in every
elaboration.
class CONTROLLER extends OBJECT

obj ctrl : CONTROLLER

Allowing People to Move

The first step in defining the controller is allowing people to move randomly be-
tween groups in connected locations. This is done by adding the following method:

Constraint move-persons(): Moves an unspecified number of people (possibly zero)
between compatible groups in connected locations, where the compatibility is test-
ed using the query-can-move-to method. For example, if there is a group of cannibals
group1 on the left bank and a group of cannibals group2 on the boat, and the boat
is at the left bank (the places are connected), then cannibals may move between
group1 and group2. Note that GROUPs never move – people move by changing the
size of two groups. Also note that the number of people moving from group1 to
group2 can naturally be equal to zero.

The exact number of people moved by this method will be constrained indi-
rectly by the goal as described above.

dep DisableInherited(CONTROLLER,move-persons)
dep [t] ¬override(controller.class,move-persons, CONTROLLER) ∧

group1.query-can-move-to(group2)→
∃n [−value(t, group2.query-size()) ≤ n∧ n ≤ value(t, group1.query-size()) ∧

Call(t + 1, group1.modify-group(group2,−n)) ∧
Call(t + 1, group2.modify-group(group1, n))]

Elaboration Tolerance through OO 105

Allowing Boats to Move

The second step consists of forcing the boat to move to another randomly selected
bank whenever anyone is onboard. The following method is added to BOAT:

Constraint move-boat(): If anybody is onboard a boat, the boat automatically moves
to another (unspecified) BANK. The destination bank is unspecified, and will be
constrained indirectly by the goal.

dep DisableInherited(CONTROLLER,move-boat)
dep [t] ¬override(controller.class,move-boat, CONTROLLER) ∧

people_at(t, GROUP, value(t, boat.query-onboard())) > 0→
∃bank[[t] boat.query-pos() 6=̂ bank ∧

Call(t, boat.move-to(bank))]

Additional Control: Don’t be Stupid

In addition to the nondeterministic choice of actions provided by the methods
above, it is also possible to introduce some more “intelligence” in the controller
by adding further constraints on the acceptable state sequence.

There is no point in allowing a state to repeat.

Constraint no-repetitions(): At each timepoint, at least one group should change
sizes.

dep DisableInherited(CONTROLLER, no-repetitions)
acc [t] ¬override(controller.class, no-repetitions, CONTROLLER)→
∃group.value(t, group.query-size()) 6= value(t + 1, group.query-size())

There should be at least one person on the boat, except at the first and last timepoint
in the plan. This avoids plans where everyone leaves the boat but nobody else
boards it, leaving it empty for a period of time.

Constraint boat-not-empty(): There should be someone on the boat.
dep DisableInherited(CONTROLLER, boat-not-empty)
acc [t] ¬override(controller.class, boat-not-empty, CONTROLLER)→
∀t.t > 0∧ t < t∗ − 1→ ∑

{g | g∈GROUP∧
[t] g.query-pos()=̂onvera}

value(t, g.query-size()) > 0

4.9.2 Additions for the Elaborations

Although the controller presented above is sufficient for the original version of the
Missionaries and Cannibals domain, some of the elaborations alter basic properties
of the domain and require further elaborations of the controller.

106 4.9. Solving the Missionaries and Cannibals Problems

One Oar on Each Bank (#5)

In the fifth elaboration, there is one oar on each bank. To solve this problem, a
cannibal must row alone to the other bank, pick up the second oar, and then row
back. This means that there must be an interval of time where no groups change
sizes, so no-repetitions must be modified in a new controller class OARCONTROLLER:
If there is an oar in a position near the rowboat, then no groups have to change.
An instance of OARCONTROLLER should then be created instead of an instance of
CONTROLLER.
class OARCONTROLLER extends CONTROLLER

obj ctrl : OARCONTROLLER

Constraint no-repetitions(): At each timepoint, at least one group should change
sizes.

dep DisableInherited(OARCONTROLLER, no-repetitions)
acc [t] ¬override(oarcontroller.class, no-repetitions, OARCONTROLLER)→
∃oar.[t + 1]oar.query-pos().query-connection(rowboat.query-onboard()) ∨
∃group.value(t, group.query-size()) 6= value(t + 1, group.query-size())

In addition to this relaxation of no-repetitions, it is also necessary to extend the con-
troller to take an oar whenever one is available.

Constraint take-oars(): If a rowboat is at a river bank where an oar is available, then
the oar should be moved into the boat.

dep DisableInherited(OARCONTROLLER, take-oars)
dep [t] ¬override(oarcontroller.class, take-oars, OARCONTROLLER) ∧

oar.query-pos() =̂ rowboat.query-pos()→
Call(t + 1, oar.set-pos(rowboat.query-onboard()))

The Bridge (#13)

If there is a bridge, the boat does not necessarily have to be used at all timepoints.
The boat-not-empty constraint has to be disabled, which is done by overriding it in a
new controller subclass BRIDGECONTROLLER without providing a new implemen-
tation.
class BRIDGECONTROLLER extends CONTROLLER

obj ctrl : BRIDGECONTROLLER

dep DisableInherited(BRIDGECONTROLLER, boat-not-empty)

Elaboration Tolerance through OO 107

The Boat Leaks (#14)

If the boat can leak, the controller must be extended to call the bail action at all
timepoints.
class BAILCONTROLLER extends CONTROLLER

obj ctrl : BAILCONTROLLER

dep DisableInherited(BAILCONTROLLER, do-bail)
dep [t] ¬override(bailcontroller.class, do-bail, BAILCONTROLLER)→

Call(t, bailboat.bail())

The Boat Can Be Damaged (#15)

In elaboration 15, the boat can be damaged, and the action of moving to another
river bank had to be split into two events: Moving to the river, and then after
crosstime timepoints, arriving at the destination. The original controller states that
groups must always change sizes from t to t + 1, which clearly cannot be the case
in this scenario. Instead, the groups must change sizes from time t to time t +
crosstime, unless there was an emergency.
class SLOWCONTROLLER extends CONTROLLER

obj ctrl : SLOWCONTROLLER

dep DisableInherited(SLOWCONTROLLER, no-repetitions)
acc [t] ¬override(slowcontroller.class, no-repetitions, SLOWCONTROLLER) ∧

[t + 1, t + crosstime− 1]¬slowboat.query-emergency()→
∃group.value(t, group.query-size()) 6= value(t + 1, group.query-size())

An additional precondition is required for move-boat: The controller should not call
move-to for a boat when that boat is on the river.

dep DisableInherited(SLOWBOAT,move-boat)
dep [t] ¬override(slowcontroller.class,move-boat, SLOWCONTROLLER) ∧

boat.query-pos() 6= onriver∧
people_at(t, GROUP, value(t, boat.query-onboard())) > 0→
∃bank[[t] boat.query-pos() 6=̂ bank ∧

Call(t, boat.move-to(bank))]

4.9.3 Results

The timings in Table 4.1 on the next page were generated by the research tool VI-
TAL (Kvarnström, 2005) using Java 1.3.1 and the HotSpot Server virtual machine
on an 1800 MHz Pentium 4 machine. The total number of time steps in each plan is
shown (including one step for initialization) together with the total amount of time
required for generating the plan. Times are specified in seconds. We also provide
some comparisons with the 10 elaborations implemented by Lifschitz (2000) in the
Causal Calculator (McCain & the Texas Action Group, 1997), which was run on an
unspecified machine.

108 4.9. Solving the Missionaries and Cannibals Problems

Elaboration Steps Time (VITAL) Time (CC)

Original 12 1.5 17.6
1 12 1.5 −
2 12 6.5 −
3 Unsolvable
4 12 2.8 18
5 14 2.5 44
6 14 5.2 273
7 Unsolvable
8 16 11.3 9746
9 12 7.8 22

10 6 1.7 −
11 12 2.3 55
12 12 1.8 −
13 5 1.6 2
14 12 1.7 9
15 36 5.2 −
16 16 165.5 1894
17 10 3.8 7361
18 14 24.0 −
19 12 16.6 −

Table 4.1: Test Results for the Missionaries and Cannibals Problems

The timings are not directly comparable and should not be taken as claims re-
garding the efficiency of the two approaches. This is especially true because (at
least in VITAL) timings depend very much on the exact formulation of an elabora-
tion, and could change drastically simply by altering the order in which objects are
declared.

Two of the problems were unsolvable. We have not proved this within the logic:
The logic-based controller used to solve the remaining 17 problems is not a full
planner, and like the Causal Calculator, it requires as input the length of the plan
to be generated. Proving that no plan (of arbitrary length) would solve these two
problem instances would require additional reasoning outside the logic, for exam-
ple by using depth first search with cycle checking. This procedure is complete due
to the finite state space generated by any given problem instance and due to the fact
that the applicability of an action only depends on the state in which it is invoked.

Elaboration Tolerance through OO 109

4.10 Traffic World

The object-oriented framework presented in this article has also been used for mod-
eling the Traffic World scenario proposed in the Logic Modeling Workshop (Sande-
wall, 1999), previously modeled by Henschel and Thielscher (1999) using the Fluent
Calculus (Thielscher, 1998). This domain consists of cars moving in a road net-
work represented as a graph structure, together with a TAL-C controller class that
“drives” a car.

4.11 Related Work

Much work has been done in combining ideas found in object-oriented languages
with the area of knowledge representation. One such area is description logics
(Borgida, Brachman, McGuinness, & Resnick, 1989; Brachman, Fikes, & Levesque,
1983), languages tailored for expressing knowledge about concepts (similar to class-
es) and concept hierarchies. They are usually given a Tarski style declarative se-
mantics, which allows them to be seen as sub-languages of predicate logic. Starting
with primitive concepts and roles, one can use the language constructs (such as
intersection, union and role quantification) to define new concepts and roles. The
main reasoning tasks are classification and subsumption checking.

Description logic hierarchies are very dynamic, and it is possible to add new
concepts or objects at runtime that are automatically sorted into the correct place in
the concept hierarchy. Some work has been done in combining description logics
and reasoning about action and change (Artale & Franconi, 1998).

The modeling methodology presented in this article uses a different kind of
class hierarchy that is fixed at translation time. Classes are explicitly positioned in
the hierarchy, and classes and objects cannot be constructed once the narrative has
been translated. Also, description logics do not use methods or explicit time, both
of which are essential in the work presented here.

The approach presented in this chapter bears more resemblance to object-orient-
ed programming languages such as Prolog++ (Moss, 1994), C++ or Java. In most
such languages, however, a method is a sequence of code that is procedurally exe-
cuted when the method is invoked. In our approach, a method is a set of rules that
must be satisfied whenever the method is invoked. Since delays can be modeled in
TAL-C, methods can be invoked over intervals of time and complex processes can
be modeled using methods. It is also possible to invoke multiple methods concur-
rently.

An interesting approach to combining logic and object-orientation is Amir’s
object-oriented first-order logic (Amir, 1999, 2000), which allows a theory to be con-
structed as a graph of smaller theories. Each subtheory communicates with the
other via interface vocabularies. The algorithms for the object-oriented first-order

110 4.12. Conclusions

logic suggest that the added structure of object-orientation can be used to signifi-
cantly increase the speed of theorem proving.

The work by Morgenstern (1998) illustrates how inheritance hierarchies can be
used to work with industrial sized applications. Well-formed formulas are attached
to nodes in an inheritance hierarchy and the system is applied to business rules
in the medical insurance domain. A special mechanism is used to construct the
maximally consistent subset of formulas for each node.

4.12 Conclusions

This article has presented a way to do object-oriented modeling in an existing logic
of action and change, allowing large domains to be modeled in a more systematic
way and providing increased reusability and elaboration tolerance.

The main difference between our work and other approaches to combining
knowledge representation and object-orientation is due to the explicit timeline in
TAL. Methods can be called over time periods or instantaneously, concurrently or
with overlapping time intervals. Methods can relate to one state only or describe
processes that take many timepoints to complete.

Although a few new macros have been introduced in this article, those macros
are merely syntactic sugar serving to simplify the construction of domain descrip-
tions. Thus, the most important contribution is not the syntax but the structure that
is enforced on standard TAL-C narratives to improve modularity and reusability. It
is also reasonable to believe that the added structure could be used to make theo-
rem proving in L(FL) more efficient, although the current version of VITAL does
not take advantage of this.

4.13 Acknowledgements

This research is supported in part by the Swedish Research Council for Engineer-
ing Sciences (TFR), the WITAS Project under the Wallenberg Foundation and the
ECSEL/ENSYM graduate studies program.

Part III

TALplanner

111

Chapter 5
Planning

Up to this point, the work presented in this thesis has generally assumed the ex-
istence of a predefined set of actions to be performed. The new methodology
for modeling qualifications in TAL requires all action occurrences to be specified
in advance. Our work on using object-oriented modeling techniques to increase
elaboration tolerance does use a simple “controller”, based on fluent dependency
constraints with incompletely specified trigger conditions, which can be said to
autonomously determine which actions to perform – but this technique was only
intended as a proof of concept, and cannot be expected to be as efficient or as ver-
satile as a true planner built for the express purpose of determining which actions
should be performed in order to achieve a predetermined goal.

This chapter begins by briefly describing the planning problem1, the concepts
involved in formally modeling a planning domain, and the different levels of ex-
pressivity that may be required to model planning domains of varying complexity.
We continue by describing forward-chaining planning, one of several common ap-
proaches to solving the problem of actually finding a plan. The last section of this
chapter describes TLPlan (Bacchus & Kabanza, 2000), a forward-chaining planner
based on the idea of allowing the user to specify additional control information in
the shape of temporal formulas that help guide the planner towards the goal.

The introduction to planning in this chapter is intended to provide the necessary
background for the presentation of TALplanner, a new planner where planning
domains are modeled in TAL and where the search strategy is based on the ideas
pioneered by TLPlan. TALplanner itself is the topic of the remaining chapters. As
indicated below, these chapters are loosely based on a number of published papers
and articles on TALplanner, though much of the material is extensively rewritten
and some is completely new.

1See also Ghallab, Nau, and Traverso (2004) for a complete presentation of the state of the art in
planning.

113

114

Chapter 6 shows how concepts related to planning domains and planning prob-
lem instances can be modeled in TAL. Two different methods for representing con-
trol formulas in TAL are presented. The first method involves using purely TAL-
based control formulas together with a new formula evaluation framework devel-
oped to allow such formulas to be tested efficiently and incrementally in the state
sequence generated by a plan candidate. The second method is based on introduc-
ing tense macros into TAL, thereby enabling the use of a modified version of the
progression algorithm used in TLPlan and facilitating a benchmark comparison
between TALplanner and TLPlan. Some preliminary benchmark results from an
early TALplanner article are provided (Doherty & Kvarnström, 1999; Kvarnström
& Doherty, 2000b; Doherty & Kvarnström, 2001; Kvarnström, 2002).

The first version of TALplanner was restricted to generating sequential plans.
Relaxing this restriction to generate concurrent plans involves changes to the search
space traversed by the forward-chaining search algorithm. Perhaps more impor-
tantly, concurrency invalidates the assumption that each action in a plan is the only
possible cause for change within its own execution interval. The interactions be-
tween concurrent actions must therefore be governed by stronger rules than those
between sequential actions, in order to ensure that conflicting actions are not al-
lowed to execute concurrently while still permitting an extensive use of concur-
rency where this does not have detrimental effects. Several different methods for
controlling concurrency are discussed in Chapter 7, together with an extension to
the modeling language to allow a succinct representation of resource constraints
(Kvarnström et al., 2000; Kvarnström & Doherty, 2000b).

Chapter 8 demonstrates how significant performance improvements can be a-
chieved by applying existing and new domain analysis techniques to control for-
mulas. In some cases, these techniques also allow the planner to automatically
transform part of a control formula into a precondition, permitting such conditions
to be tested at an earlier stage in the planning process and thereby further decreas-
ing the number of search nodes to be expanded (Kvarnström, 2002).

Chapter 9 contains the results from two international planning competitions, in-
cluding benchmark comparisons with other state-of-the-art planners and descrip-
tions of the control formulas that were developed for several of the competition do-
mains in the most recent competition (Kvarnström & Doherty, 2000b; Kvarnström
& Magnusson, 2003).

Chapter 10 concludes the TALplanner part of the thesis with a discussion of
some of the research that has been done during the project and the lessons that
have been learned.

Chapter 5. Planning 115

5.1 Introduction to Planning

In its most general form, the planning problem can be defined as the task of deter-
mining what you need to do in order to achieve a given goal. Some possible goals
could be “the drawer should be open”, “block A should be on top of block B”,
“this 15-puzzle should be solved”, “I should have an ice-cream”, “all orders should
be packed and mailed by tomorrow”, “everyone who is currently in the burning
building should be at least one block away”, “there should be a human settlement
on Mars”, or “there should be world peace by noon tomorrow”. The resulting plan
should describe in some formal manner what to do in order to achieve the goal,
most likely in terms of a set of actions that should be performed and some con-
straints on the order in which they should be performed.

Trying to find an algorithm that solves all instances of this rather general prob-
lem – an algorithm that always succeeds in finding a valid plan given any possible
goal – might be slightly too ambitious, though. As a first step it is therefore neces-
sary to define and formalize a more constrained version of the planning problem.

5.1.1 Expressivity versus Domain Dependence

If the planning problem as expressed above is too general, the question is to what
extent it should be constrained. This discussion will be facilitated by the introduc-
tion of two concepts: Planning domains and problem instances. These concepts
will be discussed in more detail later in this chapter.

A planning domain is characterized by a set of general concepts relevant for solv-
ing an entire class of related problem instances. For example, the previously men-
tioned goal “block A should be on top of block B” may be taken from the standard
blocks world domain, which is characterized by the existence of a table and a set
of blocks, by the fact that any block may be either on the table or on top of another
block (allowing towers of blocks to be formed), and by the ability to pick up blocks
and move them to the table or place them on top of other blocks. Note that no men-
tion is made of which blocks are present or which blocks are on top of each other,
only that there are blocks and that blocks can be on top of each other.

A problem instance is a concrete problem within a particular planning domain.
The specification of a problem instance includes the entities or objects involved, a
set of initial conditions, and a goal that should be achieved. In the blocks world
domain, for example, a problem instance specification may state that there are four
blocks named A, B, C and D, that all blocks are initially on the table, and that the
goal is to place the blocks in two towers where A is on top of B and where C is on
top of D.

Clearly, an algorithm which is only capable of generating plans for one particu-
lar problem instance is not interesting and should not be considered to be a planner.
An algorithm limited to a single fixed planning domain might still be both inter-
esting and useful, though, as long as it is applicable to all problem instances for

116 5.1. Introduction to Planning

this domain. For example, there are planners specific to the blocks world domain,
which are able to generate action sequences that transform a certain configuration
of blocks into another more desirable configuration but are incapable of handling
even minor changes to the domain without modifying the planner itself (for ex-
ample Kibler & Morris, 1981; Gupta & Nau, 1992; Slaney & Thiébaux, 2001). Such
domain-dependent or domain-specific planners can use algorithms and data structures
strictly adapted to a single domain, which can enable numerous optimizations for
speed as well as memory usage. On the other hand, much of the work that goes
into optimizing a domain-dependent planner can be rendered obsolete if any of the
basic assumptions made about the domain were to change.

Most research in the field of planning is not concerned with domain-dependent
planners, but with general planners where a formal description of the planning
domain is part of the input to the planning algorithm. Numerous formalisms for
describing planning domains as well as problem instances have been developed
over the years, some of the more well-known ones being STRIPS (Fikes & Nilsson,
1971), ADL (Pednault, 1989), the Action Description Language, and a number of
variations of PDDL, the Planning Domain Definition Language (Ghallab, Howe,
Knoblock, McDermott, Ram, Veloso, Weld, & Wilkins, 1998; Fox & Long, 2003;
Edelkamp & Hoffmann, 2004).

Planners with the ability to take a domain description as input are generally
called domain-independent planners. It is important to realize that this distinction be-
tween domain dependence and independence is not as clear-cut as it may seem at
first glance. There is considerable variation in the expressivity permitted in the do-
main definition languages of different planners. More expressive languages allow
a wider range of domains to be modeled, and could therefore be said to entail a
higher degree of domain-independence.

The differences in expressivity between various domain definition languages
become even more apparent if we take the view that expressivity is measured in
terms of what can be modeled conveniently in a given language, rather than in terms
of what planning problems can be solved through potentially complex transforma-
tions of planning problems into this language (though the concept of “convenient
modeling” would admittedly be difficult to formalize). For example, an operator
with conditional effects can be emulated using multiple operators where each pre-
condition corresponds to the original precondition together with a combination of
effect conditions, but this requires a transformation that generates an exponential
number of operator types. Similarly, some planners allow the use of a finite sub-
set of the integers and provide direct support for common numeric operations and
relations. Even in planners that do not directly support integers, numbers can be
modeled using explicitly enumerated constants (n0, n1, n2, . . .) together with ex-
plicitly enumerated definitions of any relations and functions that may be required
for those constants (lessthan(n0,n1), plus(n2,n2,n4), and so on), but in practice this
is only feasible for smaller subsets of the integers.

Chapter 5. Planning 117

5.1.2 Classical Planning

Even though few planners share exactly the same level of expressivity, there are
some constraints that could be said to be common for the majority of planners in
the literature. Most of these constraints were influenced by the early STRIPS plan-
ner (the Stanford Research Institute Problem Solver, Fikes & Nilsson, 1971), and
these constraints define what is often called classical planning. Though not even
this concept is completely well-defined, there are some common properties that are
almost universally agreed upon.

Classical planning uses a finite state-based representation of the world, where
the agent has complete and correct knowledge about the initial state of the world
and the preconditions and effects of the actions it can perform. Actions are viewed
as single-step operations, disregarding any temporal structure within the execution
of an action. Goals in classical planners can only constrain the final state that results
from executing a plan. Constraints on what happens before that state – for example,
that before one ends up at the goal location one should also visit two other locations
in a certain order – generally cannot be modeled in a natural manner.

Another assumption in classical planning, which is so basic that it is sometimes
not even stated explicitly, is that nothing changes in the world except when the
agent executes an action. This means that there is no need for the more complex
plan structures used in conditional plans, where sensor actions can be used in con-
junction with conditional statements and loops in order to make a plan adaptable to
currently unknown aspects of the eventual execution environment: The agent has
complete information about the initial state and can determine exactly what would
happen if a certain potential plan would be executed, without having to consider
the actions of other agents or events that occur naturally in the world. Given this
assumption, planning can be separated from execution, and there is no need to con-
sider execution monitoring (verifying that the intended effects actually materialize
and that no required conditions are violated), replanning (creating a new plan in
case an unexpected event causes the original plan to fail), or plan repair (modify-
ing the original plan appropriately in case of unexpected events, without starting
over from the beginning).

In order to give an intuitive picture of what can be done using classical plan-
ning, we will now present a small set of classical benchmark domains. We will then
introduce some of the concepts and terminology involved in the field of planning
using these domains as a source of concrete examples. At the same time, we will
mention some of the basic limitations of classical planners as well as a number of
possible extensions and relaxations that can be made in order to support the mod-
eling of more complex domains and more elaborate plan structures. Many of these
extensions have already been implemented in various planning algorithms in the
literature. Note, however, that the intention is not to give a definition of the bound-
ary between classical and non-classical planning – again, there is no consensus on
the precise limits of classical planning, and no such definition is required for the

118 5.1. Introduction to Planning

Figure 5.1: A Gripper Problem Instance

work presented here. Neither is the spectrum of possibilities discussed below in-
tended to be exhaustive. For example, concepts only used by hierarchical planners
will not be covered.

5.1.3 Planning Domain Examples

The following three planning domains are commonly used as benchmark domains
in the literature. Since we have not yet introduced a formalism for describing plan-
ning domains, the descriptions below will be somewhat informal, but should still
serve to give an intuitive understanding of the domains. Additional planning do-
mains will be presented in Chapter 9.

Example 5.1.1 (Gripper Domain)
The gripper domain is one of the simplest planning domains in the literature. As
such, it has been used widely in benchmark testing and exists in several variations
with numerous minor differences. In what is probably the most common variation
there is a single robot with one or more grippers, which can be used to pick up or
drop objects (typically balls). There are two rooms, and the robot can move freely
between the rooms. In the initial state, all objects are located in one of the rooms,
usually called room A. The goal requires all objects to be in the other room, usually
called room B.

Figure 5.1 shows a problem instance from a variation of the gripper domain
where the robot, robby, has two grippers, left and right. The problem instance is
quite tiny, containing only two rooms and two balls, both of which are initially in
roomA and both of which should eventually end up in roomB. �

Example 5.1.2 (Blocks World)
The blocks world, originally due to Winograd (1972), consists of a finite number of
blocks together with a table and a single crane which can be used to move the
blocks. Each block is either on the table or on top of another block. There is enough
space for all blocks to be on the table simultaneously, though there cannot be more
than one block on top of a given block at any given time. Blocks can be stacked in
towers of arbitrary height.

Chapter 5. Planning 119

A

B

C

D

E

C

E

B

D

A

Initial state Goal state

Figure 5.2: A Blocks World Problem Instance

The initial state of a blocks world problem instance provides a unique configu-
ration of blocks. The goal may be to move the blocks into another unique configu-
ration, or it may specify the location of some blocks (A must be on top of B) while
ignoring the location of other blocks (B can be on the table or on another block).

An example of completely specified initial and goal configurations for a small
five-block problem instance can be seen in Figure 5.2. �

Example 5.1.3 (Logistics Domain)
The standard logistics domain contains a number of cities, each of which contains
one or more locations. At some of these locations, there may be packages. The
packages can be transported between locations in the same city using trucks. Some
locations are airports, and there are a number of airplanes that can be used to trans-
port packages between different airports.

The goal is usually to deliver each package from its initial location to its des-
tination. In the worst case, each object may have to be transported by truck from
its original location to an airport, by airplane to another airport, and then by truck
from that airport to its final location, thus requiring up to nine actions per package
when loading and unloading actions are included.

Figure 5.3 contains a small example problem instance with four cities (city-1
through city-4), eight locations (two in every city), six packages to be transported
(package-1 through package-6), four trucks (truck-1 through truck-4), and one air-
plane (plane-1). Though not indicated in the figure, four of the locations are air-
ports, one in each city: city1-2, city2-2, city3-2, and city4-2. The arrows in the figure
indicate intended destinations for each package; note that package-1 is intended to
remain in its initial location city2-1. In this example, there are no destinations spec-
ified for trucks or airplanes. �

It is easy to dismiss these domains as being too simplified compared to real-world
problems. The logistics domain, for example, does not model space restrictions
in trucks and airplanes, timetables for airplanes, fuel costs, driver availability, or
even the amount of time required to move between two locations. Nevertheless,
the domains are both important and useful, even for planners expressive enough
to handle more elaborate versions of the same problems, because they provide con-
crete examples of certain structures that also occur in more complex domains.

120 5.1. Introduction to Planning

Figure 5.3: A Logistics Problem Instance

The gripper domain provides the quintessential example of a planning domain
with a high degree of redundancy. For example, as long as the goal is for all balls
to end up in the second room, it does not matter which ball the robot picks up
first, and it does not matter which gripper is used. This means that the operator
pick(ball, gripper), with one instance for each combination of ball and gripper in a
problem instance, could in essence be condensed into the operator pick-random-ball-

in-random-gripper, which only has one instance regardless of the size of the problem
instance, as long as the planner is clever enough to detect that balls and grippers
are interchangeable.

In the blocks world, even when the planner has managed to satisfy almost all
ground facts required by the goal, it may still be very far from actually reaching a
goal state – because even if a tower of blocks is “almost” correct, a single discrep-
ancy at the bottom will force you to tear down the entire tower in order to make it
possible to repair the problem. This is especially difficult for some planners because
in some sense it requires moving away from the intended goal, moving blocks that
were already on top of their intended destination blocks.

Finally, the logistics domain provides an example of a highly concurrent do-
main, where failing to make use of this concurrency (such as driving more than one
truck at the same time) will lead to a very inefficient plan.

5.1.4 Describing the World: States, State Variables, and Objects

In classical planning, it is assumed that the dynamic world for which we are creat-
ing plans can be described in terms of a finite set of state variables which can gener-
ally take a number of arguments. In the blocks world, for example, there is usually
a boolean state variable called on(block1, block2) which takes on the value true if

Chapter 5. Planning 121

block1 is on top of block2 and the value false otherwise. In the logistics domain,
in(obj, truck) might be used to represent the fact that a certain package is inside a
certain truck.

Some planners are limited to such boolean state variables, which could be viewed
as predicates in first-order logic. This means that the color of a block has to be mod-
eled as a predicate has-color(block, col), and one has to take care that a block is not
assigned two colors at once. Other planners also allow you to directly model non-
boolean properties, where color-of(block) might be a function whose value is the
color of the given block.

If state variables can take arguments, there is usually also a well-defined finite
set of objects that can be used to instantiate the arguments. In a logistics planning
problem, for example, there might be exactly four trucks (truck-1 through truck-4)
and six packages (package-1 through package-6). For some planners, there is only
one object domain, and state variables are untyped. This would mean that both
in(package-1, truck-1) and in(truck-2, truck-1) would be possible, though being
able to model the latter fact might not be very useful. Most modern planners do
allow the use of types, permitting the user to specify that in takes a package and a
truck as arguments.

A state is essentially an instantaneous snapshot of the world, and provides a
value for each of the state variables. Sometimes this world is an artificial one, as
when we are creating plans to be executed in a simulation inside a computer, and
then the state variables may provide a complete description of all aspects of the
world. Other times, the dynamic world for which a plan should be generated may
in fact be the real world, in which case a state can obviously only be an abstract
model of the true state of the world. The expressive power of the planning formal-
ism being used provides an upper bound for the level of detail that can be achieved
in the model, though it is common to use a less precise model than the formal-
ism allows, either because additional detail is not necessary for the task at hand
or because additional detail would be prohibitively expensive in terms of time and
space requirements for the planner. For example, roads and road networks are
rarely modeled in the logistics domain, even though this would not pose a prob-
lem in common domain definition languages such as STRIPS, ADL and PDDL. In-
stead, trucks are usually modeled as being able to move between arbitrary locations
within a city in a single time step, most likely because logistics problems have his-
torically been difficult to solve with fully automated domain-independent planners
even when this artificial abstraction is applied.

Some planners make explicit use of states, for example using methods such as
forward-chaining to find solution plans by searching the state space corresponding
to a planning problem instance (Section 5.2). This is not a requirement, though:
There is a wide variety of other planning paradigms, some of which never work
with complete states at all, although an overview of these paradigms is outside the
scope of this thesis. Nevertheless, the concept of “state” is often useful in under-
standing the work performed by a planner.

122 5.1. Introduction to Planning

Defined Predicates

In addition to ordinary state variables, which are given a value in the initial state
and are updated using action effects, some planners also support the use of vari-
ables that are defined in terms of other variables. Such state variables are sometimes
called defined predicates, as opposed to the ordinary basic or primary predicates.

As an example, consider a version of the gripper domain where there are mul-
tiple robots, each of which has multiple grippers. This may be modeled in terms of
basic predicates such as has(robot, gripper) and is-carried-in(object, gripper). The sec-
ondary predicate is-carried-by(object, robot) can then be defined to hold exactly when
there exists a gripper which belongs to the robot and which is holding the object,
without the need for action effects that explicitly update the is-carried-by predicate
each time the has or is-carried-in predicates are updated. Creating such secondary
concepts may make it easier to create a domain definition as well as easier to un-
derstand it once it has been written, especially for more complex domains where
an entire hierarchy of secondary concepts may be used.

5.1.5 The Beginning of Time: The Initial State

Many planners require complete information about the initial state of the world –
the state of the world just before the plan that is being generated would be executed.

This information is often provided to the planner in the shape of a set of positive
ground literals that hold in the world. The closed world assumption is then applied:
All literals that are not explicitly mentioned to be true are assumed to be false. This
is mainly a representational convenience, useful because most predicates usually
have far more negative than positive instances. In the blocks world, for example,
it is sufficient to state on(A,B) – block A is on top of block B – without having to
explicitly list all the blocks that A is not on top of.

Some planners instead use a more general first-order representation allowing
(and requiring) the specification of both positive and negative instances of literals.

There are also planners that allow incomplete information about the initial state.
This is clearly more useful for real-world domains, where not all information may
be known to the planner in advance, but leads to additional problems both in terms
of representation (how to represent the knowledge that does exist) and in terms of
added complexity during the search for a plan, as discussed briefly in Section 5.1.8.

5.1.6 What to Achieve: Goals

In classical planning, a goal is defined in terms of a set of acceptable goal states
(or as a set of logical formulas characterizing the goal states). Any combination of
actions that leads from the initial state to a goal state is a valid plan, regardless of
what may happen along the way to that state. For the blocks world, the goal is a
specific configuration of blocks, or possibly a set of acceptable configurations. In

Chapter 5. Planning 123

the logistics domain, the goal usually specifies destinations for all packages, while
the final locations of airplanes and trucks are often left unconstrained.

One can also imagine other goal types than purely state-based ones. For exam-
ple, some planners permit the specification of temporally extended goals that relate
to the entire sequence of states generated by a plan. Such goals may include main-
tenance goals as well as safety goals, such as the goal that a robot should never
visit a certain set of dangerous locations at any time during the execution of a plan.
Other types of non-classical goals might include goals with temporal deadlines or
goals which must be achieved at some point in the execution of a plan but which
need not necessarily still hold in the final state.

5.1.7 Doing Something: Operators and Actions

In order to be able to create a plan with some level of confidence that the plan ac-
tually achieves a certain goal, an agent must have a reasonably good idea about
what it can do – what actions it can perform, how those actions affect the exter-
nal world, and how the effects vary given different initial conditions. In the most
general case, the agent might be expected to infer this information by performing
random actions and observing their effects, or it may at least be expected to handle
occasional exceptions from general action descriptions when an action fails to have
its intended effects. In classical planning, however, this is considered far too diffi-
cult. Instead, the agent is assumed to have a complete and correct description of all
available actions.

There is no general agreement on the difference between operators and actions.
The following terminology will be used here: An operator is a template that can take
arguments and can be instantiated into a set of concrete actions by replacing argu-
ment variables with objects of the proper type. An action can also be called an oper-
ator instance for further emphasis on the fact that it is an instantiation of a template.

The blocks world commonly uses the operators pickup(block), putdown(block),
stack(block1, block2) and unstack(block1, block2), although there are also versions us-
ing a smaller number of more powerful operators. The first operator has instances
such as pickup(A) and pickup(B), if A and B are objects of type block in the current
problem instance. The logistics domain often uses the operators load-truck(truck,
obj) and load-plane(plane, obj) to load packages into vehicles, unload-truck(truck, obj)
and unload-plane(plane, obj) to unload packages, and drive-truck(truck, loc1, loc2) and
�y-airplane(plane, airport1, airport2) to drive or fly vehicles between two locations.

Each operator has a precondition that determines which of its instances the plan-
ner is allowed to invoke in any given state. For example, a package can only be
loaded into a truck if the package and the truck are at the same location, and you
can only pick up a block if it is at the top of a tower and you are not already holding
a block. In some planners this condition is limited to being a simple conjunction of
literals, while other planners allow arbitrary first-order logic formulas, including
disjunctions and quantifiers. The precondition may be constrained to referring to

124 5.1. Introduction to Planning

the state where the action is invoked, or it may be allowed to refer to the entire
interval of time during which the action is being executed.

Each operator definition must also specify exactly how the world is affected
when it is invoked, in terms of a set of effects.

In classical planning, all effects are assumed to be deterministic: Given com-
plete knowledge about the state where the action is invoked, it is possible to pre-
dict exactly how the action will affect the environment. For example, invoking put-

down(block) in the blocks world will definitely cause ontable(block) to become true
and holding(block) to become false. Less restricted planners may also want to deal
with non-deterministic or probabilistic effects.

Many planners allow the use of conditional effects, where some effects only take
place if a certain condition holds in the state where an operator instance is invoked.
These conditions should not be confused with preconditions. If the precondition
of an action does not hold, the action must not be invoked. If the condition of
a conditional effect does not hold, the action can be invoked, but this particular
conditional effect will not take place.

Conditional effects permit operators to have different effects when invoked in
different world states. In many domains, though, it may be difficult to determine
in advance the exact effects an operator would have in all possible states. Assume,
for example, a variation of the logistics domain where trucks have limited carrying
capacities. What would happen if one attempted to load additional packages into
a truck which according to our model has no remaining space? Perhaps the pack-
age would still fit into the truck, because our model was pessimistic and there was
in fact some additional space available. If not, perhaps there is a robotic package
loader which will try to follow the plan and load the package despite lacking suf-
ficient space. What would happen then? Would the package fail to be loaded, or
would it be pushed into the truck with enough force to damage the package itself or
some of the previously loaded packages? Would some packages that were already
loaded fall out of the truck?

Clearly, this relates to the ramification and qualification problems in the area
of reasoning about action and change. In the planning area, these problems are
sidestepped by only allowing operators to be invoked in situations where their
preconditions are known to hold. By strengthening the preconditions of an oper-
ator to a sufficient degree, the question of what would happen under any other
circumstances is rendered irrelevant. For example, if the preconditions guarantee
that one only attempts to load packages into trucks that are known to have suffi-
cient remaining carrying capacities, the planner does not need to know what would
happen if it tried to load packages into trucks that are already full.

In classical planning, the internal temporal structure of an operator is quite limited:
Operators are assumed to be without temporal constraints, and simply model a
single state transition from an invocation state to an effect state. Some planners
go beyond the classical framework and allow actions to have duration. This is

Chapter 5. Planning 125

becoming more and more common, perhaps partly because actions with duration
were required in the Third International Planning Competition (IPC-2002, Long &
Fox, 2003). The duration of an action may be fixed, or it may be determined by the
arguments and the state in which it is invoked: The time required to fly between
two cities depends on the speed of the airplane and the distance between the two
cities. Some planners also support actions for which the planner can freely choose
the duration, possibly within a given bound.

Some planners allow effects to take place at multiple points in time during the
execution of the action, as opposed to only taking place at the start and end of the
action. This richer temporal structure may in some cases be irrelevant when se-
quential plans are generated, because in that case only the final state resulting from
invoking an operator is important. On the other hand, it can be absolutely neces-
sary when modeling concurrent domains where interactions between concurrent
actions have to be taken into account, because of possible conflicts or synergistic
effects. Planners that do not directly support effects at arbitrary timepoints must
instead model such effects using multiple actions or other mechanisms.

5.1.8 Combining Actions into Plans

In our terminology, a plan is an executable set or sequence of actions. A plan which
also achieves the goal of a particular problem instance will be called a solution or
solution plan.2

Since there can be dependencies between the actions that make up a plan, there
is a need for some kind of temporal structure determining the order in which these
actions should be performed. A large variety of temporal plan structures have been
used by planners in the literature, ranging in complexity.

As noted above, many classical planners are limited to single-step actions where
there is no duration associated with the execution of an action.

Some of these planners generate a totally ordered sequence of actions (Fig-
ure 5.4, top row). There are domains for which this is a reasonable restriction which
does not have a significant impact on the quality of the resulting plans. For highly
concurrent domains such as the logistics domain, though, actually executing such a
sequential plan would be highly inefficient, with at most one vehicle being allowed
to move at any given time.

Other classical planners generate a partially ordered set of single-step actions
(Figure 5.4, second row), where the agent is free to execute certain actions in paral-
lel or in arbitrary order as long as certain other actions have already been executed.
Graphplan-style planners (Blum & Furst, 1997; Koehler, Nebel, Hoffmann, & Di-
mopoulos, 1997) generate plans consisting of a totally ordered sequence of action
sets, where the actions within an action set can be executed in arbitrary order as
long as they are executed before any action in the next set (Figure 5.4, third row).

2In some articles and papers in the literature, only solutions are called plans.

126 5.1. Introduction to Planning

A
1

A
2

A
9

A
7

A
6

A
5

A
8

A
4

A
3

A
1

A
2

A
6

A
5

A
4

A
3

A
1

A
2

A
3

A
4

A
5

A
6

A
1

A
2

A
3

A
4

A
7

A
8

A
9

Figure 5.4: Plan Structures

Planners which can use actions with duration may need more complex plan
structures, where each action is annotated with the temporal interval where it is to
be executed (Figure 5.4, fourth row). Such structures could be extended further by
allowing temporal intervals to be only partially specified, or by permitting speci-
fications of minimum or maximum temporal distances between two actions in the
plan.

Classical planners assume complete knowledge about the world, but in the real
world, uncertainty is quite common. In order to improve the fidelity of the plan-
ner’s approximation of reality, it may be necessary to add support for incompletely
specified initial states or incompletely specified action effects. If the agent must
deal with such incomplete knowledge the plan structure may also have to change,
depending on the technique chosen to deal with this incompleteness. In confor-
mant planning, the planner should find an ordinary sequential plan where it can be
guaranteed that the goal will be achieved given the knowledge which is available
to the planner before the execution phase begins, by making sure that no actions
in the final solution plan depend on unknown information. In conditional plan-
ning, the agent also has access to sensing actions which can be used to increase the
knowledge of the agent during the execution phase. Conditional plans may include
branching, where different actions should be performed depending on the actual
state of the world, which may in turn depend on the actual outcome of earlier ac-

Chapter 5. Planning 127

tions performed by the agent. Conditional plans may also contain loops, where a
conditional subplan may have to be executed multiple times until some condition
is satisfied. In the remainder of the thesis we will not deal with sensing actions or
incomplete knowledge.

Ideally the choice of plan structure should be defined according to the abilities
of the agent or agents which will eventually execute the plan. In the logistics do-
main, for example, each vehicle is clearly able to move independently of other ve-
hicles, and the potential for concurrency ought to be taken advantage of. In a more
elaborate version of the standard logistics domain where distances are modeled, the
time required to drive between two locations would be strongly dependent on the
distance between the locations, requiring the use of partially overlapping actions
as opposed to Graphplan-style concurrency in order to create reasonable plans.

In some cases using a plan structure able to express any plan the agent can exe-
cute might be computationally infeasible (at least for current planning algorithms),
and then it might be necessary to use a different temporal structure which is less
suited to the agent but which at least makes it possible to find a solution. However,
it should also be noted that using a more elaborate plan structure could actually be
a computational advantage in certain cases: If the set of possible candidate plans is
strictly larger, there are more alternatives open to the planner, which could poten-
tially make the task of finding a solution easier.

5.1.9 Plan Quality Criteria

For most non-trivial domains, there are a multitude of ways that any reachable
goal can be achieved. Some subtasks are independent of each other and can be
performed in any order. Some objects in the domain may be functionally identical,
so that it does not matter which object is used – for example, if there are two empty
trucks available at the same location in a logistics problem instance and only one is
required, either truck could be used with identical results. Also, for many actions
there is an inverse action with the opposite effects, and arbitrarily many instances
of these actions can be added to a plan. Simple cycle checking removes some of
those plans, but not those where other actions take place inbetween: When a truck
in the logistics domain drives from A to B, a package is loaded into another truck,
and the first truck drives back from B to A, this leads to three distinct states with
no easily detectable cycle.

Consequently, it is usually possible to find a large number of solutions satisfying
any given reachable goal, and usually some of them are “better” in some sense and
should be preferred over others. In the most general case, we want to find a solution
which optimizes a given function. For example, in an extended logistics domain
where fuel is modeled, we might want to find a solution that minimizes fuel usage
while still achieving all goals. The level of support for optimization varies greatly
between different planners.

128 5.2. Forward-Chaining Planning

Quite a few planners unconditionally try to find a solution containing as few
actions as possible, and do not allow the user to specify a function to be minimized
or maximized. Some of these planners guarantee that the resulting plan will be
optimal in the number of actions, while others only make a reasonable attempt to
create a short plan.

Graphplan-style planners (Blum & Furst, 1997; Koehler et al., 1997), which usu-
ally do not support explicit action durations, guarantee that a generated plan con-
tains a minimum number of temporal steps but ignore the number of concurrent
actions within each temporal step. In other words, such planners prefer to return a
plan with 150 actions where the inherent parallelism in the domain allows the plan
to be executed in 10 steps, rather than a plan with 40 actions partitioned into 11
temporal steps.

Some planners which support explicitly specified action durations guarantee
that a minimum-duration plan is found, even though this plan might contain a
larger number of actions than other valid plans. The Graphplan approach has also
been extended in this manner (Smith & Weld, 1999).

Still other planners permit the user to specify a function that should be mini-
mized, where this function may refer to the length of the plan or to other properties
such as fuel usage.

5.1.10 Domains and Problem Instances

We have now discussed a number of different types of information that must be
available to a planner in order to solve a specific planning problem.

Some of this information relates to the general structure of the world for which
plans should be created. This information is usually considered to define a planning
domain. For classical planners, the domain specification defines a set of state vari-
ables, a set of operators (and their preconditions and effects), and for planners with
typed objects, a set of object types. This is similar to the narrative background spec-
ification (NBS) in TAL (Section 2.3), with the exception that the NBS also defines the
sets of objects belonging to each type.

The rest of this information is far more likely to change across different invo-
cations of the planner. This information defines a planning problem instance for the
given domain, and includes a specification of the initial state, the goal, and the ac-
tual (possibly typed) objects. This is similar to the narrative specification (NS) in
TAL.

5.2 Forward-Chaining Planning

Given a planning domain description and a planning problem instance, it is not
immediately obvious what would be the best way to find a plan that achieves
the given goal. A large number of different methods have been investigated, but

Chapter 5. Planning 129

somewhat surprisingly, one of the most straight-forward approaches – forward-
chaining – has had a renaissance during the last few years, with planners such as
HSP (Bonet & Geffner, 1998), FF3 (Hoffmann & Nebel, 2001), and TLPlan (Bacchus
& Kabanza, 2000) providing better performance and higher expressivity than many
earlier state-of-the-art planners that used more complex search methods.

The search space for a forward-chaining sequential planner can be viewed from
at least two similar but somewhat different perspectives.

First, the search space can be defined as a graph where each node is a state and
where there is an edge between two nodes (states) n1 and n2 iff there exists an action
that would lead from n1 to n2. The graph induced by this definition is naturally
directed, but it is not acyclic. In the blocks world, for example, it is possible to pick
up a block and immediately put it down again, leading to a cycle of length 2 in the
search graph.

Second, the search space can be defined as a tree where each node is a plan
(Figure 5.5, described below). This tree can be defined inductively: The empty plan
is necessarily executable and must therefore belong to the tree, and given any plan p
in the tree, if the action a is applicable in the state resulting from executing p, then
〈p; a〉 is a child of p. In other words, the root node corresponds to the empty plan,
and each subsequent node is generated by appending exactly one action to the plan
of the parent node. Note that according to this definition, the same final state can
be associated with many different nodes within the search tree, if that state can be
reached through more than one possible sequence of actions. This definition will
be used in the remainder of the thesis.

Figure 5.2 on page 119 shows an example problem instance from the blocks
world, with an initial configuration of blocks on the left hand side and a goal con-
figuration on the right hand side. The initial configuration is replicated in Fig-
ure 5.5, which also shows part of the search space for this problem instance; due to
space considerations, we do not display complete plans in each node but instead
display the new action being added in each node as a label on the incoming edge,
with abbreviated operator names. In the initial node (the empty plan), the planner
is visiting the initial state, where only two actions are applicable: unstack(C, B)
and unstack(E, D). If the first action is applied, three new actions become ap-
plicable: putdown(C), stack(C, B), and stack(C, E). Note that the initial node and
〈unstack(C, B); stack(C, B)〉 are different nodes, but both nodes generate the same
final state, since the second action undoes the effect of the first action. The node
label “C” indicates that a state cycle can be detected. Given the use of single-step
actions and given that only the invocation state of an action is relevant to the ap-
plicability of that action, any plan containing a state cycle is redundant: There must
exist a corresponding shorter plan where the action subsequence generating the
state cycle has been removed. Thus, any plan containing a state cycle can be pruned
from the search tree.

3http://www.mpi-sb.mpg.de/~ho�mann/�.html

130 5.2. Forward-Chaining Planning

C

Cun(C,B)

un(E
,D
)

u
n
(E
,D
)

pu
(C
)

st(C,B)

st(C
,E
)

un(C,E)

C

un(B,A) C

st(B,C)

st(B,A)

pu
(B
)

un
(B
,A
)

pi(C)

C
un(B,C)

pi(A)

C

pi(B)

pi(A)
un(C

,E)

Cst(B,A)

st(B
,E)

st(B,C)

st(
E,B

)

Cst(E,D)

st(E,C)

Cun(B,E)

pi(C)

pi(A
)

pi(A
)

C

un(E,D)
un(B,C)

pi(C)

pi(D)

un(E
,B)

un(B,A)

C

un(E,C)

pi(D
)

C

E

Initial state

B

A D

Figure 5.5: Part of the Forward Chaining Search Space for Figure 5.2

Forward-chaining planners begin at the initial node and search the tree for a
path leading to a goal state. This very straight-forward paradigm has a definite
advantage: At any point in the search process, the planner always has a complete
description of the entire sequence of states generated by the current plan candidate
– at least this is the case if the initial state is completely defined and plan operators
are deterministic, which is always the case in classical planning. This, in turn, facili-
tates the use of complex operator types with quantified conditional effects, disjunc-
tive preconditions, and indirect effects, which can be considerably more difficult to
add to some other kinds of planning algorithms.

This, of course, leaves open the question of which search algorithm should be
used in order to find a goal state effectively and efficiently within the forward-

Chapter 5. Planning 131

chaining search tree.
At first, one might consider using standard search algorithms such as breadth

first or iterative deepening. But if the shortest plan consists of 100 actions, and
the branching factor is 1000 (that is, there are 1000 applicable actions at each step),
breadth first search would have to investigate 1000100 = 10300 nodes – and more
importantly, would have to store most of those nodes in memory, which would
clearly be impossible. Using iterative deepening would require less memory, but
would still require too much time. Even at 1012 nodes per second (which will not be
realistic for many years to come, since it corresponds to testing 300 nodes per clock
cycle on today’s fastest processors), finding a plan using pure iterative deepening
could require 10280 years, though it could be found earlier if an optimal or near-
optimal plan would happen to be found in the part of the tree that was searched
first. It is clear that using these algorithms would lead to very inefficient planners,
due to the combinatorial explosion in the number of potential plans when the size
of a planning problem increases. But this problem is not inherent in the concept
of forward-chaining: It is caused by using “blind” brute force search algorithms
without any form of goal-directed behavior.

One can identify two main categories of techniques being used for goal-directed
search in recent forward-chaining planners.

Some planners use various forms of heuristics to guide the search process. The
heuristic function helps determine which nodes and branches should be investi-
gated before others, and can either be automatically extracted from the planning
domain and problem instance or be specified explicitly by the user. Since the heuris-
tic function is generally not perfect, occasionally misjudging which branch would
lead to the goal more quickly, nodes that are less preferred by the heuristic function
are saved so that the planner can return to them at a later stage. HSP (Bonet &
Geffner, 1998) and FF (Hoffmann & Nebel, 2001) are two very successful planners
that automatically determine a heuristic function given a planning domain and a
problem instance.

Other planners use domain-independent or domain-dependent pruning, actu-
ally removing search nodes completely from the tree. Cycle checking is a simple
form of domain-independent pruning, where a node is pruned if it visits a state
that has already been visited on the path from the root node. In the blocks world,
picking up a block, stacking it on another block, unstacking it again and returning
it to the table would lead to such a state cycle. Any plan containing these four ac-
tions would still be executable if the actions were to be removed. The final state
generated by the plan would be identical, so as long as the goal only constrains
the final state, as opposed to placing constraints on the path taken before that state
is reached, it would be satisfied in the abbreviated plan iff it was satisfied in the
original plan.

As will be described in the next section, Blockhead and TLPlan are two planners
that prune the search tree using domain-dependent pruning techniques.

132 5.3. Blockhead, TLPlan, and Control Formulas

5.3 Blockhead, TLPlan, and Control Formulas

All the different types of information discussed in Section 5.1 are more or less re-
quired in order to specify the planning problem to be solved. For example, in or-
der to determine in advance whether an operator sequence will be executable, a
planner needs information about operators and about the initial state where plan
execution will begin, and in order to determine whether the goal is achieved, com-
plete information about the acceptable goal states is also needed. Planners which
only depend on this type of information are often called knowledge-sparse or fully
automated planners.

Some planners also accept additional information which is in some sense redun-
dant but which may help improve the performance of the planner or the quality of
the solution plan. In the PRODIGY planner, for example, it is possible to specify
rules that specify which subgoals should be solved before other subgoals, or rules
that determine which operator arguments should be preferred over others (Car-
bonell, Blythe, Etzioni, Gil, Joseph, Kahn, Knoblock, Minton, Pérez, Reilly, Veloso,
& Wang, 1992; Veloso, Carbonell, Pérez, Borrajo, Fink, & Blythe, 1995). Planners
using heuristic search methods may allow the user to specify heuristic evaluation
functions explicitly rather than using a built-in function. The input to a hierar-
chical task network (HTN) planner contains a set of task decomposition rules that
determine how the main objective (“goal”) is decomposed into primitive actions
(Sacerdoti, 1975; Tate, 1977; Vere, 1983; Wilkins, 1988; Currie & Tate, 1991; Erol,
Hendler, & Nau, 1994; Nau, Cao, Lotem, & Muños-Avila, 2001; Nau, Au, Ilghami,
Kuter, Murdock, Wo, & Yaman, 2003). In addition to specifying true constraints
inherent in the domain being modeled, such rules can also be used to provide a
significant measure of additional information to the planner

Planners that accept additional information may be completely dependent upon
this information or may have reasonable performance even with a pure problem
specification. In either case, they are sometimes called knowledge-based or hand-
tailored planners. They have also occasionally been called domain-dependent plan-
ners, although it could be argued that this is a misnomer, because just like know-
ledge-sparse planners, knowledge-based planners are generally applicable to arbi-
trary domains as long as the proper domain specification is provided as part of the
input. What is truly domain-dependent is not the planner but the domain speci-
fication – but then again, even knowledge-sparse planners require domain speci-
fications, and even those domain specifications must necessarily contain domain-
specific information such as operator definitions. Knowledge-based planners may
require additional types of information, but this is merely a difference in degree,
not a difference in kind.

It should be emphasized that just as there is no binary distinction between
domain-dependent and domain-independent planners, there is no binary distinc-
tion between hand-tailored and fully automated planners. Many “fully automated”
planners perform considerably better given some tuning for each specific domain

Chapter 5. Planning 133

– but this tuning is hidden in command line arguments rather than being openly
specified in a domain description. Even those planners that have no such command
line arguments could potentially be made even more fully automated if they could
automatically determine some information about operators or the initial state from
their execution environment. In addition, some “hand-tailored” planners such
as PbR (Ambite, 1998; Ambite, Knoblock, & Minton, 2000; Ambite & Knoblock,
2001) can to some extent generate the additional information themselves in a pre-
processing step, further blurring the boundary between the two kinds of planners.

5.3.1 Blockhead: A Domain-Dependent Planner

Consider once more the blocks world search tree in Figure 5.5 on page 130. Cycle
checking has already pruned some nodes from this tree, but most of the tree still
remains. If we consider the tree more carefully, though, we can see a few opera-
tor sequences that are obviously bad, sequences that the planner could potentially
detect in order to backtrack and try a more promising approach. For example, the
plan 〈unstack(C, B), stack(C, E)〉 would place C on top of block E. If the goal re-
quires C to be on top of E, then this might initially appear to be a good move. But
E is not in its final location. It will eventually have to be moved to its final location,
and if there are blocks on top of it, those blocks will first have to be removed. In
this situation, it would be a good idea to forbid the planner from placing C on top
of E, forcing it to prune this search node, backtrack, and try other solutions such as
placing C on the table instead. This will always be a viable alternative, given that
the table in the standard blocks world never runs out of space.

This principle, which can also be stated more succinctly as “only add blocks
to good towers”, is one of the four rules that were used in Blockhead, a domain-
specific blocks world planner by Kibler and Morris (1981). Each of the four rules
pruned branches corresponding to actions that definitely would not take the plan-
ner closer to the goal, actions where there were definitely better alternatives avail-
able – as the authors expressed it, “don’t be stupid”.

Though no precise benchmark results were published, the authors reported that
the techniques used in Blockhead led to significant reductions in the number of
nodes visited by the planner and thereby significant performance improvements.

5.3.2 TLPlan: A Hand-Tailored Planner

Blockhead was truly a domain-dependent planner, written for the blocks world.
TLPlan, on the other hand, is a domain-independent planner with an extended
domain description language permitting the user to write explicit domain-specific
control rules that help control the search process, determining which nodes should
or should not be pruned (Bacchus & Kabanza, 2000).

Control rules for a forward-chaining planner could potentially take many dif-
ferent shapes. In TLPlan, control rules are formulas expressed using a variation of

134 5.3. Blockhead, TLPlan, and Control Formulas

the modal tense logic LTL, Linear Temporal Logic (Emerson, 1990). We will use the
terms control rule and control formula interchangeably.

LTL is defined by taking a standard first-order language and adding four tem-
poral modalities: U (until), 3 (eventually), 2 (always), and © (next). Formulas in
LTL are interpreted over timelines, sequences 〈s0, s1, . . .〉 of states (called worlds in
TLPlan terminology), where each state is an interpretation for the original first-
order language. The semantics of an LTL formula is defined relative to a current
state, a position within the sequence of states. Intuitively, © α means that α holds
in the next state along the timeline, 2 α means that α holds in the current state and
all future states, 3 α means that α holds in the current state or some future state,
and αU β means that β will eventually hold, and for the entire interval of time until
it does, α holds. See Emerson (1990) or Bacchus and Kabanza (2000) for a precise
definition of LTL.

Bacchus and Kabanza add to LTL a goal modality, goal, where the formula goal(φ)
is true iff φ holds in every acceptable goal state, or equivalently, iff the goal entails φ.
This additional modality is the key to enabling control rules to provide a measure
of goal-directed guidance to the planner. Since the TLPlan implementation is re-
stricted to using conjunctive goals, entailment checks can be made efficiently and
do not require theorem proving.

To ensure that quantified formulas can be evaluated by iteration over a finite set
of values, Bacchus and Kabanza use bounded quantifiers of the form ∀[x : α(x)].φ
and ∃[x : α(x)].φ, where α is a positive literal that can only hold for finitely many
value constants and where the quantified formula φ only has to be evaluated for
those x that satisfy α(x). This also improves performance: Rather than letting the
planner iterate over all value constants mentioned in a problem instance, or forcing
it to automatically choose a literal from which to extract a set of values to iterate
over, the user can manually specify a literal likely to hold only for a small set of
values.

Example 5.3.1 (Blocks World, continued)
If a block is placed on top of the destination of another block, then this action must
eventually be undone in order to reach the goal configuration. Such actions may
be necessary in a bounded blocks problem, where the table does not have sufficient
space for all blocks, but they are never required in the standard blocks world.

In other words, it is always the case that if you are currently holding a block x,
which might potentially be placed on top of some clear block y, and there is a goal
that z should be on top of y, and x is not in fact the same block as z, then at the next
timepoint you should not have placed x on top of y.

2 ∀[x : holding(x)]∀[y : clear(y)]∀[z : goal(on(z, y))].x 6= z→ ©¬on(x, y) �

Example 5.3.2 (Blocks World, continued)
Assume the existence of a defined predicate goodtower(b) which holds iff b is the
topmost block in a tower which does not violate the goal, that is, a tower in which

Chapter 5. Planning 135

C

C

P

un(C
,B)

un(E,D)

un(E,D)

pu(
C)

st(C,B)

st(C,E)

un
(B
,A
)

pi(C)

Cst(B,A)

P

st(B
,E)

P

st(B,C)

P

st(E
,B)

Cst(E,D)
st(E,C)

un(B,A)

C

un(E,C)

pi(D
)

Figure 5.6: Pruning a Forward Chaining Search Space

no blocks will have to be moved. Then the Blockhead rule “only add blocks to good
towers” can be succinctly represented as follows:

2 ∀[x : clear(x)] ¬goodtower(x)→ ©¬∃[y : on(y, x)] true

(The consequent of the implication should state that there is no block y on top of x,
but because of the use of bounded quantification, this condition becomes integrated
into the bound. Only true remains to the right of the existential quantifier.) �

These two simple rules reduce the search space considerably. Though this effect is
far more visible for larger problem instances with greater depth and higher branch-
ing factors, it can also be seen for smaller problem instance, as in Figure 5.6 which
shows a pruned version of the search space originally shown in Figure 5.5. The
node label “P” indicates a node that has been pruned due to a control rule.

5.3.3 Testing Control Formulas Using Progression

Though we have stated that control formulas help the planner determine which
nodes should be pruned, we have up to this point been somewhat vague regarding
the exact manner in which this is done.

Control rules are intended to improve the goal-directedness of a forward-chain-
ing planner, and therefore its performance, by allowing parts of the search space
to be pruned. This naturally cannot be achieved by waiting until a plan has been
found that satisfies the classical goal and then testing whether the plan also satisfies
all control rules. Instead, it requires a condition that can be tested in intermediate
nodes in the search tree.

One potential approach would be to prune every intermediate node that does
not satisfy all control rules. This may initially seem quite reasonable, until the real-
ization dawns that some control formulas that are violated in a certain search node

136 5.3. Blockhead, TLPlan, and Control Formulas

can be satisfied in its children. To see how this can be the case, we appeal to yet
another control formula for the blocks world.

Example 5.3.3 (Blocks World, continued)
The blocks world control rule from Example 5.3.1 is applicable when holding a
block, and places certain restrictions on the locations where this block can be put
down. In some cases it is possible to strengthen this constraint. For example, if the
crane is currently holding a block whose final destination is clear (nothing is on top
of it) and is a good tower (will not have to be removed), then clearly this is where
the block should be put down.

2 ∀[x:holding(x)]∀[y:goal(on(x,y))] clear(y) ∧ goodtower(y)→ © on(x,y) �

Unlike the first two control formulas, which stated what must not happen, this for-
mula places requirements on changes that must take place in the world – under
certain circumstances, you must place block x on top of block y. If this formula
were to be evaluated in a state sequence where block x had just been picked up,
then the formula would be violated, simply because the action stacking the block
on top of its destination had not yet been added to the plan.

A more reasonable semantics would state that all control formulas should hold
in the final solution. Without the need to consider what might hold in the prefixes
of a solution, it is far less likely that a domain designer would inadvertently write
a control rule that prunes branches that could have led to good solutions. Inner
nodes can still be pruned from the search tree as long as it can be proven that there
is a control formula that must be violated in all of its descendants.

TLPlan uses a formula progression algorithm to achieve a similar semantics,
with a slight difference: Control formulas are only viewed as guidance, not as goals,
and do not necessarily need to be satisfied in the final solution. This difference is
usually not important for classical planning domains, but care should be taken not
to use TLPlan control formulas as a means of implementing temporally extended
goals such as safety goals. For example, the control formula 3 φ can never be vi-
olated, because the progression algorithm always assumes φ might be satisfied in
some future state – even if φ = false.4

Consider a finite or infinite sequence of states 〈s0, s1, s2, . . .〉 and a modal tense
logic formula φ that should hold in this sequence. Progressing this formula through
the state s0 yields a formula φ+ that should hold in the remainder of the state se-
quence: φ holds in 〈s0, s1, . . .〉 iff φ+ holds in 〈s1, s2, . . .〉. If the information in s0
was sufficient to prove that the formula must be false, regardless of the what comes
after s0 in the timeline, the progression algorithm may immediately return false.

In the following, ⊗ denotes a binary logical connective, and the expression
φ[x 7→ c] denotes the formula resulting from replacing all free occurrences of x
in the formula φ with the constant c.

4The TLPlan implementation also allows the specification of temporally extended goals (Bacchus &
Kabanza, 1996a, 1998), modal temporal formulas that must be satisfied by the solution plan. However,
this cannot be used in combination with state-based goals, and also prevents the use of the goal modality.

Chapter 5. Planning 137

Definition 5.3.1 (Progression for LTL Formulas)
1 procedure Progress(φ, s)
2 if φ contains no temporal modalities
3 if s |= φ return true else return false
4 if φ = φ1 ⊗ φ2 return Progress(φ1, s)⊗ Progress(φ2, s)
5 if φ = ¬φ1 return ¬Progress(φ1, s)
6 if φ = © φ1 return φ1
7 if φ = φ1 U φ2 return Progress(φ2, s) ∨ (Progress(φ1, s) ∧ φ)
8 if φ = 3 φ1 return Progress(φ1, s) ∨ φ

9 if φ = 2 φ1 return Progress(φ1, s) ∧ φ

10 if φ = ∀[x : γ(x)]φ return
∧

c:s|=γ(c) Progress(φ[x 7→ c], s)
11 if φ = ∃[x : γ(x)]φ return

∨
c:s|=γ(c) Progress(φ[x 7→ c], s)

Unnecessary occurrences of the truth constants true and false are removed from
the result using the standard rules ¬false = true, (false ∧ α) = (α ∧ false) =
false, (false∨ α) = (α ∨ false) = α, ¬true = false, (true∧ α) = (α ∧ true) =
α, and (true∨ α) = (α ∨ true) = true. �

Recall that each node in the forward-chaining search tree corresponds to a plan,
and that each plan is associated with a state sequence that would be generated if
the plan were to be executed starting in the initial state. TLPlan introduces one
additional item of information for each node: A control formula, which has been
progressed through the state sequence associated with the node.

The initial node corresponds to the empty plan, and its associated state sequence
only contains one state: The initial state, as specified by the user. No further states
have yet been created. Consequently, the control formula associated with this node
is generated by conjoining the initial control formulas specified by the user and
progressing the resulting conjunction through the initial state.

Applying an operator instance to an existing node n in a sequential forward-
chaining search tree always yields one or more new states at the end of the state
sequence for n. The control formula associated with n is progressed through the
new states, resolving all references to fluents in those states, and the new node
being generated is labeled with the progressed formula.

If progression returns the formula false at any point, the planner can immedi-
ately backtrack, knowing that the formula is violated in all possible extensions to
the current plan candidate.

In addition to providing a reasonable semantics for control rules, this method
also ensures that control formulas never have to be evaluated in the same state
twice, which is very important for the performance of TLPlan. On the other hand,
a potentially large progressed control formula must be stored in each open search
node, which can considerably increase the memory consumption of the planner.

As demonstrated by Bacchus and Kabanza (2000), this technique led to some
very impressive improvements in efficiency for many well-known benchmark do-
mains when compared to planners such as Blackbox (Kautz & Selman, 1998, 1999)

138 5.3. Blockhead, TLPlan, and Control Formulas

and IPP (Koehler et al., 1997), two of the leading competitors in the First Interna-
tional Planning Competition (IPC-1998, held at the AIPS-1998 conference: McDer-
mott, 1998).

Chapter 6
TALplanner

This chapter introduces TALplanner, a new planner which is inspired by the use of
temporal control formulas in TLPlan (Bacchus & Kabanza, 2000). TALplanner has
some similarities to TLPlan, but also some significant differences, the most obvious
one being the use of a TAL-based logic which has given the planner its name. Some
of the most important similarities and differences between the two planners will
be covered in the following section, together with a brief overview of the structure
of the planner and its use of TAL. The remaining sections in this chapter will go
into considerably more detail regarding the way planning domains and control
formulas are modeled in TAL and the extensions that have been made to TAL in
order to model certain planning-specific concepts. A set of preliminary benchmark
comparisons for an early version of TALplanner will also be presented.

6.1 An Overview of TALplanner

As mentioned in the introduction to this thesis, one of the many design goals for
TALplanner was the intention to develop a planner using the TAL semantics for
actions and world descriptions. The TAL logics are specifically developed for rea-
soning about action and change, and given a few planning-related extensions, one
logic in particular, TAL-C (Chapter 2; Karlsson & Gustafsson, 1999), provides a
suitable framework for modeling complex, potentially concurrent actions as well
as most other concepts required to succinctly capture the essential features of a
planning domain (Section 6.2).

Using TAL in this manner provides a declarative first-order semantics for plan-
ning domains, an important difference from TLPlan where only control formulas
are based on the use of logic and actions are instead modeled using an operational
semantics. But unlike Green’s approach (1969), which involved not only represent-
ing planning domains in logic but also generating plans using a resolution theo-

139

140 6.1. An Overview of TALplanner

rem prover, the declarative semantics of TAL serves mainly as a specification for
the proper behavior of the planning algorithm. The TALplanner implementation
generates plans using standard procedural forward-chaining search methods (Sec-
tion 6.3) together with a search tree which is pruned with the help of temporal
control formulas.

Though the use of control formulas is inspired by TLPlan, there are extensive
differences in how the two planners test whether a plan satisfies or violates a given
control formula. These differences were initially prompted by the different proper-
ties of Linear Temporal Logic (LTL), used for control formulas in TLPlan, and TAL,
which should preferably be used for control formulas in TALplanner in order to
avoid the need to mix two logics in one planner. Whereas LTL is a modal temporal
logic with tense operators that can be used together with a progression algorithm,
TAL uses explicit time, which is less suitable for progression. TAL-based control
formulas are therefore tested in a different manner, involving a pre-processing
phase generating formulas suitable for incremental evaluation in successive plan
candidates (Section 6.4). The formulas yielded by this pre-processing are amenable
to further analysis and optimizations, which has in turn considerably improved
the performance of TALplanner (Chapter 8). Because of the desire to compare the
two types of control formulas within the same implementation, and because each
turns out to have the potential for higher performance for different classes of for-
mulas, tense formulas can also be emulated within TAL and used together with a
progression algorithm (Section 6.5). The current version of TALplanner integrates
the separate progression-based and evaluation-based algorithms presented in early
papers (Doherty & Kvarnström, 1999; Kvarnström et al., 2000), allowing both types
of control formulas to be used in the same planning domain.

Extensions to TAL-C. The high-level L(ND) language for the TAL-C logic must
be extended somewhat in order to allow the specification of goals and control for-
mulas. Additional extensions have been introduced in order to provide more suc-
cinct representations of certain planning-related concepts even though they could
in fact be modeled in pure TAL-C. Eventually, the extended logic may become a
new planning-specific TAL logic named TAL-P. For the moment, however, changes
are still being made to the logic, and the intermediate version is viewed only as
a temporary extension to the macro language L(ND) from TAL-C. The extended
version of L(ND) is denoted by L(ND)∗.

As for several other extensions to the TAL logics, the intention behind L(ND)∗

has been to avoid changing the standard first-order TAL base logicL(FL), each new
addition being accompanied with an extension to the Trans() translation function
translating L(ND)∗ formulas into L(FL) (Section 2.4.1). In a sense, this has been
an interesting research topic in itself: To what extent can TAL be adapted to the
planning task without modifications to the original L(FL) language? As will be
seen, there are concepts that could have been modeled in a more elegant manner
had this restriction been lifted. On the other hand, using the same base logic across

Chapter 6. TALplanner 141

+ Circ(T’)
+ Foundational Axioms
+ Circ(T)

+ Quantifier Elimination
+ F.A.
+ Q.E.L(FL) L(FL)

L(FL)L(FL)

L(ND)*

Trans() Trans()

L(ND)*

1st-order

1st-order
theory Goal

1st-order
theory

TAL
Goal Narrative

TALPlanner TAL
Plan Narrative

1st-order
theory T’theory T

Figure 6.1: The relation between TAL and TALplanner

multiple versions of TAL also has advantages in terms of facilitating comparisons
between TAL logics as well as retaining existing results from research based on the
standard version of L(FL).

Expressivity. Though TAL-C provides an expressive semantics for domain descrip-
tions, it is not necessarily a good idea to introduce all of this expressivity into TAL-
planner at once. Instead, it would be better to use a smaller subset of TAL-C in the
first version of the planner, and then to incrementally introduce higher levels of ex-
pressivity in a series of well-defined extensions to the basic TALplanner algorithms.
A number of such extensions have been made since the first version of TALplanner.
Most of these extensions have already been integrated into the current description
of the modeling language as specified in Section 6.2. The main exception to this is
the support for concurrency, which will be discussed separately in Chapter 7.

Planning as Narrative Generation. Due to the narrative-based nature of TAL,
it may be useful to view planning as a form of narrative generation. Figure 6.1
contains an extended version of the diagram previously shown in Figure 2.2 on
page 23. As seen in the top row of this figure, the input to TALplanner is a narra-
tive in the extended macro language L(ND)∗. This narrative is sometimes called
a goal narrative, emphasizing the fact that it specifies a planning problem instance,
and is usually denoted by N . The goal narrative consists of two parts: A domain
description, defining among other things the operators that are available to the
planner, and a problem instance description, defining the initial state and the goal.
TALplanner uses this high-level description of a planning problem to search for a
set of TAL-C action occurrences (plan steps) that can be added to this narrative so

142 6.2. Representing Planning Problems in TAL

that in the corresponding logical model, a goal state is reached. If this succeeds, the
output is a new TAL narrative in L(ND)∗ where the appropriate set of TAL action
occurrences has been added. This narrative is sometimes called a plan narrative,
emphasizing the fact that it represents a solution to a planning problem. Both goal
narratives and plan narratives can be translated into L(FL) (the second row in the
figure). As in pure TAL-C, a number of foundational axioms are required, and a
standard TAL circumscription policy is applied, yielding complete definitions of
the Occlude and Occurs predicates (the third row). Further details will be presented
in Section 6.2.10.

6.2 Representing Planning Problems in TAL

This section introduces L(ND)∗, a new TAL-based macro language for use in ap-
plications related to planning. Many concepts and definitions used by L(ND)∗

are inherited from the TAL-C version of L(ND) as specified in Chapter 2, though
there are also a number of new formula classes and statement classes as well as
a number of restrictions compared to L(ND). To better show where TALplanner
and L(ND)∗ fall in the spectrum of expressivity for domain modeling, the section
is loosely based on the same structure as Section 5.1.

Notational Conventions. All formulas and L(ND) statements in the following
chapters will be shown using the input syntax for TALplanner, with the exception
of some connectives and quantifiers that may be written using the ordinary logical
symbols for increased clarity.

Variables are typed. Value variables are usually given the same name as the cor-
responding sort written in italics, possibly with a prime and/or an index. For ex-
ample, block, block′ and block3 would be variables of sort block. Similarly, variables
named t or τ are normally temporal variables, and variables named n are normally
integer-valued variables. All free variables are implicitly universally quantified.

6.2.1 Single Timepoint Formulas and Terms

In the following, there will sometimes be a need for formulas or terms that only ref-
erence fluent values at a single specific timepoint. This requires restrictions on the
two different ways of specifying a temporal context for a fluent term: The temporal
context prefix [τ] and the fluent value function value(τ, f).

Definition 6.2.1 (Single Timepoint Formula)
A single timepoint formula for the timepoint τ is a static formula where all fixed fluent
formulas are of the form [τ] α (where α is a fluent formula) and all occurrences of
the value function are of the form value(τ, f) (where f is a fluent term). �

Chapter 6. TALplanner 143

Definition 6.2.2 (Single Timepoint Value Term)
A single timepoint value term for the timepoint τ is a value term where all occurrences
of the value function are of the form value(τ, f) (where f is a fluent term). �

Definition 6.2.3 (Single Timepoint Fluent Term)
A single timepoint fluent term for the timepoint τ is a fluent term where all occur-
rences of the value function have the form value(τ, f) (where f is a fluent term). �

6.2.2 Describing the World: States, State Variables, and Objects

As in most planners, we assume that the current state of the world can be described
in terms of a finite set of typed state variables, each of which takes a fixed number
of typed arguments. These state variables can easily be represented as TAL flu-
ents. Except for defined fluents (Section 6.2.3), all fluents are implicitly declared
persistent.1

TAL uses an order-sorted type system, and can therefore directly represent a
hierarchical type structure rather than representing types as unary predicates or as
a flat set of types. There is a standard sort boolean = {true, false}. Additional
sorts can be defined by the user. As explained in Chapter 2, type information has
generally been specified informally in the description of a TAL narrative, and we
will continue to use the VITAL and TALplanner input syntax to describe these parts
of the vocabulary, with an extension to allow TAL value domain specifications to
be split into domain declarations (placed in the planning domain specification) and
object definitions (placed in each problem instance specification).

TALplanner also allows the use of numeric types. In order to keep the semantics
of these types clear, only integers and fixed point numbers (that is, numbers with a
fixed number of decimals) are allowed, and lower and upper bounds must be de-
clared for each numeric type. All of the standard arithmetic operators are available
for the numeric types and are given an interpretation through semantic attachment.

Example 6.2.1 (Logistics Domain, continued)
The logistics domain was first defined in Example 5.1.3 on page 119. A hierarchy
of seven types is defined for the entities present in the logistics domain: The type
loc (location) has the subtype airport. All locations are in a city. The type thing
has the subtypes obj and vehicle, the latter of which has the subtypes truck and
plane. Types are defined in terms of value domains and are therefore declared using
the label domain, not to be confused with a planning domain.

There are two boolean fluents, at(thing,loc) and in(obj,vehicle). The city-
valued fluent city-of demonstrates the use of non-boolean state variables: At any
timepoint, city-of(loc) =̂ city means that the location loc is in the city city.

1Though there would be no intrinsic problem in allowing the use of durational fluents, existing plan-
ning domains only use persistent fluents. Limiting the planner to using persistent fluents streamlines
the presentation of certain concepts.

144 6.2. Representing Planning Problems in TAL

domain city, loc, thing
domain airport :parent loc

domain obj, vehicle :parent thing
domain truck, plane :parent vehicle

feature at(thing,loc) :domain boolean

feature in(obj,vehicle) :domain boolean

feature city-of(loc) :domain city

The logistics problem instance in Figure 5.3 on page 120 uses the following objects:

objects :domain loc :elements { city1-1, city1-2, city2-1, city2-2,
city3-1, city3-2, city4-1, city4-2 }

objects :domain airport :elements { city1-2, city2-2, city3-2, city4-2 }
objects :domain city :elements { city1, city2, city3, city4 }
objects :domain obj :elements { package-1, package-2, package-3,

package-4, package-5, package-6 }
objects :domain truck :elements { truck-1, truck-2, truck-3, truck-4 }
objects :domain plane :elements { plane-1 } �

Example 6.2.2 (Gripper Domain, continued)
The gripper domain was first defined in Example 5.1.1 on page 118. This domain
uses the value domains obj for objects (including the robot robby), ball for balls (a
subtype of obj), room for rooms, and gripper for grippers. The fluent loc specifies
the location of objects, free specifies whether a given gripper is free, and is-carried-in

specifies whether the robot is carrying a certain object in a certain gripper.

domain obj

domain ball :parent obj

domain room, gripper
feature loc(obj) :domain room

feature free(gripper) :domain boolean

feature is-carried-in(ball, gripper) :domain boolean

The gripper problem instance in Figure 5.1 on page 118 uses the following objects:

objects :domain obj :elements { robby }
objects :domain ball :elements { ball1, ball2 }
objects :domain room :elements { roomA, roomB }
objects :domain gripper :elements { left, right }

Objects declared to belong to a particular value domain are automatically also
members of all ancestor domains. Thus, obj will contain three objects: robby,
which is explicitly declared to belong to the domain, and ball1 and ball2, which
are members of obj by virtue of being declared to belong to the subdomain ball.

�

Chapter 6. TALplanner 145

Example 6.2.3 (Blocks World, continued)
In the blocks world planning domain, first defined in Example 5.1.2 on page 118,
there is only one value domain: block, containing a set of blocks. There are five
fluents: on(block1, block2) holds if block1 is on top of block2, while ontable(block) holds
if block is on the table. If a block is neither on the table nor on top of another block,
we must be holding it, which is modeled using the fluent holding(block). A block
is clear iff it is possible to place another block on top of it, which is modeled using
the fluent clear(block). Finally, the hand is empty iff it is not holding a block, which
is modeled using the fluent handempty. Following the standard formulation, all
fluents in this domain are boolean.

domain block

feature on(block, block) :domain boolean

feature clear(block), ontable(block) :domain boolean

feature holding(block), handempty :domain boolean

The example problem instance in Figure 5.2 uses the following objects:

objects :domain block :elements { A, B, C, D, E } �

6.2.3 Defined Predicates and Fluents

As noted in the introduction to planning, it often makes sense to define concepts
in a planning domain hierarchically, specifying a set of primary predicates which
are directly affected by actions as well as a set of secondary predicates which are
defined in terms of formulas. TALplanner is not limited to boolean predicates and
therefore supports the more general concept of defined (possibly non-boolean) flu-
ents.

Each defined fluent is declared in the narrative background specification. The
TALplanner fluent declaration syntax is extended with a new flag, :de�ned, for this
purpose. The definition of a defined fluent should be specified in terms of a fluent
definition statement, also in the narrative background specification.

Definition 6.2.4 (Fluent Definition Statement)
A fluent definition statement, labeled de�ne, is one of the following:

• A labeled statement de�ne [t] f (v1, . . . , vn) : φ, where t is a temporal variable,
f is a boolean feature name, v1 through vn are distinct value variables of sorts
corresponding to the argument sorts of f , and φ is a single timepoint formula
for t where t and v1, . . . , vn may occur as free variables.

• A labeled statement de�ne [t] f (v1, . . . , vn) : ω, where t is a temporal vari-
able, f is a non-boolean feature name, v1 through vn are distinct value vari-
ables of sorts corresponding to the argument sorts of f , and ω is a single
timepoint value term for t where t and v1, . . . , vn may occur as free variables.

�

146 6.2. Representing Planning Problems in TAL

Example 6.2.4 (Gripper Domain, continued)
In the gripper domain, it would be possible to create a boolean defined fluent
is-carried(ball) which is true exactly when there exists a gripper carrying the given
ball, that is, exactly when ∃gripper[is-carried-in(ball, gripper)]. This example can be
modeled as follows:

feature is-carried(ball) :domain boolean :de�ned

de�ne [t] is-carried(ball) : [t] ∃gripper [is-carried-in(ball, gripper)] �

The Semantics of Defined Fluents

Ordinary fluents are given a unique value in the initial state. The inertia assump-
tion is applied, ensuring that each fluent retains the value from the previous time-
point except at those timepoints where an action explicitly assigns a new value.

Defined fluents, on the other hand, should have the same value as a formula or
as a value term. They are therefore implicitly declared dynamic, implying that they
are not constrained by an inertia assumption or a default value assumption. This
leaves the task of ensuring that each defined fluent takes on the intended value at
all points in time. Without loss of generality, the remainder of this discussion will
mainly be restricted to the case of boolean defined fluents, defined in terms of a
logic formula.

In the simplest case, a fluent definition formula may only refer to primary (non-
defined fluents). This is the case in the gripper example above, where the defini-
tion formula only refers to the is-carried-in fluent. In this case, finding the value of
a fluent instance is quite easy. In terms of an operational semantics, the planner
should simply evaluate the definition formula. In terms of a declarative semantics,
the fluent should take on the value true iff the definition formula holds, which can
easily be achieved by translating each fluent definition statement into a TAL do-
main constraint. Given that the primary fluents on which the definition depends
already have definite values, this is guaranteed to provide a unique value to each
instance of the defined fluent at any point in time.

Definition 6.2.5 (Translation of Fluent Definition Statements)
Fluent definition statements are translated into L(FL) as follows:

• Trans([t] f (v1, . . . , vn) : φ) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn)↔ φ])

• Trans([t] f (v1, . . . , vn) : ω) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn) =̂ ω]) �

Example 6.2.5 (Gripper Domain, continued)
The fluent definition statement in Example 6.2.4 can be translated into the following
L(FL) domain constraint:

dom ∀t, ball [Holds(t, is-carried(ball), true) ↔
∃gripper [Holds(t, is-carried-in(ball, gripper), true)]] �

Chapter 6. TALplanner 147

If fluent definition formulas may refer to defined fluents, but cannot refer back
to the fluent being defined (either directly or indirectly through the definitions of
other defined fluents), the value of a fluent instance can be found in the same man-
ner. In operational terms, evaluating such a fluent definition formula may lead to
further calls to the formula evaluator for nested defined fluents, but such calls will
eventually be grounded in the evaluation of primary fluents.

Difficulties only arise when a fluent definition formula may directly or indirectly
refer back to the fluent instance being defined. In terms of a declarative first-order
semantics, such recursive definitions may lead to unintended models. For example,
at first glance it might appear as if a recursively defined fluent could be used to
define the transitive closure of the on fluent in the blocks world:

de�ne [t] above(x, y) : [t] on(x, y) ∨ ∃z [on(x, z) ∧ above(z, y)]

Unfortunately, it is well known that the transitive closure of a relation cannot be
defined in first order logic, which means that our first-order translation of this for-
mula, as defined above, cannot provide the intended definition of above.

This can of course be “solved” by using a more powerful semantics. The plan-
ning domain definition language PDDL2.2 (Edelkamp & Hoffmann, 2004) uses a
semantics where predicate definitions are viewed as derivation rules where a de-
fined predicate holds iff it can be derived using successive applications of these
derivation rules, with syntactic restrictions to ensure that the order in which rules
are applied is unimportant. This addition to PDDL2.1 was made explicitly in or-
der to permit the modeling of transitive closures. TLPlan (Bacchus & Kabanza,
2000) uses an operational semantics based on recursive formula evaluation which
also allows the modeling of transitive closures. For example, evaluating the flu-
ent above(A,B) leads to a recursive call to the formula evaluator for the formula
on(A,B) ∨ ∃z [on(A,z) ∧ above(z,B)].

The TALplanner implementation also supports recursively defined fluents, with
a semantics identical to that of TLPlan. A new version of TAL-C will eventually be
developed based on a fixpoint base logic (Immerman, 1998) rather than a first-order
base logic, at which time there will also be a logic-based semantics for recursively
defined fluents.

6.2.4 The Beginning of Time: The Initial State

TALplanner currently requires complete information about all fluents in the ini-
tial state (time 0). This information is specified in terms of initialization statements
providing facts known to hold at time 0.

The planner is not limited to plain observations of facts, but permits the use
of arbitrary fluent formulas, including existential quantification and disjunction, as
long as these formulas define a unique initial state. Compared to planners that use a
simple list of initial facts together with a closed world assumption (CWA) where all

148 6.2. Representing Planning Problems in TAL

facts that are not explicitly listed are assumed to be false, this representation is less
compact but also more flexible. (For convenience, the TALplanner implementation
also allows a variation of CWA initialization.)

Definition 6.2.6 (Initialization Statement)
An initialization statement, labeled init, is a single timepoint formula for time 0. �

Example 6.2.6 (Gripper Domain, continued)
The following example shows the specification of the initial state for the gripper
problem instance in Figure 5.1 on page 118. In this initial state, all grippers are free
and the robot and all balls are in room A.

init ∀gripper, ball [[0] free(gripper) ∧ ¬is-carried-in(ball, gripper)]
init ∀obj [[0] loc(obj) =̂ roomA] �

Example 6.2.7 (Logistics Domain, continued)
The initial state of the logistics problem instance in Figure 5.3 on page 120 can be
defined as follows:

init [0] city-of(city1-1) =̂ city-1 ∧ city-of(city1-2) =̂ city-1 ∧ . . .
init [0] ∀thing, loc [at(thing, loc)↔

thing=package-1 ∧ loc=city2-1 ∨
thing=package-2 ∧ loc=city1-2 ∨ . . . ∨
thing=truck-1 ∧ loc=city1-1 ∨ . . . ∨
thing=plane-1 ∧ loc=city4-2]

init [0] ∀obj, vehicle [¬in(obj, vehicle)] �

Example 6.2.8 (Blocks World, continued)
The initial state of the blocks world problem instance from Figure 5.2 on page 119
can be defined as follows:

init [0] handempty ∧ ∀block [¬holding(block)]
init [0] ∀block [clear(block)↔ block=C ∨ block=E]
init [0] ∀block [ontable(block)↔ block=A ∨ block=D]
init [0] ∀block1, block2 [on(block1, block2)↔

block1=C ∧ block2=B ∨ block1=B ∧ block2=A ∨ block1=E ∧ block2=D] �

6.2.5 What to Achieve: Goals

Classical state-based goals provide a set of constraints that should be satisfied by
the final state reached by executing a solution plan, when starting from a given
initial state.

In a sense, one could argue that classical goals are subsumed by control for-
mulas and therefore do not have to be supported explicitly in TALplanner. After
all, the intention behind control formulas is to provide the ability to place arbitrary
constraints on the state sequence generated by executing a solution plan. Such

Chapter 6. TALplanner 149

arbitrary constraints must clearly be able to model simple state goals. Instead of
requiring that the final state satisfy the formula φ, one could require that the state
sequence satisfy the formula ∃t.[t, ∞) φ – there should be a timepoint t after which
the state goal φ holds indefinitely.

Nevertheless, we still consider classical goals to be important enough to warrant
a separate statement class. This also enables control rules to refer to the classical
goals, providing additional pruning power (next section).

TALplanner supports classical state-based goals, which provide a set of con-
straints on the state that should be reached by executing a solution plan when
starting from a given initial state. Since TAL-C has no statement type for goals,
a new statement type has been added to L(ND)∗. This statement type allows goal
statements to be specified using a set of fluent formulas describing the set of goal
states.

Definition 6.2.7 (Goal Statement)
A goal statement inL(ND)∗, labeled goal, is formed from elementary fluent formulas
having the form f =̂ ω using conjunction and universal quantification over values,
where f is a fluent term containing no nested fluent terms and ω is a value term
containing no fluent terms. As a shorthand notation, f =̂ true can also be written f .

�

The restriction to conjunctive goals with no nested fluent terms is mainly intended
to streamline the presentation of the L(FL) semantics for goal statements and goal
expressions (next section). Arbitrary disjunctive and existential goals are in fact
allowed in the implementation. A formal semantics for such goals, partly based
on formula rewriting during translation into L(FL), has been presented in earlier
publications (Kvarnström & Doherty, 2000b). A cleaner and more elegant (but still
equivalent) semantics is expected to be facilitated by future extensions to TAL and
L(FL).

It should be noted that although explicit negations are not allowed in goal state-
ments, negative goals of the form ¬at(object, location) can be written as at(object,
location) =̂ false. Also note again that it will be possible to express more complex
goals, not limited to the final state, using control rules.

For a planner such as TALplanner, where operators can be executed over an ex-
tended period of time, there is a question of whether it is sufficient that the planner
visits a goal state at some point during the execution of an action or whether the
planner must achieve a persisting goal state at the end of the execution of the final
action in the plan. TALplanner currently requires a persisting goal state, though
this is not a fundamental property of the planner but a design decision that could
easily be changed. This leads to the following translation of goal statements:

• Trans(goal φ) = Trans(∃t.[t, ∞) φ)

After applying an action, the planner tests whether the current narrative entails
the conjunction of all goal formulas. If it does, a persisting goal state has been

150 6.2. Representing Planning Problems in TAL

achieved (because φ must hold from some arbitrary timepoint t until infinity), and
the current plan candidate can be returned as a solution.

Example 6.2.9 (Logistics, Gripper and Blocks, continued)
The goal specification for the logistics problem instance in Figure 5.3 on page 120
can be written as follows:

goal at(package-1, city2-1) ∧ at(package-2, city1-2)
goal at(package-3, city1-1) ∧ at(package-4, city1-1)
goal at(package-5, city4-2) ∧ at(package-6, city3-1)

The following goal specification for a gripper problem instance requires all balls to
be in room B and requires all grippers to be free, but does not constrain the location
of the robot. This is consistent with the goal for the problem instance in Figure 5.1
on page 118.

goal ∀ball [loc(ball) =̂ roomB] ∧ ∀gripper [free(gripper)]

The following goal statements are one possible description of the blocks world goal
state described in Figure 5.2 on page 119.

goal clear(B) ∧ on(B,E) ∧ on(E,C) ∧ ontable(C)
goal clear(A) ∧ on(A,D) ∧ ontable(D) �

6.2.6 The Goal Modality: Querying the Goal

TLPlan control rules use a goal modality to test whether or not the goal of the
current problem instance requires a certain formula to hold: If γ is the conjunction
of all goal formulas, then the formula goal(φ) holds iff γ |= φ, where φ may contain
variables bound outside the goal modality. This is key to the pruning power of
control rules, and a formula class similar to the goal modality must therefore be
provided by TALplanner.

As discussed in the previous section, this presentation is limited to conjunctive
goals. For such goals, the information present in the goal specification can be cap-
tured by a simple syntactic transformation during the translation from L(ND)∗ to
L(FL). The intention behind this transformation is to generate, for each original
fluent f : dom1 × · · · × domn → dom explicitly defined in a narrative, a function
goal f : dom1 × · · · × domn × dom → {true, false} that can be queried to determine
whether or not the goal forces the fluent to take on a particular value in dom. For
example, the fluent loc(obj) : location should give rise to a boolean function
goalloc(obj, location), where goalloc(robby, roomA) holds if and only if the goal
entails that robby is in roomA. This function will then replace the use of a modal-
ity in TLPlan.

Because the goal modality is only concerned with the classical state-based goal,
which is constant and does not vary over time, a timeless goal f function would suf-
fice for our intentions. However, TAL does not permit the specification of timeless

Chapter 6. TALplanner 151

functions. Therefore, each goal f function is modeled as a fluent, called a goal flu-
ent. We arbitrarily choose to use the value of this fluent at time 0 to represent the
constraints placed on the corresponding original fluent by the goal.

The intention is that [0] goal f (x, ω) should be true if and only if the goal γ

entails that f (x) =̂ ω. This is achieved using TAL durational fluents, a somewhat
strange name for fluents whose instances automatically revert to a default value
when not explicitly forced to take on another value. Each goal fluent is durational
with default value false. What remains is to force an appropriate subset of all goal
fluents to be true, which can be achieved by generating for each goal statement a
new TAL dependency constraint where each goal expression f (x) =̂ ω is replaced
with I([0] goal f (x, ω) =̂ true).

Goal expressions can now be introduced as a new type of atomic formula in
L(ND)∗.

Definition 6.2.8 (Goal Expression)
A goal expression is an atomic formula having the form goal(f =̂ ω), where f is a
fluent term and ω is a value term, neither of which contains any occurrences of the
value function. �

Goal expressions are translated as follows:

• Trans(goal(f (x) =̂ ω)) = Trans([0] goal f (x, ω) =̂ true)

This notation can easily be extended to allow conjunctions, disjunctions, and quan-
tification within the scope of the goal macro by observing the following equiva-
lences, which hold for conjunctive goals:

• goal(φ ∧ ψ) ≡ goal(φ) ∧ goal(ψ)

• goal(φ ∨ ψ) ≡ goal(φ) ∨ goal(ψ)

• goal(∃x.φ) ≡ ∃x.goal(φ)

• goal(∀x.φ) ≡ ∀x.goal(φ)

6.2.7 Doing Something: Operators and Actions

Since TAL-C is a logic for reasoning about action and change, it has a notion of
actions that can be used for modeling planning operators. Effects can be specified
using the R or I assignment operators, and conditional effects are easily modeled
as well.

The only downside of using TAL operator definitions is their flexibility, which
gives them a relative lack of structure. For example, there is no distinction be-
tween operator preconditions and conditions used for conditional effects, and the
fact that there can be many levels of quantification and many levels of effect con-
ditions means that operator analysis is unnecessarily complex. For simplicity, we

152 6.2. Representing Planning Problems in TAL

therefore introduce a more structured operator definition macro, which can be more
easily handled by the planner but which can still be translated into a plain L(FL)
action definition. This is in line with the standard TAL practice of preserving the
logical base language L(FL) and its semantics but providing different variations of
the high-level macro language L(ND) that are adapted to special tasks.

Before presenting a formal specification, we will provide an overview of the
new operator macro using a concrete example from the gripper domain: The move-

to operator, which moves the robot and all balls currently carried by the robot to
another room. This operator could be formalized in plain L(ND) as follows:

action move-to(room)
acs3 [s,t] move-to(room)

[s] loc(robby) 6=̂ room→
R([t] loc(robby) =̂ room) ∧
∀ball [[s] ∃gripper [is-carried-in(ball,gripper)]→ R([t] loc(ball) =̂ room)] ∧
t=s+1

Note the constraint t=s+1 which ensures that the action has unit duration. Using
the new operator macro in L(ND)∗, the same operator could instead be defined as
follows:

operator move-to(room) :at s
:duration 1
:precond [s] loc(robby) 6=̂ room
:context

:e�ects [s+1] loc(robby) := room
:context

:forall ball
:condition [s] ∃gripper [is-carried-in(ball, gripper)]
:e�ects [s+1] loc(ball) := room

This operator specification encapsulates information about a specific operator type. It
specifies the name and the formal arguments of the operator, including a temporal
variable which serves as a formal invocation timepoint. It also contains a dura-
tion specification, required for actions with extended duration, and a precondition
which must only refer to the state where the operator is invoked. Finally, there must
be a complete specification of all (possibly quantified and/or conditional) effects of
the operator. This is provided in terms of one or more context specifications, each of
which contains one or more effect specifications.

Definition 6.2.9 (Operator Specification; Invocation Timepoint Function)
An operator specification2 in L(ND)∗ is a labeled statement having the following
form, where o is an operator name, v1 through vn are distinct value variables serv-
ing as formal parameters, the invocation timepoint s is a temporal variable, the

2Redefined in Definition 7.2.1 on page 197 for concurrency.

Chapter 6. TALplanner 153

duration specification τ is a temporal term, the precondition φ is a single timepoint
formula for s, and c1 through cm are context specifications for the invocation time-
point s (as defined below).

• operator o(v1, . . . , vn) :at s :duration τ :precond φ

:context c1 . . . :context cm

For brevity, the formal invocation time variable for o as specified by the :at clause
will sometimes be denoted by inv(o).

Omitting the precondition specification (:precond φ) is equivalent to specifying
:precond true. Omitting the duration specification is equivalent to specifying :dura-

tion 1. For actions with only one context specification, the :context keyword can be
omitted. �

Notation: Operators are often denoted by o. In a narrative with n operator defin-
itions, operators may be denoted by oi where the superscript index identifies the
operator type (0 ≤ i < n). In a plan containing m action instances, operators may
be denoted by oj where the subscript index indentifies the index of the operator
within the plan (0 ≤ j < m). Consequently, the operator oi

j is an operator of type i
occurring as the j:th action in a plan. Operator arguments are denoted by ω where
arbitrary value terms are allowed and by c in concrete plans where only constant
value arguments are allowed. Overlines (c) indicate implicit sequences of argu-
ments.

An operator specification can contain a number of context specifications, each of
which encapsulates a set of conditional quantified effects.

Definition 6.2.10 (Context Specification)
A context specification3 for the invocation timepoint s has the following form, where
v1 through vn are distinct value variables, φ is a single timepoint formula for s, and
e1 through em are effect expressions for s (as defined below):

• :forall v1, . . . , vn :condition φ :e�ects e1, . . . , em

If quantification is not required, the quantifier section (:forall v1, . . . , vn) can be omit-
ted. If no context condition is required, the condition section (:condition φ) can be
omitted; this is equivalent to specifying :condition true. �

An effect expression specifies a single effect taking place at a single timepoint or
during an interval. Interval effects are mainly useful in concurrent domains, where
more than one operator instance may affect a fluent at any given time, and are
interpreted as forcing a fluent to take on a certain value at all timepoints during
the specified interval. If the temporal interval is empty or negative (τ′ < τ below),
the fluent will not be affected at all. This is useful in certain special cases; see
Section 7.2.3 on page 200 for an example.

3Redefined in Definition 7.3.4 on page 202 for resources.

154 6.2. Representing Planning Problems in TAL

Definition 6.2.11 (Effect Expression)
An effect expression for the invocation timepoint s has one of the following forms,
where τ and τ′ are temporal terms, f is a single timepoint fluent term for s, and ω

is a single timepoint value term for s:

• [s + τ] f := ω

• [s + τ,s + τ′] f := ω �

Correctness of Operator Specifications

In addition to the syntactical structure specified above, operator definitions must
satisfy a small number of additional temporal constraints. Operator durations must
be strictly positive, and operator specifications where action effects may take place
in or before the invocation state, or after the specified action duration, are not valid.
More formally, given an operator with duration δ, and an effect [s + τ] f := ω or
[s + τ,s + τ′] f := ω, it must be the case that δ > 0, τ > 0, τ ≤ δ and τ′ ≤ δ.

Verifying this aspect of operator specifications in advance can be complicated,
since both action durations and effect timepoints may depend on the invocation
state and cannot be evaluated without access to the specific goal narrative to which
an action instance is added. The current implementation verifies correctness for
each action added to a plan, ensuring that no invalid plans are generated even if
invalid operator specifications are provided as input to the planner.

Action Applicability

It must be possible to determine whether or not an operator instance is applicable
in a given goal narrative, during a given temporal interval, with a given set of pa-
rameters. In order for a specific instance of an operator to be applicable, the corre-
sponding precondition must be satisfied, the specified duration must correspond to
the duration of the interval where the action should be executed, and those condi-
tional or unconditional effects that actually take place should not contradict either
each other or effects from other actions already present in the narrative.

Definition 6.2.12 (Applicable Action)
Let o(x) be an operator with formal arguments x, invocation timepoint s, precondi-
tion φ and duration δ. Then, the action o(c) is applicable over the temporal interval
[τ, τ′] in a goal narrative N iff the following conditions hold:

• Trans+(N) |= Trans(φ[s 7→ τ, x 7→ c])

• Trans+(N) |= Trans(τ′ − τ = δ[s 7→ τ, x 7→ c])

• Trans+(N ∪ {[τ, τ′] o(c)}) 6|= false �

Chapter 6. TALplanner 155

The precondition and the duration constraints are easily checked by evaluating
them in the invocation state. Conditional and unconditional effects can simply be
applied by adding the new operator instance (action occurrence) to the existing goal
narrative – if they are contradictory, the resulting narrative will be inconsistent.
Note that because the planner will need to construct an explicit state-based model
of the goal narrative, consistency checking is essentially free.

Note the difference in intention between the applicability criteria specified in this
section and the correctness criteria in the previous section: An action that does not
satisfy applicability criteria is still a valid action, though it cannot be applied in the
given context. An action that does not satisfy correctness criteria is always invalid,
even if this only occurs in specific contexts.

Context-Dependent Durations in TAL

It should be possible for the duration of each operator to be dependent on the spe-
cific arguments with which it is invoked as well as on the current state of the world.
For example, the time required to drive between two locations might depend on the
distance between these locations. This could be modeled using an integer-valued
fluent distance(location, location) whose value is interpreted as a duration, ex-
cept that in the current version of TAL-C the distance fluent cannot be used where a
temporal term is expected, because the value sorts Vi are considered to be distinct
from the temporal sort T .

This is a minor technical issue which can be fixed by a simple change to the
current order-sorted type structure of TAL-C, for example by allowing fluents to
take values from a finite subsort of the temporal sort. For now, operators with
context-dependent duration are supported in TALplanner through a conversion
function maketime() defined through semantic attachment, converting values in a
numeric value sort Vi to timepoints in the temporal sort T . This function can also
be used in effect specifications to specify the timepoints at which effects take place.
An example of the use of maketime() is shown in the concurrent logistics domain in
Section 7.1.1.

Comparison with PDDL

In recent versions of the commonly used domain definition language PDDL (Fox &
Long, 2003; Edelkamp & Hoffmann, 2004), operator durations can be modeled but
effects can only take place at the start or the end of a durative action. Like Smith
(2003) we argue that allowing effects to take place at arbitrary timepoints permits
many processes to be modeled as single operators and that this is in fact a natural
way of modeling certain types of processes that cannot be stopped once initiated.
The alternative workaround, using multiple operator types with artificial precon-
ditions and effects that ensure the entire chain of required operators is executed in

156 6.2. Representing Planning Problems in TAL

proper order, leads to unnecessary complexity and obscures the true planning do-
main. TALplanner effect specifications therefore contain a timepoint or an interval
of time where an effect should take place, specified as an offset from the operator
invocation timepoint.

Another conceptual difference between the TAL semantics and the PDDL semantics
relates to the interpretation of timing specifications for action effects. The authors of
PDDL2.1 argue that the instantaneous effects present in PDDL2.1 action definitions
are in fact only abstractions of a true model where effects take place over intervals
of time. Therefore, if an action causes a logical condition φ to become true at time τ,
this condition is considered a “moving target” and one cannot immediately apply
another action that depends on φ at the same time τ – though one can apply it at
τ + ε for an arbitrary ε > 0.

Though we do recognize the difficulties involved in providing a crisp and well-
defined logical model of a real world domain where exact action timings can never
be determined in advance, we believe the PDDL2.1 semantics only adresses a very
narrow philosophical aspect of this problem, adding unnecessary complexity for
no real gain. Because fluent values are only considered to be undetermined at a
single instant of time, an effect modifying a fluent f at (for example) time 4 still
allows the previous value of f to be used at time 3.999999 and allows the newly
assigned value to be used at time 4.000001. Therefore, the fact that the value of f is
undetermined at time 4 is only relevant for our model of the real world if the true
effect did indeed materialize exactly at time 4 – and the difficulty or impossibility
of determining this timepoint in advance was the only reason for introducing the
“moving target” concept in the first place. If the effect instead materialized at time
4.02, the PDDL semantics allowed another action to rely on the new value too early.
If it materialized at time 3.78, the PDDL semantics introduced an unnecessary de-
lay.

A more complete treatment of this issue would involve allowing actions to have
incompletely specified durations, where driving between two locations might take
between 3.12 and 4.27 units of time, and allowing actions to specify intervals of
time where fluents are partly or completely undefined up to a specific point in time
where an effect is guaranteed to have materialized. The use of intervals rather than
instants where fluents are undefined leads to a true increase in expressive power,
and is directly supported by TAL though not yet implemented in TALplanner.

Translation into L(FL)

The definition of the Trans translation function can be extended as follows in order
to translate operator specifications (labeled operator), context specifications, and
effect specifications into TAL-C action schemas (labeled acs). Note that Transcon
and Transe� generate L(ND) formulas that are eventually translated into L(FL) by
Transop.

Chapter 6. TALplanner 157

• Trans(operator o(v1, . . . , vn) :at s :duration δ :precond φ

:context c1 . . . :context cm) =
∀s, s′, v1, . . . , vn.
Occurs(s, s′, o(v1, . . . , vn))→ Trans(φ→ ∧m

i=1 Transcon(s, ci))

• Transcon(s, :forall v1, . . . , vn :condition φ :e�ects ψ1, . . . , ψm) =
∀v1, . . . , vn[φ→ ∧m

i=1 Transe�(s, ψi)]

• Transe�(s, [s + τ, s + τ′] f := ω) = I([s + τ, s + τ′] f =̂ ω)

• Transe�(s, [s + τ] f := ω) = I([s + τ] f =̂ ω)

Example Operator Definitions

The following examples show operator definitions from the logistics domain and
the gripper domain. Further examples, making use of variable action durations as
well as other features of TALplanner operator descriptions, can be found in Chap-
ter 7 and in Chapter 9.

Example 6.2.10 (Logistics Domain, continued)
In the logistics domain, packages can be loaded into trucks or airplanes and can
naturally also be unloaded. Trucks can drive between arbitrary locations within a
single city, and planes can fly between airports. This is usually modeled using a
total of six operators, with different operators for different types of vehicles. For
example, there are usually two operators for loading packages into vehicles:

operator load-truck(obj, truck, loc) :at s
:precond [s] at(obj, loc) ∧ at(truck, loc)
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, truck) := true

operator load-plane(obj, plane, loc) :at s
:precond [s] at(obj, loc) ∧ at(plane, loc)
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, plane) := true

Given a sufficiently flexible type system this is not necessary. TALplanner uses the
order-sorted type system of TAL, and both truck and airplane have been modeled
as subtypes of vehicle, allowing a single load operator to be used:

operator load(obj, vehicle, loc) :at s
:precond [s] at(obj, loc) ∧ at(vehicle, loc)
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, vehicle) := true

Similarly, a single unload operator can be used for both types of vehicles. The tasks
of driving and flying are sufficiently different to merit separate operator definitions,
though, because a truck can drive between arbitrary locations but only within a
single city, while an airplane can move between different cities but can only visit
locations that are airports.

158 6.2. Representing Planning Problems in TAL

operator unload(obj, vehicle, loc) :at s
:precond [s] in(obj, vehicle) ∧ at(vehicle, loc)
:e�ects [s+1] in(obj, vehicle) := false, [s+1] at(obj, loc) := true

operator drive(truck, loc1, loc2) :at s
:precond [s] at(truck, loc1) ∧ city-of(loc1) =̂ city-of(loc2) ∧ loc1 6= loc2
:e�ects [s+1] at(truck, loc1) := false, [s+1] at(truck, loc2) := true

operator �y(plane, airport1, airport2) :at s
:precond [s] at(plane, airport1) ∧ airport1 6= airport2
:e�ects [s+1] at(plane, airport1) := false, [s+1] at(plane, airport2) := true

Note that we use the traditional definitions of the in and at predicates, where objects
that are currently inside a vehicle are not considered to be at a location. �

Example 6.2.11 (Gripper Domain, continued)
Three operators are available to the robot in the gripper domain. The robot can
pick up a ball in any free gripper, as long as the ball is in the same location and
the robot is not already carrying it. It can always drop a ball that it is carrying.
Finally, it can move to another room, which changes not only the location of the
robot but also the location of any ball that it is currently carrying, demonstrating
the use of quantified conditional effects.. As in the logistics domain, there is no map
modeling connections between rooms. Instead, the robot is able to move directly
from any room to any other room.

operator pick(ball, gripper) :at s
:precond [s] loc(ball) =̂ loc(robby) ∧ free(gripper) ∧

¬∃gripper’ [is-carried-in(ball, gripper’)]
:e�ects [s+1] is-carried-in(ball, gripper) := true,

[s+1] free(gripper) := false

operator drop(ball, gripper) :at s
:precond [s] is-carried-in(ball, gripper)
:e�ects [s+1] is-carried-in(ball, gripper) := false,

[s+1] free(gripper) := true

operator move-to(room) :at s
:precond [s] loc(robby) 6=̂ room
:context

:e�ects [s+1] loc(robby) := room
:context :forall ball :condition [s] ∃gripper [is-carried-in(ball, gripper)]
:e�ects [s+1] loc(ball) := room �

6.2.8 Combining Actions into Plans

A plan is an executable set or sequence of actions, and a plan which also entails the
goal and all control rules is called a solution or a solution plan.

Chapter 6. TALplanner 159

Due to the use of actions with non-unit duration in TALplanner, even purely
sequential plans must contain timing information. This information will consist
of an exact numeric execution interval for each action in the plan, and therefore it
seems reasonable to reuse the standard TAL concept of action occurrences for this
purpose rather than introducing new planning-specific structures.

An action occurrence has the form [τ, τ′] o(ω), denoting the invocation of the
operator o with the arguments ω between times τ and τ′. TAL actions must occur
over non-empty intervals of time, implying that τ < τ′. A concrete example for the
logistics domain would be [0, 1] load(package-5, truck-1, city1-1).

Since action occurrences include explicit timing information, there is strictly
speaking no need to provide additional structure in order to maintain proper order-
ing and timing relations: Plans can be viewed simply as sets of action occurrences,
without loss of information. Despite this, it is sometimes useful to represent se-
quential plans as sequences or tuples rather than as sets, given that the TALplanner
search procedure always adds one action at a time. These two representations will
be used interchangeably.

Definition 6.2.13 (Sequential Plan)
A sequential plan for a goal narrative N is a tuple of ground fluent-free action oc-
currences with the following constraints. First, the empty tuple is a sequential plan
for N . Second, given a sequential plan p = 〈[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)〉 for
N , its successors are exactly those sequences adding one new action occurrence
[τn+1, τ′n+1] on+1(cn+1) satisfying the following constraints:

1. Let N ′ = N ∪ {[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)} be the original goal narra-
tive N combined with the existing plan. Then, the new action on+1(cn+1)
must be applicable over the interval [τn+1, τ′n+1] in N ′. This implies that its
preconditions are satisfied, that its effects are not internally inconsistent and
do not contradict the effects of the operator instances already present in the
sequence, and that the duration τ′n+1 − τn+1 is consistent with the duration
given in the operator specification.

2. The first action starts at time 0: τ1 = 0.

3. Each action occurrence follows the preceding action occurrence with no gaps:
For all 1 < k ≤ n, τk = τ′k−1. �

Definition 6.2.14 (Sequential Solution)
A sequential solution4 for a goal narrative N is a sequential plan p for N such that
Trans+(N ∪ p) |= Trans(Ngoal), where Trans+ is the narrative translation procedure
for L(ND)∗ as defined in Section 6.2.10. �

4Redefined in Definition 6.4.2 on page 168 to add support for control rules.

160 6.2. Representing Planning Problems in TAL

6.2.9 Domains and Problem Instances

A TAL narrative has traditionally been specified as a single structure containing
what the planning community would view as two separate structures: A domain
definition and a problem instance definition. The implementation of TALplanner
has an extended parser which allows the domain definition and the problem in-
stance definition to be specified separately. Though this has some effect on the
efficiency of the planner, allowing it to do more extensive pre-processing on the
domain definition before being given a sequence of problem instances to solve, this
should mainly be considered an implementation detail. For the purposes of this
thesis, the information specified to the planner will usually be considered to con-
sist of a single goal narrative.

6.2.10 The Extended Language L(ND)∗

Most of the planning-related language extensions to TAL-C have now been intro-
duced, including new statement classes for operator definitions, goal statements,
and definitions for defined fluents. Two additional statement classes remain to be
presented: TAL-based control rules with explicit time, labeled control, and con-
trol rules using tense operators (introduced as macros in L(ND)∗), labeled tcontrol.
These statement classes will be examined in the following sections, together with
a more extensive discussion of the properties of control rules and how they are
used in TALplanner. Before that, it is time for an overview of the new language
and a revision of the TAL-C translation procedure and circumscription policy from
Section 2.4.2.

The following definition provides an overview of the statement classes used in
the planning-specific TAL macro language L(ND)∗.

Definition 6.2.15 (Narrative Components in L(ND)∗)
A narrative in L(ND)∗ consists of the following statement classes.

• Operator specification statements, labeled operator (Definition 6.2.9).

• Fluent definition statements, labeled de�ne (Definition 6.2.4).

• Initialization statements, labeled init (Definition 6.2.6).

• Action occurrence statements, labeled occ. As in plain L(ND), an action
occurrence statement is an occurrence formula [τ, τ′] Ψ where τ and τ′ are
variable-free temporal terms and Ψ is a variable-free action term.

• Goal statements, labeled goal (Definition 6.2.7).

• TAL control statements, labeled control (Definition 6.4.1 on page 167).

• Tense control statements, labeled tcontrol (Definition 6.5.2 on page 180). �

Chapter 6. TALplanner 161

Note that action occurrence statements must not be present in the initial goal nar-
rative specified as input to the planner. They are added incrementally as a plan is
being built. Also note that the definition above does not include statements related
to the vocabulary of a planning domain: Value domains, objects, and features.

Translation. We identify two separate aspects of translating L(ND)∗ narratives.
The Trans translation function is responsible for translating a single unstructured
formula into L(FL), while the narrative translation procedure discussed in Sec-
tion 2.4.2, denoted by Trans+, is responsible for translating a complete structured
narrative consisting of a number of labeled statements belonging to a predefined
set of statement classes. This separation is necessary due to the use of filtered cir-
cumscription, where the Occlude and Occurs predicates should be circumscribed
relative to only a subset of the statement classes used in L(ND)∗.

As new macros have been added to the new language L(ND)∗, the Trans func-
tion has been extended incrementally. The following list summarizes the extensions
to the translation function.

• Trans([t] f (v1, . . . , vn) : φ) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn)↔ φ])

• Trans([t] f (v1, . . . , vn) : ω) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn) =̂ ω])

• Trans(goal φ) = Trans(∃t.[t, ∞) φ), for goal statements φ

• Trans(goal(f (x) =̂ v)) = Trans([0] goal f (x, v) =̂ true)

• Trans(operator o(v1, . . . , vn) :at s :duration δ :precond φ

:context c1 . . . :context cm) =
∀s, s′, v1, . . . , vn.
Occurs(s, s′, o(v1, . . . , vn))→ Trans(φ→ ∧m

i=1 Transcon(s, ci)).

• Transcon(s, :forall v1, . . . , vn :condition φ :e�ects ψ1, . . . , ψm) =
∀v1, . . . , vn[φ→ ∧m

i=1 Transe�(s, ψi)]

• Transe�(s, [s + τ, s + τ′] f := ω) = I([s + τ, s + τ′] f =̂ ω)

• Transe�(s, [s + τ] f := ω) = I([s + τ] f =̂ ω)

What remains is to extend the narrative translation procedure for the new state-
ment classes. To do this, we also add three new L(FL) statement classes for control
formulas, tense control formulas and goals, using the same labels as in L(ND)∗.
Though this may appear to be in conflict with our desire to keep the base logic
L(FL) unchanged, the addition of new statement classes is in fact a very minor
modification that keeps the underlying structure and circumscription policy intact.

162 6.2. Representing Planning Problems in TAL

In the following,

• N denotes the collection of narrative statements contained in a goal narrative
in L(ND)∗.

• Nper denotes the set of implicitly specified persistence statements in N char-
acterizing the behavior of persistent and durational fluents, where defined
fluents are assumed to be dynamic (neither persistent nor durational), fluents
representing the goal state are durational as specified in Section 6.2.6, and all
other fluents are assumed to be persistent. Γper = Trans(Nper) denotes the
corresponding translation into L(FL).

• Ninit denotes the set of initialization statements inN characterizing the initial
state, and Γobs = Trans(Ninit) the corresponding translation into observation
statements in L(FL).

• Nocc denotes the set of action occurrence statements inN , for a goal narrative
where the planning algorithm has already added a set of action occurrences,
and Γocc = Trans(Nocc) the corresponding translation into L(FL).

• Nop denotes the set of operator definition statements in N , and Γacs = Trans
(Nop) the corresponding translation into action type specifications in L(FL).

• Ncontrol denotes the set of TAL-based control formulas in N , and Γcontrol =
Trans(Ncontrol) the corresponding translation into static formulas in L(FL).

• Ntcontrol denotes the set of tense control formulas in N , and Γtcontrol = Trans
(Ntcontrol) the corresponding translation into static formulas in L(FL).

• Nde�ne denotes the set of fluent definition statements in N , and Γdomc =
Trans(Nde�ne) the corresponding translation into domain constraints inL(FL).

• Ngoal denotes the set of goal statements in N , and Γgoal = Trans(Ngoal) the
corresponding translation into static formulas in L(FL).

• Ndepc denotes the set of dependency constraints providing values for goal flu-
ents as defined in Section 6.2.6, and Γdepc = Trans(Ndepc) the corresponding
translation into dependency constraints in L(FL).

• Γfnd denotes the set of foundational axioms in L(FL), which contains unique
names axioms, unique values axioms, etc.

• Γtime denotes the set of axioms representing the temporal base structure.
Since the timepoints in TAL-C use the natural numbers structure, we use the
Peano axioms without multiplication.

Chapter 6. TALplanner 163

The Occlude predicate is circumscribed relative to the action definitions in Γacs and
the dependency constraints in Γdepc with all other predicates fixed, and Occurs is
circumscribed relative to the action occurrence formulas in Γocc with all other pred-
icates fixed. Due to structural constraints on L(ND) statements, quantifier elimina-
tion techniques can then be used to translate the two second-order circumscriptive
theories into logically equivalent first-order theories (Doherty et al., 1998; Doherty,
1996), denoted by Circ(Γacs ∧ Γdepc; Occlude) and Circ(Γocc; Occurs), respectively.

The two resulting theories are combined and filtered with theL(FL) translations
of the persistence statements in Γper (forcing persistent and durational fluents to
adhere to the persistence or default value assumptions), the domain constraints
in Γdomc, and the observations and timing constraints in Γobs, yielding the theory
Γ′ = Γper ∧ Γobs ∧ Γdomc ∧ Circ(Γocc; Occurs) ∧ Circ(Γdepc ∧ Γacs; Occlude). Adding
the L(FL) foundational axioms in Γfnd then yields the theory ∆ = Γ′ ∧ Γfnd.

The theory ∆ is still a first-order theory, but lacks one important component:
There is no formal characterization of the linear discrete temporal structure used by
TAL. There are two alternatives: One can use an interpreted theory for the temporal
structure, or an axiomatization can be added in the shape of a second-order theory
Γtime corresponding to the Peano axioms without multiplication.

In the remainder of the thesis, Trans+(N) will denote the result of translating
the goal narrative N into L(FL) and applying this filtered circumscription policy.
The L(ND)∗ formula γ is preferentially entailed by the L(ND)∗ goal narrative N
iff Trans+(N) |= Trans(γ).

Note that whereas most statement types in TAL provide information about what
is definitely the case in a general domain or in a particular problem instance, goals
and control formulas are statements about the desired state of the world. There-
fore, though goals and control formulas are part of a translated narrative, they
are not used when determining what is entailed by this narrative – obviously, that
would allow the planner to immediately conclude that the goal is satisfied. In other
words, these formulas are present in the translation in the shape of Γcontrol, Γtcontrol
and Γgoal, but they are not part of Trans+(N). TALplanner uses the translated for-
mulas during the planning phase, testing whether or not they are entailed by the
Trans+(N ∪ p), where p is a set of action occurrences representing a plan.

Notation. We will say that a set of action occurrences p entails a formula φ iff
Trans+(N ∪ p) |= Trans(φ), where the narrative N is often to be understood from
the context.

6.3 The Basic TALplanner Algorithm

The TALplanner algorithm is based on the use of a forward-chaining search proce-
dure, where the search tree is usually traversed using depth first search. Although
this procedure would be extremely inefficient without the addition of search con-
trol knowledge, it is still a complete planning algorithm, due to the use of cycle

164 6.3. The Basic TALplanner Algorithm

checking together with the restriction to finite domains where only a finite number
of world states are possible.

The definition of depth first search is quite trivial. Nevertheless, we will now
present a version of the TALplanner depth first search procedure. This will serve
as a concrete basis for several definitions as well as an extensible skeleton to which
control rule checking will eventually be added. Explanations follow after this defi-
nition.

Definition 6.3.1 (TALplanner Without Control)
Input: A goal narrative N .
Output: A plan narrative which entails the goal Ngoal.

1 procedure TALplanner-without-control(N)
2 γ← ∧Ngoal Conjunction of all goal statements
3 node← 〈0, 〈〉〉 〈next invocation time, plan〉
4 Open← 〈node〉 Stack (depth first search)
5 while Open 6= 〈〉 do
6 〈τ, p〉 ← pop(Open) Current plan candidate
7 N ′′ ← N ∪ p Complete goal narrative with plan
8 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)
9 if sequential-cycle-check(N ′′, τ) then backtrack (defined below)

10 if Trans+(N ′′) |= Trans(γ) then Goal entailed
11 return N ′′
12 else Not a solution, but check children
13 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′′ do
14 push 〈τ′, 〈p; A〉〉 onto Open

15 fail �

The goal narrative provided as input to TALplanner encapsulates both a planning
domain definition and a problem instance specification. The TALplanner algorithm
begins by extracting the goal statements from this goal narrative and generating an
initial search node, which contains the end time of the last action in the plan, which
is also the time when the next new action should be invoked given that sequential
plans are being generated (0 in the initial node), and the current plan candidate (the
empty tuple). The initial search node is pushed onto a stack in order to maintain a
depth first search order.

As long as the stack is not empty, a search node 〈τ, p〉 is popped from the stack.
Adding the current plan candidate p to the original goal narrative N yields a nar-
rative N ′′ which may or may not be a solution to the current planning problem.5

The planner must then test whether the plan has inconsistent effects, leading to
an inconsistent narrative. Note again that since the planner must build an explicit
model of the state sequence generated by the current plan, inconsistency checking
is essentially free. TALplanner also tests whether the current plan has a state cy-
cle (see also the detailed description under “cycle checking” below). If the plan is

5An intermediate narrative called N ′ will be added in the next version of the algorithm (Defini-
tion 6.4.4 on page 170).

Chapter 6. TALplanner 165

door: closed
loc: outside

door: open
loc: outside

door: open
loc: inside

door: closed
loc: inside

door: open
loc: inside

Initial State enterHouse openDoor

Figure 6.2: Cycle Checking: Not Inside Actions

inconsistent or leads to a state cycle, it must be discarded, and the planner back-
tracks, retrieving another search node from the stack. Otherwise, the plan is either
a solution or a valid inner node whose children should be examined. The plan
is a solution if and only if the complete goal narrative N ′′ (translated into L(FL),
augmented with foundational axioms and circumscribed according to the TAL cir-
cumscription policy) entails the goal (translated into L(FL)). If this is not the case,
the planner should generate new search nodes for those actions that are applicable
at the next action invocation timepoint τ, pushing the new nodes onto the depth
first search stack.

Assuming the planner succeeds in finding a plan forN , the result is the L(ND)∗

narrative N ′′ = N ∪ p, where p is the set of action occurrences (plan steps) gener-
ated by the planning algorithm.

6.3.1 Cycle Checking

TALplanner allows the use of cycle checking to prune the search tree.
Let us first consider cycle checking in the context of sequential planning with

single-step operators, without control rules. In this setting, each action appended
to a plan gives rise to exactly one new state. If this state has already been visited at
an earlier point in the plan, there is a state cycle. It is clear that for any solution that
contains this cycle, there is a shorter solution where the cycle – or more correctly, the
subsequence of actions that caused the cycle – has been removed. Therefore, any
action giving rise to a new state cycle can be pruned, without loss of correctness.

Then consider operators with extended duration. If a new action turns out to
produce a final state that was previously temporarily achieved at an inner point
during the execution of an action, then the argument above is no longer valid. Fig-
ure 6.2 shows a domain where there is a temporally extended action for entering a
house, where as a first step the door is opened, after which the person steps inside
and the door is closed. There is also a separate action for opening the door with-
out stepping over the threshold. Executing these actions in sequence produces a
sequence of four new states to be added after the initial state. The third and fifth
states in the resulting state sequence are identical, but this does not mean that the
plan should be pruned. The state cycle does not correspond to a specific subse-
quence of actions, but to the tail of one action (after the timepoint when the state

166 6.3. The Basic TALplanner Algorithm

was temporarily achieved) followed by a subsequence of complete actions. Clearly
it is impossible to remove a partial action, and consequently the existence of a solu-
tion containing this cycle does not imply the existence of a shorter solution. There-
fore, the cycle checking algorithm below must only consider those states that are
generated at the end of an action occurrence.

Definition 6.3.2 (Sequential Cycle Checker)
Input: A goal narrative N and the end timepoint of the last action tmax.
Output: true if the plan should be discarded, false otherwise.

1 procedure sequential-cycle-check(N , tmax)
2 for t from 0 to tmax − 1 do
3 if N contains no action occurrence [τ, τ′] o(ω) where τ < t < τ′ then
4 if the state at t is identical to the state at tmax then
5 return true
6 return false �

Cycle checking will be revisited for concurrent plans with resources in Section 7.4.

6.3.2 Implementation Notes

The algorithm in Definition 6.3.1 above is necessarily abstracted from the current
implementation of TALplanner. A few important implementation details also de-
serve a brief mention here.

Formula evaluation in state sequences. From the algorithm description above,
it may appear that TALplanner uses theorem proving techniques to test whether
a goal narrative entails a formula. This is not the case. Instead, an explicit state
sequence is generated, and formula evaluation techniques are used to test whether
or not a formula is entailed by the corresponding narrative. The state sequence is
generated incrementally as the search space is explored, with extensive structure
sharing and reuse in order to minimize memory usage.

First order representation. The fact that TALplanner always maintains a first or-
der representation, as opposed to generating ground instances of all actions and
fluents, has proven quite useful in many parts of the planner. For example, when
the planner tests which instances of an action are applicable in each state, it sepa-
rates preconditions into parts dependent on no arguments, the first argument, the
first two arguments, and so on. In the blocks world, the precondition of the pickup

operator includes the condition handempty. If handempty is false, the planner can
immediately conclude that no instance of pickup is applicable. Similarly, the pre-
condition of stack requires that the destination is clear, allowing the planner to iter-
ate over only those destinations that satisfy the clear predicate when searching for
applicable instances of stack. Suitable candidates for iteration are chosen automati-
cally, with automatic rearrangement of the order of operator arguments to improve
iteration performance in certain cases.

Chapter 6. TALplanner 167

Generating search nodes. The last two lines in the planning algorithm above ex-
amine all potentially applicable operator instances, explicitly generating one new
search node for each applicable instance. Given sufficiently strong search control
knowledge, only a few of these nodes may ever have to be visited, and the time
spent testing the applicability of the remaining nodes is wasted. Therefore, the
TALplanner implementation instead generates a single higher-level search node
from which concrete search nodes can be generated on demand for a single oper-
ator type at a time. It would also be possible to take this scheme one step further
and examine only a single operator instance at a time, but this would negate many
of the performance advantages of retaining a first-order operator representation as
discussed in the previous paragraph.

6.4 TALplanner with TAL-based Control Rules

Though TALplanner can emulate the tense control formulas and progression algo-
rithm used by TLPlan, most of our research has been focused on the use of pure
TAL-based control formulas. The first part of this section presents a semantics for
such formulas, specifying when a search node should or should not be pruned.

An important property of formula progression is the fact that it allows control
formulas to be checked incrementally as each search node adds one or more new
states to the state sequence of the parent node. The second part of this section
presents a method for pre-processing pure TAL-based control formulas, generating
a new set of constraints that can also be checked incrementally in each search node.
The method is effective for several formula classes that are commonly used for
domain-dependent control, and for these classes, formula evaluation performance
is approximately on par with formula progression performance with the benefit
of not requiring the storage of progressed control formulas in each search node,
thereby reducing memory requirements. More importantly, the method also pro-
vides the basic framework supporting the domain analysis techniques presented in
Chapter 8, which can provide dramatic performance improvements.

6.4.1 The Semantics of TAL Control Formulas

In order to provide a clean semantics for TAL-based control rules, each control rule
will be viewed as a temporally extended goal that must be satisfied (entailed) by
the final plan narrative generated by TALplanner. This is a difference from TLPlan,
where control rules are only viewed as goal guidance: In TLPlan, generated so-
lutions do not necessarily entail all control rules, due to the use of a progression
algorithm which is not strong enough to detect all types of control rule violations.6

6For example, TLPlan can easily generate plans given the control rule 3 false, which cannot possibly
be satisfied by any plan.

168 6.4. TALplanner with TAL-based Control Rules

Definition 6.4.1 (TAL Control Rule, TAL Control Statement)
A TAL control rule is a static formula. A TAL control statement, labeled control, con-
sists of a TAL control rule. �

The definition of sequential solution (Section 6.2.8) must now be amended to ac-
count for the fact that solutions must entail all control rules.

Definition 6.4.2 (Sequential Solution)
A sequential solution for a goal narrative N is a sequential plan p for N such that
Trans+(N ∪ p) |= Trans(Ngoal ∧Ncontrol). �

As can be seen in the examples below, the implementation allows control rules to
be named as an aid to determining which control rules cause the planner to back-
track. Names have no semantics and are strictly speaking not part of the L(ND)∗

language.

Example 6.4.1 (Control Rules for the Logistics Domain)
The following three simple control rules for the logistics domain are inspired by
the control rules used by TLPlan. An object should only be loaded into a plane if
a plane is required to move it, that is, if the goal requires it to be at a location in
another city. If an object has been unloaded from a plane, it must be the case that
the object should be in the current city. If an object is at its destination, it should not
be moved.

control :name "only-load-into-plane-when-necessary"
∀t, obj, plane, loc.

[t] ¬in(obj, plane) ∧ at(obj, loc) ∧ [t+1] in(obj, plane)→
∃loc’ [goal(at(obj, loc’)) ∧ [t] city-of(loc) 6=̂ city-of(loc’)]

control :name "only-unload-from-plane-when-necessary"
∀t, obj, plane, loc.

[t] in(obj, plane) ∧ at(plane, loc) ∧ [t+1] ¬in(obj, plane)→
∃loc’ [goal(at(obj, loc’)) ∧ [t] city-of(loc) =̂ city-of(loc’)]

control :name "objects-remain-at-destinations"
∀t, obj, loc.

[t] at(obj, loc) ∧ goal(at(obj, loc))→ [t+1] at(obj, loc) �

Further control rule examples will be shown in Chapter 9.

6.4.2 Using Control Rules for Pruning

Any given node in a search tree, or any given plan, can be viewed from two quite
different perspectives.

Nodes as representatives for subtrees. In some cases, we are interested in what
is true in the current plan candidate and all potential descendants. This is the case
when testing whether or not a plan should be pruned from the search tree. Given a

Chapter 6. TALplanner 169

search node n corresponding to a plan p that satisfies all control formulas, it is not
necessarily the case that all ancestors of n (all prefixes of p) satisfy these formulas.
Conversely, a search node that violates a control formula may have descendants
that satisfy all control formulas. In order to preserve all valid solutions in the search
tree, the planner should therefore only prune a node if it can prove that the node
and all its descendants must violate a control rule, taking all possible extensions of
the current plan into consideration. This leads to the question of which facts that
are true in the current plan candidate will remain true in all descendants.

Consider the case when a search node 〈τ, p〉 has just been retrieved from the
search stack. The last action in p is executed during the interval [τ0, τ] for some τ0.
All children of this node will contain one new action invoked at time τ (the last two
lines in the planning algorithm). Due to the definition of TALplanner operators,
the effects of this action must take place strictly later than τ. The children of this
action, in turn, must be invoked at timepoints strictly later than τ and therefore
also cannot have effects at or before τ. Thus, the state sequence at [0, τ] is “fixed”,
in the sense that it must remain the same for the plan p and all descendants. If the
planner can prove that a control rule is violated using only facts about fluents in the
interval [0, τ], then the control rule will definitely remain violated in all descendant
search nodes.

The fact that fluent values are only known in the interval [0, τ] can also be de-
scribed in terms of lack of any knowledge about the “future” timepoints in (τ, ∞).
In TLPlan, this lack of knowledge is handled implicitly using a formula progres-
sion algorithm, which step by step evaluates control formulas through those states
that become fixed, stopping before the unfixed future is reached. TALplanner in-
stead uses an explicit declarative model of its incomplete knowledge, which can be
succinctly captured by occluding all fluents in the narrative after time τ, thereby
releasing them from the inertia assumption. This is done in the definition of N ′
below, using the occlude-all-after function. Because the planner no longer makes
the inertia assumption after τ, the only facts entailed by the narrative are those
facts that are explicitly specified in the narrative and those facts that are implied by
applying inertia in [0, τ].

Explicitly modeling incomplete knowledge will be particularly useful in the
concurrent version of TALplanner. If the latest action occurrence in a plan takes
place at [τ0, τ], the sequential planner can immediately assume complete knowl-
edge of fluent values at all timepoints up to τ, because no new actions can be added
earlier than τ. The concurrent planner, on the other hand, can still add new actions
as early as τ0. It will still have complete knowledge up to τ0, but only partial knowl-
edge about later states. The fact that this partial knowledge is correctly modeled
and can be taken advantage of is essential to the efficiency of the concurrent plan-
ner.

Definition 6.4.3 (occlude-all-after)
By occlude-all-after(N , τ) we will denote the finite collection of narrative statements
{dep X((τ, ∞) f) | f is a fluent in N} occluding all fluents in the narrative N . �

170 6.4. TALplanner with TAL-based Control Rules

Nodes as plan candidates. In some cases, we are interested in what is true in the
current plan candidate, under the assumption that no further changes will ever
be made. This is the case when testing whether or not a plan entails the goal of
the current planning problem instance: If it does, then it will be returned without
further modification. The information available in this plan is then equivalent to
that available in the original goal narrative N together with the current plan p,
translated into L(FL) using the Trans+ translation procedure which also performs
circumscription and adds the required TAL foundational axioms. One vital prop-
erty of this translation is that the inertia (persistence) assumption can be applied at
all timepoints, allowing the planner to infer a specific value for any fluent at any
arbitrary point in time. This variation of the goal narrative is denoted byN ′′ below.

Given this background, we can now extend the TALplanner algorithm by intro-
ducing control knowledge. Lines that are modified from the previous version are
marked with a hollow triangle (�). New lines are marked with a filled triangle (I).

Definition 6.4.4 (TALplanner With Naive Control)
Input: A goal narrative N .
Output: A plan narrative entailing the goalNgoal and the control formulasNcontrol.

1 procedure TALplanner-naive-control(N)
2 γ← ∧Ngoal Conjunction of all goal statements
I3 φ← ∧Ncontrol Conjunction of all TAL control rules

4 node← 〈0, 〈〉〉 〈next invocation time, plan〉
5 Open← 〈node〉 Stack (depth first search)
6 while Open 6= 〈〉 do
7 〈τ, p〉 ← pop(Open) Current plan candidate
I8 N ′ ← N ∪ p ∪ occlude-all-after(N , τ) No knowledge about future
I9 if Trans+(N ′) |= ¬Trans(φ) then backtrack Control violated
10 N ′′ ← N ∪ p Narrative with complete knowledge
11 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)
12 if sequential-cycle-check(N ′′, τ) then backtrack

�13 if Trans+(N ′′) |= Trans(γ ∧ φ) then Goal and control entailed
14 return N ′′
15 else Not a solution, but check children
16 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′ do
17 push 〈τ′, 〈p; A〉〉 onto Open

18 fail �

Compared to the TALplanner algorithm without control, this algorithm introduces
a new narrative version N ′, constructed by occluding all fluents after time τ, the
end of the last action in the plan. This provides the planner with a correct view
of those facts that are true not only in the current plan but also in all descendants.
This narrative is used for testing whether there is an inconsistency as well as when
checking for state cycles, as in the previous version of the algorithm. It is also used

Chapter 6. TALplanner 171

to test whether control rules are violated in this plan and all extensions to the plan,
in which case the planner must backtrack. When testing whether a plan should
be accepted as a solution, though, complete knowledge about the future should
be assumed. As in the previous algorithm, this is done done using the narrative
variationN ′′, which does not add occlusion for all fluents and therefore retains the
inertia assumption for all fluents after the end of the last action in the plan.

For intermediate search nodes, the planner only tests whether the negation of
a control formula is entailed by a plan. The opposite case, where the control for-
mula itself is entailed by an intermediate search node and could have been removed
from the narrative to avoid re-evaluation in descendant nodes, is quite uncommon:
Almost all control formulas refer to conditions that must hold throughout the exe-
cution of a plan, and such properties are unlikely to be proven to hold when only
a prefix of the final solution is being examined. Therefore, the planner only tests
whether control formulas φ are entailed when it appears that a solution may have
been found, that is, after verifying that the goal statements γ are satisfied by the
current plan candidate.

6.4.3 Testing Control Formulas Incrementally

Though the naive TALplanner algorithm specified above satisfies the desired se-
mantics for TAL-based control rules, it does so quite inefficiently: It re-evaluates all
control formulas in each search node, failing to make use of the fact that adding a
new action to a plan gives rise to one or more new states but leaves a large prefix of
the state sequence intact. For better performance, control formulas should instead
be evaluated in an incremental manner.

In TLPlan, this is achieved using a progression algorithm. Each time an action
is added to a plan, the modal control formula associated with the parent search
node is progressed through the new states generated by this action, yielding a new
control formula to be used as a label for the newly generated search node. If the pro-
gression algorithm returns false, the planner can immediately backtrack, knowing
that the formula is also violated in all descendant nodes.

This method is suitable for a number of logics that use future tense operators,
and is reasonably efficient in that it ensures that fluents do not need to be evaluated
in newly generated states more than once. However, it is less suitable for TAL
formulas with explicit time, and it also has a secondary weakness in that fluents
occurring in a progressed formula need to be evaluated at least once in every newly
generated state. For TALplanner, we have instead constructed a new framework
for incrementally testing TAL-based control formulas, which will eventually lead to
new optimization opportunities where it may be shown in advance that a formula
cannot be violated by a given operator (Chapter 8). The formulas generated in this
framework are called pruning constraints.

172 6.4. TALplanner with TAL-based Control Rules

Definition 6.4.5 (Pruning Constraints)
A tuple of pruning constraints 〈init, incr, �nal〉 for a goal narrative N consists of the
following:

• One set of initial pruning constraints init.

• For each operator type oi in N with formal invocation timepoint s and for-
mal arguments x1

i , . . . , xmi
i a set incri(s, x1

i , . . . , xmi
i) of incremental pruning con-

straints where the variables indicated in parentheses may occur free in the
constraints.

• One set of final pruning constraints �nal. �

The final pruning constraints should generally be applied relative to the last end
timepoint of any action in a solution plan. A new temporal constant tmax is defined
for this purpose. The value of tmax cannot be determined until a final solution is
accepted. This constant will therefore only be given a value when a plan is con-
sidered as a solution candidate, under the assumption that no further changes will
be made. This can be achieved either by adding the corresponding observation
statement toN ′′, as done in the modified TALplanner algorithm in Definition 6.4.8
below, or by substituting tmax with its value before evaluating the formulas in �nal.

Definition 6.4.6 (Temporal Constant tmax)
Let p = 〈[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)〉 be a sequential or concurrent solution.
Then, the temporal constant tmax should denote the maximum of all end timepoints
of actions in this plan: tmax = maxn

i=1 τ′i . �

Pruning constraints should completely replace control formulas, and the set of con-
straints generated from a control formula must therefore have identical pruning
power. This concept can be formalized as follows.

Definition 6.4.7 (Valid Pruning Constraints)
The pruning constraints 〈init, incr, �nal〉 are valid pruning constraints for a goal nar-
rative N with TAL-based control formulas Ncontrol iff for every plan candidate
p = 〈[τ1, τ′1] oi1

1 (c1), . . . , [τn, τ′n] oin
n (cn)〉 for N , the conjunction

∧Ncontrol is equiv-
alent to init ∧ ∧n

k=1 incrik [inv(oik) 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n], where init con-
tains the initial pruning constraints, each incrik [inv(oik) 7→ τk, xik 7→ ck] contains the
incremental pruning constraints for one operator instance in the plan instantiated
with the actual invocation timepoint and actual arguments, and �nal[tmax 7→ τ′n]
contains the final pruning constraints where tmax is instantiated according to its de-
finition. �

Initial pruning constraints are intended to be tested in the initial (empty) plan.
The incremental pruning constraints incri are intended to be tested after an in-

stance of an operator of the corresponding type oi has been added to the plan, gen-
erating a new search node. Incremental pruning constraints should be tested at

Chapter 6. TALplanner 173

timepoints that are relative to the invocation time of a particular action in a plan,
and therefore the formal invocation timepoint inv(oi) of the operator oi may occur
free in such constraints and will be substituted with the actual invocation time-
point during the planning process. Allowing different constraints to be generated
for each operator type will permit certain types of control formulas to be instanti-
ated only at the effect timepoints of a particular operator type, improving efficiency,
and also serves as a preparation for the domain analysis techniques to be presented
in Chapter 8, where knowledge extracted from each operator type will be used to
simplify incremental pruning constraints related to that specific operator type. This
is also where TALplanner will make use of the fact that the formal arguments xik of
the operator oi may occur free in incri.

Final constraints are intended to be tested immediately before accepting a plan
as a solution to a planning problem instance.

Note again that initial pruning constraints will be tested in the initial plan, which
only contains information about the initial state. It would seem quite reasonable to
assume that they would only be allowed to refer to this state, but no such conditions
are present in the definitions above. On the contrary, the correctness condition for
initial pruning constraints refers to these constraints holding in the final plan, with-
out constraining what should hold in the initial plan, and similarly for incremental
and final pruning constraints.

This is intentional. Because TALplanner correctly models incomplete knowl-
edge about future states, limiting pruning constraints to referring to completely
defined states would be unnecessarily restrictive. If an initial pruning constraint
should happen to refer to the unknown future, the planner may be unable to de-
termine at the present stage of the planning process whether or not the constraint
will be guaranteed to hold in the solution plan, but this condition will always be
detected – the planner will “know that it does not know”. The formula will then
be added to a queue of conditions that must be tested again in the future, when the
relevant information may have become available.

Nevertheless, there is a cost associated with this procedure: Every time a for-
mula is added to a queue of conditions, a pointer to the formula itself, together
with a set of applicable variable bindings, must be stored in the search node to be
processed again at a later stage in the search process. Therefore, in the ideal case,
initial constraints should only evaluate fluents in the initial state, incremental con-
straints should only evaluate fluents in the new states generated by a newly added
action, and final constraints should only ensure that the final tail of states where no
more action takes place does not violate the original control formulas. This is the
case for almost all pruning constraints generated in practice. This is a significant
advantage over a progression framework which always, unconditionally, gener-
ates a new progressed control formula for each expanded search node – not only
in theory but also in practice. As will be seen in the benchmarks in Section 6.7,
the progression-based version of TALplanner requires considerably more memory

174 6.4. TALplanner with TAL-based Control Rules

than the evaluation-based version, to the extent that problems that can be solved
easily with the latter planner may be unsolvable within reasonable memory limits
with the former one.

Due to the desire to keep control rules stateless as much as possible, we do not
anticipate being able to process all types of control formulas with optimal efficiency,
but as it turns out, the full power of control rules rarely has to be utilized in most
domains. Instead, almost all control rules tend to follow a fixed set of patterns that
fit very well into the current formula analysis framework (Section 6.4.4). Rules that
do not satisfy these patterns can still be treated in the same manner, though some-
what less efficiently. For example, if a control formula is placed in init, leaving �nal

and all incri empty, the new TALplanner algorithm below will behave identically to
the naive TALplanner algorithm from Definition 6.4.4 on page 170.

Adding support for incremental control formulas and condition queuing to the al-
gorithm from Definition 6.4.4 on page 170 yields the following modified algorithm:

Definition 6.4.8 (TALplanner with Incremental Control)
Input: A goal narrative N .
Output: A plan narrative entailing the goalNgoal and the control formulasNcontrol.

1 procedure TALplanner-incremental-control(N)
2 γ← ∧Ngoal Conjunction of all goal statements
I3 〈init, incr, �nal〉 ← generate-pruning-constraints(Ncontrol)
�4 node← 〈init, 0, 〈〉〉 〈condition queue, next invocation time, plan〉

5 Open← 〈node〉 Stack (depth first search)
6 while Open 6= 〈〉 do

�7 〈C, τ, p〉 ← pop(Open) Current plan candidate
8 N ′ ← N ∪ p ∪ occlude-all-after(N , τ) No knowledge about future
I9 for all constraints α in C do Check queued constraints
I10 if Trans+(N ′) |= Trans(α) then C ← C \ {α} Remove satisfied constraint
I11 elsif Trans+(N ′) |= Trans(¬α) then backtrack Constraint violated
�12 N ′′ ← N ∪ p ∪ {tmax = τ} Narrative with complete knowledge

13 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)
14 if sequential-cycle-check(N ′′, τ) then backtrack

�15 if Trans+(N ′′) |= Trans(γ ∧ C ∧ �nal) then Goal + queued + final ctrl satisfied
16 return N ′′
17 else Not a solution, but check children
18 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′ do
I19 C′ ← C ∪ incri[τ, c] Old conditions + incr control
�20 push 〈C′, τ′, 〈p; A〉〉 onto Open

21 fail �

Compared to the previous version of the TALplanner algorithm, this algorithm is
modified by splitting control rules into initial, incremental and final pruning con-

Chapter 6. TALplanner 175

straints. The procedure that generates these pruning constraints will be described
later in this chapter.

Whereas control rules usually refer to the complete state sequence generated
by a final solution and are therefore unlikely to be entailed by intermediate search
nodes, initial and incremental pruning constraints are intended to refer to limited
intervals of time. Each such constraint that is applicable to a plan should there-
fore eventually be proven true – usually before the final solution is found but not
necessarily immediately after the constraint has been posted. Consequently, the
planner must keep track of which constraints have already been proven to hold in
a plan and all its descendants and which constraints must be tested again when
more information is available. This is done by extending the search state with a
set of constraints that are not yet known to hold (the condition queue C). This set
is initialized using the initial pruning constraints, and each time a new action is
added, the corresponding set of incremental pruning constraints are added. Note
that incremental pruning constraints are instantiated using the actual arguments
and invocation timepoint of the action. Only free variables occurring in the con-
straints are substituted. After adding these constraints, all constraints in C – new
and previously queued – are tested. If a constraint is satisfied, it can be discarded.
If its negation is entailed, the planner must backtrack. If the status of the constraint
cannot be determined, the constraint remains in the condition queue.

When a plan has passed the preliminary tests, the planner must test whether
it is also a solution. As before, this should be done using the goal narrative N ′′
where the planner assumes complete knowledge about the future. Compared to
the previous version of the algorithm, there is one minor difference: The tempo-
ral constant tmax is set to τ, the end timepoint of the last action in the plan. This
constant should only be referred to in final pruning constraints, and is intended to
allow such constraints to place conditions on the final infinite tail of identical states
that follows the last action in any finite plan.

Finally, if a plan is not a solution but does not appear to violate control rules, its
successors should be created and pushed onto the stack of open plan candidates.
This now also involves adding the incremental pruning constraints for each action
to the condition queue for the corresponding search node.

6.4.4 Generating Pruning Constraints

The original control rules specified by the domain designer should be automatically
analyzed in order to generate initial, incremental and final pruning constraints.
Below, three common control formula classes are considered in detail.

State Constraints

A state constraint is a control formula ∀t.φ(t) where φ does not refer to states at any
other time than t (that is, φ is a single timepoint formula for t).

176 6.4. TALplanner with TAL-based Control Rules

For such formulas, φ[t 7→ 0] is added to init. For each operator type oi with
formal invocation timepoint inv(oi) and for each conditional or unconditional effect
of this operator with temporal offset τ, the formula φ[t 7→ inv(oi) + τ] is added to
incri. Nothing is added to �nal.

The state constraint is guaranteed to be tested in the initial state and at each
timepoint where fluent values may have changed, which is equivalent to testing
it at all timepoints. It is also guaranteed only to be tested at timepoints where the
planner has complete knowledge, since the effect timepoints where it is tested must
be within the execution interval of an action and no future effects may affect fluents
in this interval given the current assumption of sequential planning.

Lemma 6.4.9
Given a single state constraint ∀t.φ(t), the analysis procedure above produces a
valid set of pruning constraints 〈init, incr, �nal〉. �

Proof: We should prove that for any goal narrative N and plan candidate p =
〈[τ1, τ′1] oi1

1 (c1), . . . , [τn, τ′n] oin
n (cn)〉 for N , the original formula ∀t.φ(t) is equivalent

to init ∧∧n
k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n], where init, incr and �nal are

the constraints generated by the procedure above.
Assume ∀t.φ(t) holds. Any formula having the form φ[t 7→ τ] for some tem-

poral term τ is an instantiation of φ at some specific point in time, and must also
hold, since φ holds at all timepoints. By the construction of init, incr and �nal, all
conjuncts in init ∧∧n

k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n] have this form, so
the conjunction also holds.

Assume init ∧ ∧n
k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n] and prove that

∀t.φ(t) holds. Because the formula φ(t) is a single timepoint formula for t, its value
is only affected by the state at time t and by atemporal constants. Therefore, assum-
ing that all fluent values are identical at two timepoints τ and τ′, it must necessarily
be the case that φ(τ) holds iff φ(τ′) holds. Thus, the fact that φ(t) holds at all t can
be verified by testing φ(t) in all distinct states along the timeline. The state at time 0
is tested by the single constraint in init. Due to the inertia assumption, primary flu-
ents can only change at timepoints where effects occur. Defined fluents at time t are
defined by a single timepoint formula for t and can therefore also only change at
timepoints where effects occur. Therefore, it is sufficient to test φ(t) at timepoints
where effects occur. The construction of incr guarantees that this happens.

Note that an interval effect for the interval [τ, τ′] only generates one instantiation
of the state constraint, at time τ. Only state transitions are relevant, and because
interval effects force a single fluent to take on the same value throughout the entire
interval, the only potential state transition caused by an interval effect is at the
beginning of the interval.

Chapter 6. TALplanner 177

Triggered State Transition Constraints

A triggered state transition constraint is a control formula ∀t.φ(t) where φ only refers
to states in [t, t + 1] and where φ written in disjunctive normal form includes the
two disjuncts [t] f =̂ ω and [t + 1] f =̂ ω′, where f is a fluent and ω and ω′ are
value terms that cannot take on the same value. This type of constraint is quite
common – all constraints in Example 6.4.1 on page 168 are of this type – and can
only be false if the fluent f changes values from t to t + 1.

For such formulas, nothing is added to init. For each operator type oi with for-
mal invocation timepoint inv(oi) and for each conditional or unconditional effect of
this operator with temporal offset τ, the formula φ[t 7→ inv(oi) + τ − 1] is added
to incri. Because τ is guaranteed to be at least 1, the temporal term inv(oi) + τ − 1
is well-defined even with a restriction to non-negative time. Nothing is added to
�nal.

Lemma 6.4.10
Given a single triggered state transition constraint ∀t.φ(t), the analysis procedure
above produces a valid set of pruning constraints 〈init, incr, �nal〉. �

Proof: We should prove that for any goal narrative N and plan candidate p =
〈[τ1, τ′1] oi1

1 (c1), . . . , [τn, τ′n] oin
n (cn)〉 for N , the original formula ∀t.φ(t) is equivalent

to init ∧∧n
k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n], where init, incr and �nal are

the constraints generated by the procedure above.
Assume ∀t.φ(t) holds. Any formula having the form φ[t 7→ τ] for some τ is an

instantiation of φ at some specific point in time, and must also hold, since φ holds
at all timepoints. By the construction of init, incr and �nal, all conjuncts in init ∧∧n

k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n] have this form, so the conjunction
also holds.

Assume init ∧ ∧n
k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n] and prove that

∀t.φ(t) holds. By the definition of this type of state transition constraint, φ(t) can
only be false if there is a change in the value of a specific fluent from time t− 1 to
time t. Due to the inertia assumption, primary fluents can only change at timepoints
where effects occur. Defined fluents at time t are defined by a single timepoint
formula for t and can therefore also only change at timepoints where effects occur.
Therefore, it is sufficient to test φ(t) at t = τ − 1 for each effect taking place at
time τ. The construction of incr guarantees that this happens.

Example 6.4.2 (Logistics Domain, continued)
The six operators of the standard logistics domain were defined in Example 6.2.10
on page 157. All operators share the constant duration 1 and use the formal invo-
cation timepoint inv(oi) = s.

The three control rules for the logistics domain that were shown in Example 6.4.1
on page 168 are examples of triggered state transition constraints.

For only-load-into-plane-when-necessary, the following formula is added to each incri:

178 6.4. TALplanner with TAL-based Control Rules

∀obj, plane, loc.
[s] ¬in(obj, plane) ∧ at(obj, loc) ∧ [s+1] in(obj, plane)→
∃loc’ [goal(at(obj, loc’)) ∧ [s] city-of(loc) 6=̂ city-of(loc’)]

For only-unload-from-plane-when-necessary, the following formula is added to each
incri:

∀obj, plane, loc.
[s] in(obj, plane) ∧ at(plane, loc) ∧ [s+1] ¬in(obj, plane)→
∃loc’ [goal(at(obj, loc’)) ∧ [s] city-of(loc) =̂ city-of(loc’)]

For objects-remain-at-destinations, the following formula is added to each incri:

∀obj, loc.
[s] at(obj, loc) ∧ goal(at(obj, loc))→ [s+1] at(obj, loc) �

State Transition Constraints

A state transition constraint is a control formula ∀t.φ(t) where φ only refers to states
in [t, t + 1]. For such formulas, φ[t 7→ 0] is added to init. For each operator type oi

with formal invocation timepoint inv(oi) and for each conditional or unconditional
effect of this operator with temporal offset τ, the formula φ[t 7→ inv(oi) + τ] ∧
φ[t 7→ inv(oi) + τ − 1] is added to incri. Nothing is added to �nal.

Lemma 6.4.11
Given a single state transition constraint ∀t.φ(t), the analysis procedure above pro-
duces a valid set of pruning constraints 〈init, incr, �nal〉. �

Proof: We should prove that for any goal narrative N and plan candidate p =
〈[τ1, τ′1] oi1

1 (c1), . . . , [τn, τ′n] oin
n (cn)〉 for N , the original formula ∀t.φ(t) is equivalent

to init ∧∧n
k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n], where init, incr and �nal are

the constraints generated by the procedure above.
Assume ∀t.φ(t) holds. Any formula having the form φ[t 7→ τ] for some τ is an

instantiation of φ at some specific point in time, and must also hold, since φ holds
at all timepoints. By the construction of init, incr and �nal, all conjuncts in init ∧∧n

k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n] have this form, so the conjunction
also holds.

Assume init ∧ ∧n
k=1 incrik [s 7→ τk, xik 7→ ck] ∧ �nal[tmax 7→ τ′n] and prove that

∀t.φ(t) holds. By the definition of state transition constraints, the formula φ(t) is
only affected by the states at times t and t + 1 and by atemporal constants. There-
fore, assuming that all fluent values at times τ and τ′ are identical, and that all
fluent values at times τ + 1 and τ′ + 1 are identical, it must necessarily be the case
that φ(τ) ≡ φ(τ′). Thus, the fact that φ(t) holds at all t can be verified by testing
φ(t) in all distinct successive state pairs [τ, τ + 1] along the timeline. The state pair
at time [0, 1] is tested by the single constraint in init. Given that no fluents ever
change, this is the only distinct successive state pair. A change in fluent values at

Chapter 6. TALplanner 179

time τ gives rise to two potential new distinct successive state pairs at [τ − 1, τ]
and [τ, τ + 1]. Due to the inertia assumption, primary fluents can only change at
timepoints where effects occur. Defined fluents at time t are defined by a single
timepoint formula for t and can therefore also only change at timepoints where ef-
fects occur. Therefore, it is sufficient to test φ(t) at t = τ − 1 and t = τ for each
effect taking place at time τ. The construction of incr guarantees that this happens.

Additional Control Formula Classes

The class of state transition constraints can trivially be extended to formulas of
the form ∀t.φ(t), where φ only refers to states in [t, t + k] for some constant k, by
increasing the number of instantiations of the formula φ.

It is also possible to treat control formulas of the form ∀t.φ(t) where φ only
refers to states in [t, t + d] and d is a non-constant temporal term independent of t.
The formula d = 0 → φ[t 7→ 0] is added to init. For each operator type oi with
duration δ, the formula ∀k.1 ≤ k ≤ δ → φ[t 7→ inv(oi) + k − d] should be added
to incri, but since inv(oi) + k − d could be negative and TAL currently uses non-
negative time, the formula has to be rewritten as ∀k.1 ≤ k ≤ δ → (∀t.t + d =
inv(oi) + k → φ(t)). Finally, ∀k.1 ≤ k ≤ d → (∀t.t + d = tmax + k → φ(t)) is added
to �nal.

6.5 Tense Control Rules and Progression

In addition to supporting standard TAL control formulas as defined in the previous
section, the domain modeling language L(ND)∗ has also been extended with a set
of new tense macros emulating the modal tense operators used in TLPlan. Formu-
las written using the new tense macros can be used together with a modified pro-
gression algorithm. This was intended to improve the analysis of TALplanner per-
formance relative to TLPlan performance: If both TLPlan and TALplanner use tense
control formulas, most differences in performance should be due to differences in
lower level algorithms, while the performance difference between TALplanner us-
ing tense control formulas and TALplanner using TAL-based control formulas must
be due to the difference between using a progression algorithm or a formula evalu-
ation method as described in the previous section. Furthermore, while the formula
evaluation method seemed promising, there were some less common types of con-
trol formula that did not fit easily into the separation into initial, incremental and
final control, most notably those formulas using the “until” operator. Supporting
both types of control formula enables the user to choose the most suitable type for
the task at hand.

The tense operators that were added to L(ND)∗ were not adapted from LTL,
but from MITL (Metric Interval Temporal Logic, Alur, Feder, & Henzinger, 1991,
Alur & Henzinger, 1992), which was also used by Bacchus and Kabanza (1998) in
the context of planning for temporally extended goals. Like LTL, MITL supports

180 6.5. Tense Control Rules and Progression

the three temporal operators U (until), 3 (eventually), and 2 (always), the main
difference being that the operators can be indexed with closed, open, or semi-open
temporal intervals. For example, it is possible to state that a formula must eventu-
ally become true within a certain interval. MITL was a better match for TALplanner
than LTL, given TALplanner’s support for operators with extended duration.

Though MITL does not support the © (next) operator, due to its use of dense
time, this operator can still be used in TALplanner which uses discrete time.

In previous publications, the operators added to L(ND)∗ were called “modal
operators”, and TALplanner control formulas using these operators have been de-
scribed as “modal control formulas”. This is directly misleading, since TAL is not a
modal logic. Since the operators are tense-based rather than based on explicit time,
we now call the operators “tense operators”, and control formulas written using
tense operators are called “tense formulas”, even though this is admittedly still not
a perfect name given that these terms are often used in modal tense logics.

Definition 6.5.1 (Tense Formula)
A tense formula in L(ND)∗ is one of the following:

• A temporal formula, value formula, or fluent formula (Section 2.3.3 on page 20).

• A goal expression (Section 6.2.6 on page 150).

• φU[τ,τ′] ψ, where φ and ψ are tense formulas and τ and τ′ are temporal terms.

• 3[τ,τ′] φ, where φ is a tense formula and τ and τ′ are temporal terms.

• 2[τ,τ′] φ, where φ is a tense formula and τ and τ′ are temporal terms.

• © φ, where φ is a tense formula.

• A combination of tense formulas using the standard logical connectives and
quantification over values. �

We will also use the shorthand notation φUψ ≡ φU[0,∞] ψ, 3 φ ≡ 3[0,∞] φ, and
2 φ ≡ 2[0,∞] φ.

Definition 6.5.2 (Tense Control Statement)
A tense control statement in L(ND)∗, labeled tcontrol, consists of a tense formula.�

Note that while ordinary TAL formulas use absolute time, MITL formulas (and
therefore tense formulas) use relative time, where a formula only has a value rela-
tive to a “current state”. The meaning of a formula containing a temporal operator
is therefore dependent on the timepoint at which it is evaluated, as illustrated by
the following example.

Chapter 6. TALplanner 181

Example 6.5.1 (Relative and Absolute Time)
The formulas ∀t.[t]φ→ [t, t + 5] ψ and 2(φ→ 2[0,5] ψ) have the same meaning: At
any timepoint where φ holds, ψ must hold until five timepoints later. Notice the
difference in the specification of the temporal interval: Ordinary TAL uses absolute
time, where the starting timepoint t in the interval [t, t + 5] must be explicitly spec-
ified, while the interval [0, 5] specified in the tense macro is interpreted relative to
the time when φ was true.

The formula ∀t.[t]φ → [0, 5] ψ, on the other hand, means that for each time-
point t where φ holds, ψ must hold at the absolute interval [0, 5], even though this
may be before t. This formula could also be written (∃t.[t] φ)→ [0, 5] ψ. �

For this reason, reducing tense operators to L(FL) requires a temporal context. The
following translation function can be used to translate tense formulas into L(ND)∗

without tense operators and further into L(FL).

Definition 6.5.3 (Translation of Tense Formulas)
Let τ be a temporal term and γ be a tense control formula intended to be evalu-
ated at τ. Then, the following procedure returns an equivalent formula in L(ND)∗

without tense operators. In the following, Q denotes a quantifier and ⊗ denotes a
binary logical connective.

1 procedure TransTense(τ, γ)
2 if γ = Qx.φ then return Qx.TransTense(τ, φ)
3 if γ = φ⊗ ψ then return TransTense(τ, φ)⊗ TransTense(τ, ψ)
4 if γ = ¬φ then return ¬TransTense(τ, φ)
5 if γ = f (x) =̂ v then return [τ] γ

6 if γ contains no tense operator then return γ

7 if γ = φU[τ,τ′] ψ then return
∃t[τ + τ ≤ t∧ t ≤ τ + τ′ ∧

TransTense(t, ψ) ∧ ∀t′[τ ≤ t′ ∧ t′ < t→ TransTense(t′, φ)]]
8 if γ = © φ then return TransTense(τ + 1, φ)
9 if γ = 2[τ,τ′] ψ then return ∀t[τ + τ ≤ t∧ t ≤ τ + τ′ → TransTense(t, φ)]

10 if γ = 3[τ,τ′] ψ then return ∃t[τ + τ ≤ t∧ t ≤ τ + τ′ ∧ TransTense(t, φ)]

The Trans translation function is extended for tense control formulas by defining
Trans(γ) = Trans(TransTense(0, γ)). �

During the planning process, tense control formulas are not translated into L(FL).
Instead, they are progressed through states using the Progress algorithm. This al-
gorithm is similar to the one used by Bacchus and Kabanza (1998) for progressing
formulas in a first-order version of MITL (metric interval temporal logic). How-
ever, there are some differences in the progression of the tense operators, since TAL
actions with duration can have internal state, with a sequence of state changes be-
tween the initiation state and the effect state.

182 6.5. Tense Control Rules and Progression

The progression algorithm below satisfies the following property. Let φ be a
tense formula, τ and τ′ two numeric timepoints such that τ < τ′, and N an
L(ND)∗ narrative. Then, φ will hold at τ in N iff Progress(φ, τ, τ′,N) holds at
τ′ in N . More formally, Trans+(N) |= Trans(TransTense(τ, φ)) iff Trans+(N) |=
Trans(TransTense(τ′,Progress(φ, τ, τ′,N))).

Definition 6.5.4 (Progression of Tense Formulas)
The following algorithm is used for progression of tense control formulas in TAL-
planner.

1 procedure Progress(φ, τ, τ′,N)
2 if τ = τ′ return φ

3 if φ = f (x) =̂ v
4 if Trans+(N) |= Trans([τ] φ) return true else return false
5 if φ = ¬φ1 return ¬Progress(φ1, τ, τ′,N)
6 if φ = φ1 ⊗ φ2 return Progress(φ1, τ, τ′,N)⊗ Progress(φ2, τ, τ′,N)
7 if φ = ∀x.φ // where x belongs to the �nite TAL value domain X
8 return

∧
c∈X Progress(φ[x 7→ c], τ, τ′,N)

9 if φ = ∃x.φ // where x belongs to the �nite TAL value domain X
10 return

∨
c∈X Progress(φ[x 7→ c], τ, τ′,N)

11 if φ contains no tense operator
12 if Trans+(N) |= Trans(φ) return true else return false
13 if φ = φ1 U[τ1,τ2] φ2
14 if [τ1, τ2] < 0 return false
15 elsif 0 ∈ [τ1, τ2] return Progress(φ2, τ, τ′,N) ∨
16 (Progress(φ1, τ, τ′,N) ∧ Progress(φ1 U[τ1−1,τ2−1] φ2, τ + 1, τ′,N))
17 else return Progress(φ1, τ, τ′,N) ∧
18 Progress(φ1 U[τ1−1,τ2−1] φ2, τ + 1, τ′,N)
19 if φ = 3[τ1,τ2] φ1
20 if [τ1, τ2] < 0 return false
21 elsif 0 ∈ [τ1, τ2] return Progress(φ1, τ, τ′,N) ∨
22 Progress(3[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
23 else return Progress(3[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
24 if φ = 2[τ1,τ2] φ1
25 if [τ1, τ2] < 0 return true
26 elsif 0 ∈ [τ1, τ2] return Progress(φ1, τ, τ′,N) ∧
27 Progress(2[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
28 else return Progress(2[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
29 if φ = © φ1
30 if τ + 1 = τ′ return φ1
31 else return Progress(φ1, τ + 1, τ′,N)

The result of Progress is simplified using the rules ¬false = true, (false ∧ α) =
(α∧ false) = false, (false∨ α) = (α∨ false) = α, ¬true = false, (true∧ α) =
(α ∧ true) = α, and (true∨ α) = (α ∨ true) = true. �

Chapter 6. TALplanner 183

Implementation note. For planning domains where actions have long durations,
there may be extended periods of time where no changes occur. Because TAL as-
sociates a state with each integer timepoint, this leads to extended sequences of
identical states. The TALplanner implementation uses a slightly modified progres-
sion algorithm which can progress some formulas through such sequences of iden-
tical states in a single step, while retaining the same results as the algorithm above
where the progression of 2, 3 and U always proceeds one discrete timepoint at a
time.

6.5.1 The TALplanner Algorithm with Tense Control Rules

Adding support for tense control rules to TALplanner yields the following algo-
rithm, described below.

Definition 6.5.5 (TALplanner with Incremental and Tense Control)
Input: A goal narrative N .
Output: A plan narrative entailing the goalNgoal and the control formulasNcontrol.

1 procedure TALplanner-tense-control(N)
2 γ← ∧Ngoal Conjunction of all goal statements
I3 µ← ∧Ntcontrol Conjunction of all tense control rules

4 〈init, incr, �nal〉 ← generate-pruning-constraints(Ncontrol)
�5 node← 〈µ, init,−1, 0, 〈〉〉 〈control, cond. queue, last inv. time, next inv. time, plan〉

6 Open← 〈node〉 Stack (depth first search)
7 while Open 6= 〈〉 do

�8 〈µ, C, τ0, τ, p〉 ← pop(Open) Current plan candidate
9 N ′ ← N ∪ p ∪ occlude-all-after(N , τ) No knowledge about future

10 for all constraints α in C do Check queued constraints
11 if Trans+(N ′) |= Trans(α) then C ← C \ {α} Remove satisfied constraint
12 elsif Trans+(N ′) |= Trans(¬α) then backtrack Constraint violated
I13 µ+ ← Progress(µ, τ0 + 1, τ + 1,N ′) Progress tense control
I14 if µ+ = false then backtrack

15 N ′′ ← N ∪ p ∪ {tmax = τ} Narrative with complete knowledge
16 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)
17 if sequential-cycle-check(N ′′, τ) then backtrack
18 if Trans+(N ′′) |= Trans(γ ∧ C ∧ �nal) then Goal + queued + final ctrl satisfied
19 return N ′′
20 else Not a solution, but check children
21 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′ do
22 C′ ← C ∪ incri[τ, c] Old conditions + incr control

�23 push 〈µ+, C′, τ, τ′, 〈p; A〉〉 onto Open

24 fail �

184 6.6. Completeness, Control and the Definition of Plans

Each search node is associated with a tense control formula µ, which may be the
constant true in the absence of tense control. In order to determine the temporal
interval over which the tense control formula should be progressed in each search
node, it is also necessary to include the last action invocation timepoint in the search
node. This timepoint is denoted by τ0 in the algorithm, while the next action invo-
cation timepoint (or equivalently, the end timepoint of the last action) is still de-
noted by τ.

Notice that the call to the progression algorithm specifies the temporal parame-
ters τ0 + 1 and τ + 1. This is interpreted as a request for a new formula µ+ that
should hold at τ + 1 iff the original formula µ holds at τ0 + 1, thereby causing a
progression through the semi-open temporal interval [τ0 + 1, τ + 1). Because dis-
crete integer time is used, this is equivalent to progression through all states in the
closed interval [τ0 + 1, τ], corresponding to the new fixed state or states generated
by the most recently added action in the current plan. If µ+ = false, the search
node should be pruned.

Notice that in the initial node, τ0 = −1 and τ = 0. This provides the correct
boundary condition for progression through the initial state: [τ0 + 1, τ] = [0, 0].

6.6 Completeness, Control and the Definition of Plans

A planner is complete iff it is guaranteed to return a solution for every problem in-
stance except those for which no solution exists. At the surface this concept appears
quite simple, but a deeper investigation of completeness reveals some subtleties
that are not necessarily apparent at first glance.

It is quite easy to fall into the trap of relying on a subconscious intuitive picture
of what it means that “no solution exists”, a picture that most likely involves what
is actually possible to do in a real world scenario. After all, if it is logically or physi-
cally impossible to achieve a certain set of goals, even a complete planner could not
be expected to come up with a solution! But this is not what was stated in the defi-
nition of completeness. In this definition, a “solution” is a formally defined concept
meaning approximately “plan that ensures the specified goals are satisfied”. This
leads us to “plan”, which is also a formally defined concept – a concept over which
we have a significant degree of control. In some cases, a planning algorithm can be
made complete or incomplete by the simple expedient of altering the definition of
“plan”, without stepping outside the bounds of what would on the surface appear
to be a reasonable definition.

Similarly, completeness is only defined relative to the set of domains that can
be modeled in the input language for a planner and relative to the aspects of those
domains that can be modeled. Altering the input language can restrict or expand
the set of planning domains and problem instances to which the planner can be
applied, again affecting the completeness of the planning algorithm.

TALplanner illustrates both of these points.

Chapter 6. TALplanner 185

Though TALplanner could in theory use any forward-chaining search algo-
rithm, all versions of the planner presented in this thesis use plain depth first
search, which is only complete if all branches are finite.

If plans were defined as arbitrary executable sequences of action occurrences,
the search tree would contain branches with infinitely many nodes, for two rea-
sons. First, in any given state there may be an applicable action whose effects are
reversible, leading back to the same state, where it must be possible to apply the
same action once again, ad infinitum. For example, picking up an item and im-
mediately putting it down must lead to a state where the item can once more be
picked up, put down, picked up, and so on, generating an infinitely long branch in
the search tree. Second, action occurrences in TALplanner are timed. Even though
there is a finite number of ground action instances, these action instances could
theoretically be applied at arbitrary delays from the previous action, generating
infinitely many children for every search node.

One potential solution to this problem can be found in changing the definition
of “plan”, stating that a plan is an executable sequence of action occurrences that
does not contain cycles or temporal gaps. These added constraints on valid plans
are sufficient to make TALplanner complete, even when depth first search is used.
But is this altered definition reasonable?

The first version of TALplanner presented in this chapter had no support for
control rules, searching aimlessly through the forward-chaining search tree for a
plan achieving the intended goals (Definition 6.3.1 on page 164). For this algo-
rithm, the new definition of “plan” should be completely non-controversial. After
all, there is definitely no good reason to generate plans with cycles when for any
cyclic solution there must necessarily be a corresponding shorter (and in most con-
ceivable circumstances better) acyclic solution. Temporal gaps in the execution of
a plan can also be forbidden, because for any solution containing a temporal gap
there must necessarily be a shorter solution without gaps generated by moving all
action occurrences as early as possible while still retaining the original action order.
Thus, changing the definition of “plan” and making a few minor adjustments to
the search tree is sufficient to make the planner complete.

The addition of control rules in Definition 6.4.4 on page 170 is a fundamental
change affecting the planner at more levels than is immediately apparent. In this
discussion, the most salient aspect of this change is the fact that unlike ordinary
state goals, which only constrain the final state achieved by a solution plan, control
rules can place arbitrary constraints on the entire state sequence generated by the
solution. This enables the construction of problem instances whose solutions must
contain temporal gaps and must contain state cycles – but our new definition of
“plan” would prevent such solutions from being explored. There are two different
ways of viewing this conflict.

First, we can view acyclicity and the lack of temporal gaps as simple optimiza-
tions that were merely introduced in order to avoid visiting parts of the search
space only containing redundant solutions. In this case, these optimizations are

186 6.7. Evaluation vs Progression: Initial Benchmark Tests

obviously invalidated by the introduction of control rules, and despite being in-
troduced to achieve completeness, they could in themselves be the cause of in-
completeness. In other words, because new aspects of a planning domain can be
modeled, the planner is now incomplete.

Second, acyclicity and the lack of temporal gaps can be viewed as essential fea-
tures of our concept of a plan. In this case, the ability to construct a control rule that
is only satisfied by plans with temporal gaps is seen as a trivial consequence of the
expressive power of control rules. After all, control rules also let us express logi-
cally impossible conditions such as “at some point in time, false should be true” or
conditions such as “all goals should be achieved at time 1” which may be physically
impossible to achieve for any given problem instance, and a planner should not be
seen as incomplete for not being able to construct plans satisfying these rules.

Thus, whether or not TALplanner is complete may be said to depend on the
reader’s concept of a plan.

6.7 Evaluation vs Progression: Initial Benchmark Tests

It is not immediately obvious whether evaluation-based or progression-based con-
trol rules would provide the best performance in TALplanner. Whereas control
based on progression has certain advantages in terms of guaranteeing that no part
of a control formula is evaluated twice in the same state, it also has the disadvan-
tage of requiring the construction of new tense control formulas for each search
node, which increases memory usage as well as the amount of time spent on mem-
ory management and object construction. Nevertheless, the time requirements for
the two methods ought to remain within a constant factor of each other, with no
difference in time complexity. This hypothesis was tested for an early version of
TALplanner using the standard logistics domain and blocks world.

We also compared TALplanner with tense control rules to TLPlan using the
same planning domains. Because the planners at this early stage used identical
search procedures and because identical control rules were used, the same plans
were generated by the two planners and any differences in performance must be
due to different lower-level algorithms and data structures. These results will not
be analyzed further in this chapter, but will serve to separate timing differences
caused by implementation issues from the performance impact of formula analysis
and optimization as described in Chapter 8.

Logistics. For the logistics domain, we tested 30 problem instances from the First
International Planning Competition (IPC-1998, McDermott, 1998). The results are
shown in Table 6.1. The Ops column shows the length of each solution. The Nodes
column contains the number of search nodes that were examined by TALplanner,
which in this early version was identical to the number of states that were created
by TLPlan. The remaining columns show times (in seconds) for TLPlan, TALplan-

Chapter 6. TALplanner 187

Number Ops Nodes TLPlan TALplanner TALplanner

tense TAL

1 26 586 0.421 0.190 0.160

2 33 1665 1.712 0.541 0.501

3 55 4809 19.398 2.934 3.505

4 59 8019 54.338 5.528 7.581

5 22 494 0.310 0.281 0.250

6 72 8840 84.191 14.320 19.919

7 34 2652 5.568 1.101 1.032

8 41 6407 97.310 11.726 14.241

9 85 16308 218.644 15.102 24.405

10 105 13025 167.581 14.321 18.436

11 31 2250 5.167 0.961 0.872

12 41 16614 286.021 23.464 41.840

13 67 23548 1073.263 35.071 50.753

14 94 17606 802.824 24.826 36.282

15 94 5048 24.675 3.154 3.135

16 58 14243 168.002 7.961 10.966

17 45 7196 90.460 5.278 6.850

18 170 62445 4358.367 69.299 104.009

19 153 46884 2685.021 35.872 57.112

20 150 64984 3414.089 73.176 141.984

21 104 51857 2102.643 50.974 95.597

22 296 130937 632.730 1027.097

23 115 9744 116.798 8.232 9.954

24 41 27215 695.780 22.513 47.158

25 190 133137 11724.910 318.427 680.428

26 194 46284 9976.946 427.955 699.576

27 149 75907 14994.551 265.411 463.737

28 274 399213 2093.170 4613.333

29 330 132331 60874.834 353.739 545.845

30 136 130191 14070.923 440.373 1036.160

Table 6.1: Initial Logistics Test Results

ner using tense control and progression, and TALplanner using TAL control and
formula evaluation.

Blocks World. For the standard blocks world, we found no “standard” problem in-
stances large enough to truly challenge TLPlan or TALplanner, and therefore man-
ually created a number of different instances using between 25 and 1000 blocks. In
retrospect, it would have been better to use a larger number of problem instances
with a more random distribution of blocks. However, at the moment these tests
were performed, many efficiency improvements were planned and doing an ex-
haustive test of the current version of TALplanner would perhaps not have been

188 6.7. Evaluation vs Progression: Initial Benchmark Tests

Blocks Ops Nodes TLPlan TALplan/tense TALplan/TAL

time mem time mem time mem

25 16 344 0.110 3104 0.110 6640 0.060 6612

50 70 2295 1.963 5672 1.603 6792 1.302 6644

70 88 4109 5.868 3.916 3.715

70 106 4361 7.501 8752 4.677 7516 4.406 6644

100 160 8945 37.254 14912 14.441 7772 14.060 6644

140 232 17829 185.497 27532 39.246 9372 41.940 7208

200 405 35704 919.262 118.410 142.996

280 405 68104 3756.061 277.799 315.654

280 580 74297 4297.750 104464 394.196 21308 474.012 8536

460 580 178697 32303.100 178884 3208.159 39528 1899.992 9840

460 904 187607 1941.521 2535.946

640 1228 365069 5862.197 68464 7679.733 14284

820 1908 463779 10487.159 95620 12837.629 18732

1000 2232 718281 25028.509 24264

Table 6.2: Initial Blocks World Test Results

the best use of our time.
The results for the blocks world were first presented in Doherty and Kvarnström

(1999). Lack of space in this preliminary report forced us to report only a represen-
tative subset of our test results. Table 6.2 now contains the previously published re-
sults as well as the results that were omitted. The Blocks column shows the number
of blocks for each problem instance. As before, the Ops column shows the length
of each solution and the Nodes column contains the number of search nodes that
were examined by TALplanner. The remaining columns show times (in seconds)
and memory usage (in kilobytes) for TLPlan, TALplanner using tense control and
progression, and TALplanner using TAL control and formula evaluation. Unfortu-
nately, memory usage measurements are not available for the test results that were
omitted from Doherty and Kvarnström (1999).

Result Analysis. We can immediately see that TALplanner requires considerably
less memory than TLPlan and that evaluation requires considerably less memory
than progression, allowing significantly larger problem instances to be handled be-
fore the available resources are exhausted. It is also quite obvious that TALplanner
was considerably faster than TLPlan for these two domains, regardless of whether
progression or evaluation is used.

For the problem instances we tested, progression outperforms formula evalua-
tion in most cases, but generally only by a factor of 2 to 2.5 for the logistics domain
and by a factor of 1.2 to 1.3 for the blocks world. Apparently, the overhead for
memory management and object construction in the progression algorithm does

Chapter 6. TALplanner 189

not completely negate the advantage of never evaluating a formula twice in the
same state.

Though this is by no means a complete statistical analysis and additional do-
mains could certainly have been used to strengthen these claims, it would never-
theless appear reasonably safe to say that there is only a constant factor difference
in performance between the two approaches, especially because both progression
and formula evaluation do have to evaluate approximately the same number of
fluents in the state sequence generated by a plan.

The current performance advantage for the progression algorithm does not im-
ply that formula evaluation should be avoided. In addition to the more modest
memory requirements for formula evaluation as demonstrated by these benchmark
tests, formula evaluation also lends itself more easily to certain optimization tech-
niques which can improve the performance of the planner by orders of magnitude
in some cases (Chapter 8).

6.7.1 Program Versions and Test Procedures

The computer used for the tests was quite powerful for its time: A 333 MHz Pen-
tium II computer running Windows NT 4.0 SP3, using 256 MB of memory. We made
sure that the computer was very lightly loaded and that it was never swapping. All
tests were run multiple times and the minimum time is reported.

For TLPlan, we used the most recent precompiled version that could be down-
loaded from http://www.lpaig.uwaterloo.ca/~fbacchus. We used TALplanner ver-
sion test-68, integrated into VITAL version 2.297. TALplanner is written in Java,
and as a runtime system we used the Java Development Kit version 1.2 (http:
//java.sun.com), the latest version available at the time, together with the Symantec
Just In Time Compiler included in the Java Development Kit.

In all cases, TLPlan used the domain definitions and control rules from domains/

Blocks/4OpsBlocksWorld.tlp and domains/Logistic/LogisticsWorld.tlp in the TLPlan
distribution, respectively, and TALplanner used the corresponding TAL world de-
finition and control rules.

190 6.7. Evaluation vs Progression: Initial Benchmark Tests

Chapter 7
Concurrency and Resources

Though many planners have been restricted to generating sequential plans, most
potential real world applications for planning involve multiple agents or an agent
with multiple actuators. For such cases, only generating sequential plans can be a
rather severe limitation on plan quality. TALplanner has therefore been extended
to generate true concurrent plans. This entails modifying the definition of a plan
in order to allow multiple actions to be executed not only in parallel (during iden-
tical intervals of time) but also with partially overlapping execution intervals (Sec-
tion 7.1).

Extending the set of possible plans invalidates certain assumptions that could
be made for sequential plans: The planner can no longer assume that the only ef-
fects that take place during the execution of an action are those explicitly specified
in the definition of that action. This change has wide-ranging consequences for the
modeling of planning operators, and the modeling language has to be extended ac-
cordingly. For example, there must be a suitable means for restricting concurrency
for actions that cannot or should not be executed in parallel, such as driving a truck
and loading packages in the same truck in the logistics domain. Several different
approaches will be discussed, including an extension to the domain modeling lan-
guage to allow the use of prevail conditions, an extended form of preconditions not
limited to constraining the invocation state of an action (Section 7.2). In addition,
concurrent plans are often associated with limited resources such as fuel or cargo
space, and though such resources can easily be modeled using plain action effects
when plans are sequential, concurrency makes this representation quite inconve-
nient. An explicit representation of resources is therefore added to the language
(Section 7.3). The combination of concurrency, resources and cycle checking is dis-
cussed in Section 7.4.

Changing the definition of a plan and introducing new elements into the do-
main description language also necessitates a number of modifications to the plan-

191

192 7.1. Concurrent TALplanner

ning algorithm (Section 7.5).
Benchmark tests for the concurrent planner are deferred to Chapter 9, where the

results for the Third International Planning Competition (IPC-2002) were generated
using the concurrent version of TALplanner.

7.1 Concurrent TALplanner

As with sequential plans, concurrent plans consist of TAL action occurrences of
the form [τ, τ′] o. Because each action occurrence contains complete timing infor-
mation, no additional structure is required to capture temporal relations between
actions, and a concurrent plan could therefore be represented as an unordered set of
action occurrences. In this thesis, though, concurrent plans will usually be viewed
as sequences of action occurrences, where plans are always extended one action oc-
currence at a time by the concurrent TALplanner search procedure.

Compared to the definition of sequential plans (Definition 6.2.13 on page 159),
the constraint on the time where the action is executed is relaxed: A new action
occurrence added to a plan must not start before the start of any existing action
occurrence in the current plan, and in order to avoid “gaps” where no action is
being executed, it must not start after the end of all existing action occurrence.

Definition 7.1.1 (Concurrent Plan)
A concurrent plan for a goal narrative N is a tuple of ground fluent-free action oc-
currences with the following constraints. First, the empty tuple is a concurrent
plan for N . Second, given a concurrent plan p = 〈[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)〉
forN , its successors are exactly those sequences adding one new action occurrence
[τn+1, τ′n+1] on+1(cn+1) satisfying the following constraints:

1. Let N ′ = N ∪ {[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)} be the original goal narra-
tive N combined with the existing plan. Then, the new action on+1(cn+1)
must be applicable over the interval [τn+1, τ′n+1] in N ′. This implies that its
preconditions are satisfied, that its effects are not internally inconsistent and
do not contradict the effects of the operator instances already present in the
sequence, and that the duration τ′n+1 − τn+1 is consistent with the duration
given in the operator specification.

2. The first action starts at time 0: τ1 = 0.

3. The new action should not be invoked before any of the actions already exist-
ing in the sequence. Therefore, it is required that τn ≤ τn+1. This guarantees
that all states up to and including τn are fixed and will never be modified in
any successor of p, which ensures that preconditions of existing actions will
never be falsified by new actions being added to the plan.

Chapter 7. Concurrency and Resources 193

4. An upper bound will be placed on the invocation timepoint τn+1. As in Defi-
nition 6.4.6, let tmax be the maximum of all ending timepoints τ′i of all actions
in p. The states from τn up to tmax may all be different, but since nothing can
change after tmax, successors with τn+1 > tmax are not considered. Thus, it
must be the case that τn+1 ≤ tmax (note that it is possible that tmax > τ′n, as in
the operator sequence 〈[0, 7] o1; [0, 3] o2〉).

5. For successors where τn+1 = τn (that is, where the new action has the same
invocation timepoint as an existing action), the search tree could contain re-
dundant pairs of plans such as 〈[0, 3] o1; [0, 3] o2〉 and 〈[0, 3] o2; [0, 3] o1〉. To
avoid searching redundant plans, the existence of a total order � on operator
instances will be assumed, and if τn+1 = τn, it must be the case that on+1 � on.

�

As in the definition of sequential plans, this definition induces a possibly infinite
search tree which can be traversed using standard search strategies such as breadth
first or depth first search. When searching the tree, preference is given to actions
invoked at earlier timepoints. In other words, children to any given search node
are ordered in such a way that TALplanner will attempt to add as many applicable
actions as possible at any given timepoint before stepping to the next timepoint. A
partial example search tree for a concurrent version of the gripper domain can be
seen in Figure 7.1, where the asterisks indicate undesirable nodes where additional
constraints are required to ensure the planner does not pick up two objects in the
same gripper or the same object in two grippers (Section 7.2). The corresponding
modifications to the search procedures in the TALplanner algorithm are obvious
and will not be shown explicitly.

Definition 7.1.2 (Concurrent Solution)
A concurrent solution for a goal narrative N is a concurrent plan p for N such that
Trans+(N ∪ p) |= Trans(Ngoal ∧Ncontrol). �

7.1.1 A Concurrent Logistics Domain

In the remainder of this chapter, concepts related to concurrency in TALplanner
will be discussed using a concurrent version of the logistics domain.

In a domain such as logistics, it is unreasonable to expect all actions to have the
same duration. Therefore, to create efficient plans it is not sufficient to plan actions
concurrently, but the planner must also be able to plan a sequence of several “short”
actions, like loading, driving and unloading a truck, in parallel with a “long” action,
like flying an airplane between distant cities. Therefore, the logistics domain is also
extended to make use of actions with variable duration.

The set of value domains and features used in Example 6.2.1 on page 143 is
extended as follows. The new integer-valued fluent dist(loc, loc) corresponds to
the distance between two locations, and the drive and �y actions are modified to

194 7.1. Concurrent TALplanner

*

*

[0,1] pick(A,L)

[0
,1]
 p
ick

(B
,L
)

[0
,1
] p
ic
k(
B
,L
)

[0
,1]
 p
ick

(A
,R
)

[0,1] pick(B,R)
[1,2] drop(B,right)

[0,
3]

mov
e-t

o(r
oo

m2)

[1,4] move-to(room2)

[0,1
] pi

ck(A
,R)

[0,1] pick(B,R)
[0,1] move-to(room

2)

[0,1
] m

ove
-to(

roo
m2)

[1,2] m
ove-to(room

2)

[1,2] pick(B,R)

C

[1,2] drop(A,L)

[1,2] d
rop(A

,R)

Figure 7.1: Partial Search Space for Concurrent Gripper Domain

take distances into account. The maketime() conversion function converts integers
to timepoints as explained in Section 6.2.7 on page 151. The integer domain is
declared using a special syntax that automatically generates values between the
given lower and upper bounds, avoiding the need to explicitly specify each integer
value while still remaining within the bounds of TAL which currently requires fi-
nite value domains. The modified version of the logistics domain will be used as a
basis for presenting concepts related to the concurrent version of TALplanner.

domain integer :integer :lb 0 :ub 10000
domain loc, thing
domain airport, city :parent loc
domain obj, vehicle :parent thing
domain truck, plane :parent vehicle
feature at(thing,loc) :domain boolean

feature in(object,vehicle) :domain boolean

feature city-of(loc) :domain city

feature dist(loc, loc) :domain integer

The load and unload operators from Example 6.2.10 remain unchanged. The time
taken to drive between two locations is chosen to be one half of the distance (in
our arbitrary units of distance and time), while the time taken to �y between two
airports is chosen to be one fifth of the distance.

Chapter 7. Concurrency and Resources 195

operator drive(truck, loc1, loc2) :at s
:duration maketime(value(s, dist(loc1, loc2))/2)
:precond [s] at(truck, loc1) ∧ city-of(loc1) =̂ city-of(loc2) ∧ loc1 6= loc2
:e�ects [s+1] at(truck, loc1) := false,

[s+maketime(value(s, dist(loc1, loc2))/2)] at(truck, loc2) := true

operator �y(plane, airport1, airport2) :at s
:duration maketime(value(s, dist(airport1, airport2))/5)
:precond [s] at(plane, airport1) ∧ airport1 6= airport2
:e�ects [s+1] at(plane, airport1) := false,

[s+maketime(value(s, dist(airport1, airport2))/5)] at(plane, airport2) := true

Recall that the minimum allowed duration of an action is one unit of time. There-
fore, the minimum valid distance between two locations will in this case be 2 and
the minimum valid distance between two airports will be 5, because smaller values
will result in a truncated integer duration of 0 for the drive or �y actions. Violations
of this rule will be caught by TALplanner during planning.

7.2 Preventing Interference in Concurrent Plans

Any planner supporting concurrent actions must also take into account the fact
that certain actions may interfere with each other when executed in parallel, and
the domain modeling language used by such a planner must be expressive enough
to model the conditions under which concurrency is or is not allowed.

The current formalization of the logistics domain is insufficient in this regard.
Given this formalization, the planner could generate a plan which loads packages
into a truck while concurrently driving that truck to another location. As long as
the load and drive actions begin at exactly the same time, there is no apparent con-
flict, since load only requires the truck to be at a certain location in the invocation
state, not throughout the execution of the action. The planner could also generate
a plan where a truck drives to more than one destination concurrently, as long as
all concurrent drive actions begin at exactly the same time. Immediately after the
actions are invoked, the truck disappears from its original location, exactly as in-
tended ([s + 1] at(truck, loc1) := false). The first time one of the drive actions finishes
executing, the truck ends up at the corresponding destination, again exactly as in-
tended. For each remaining action, the truck will be “cloned”, appearing at one ad-
ditional location ([s +maketime(value(s, dist(loc1, loc2))/2)] at(truck, loc2) := true).

Though it may seem somewhat surprising, this is in fact not a flaw in the plan-
ning algorithm itself. The plans being generated are correct according to the seman-
tics of concurrent TAL narratives – we have simply failed to provide sufficiently
strong executability conditions, so our models of the load and drive operators are
incorrect for concurrent plans. But is this only a failure in our domain descrip-
tion, or is the current domain description language in fact not expressive enough

196 7.2. Preventing Interference in Concurrent Plans

to model these operators correctly? As we will see below, both points could be ar-
gued. Many constraints on concurrency can be modeled in the current language,
but not necessarily in a convenient manner: It may be necessary to “misuse” some
language constructions to achieve the intended semantics in a roundabout way. We
will now explore how existing constructions can be used and misused, and intro-
duce a new extension to the current language in order to model certain kinds of
interference in a more elegant manner. In Section 7.3.5, we will also show how
interference can be prevented using resource constraints.

7.2.1 Preventing Interference Using Preconditions

Some planners and modeling languages have chosen to implicitly interpret precon-
ditions as conditions that must hold throughout the execution of an action rather
than only in the state where the action is invoked. This would prevent concurrent
invocations of load and drive for the same truck, since executing a load action would
automatically require the truck to remain at its initial location until the end of the
action.

In our opinion this interpretation of preconditions is too inflexible, making it
impossible to model actions for which a condition only needs to hold during part
of the execution interval. The fact that fluents explicitly modified by an action must
be exempt from the implicit requirement to remain constant throughout its execu-
tion also detracts from the elegance of the solution. Additional complications in
determining exactly which fluents should be allowed to be modified arise when
quantified and non-conjunctive preconditions are allowed and when temporally
extended actions are used. For example, given the precondition α ∨ β, must all flu-
ents involved in these formulas remain unmodified or should it be sufficient that
α ∨ β holds throughout the interval even though individual fluents may change?
This complexity would make the precise meaning of a precondition unnecessarily
difficult to foresee, whereas the current semantics of TALplanner preconditions is
comparatively simple.

But if preconditions only constrain the invocation state of an action, and action
effects cannot affect this state, then no straight-forward scheme to model mutual
exclusion between two actions using preconditions will work. Clearly, whether or
not a precondition of an action invoked at time t is satisfied can only depend on
actions invoked at times strictly before t (so that their effects may affect the new
invocation state at t), not on actions invoked exactly at t. In the logistics example,
the precondition of a drive action can never depend on whether a load action has
already been added at the same timepoint, and vice versa.

In this particular example, this restriction could be worked around by introduc-
ing a new feature whose value determines whether the planner is allowed to drive
or load any given truck at a given timepoint, together with a “pseudo-operator”
that can be inserted to change the value of this feature. The load and drive actions
would be conditioned on the value of the new feature, approximately as follows:

Chapter 7. Concurrency and Resources 197

domain task :elements { shouldload,shoulddrive }
feature task-of(vehicle) :domain task

operator choose-task(vehicle, task) :at s
:precond true

:e�ects [s+1] task-of(vehicle) := task
operator load(obj, vehicle, loc) :at s
:precond [s] task-of(vehicle) =̂ shouldload ∧ . . .

Since the task of a vehicle could never be both shouldload and shoulddrive at
the same time, we could never try to load and drive the vehicle concurrently, and
therefore the problem is in a sense solved.

Though this scheme would work, it is far from straight-forward. Because it in-
volves introducing “false” actions that have no correspondence in reality and will
have to be filtered out from the solution plan, we view it as a misuse of the con-
structs provided by the current language. Given a choice, we would instead prefer
to use constructs explicitly defined for supporting the modeling of concurrent ac-
tions. We therefore immediately proceed to the next potential approach: Using
prevail conditions.

7.2.2 Preventing Interference Using Prevail Conditions

If using preconditions to induce a set of implicit constraints on the development of
the world during the entire execution of an action would lead to an overly com-
plex semantics, the natural solution would be to introduce a new construction per-
mitting such constraints to be modeled explicitly in the description of a planning
domain. Constraints that should hold throughout the execution of an action are
sometimes called prevail conditions (Sandewall & Rönnquist, 1986; Bäckström &
Klein, 1991). We will generalize this terminology somewhat, though, permitting
prevail conditions to refer to arbitrary timepoints or intervals during the execution
of an action. The semantics of a prevail condition is simple: The prevail condition
of each action in a plan must be entailed by the plan, with no exceptions for fluents
modified by the action to which the condition belongs.

The syntax of an operator specification, previously defined in Definition 6.2.9 on
page 152, is extended to support prevail conditions. The definition of a context
specification remains unchanged.

Definition 7.2.1 (Operator Specification)
An operator specification inL(ND)∗ is a labeled statement having the following form,
where o is an operator name, v1 through vn are distinct value variables serving as
formal parameters, the invocation timepoint s is a temporal variable, the duration
specification τ is a temporal term, the precondition φ is a single timepoint formula
for s, the prevail condition ψ is a static formula, and c1 through cm are context
specifications for the invocation timepoint s.

198 7.2. Preventing Interference in Concurrent Plans

• operator o(v1, . . . , vn) :at s :duration τ :precond φ :prevail ψ

:context c1 . . . :context cm

Omitting the precondition specification (:precond φ) is equivalent to specifying :pre-

cond true. Omitting the prevail condition specification (:prevail ψ) is equivalent to
specifying :prevail true. Omitting the duration specification is equivalent to speci-
fying :duration 1. For actions with only one context specification, the :context key-
word can be omitted. �

The translation function Trans is modified as follows to account for the addition of
prevail conditions.

• Transop(operator o(v1, . . . , vn) :at s :duration τ :precond φ :prevail ψ

:context c1 . . . :context cm) =
∀s, s′, v1, . . . , vn.

Occurs(s, s′, o(v1, . . . , vn))→ s′ = s + τ∧Trans(φ∧ψ→ ∧m
i=1 Transcon(s, ci)).

In the context of sequential planning, prevail conditions would only have been able
to constrain the effects of the operator for which the condition was declared. For
concurrent planning, on the other hand, prevail conditions also constrain the effects
of all other actions executing within the same interval of time. We can immediately
see that this can be used to model the intended executability conditions for the load

operator in the logistics example: The vehicle into which a package is being loaded
must remain at its location throughout the execution of the action.

Example 7.2.1 (Preventing Interference using Prevail Conditions)
operator load(obj, vehicle, loc) :at s
:precond [s] at(obj, loc) ∧ at(vehicle, loc)
:prevail [s,s+1] at(vehicle, loc)
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, vehicle) := true �

Testing Prevail Conditions

Preconditions are tested immediately before a new action is added to a plan. At
this time, the planner already has complete knowledge about the single state in
which the precondition is tested. Due to the structure of the search space used
by TALplanner and the requirement that no action can have effects in or before its
own invocation state, we know this state will remain unaltered by the action whose
precondition is being tested as well as by any other action that might be added to
the plan during the search for a solution.

Prevail conditions are fundamentally different in this respect. They refer to
states that are conceptually in the future, and the planner’s knowledge about these
states is generally incomplete. But this does not necessarily mean these states are
completely unknown. The concurrent planner may already have added one or

Chapter 7. Concurrency and Resources 199

more actions that have effects in what is currently the future, and the fluent val-
ues assigned by these effects are definite: They cannot be altered by any means
other than backtracking.

Since TALplanner correctly models this incomplete knowledge (by occluding
fluents in the “future” and thereby releasing them from the inertia assumption),
there is no need to wait until a state is in the “past” before testing a prevail condition
in that state. On the contrary, prevail conditions can be tested at any time, with
three possible outcomes:

• The prevail condition is true (entailed by the current plan). In this case, it
will necessarily remain true no matter which actions are added to the plan
in the future, as long as the TALplanner search procedure is followed. The
condition does not have to be tested again.

• The prevail condition is false (its negation is entailed by the current plan). In
this case, it will necessarily remain false no matter which actions are added to
the plan in the future, as long as the TALplanner search procedure is followed.
The planner must backtrack.

• The status of the prevail condition cannot be determined (neither the condi-
tion nor its negation is entailed by the current plan). In this case, the condition
must be queued, to be tested again when additional information is available.

The fact that prevail conditions can be tested in incompletely specified states is
crucial to the performance of the planner for many domains. If the planner had to
wait until a state was completely known before testing a prevail condition, there
would potentially be an exponential explosion in the number of plans to explore.

Example 7.2.2 (Avoiding Exponential Backtracking)
Consider the concurrent version of the logistics domain. Assume that the planner
has already added the action [0, 1] load(package-1, truck-1, city1-1) to the plan and
is currently considering instances of the drive operator.

The first applicable instance of drivemight be [0, 4] drive(truck-1, city1-1, city1-2).
Because there may be additional actions applicable at time 0 that could have effects
at time 1, the information available about the state at time 1 is still incomplete. Nev-
ertheless, once the drive action is added, sufficient information is already available
to determine that the prevail condition of the preceding load action is violated, and
the planner will immediately backtrack.

Had complete information about a state been required, no violation would have
been discovered immediately. Instead, the planner would have continued adding
actions invoked at time 0, until no more such actions could be found. At this time,
the planner would step to time 1 and finally detect the violation. Backtracking
would remove one action, after which the planner would once more step to time 1
and detect the same violation. This process would continue until all possible sub-
sets of actions applied after [0, 4] drive(truck-1, city1-1, city1-2) had been tested, at
which time this action would finally be removed. �

200 7.2. Preventing Interference in Concurrent Plans

The use of prevail conditions neatly solved the problem of ensuring that trucks
do not leave while packages are being loaded. On the other hand, ensuring that
trucks do not drive to two different destinations concurrently may be done simply
by making the domain model slightly less abstract.

7.2.3 Preventing Interference Using Action Effects

If the effects of a new action added to a plan contradict the effects of an existing ac-
tion, the resulting narrative is inconsistent and TALplanner is guaranteed to back-
track. In some domains, a sufficient degree of mutual exclusion can therefore fol-
low automatically from action effects, as long as the domain model is sufficiently
detailed.

For example, the planner can be prevented from allowing a truck to drive to
multiple locations at the same time if two new fluents are added: moving(vehicle),
a boolean fluent which holds when a vehicle is moving, and destination(vehicle) :
loc, which represents the latest assigned destination of the vehicle. An interval ef-
fect is used to ensure that the destination of a vehicle remains the same throughout
the execution of a drive action. Two concurrent drive actions for the same truck will
attempt to assign different values to the destination, forcing the planner to back-
track.

feature moving(vehicle, loc) :domain boolean

feature destination(vehicle) :domain loc

operator drive(truck, loc1, loc2) :at s
:duration maketime(value(s, dist(loc1, loc2))/2)
:precond [s] at(truck, loc1) ∧ city-of(loc1) =̂ city-of(loc2) ∧ loc1 6= loc2
:e�ects [s+1] at(truck, loc1) := false,

[s+maketime(value(s, dist(loc1, loc2))/2)] at(truck, loc2) := true,
[s+1,s+maketime(value(s, dist(loc1, loc2))/2-1)] moving(truck) := true,
[s+maketime(value(s, dist(loc1, loc2))/2)] moving(truck) := false,
[s+1,s+maketime(value(s, dist(loc1, loc2))/2)] destination(truck) := loc2

One point deserves further clarification. Given that the distance between two lo-
cations is sufficiently small, the duration of the operator will be 1 and the interval
effect for moving(truck) will take place at [s + 1, s + 0]. This is a valid specification
of a null effect – the fluent is affected at all timepoints within the interval, that is, at
no timepoints at all. Though this may appear somewhat strange, it achieves the in-
tended purpose of ensuring that moving(truck) is forced to be true in the inner part
of the execution interval (though the inner part in this case happens to be empty),
while the second effect for moving(truck) forces the fluent to be false at the end point
of the execution interval.

Chapter 7. Concurrency and Resources 201

7.2.4 Preventing Interference Misusing Action Effects

Having successfully modeled mutual exclusion between multiple drive operators
using action effects, let us now go on to see whether we could also have used the
same technique to ensure that trucks do not leave while packages are being loaded.

As it turns out doing this is not too difficult: The load operator can be modified
by adding an effect causing the vehicle to be at its original location throughout the
execution of the operator. Attempting to drive the same vehicle to another location
will then cause the vehicle not to be at its original location, contradicting the effects
of the load operator. This will be true regardless of the order in which the two
operators are added to a plan, ensuring mutual exclusion.

operator load(obj, vehicle, loc) :at s
:precond [s] at(obj, loc) ∧ at(vehicle, loc)
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, vehicle) := true

[s+1] at(vehicle, loc) := true

Although this in some sense achieves our intentions, it should more properly be
regarded as a misuse of action effects. Loading a package into a vehicle does not
physically cause the vehicle to remain where it is; a truck could easily start driving
while a package is being loaded. Though the plans generated by this variation of
the logistics domain may be correct, our model of the operators in this domain no
longer reflects reality.

This is naturally not a proof of non-existence: It may still be possible to find
other aspects of the domain that can be modeled in order to prevent interference
between drive and load using action effects. The example is merely intended as a
concrete demonstration of a case where this modeling technique is misused.

7.3 Modeling Limited Resources

Many planning domains involve the use of limited resources which can be con-
sumed, produced, borrowed and returned, or used in various other ways. For
example, vehicles such as trucks and airplanes can have limited carrying capacities
and a limited amount of fuel available.

For sequential planning, such properties can usually be modeled quite easily
in TALplanner by using plain action effects updating the values of non-boolean
fluents. For example, if loading a package into a vehicle requires one unit of space,
the amount of available space could be decreased as follows:

operator load(obj, vehicle, loc) :at s
:precond [s] at(obj, loc) ∧ at(vehicle, loc)
:e�ects [s+1] space(vehicle) := value(s, space(vehicle)) – 1, . . .

With concurrent planning this is clearly not sufficient, since multiple parallel invo-
cations of load would not take cumulative concurrent effects into account: Given

202 7.3. Modeling Limited Resources

n units of space available, each parallel invocation of load would assign the same
new value n− 1, for a total consumption of one unit of space regardless of the total
number of packages loaded. Even for sequential planning, adding explicit built-in
support for resources often facilitates the task of writing domain definitions. There-
fore, we introduce explicit support for resources in TALplanner.

7.3.1 Declaring and Using Resources

Like all entities present in a planning domain, resources must be declared before
being used. Resource declaration statements are similar to fluent declaration state-
ments and have the following form:

resource res(x) :domain domain

For example, in a problem domain where vehicles have limited space, a space re-
source can be declared as follows:

resource space(vehicle) :domain integer

A resource sort is added to L(ND)∗. Resource terms are formed from resource
symbols in the same manner as fluent terms are formed from feature symbols.

Definition 7.3.1 (Resource Sorts)
There are a number of sorts for features Ri, each one associated with a value do-
main dom(Ri) = Vj for some j. The sort R is assumed to be a supersort of all
resource sorts. �

Definition 7.3.2 (Resource Term)
A resource term, often denoted by r, is a resource expression res(ω1, . . . , ωn) where
r : Vk1 × . . .×Vkn → Ri is a resource symbol and each ωj is a value term of sort Vkj

.
�

Definition 7.3.3 (Single Timepoint Resource Term)
A single timepoint resource term for the timepoint τ is a resource term where all oc-
currences of the value function are of the form value(τ, f) (where f is a fluent term).

�

The definition of context specifications from Section 6.2.7 on page 151 is extended
in order to provide a structured way of declaring the resource usage of an operator.

Definition 7.3.4 (Context Specification)
A context specification for the invocation timepoint s has the following form, where
v1 through vn are distinct value variables, φ is a single timepoint formula for s, r1
through rp are resource effect expressions for s, and e1 through em are effect expres-
sions for s:

• :forall v1, . . . , vn :condition φ :resources r1, . . . , rp :e�ects e1, . . . , em

Chapter 7. Concurrency and Resources 203

If quantification is not required, the quantifier section (:forall v1, . . . , vn) can be omit-
ted. If no context condition is required, the condition section (:condition φ) can be
omitted; this is equivalent to specifying :condition true. If no resource effects are
required, the resource effect section can be omitted. �

While an ordinary effect expression provides a definite new value for a fluent, re-
source effects must be cumulative, with the planner taking all concurrent effects on
each resource into account in order to calculate the amount available at any point in
time. We therefore introduce a new form of resource effect expression, which speci-
fies the resource which is affected by the action, the time at which it is affected, and
how it is affected.

Unlike some planners, TALplanner only provides one type of resource, but al-
lows several different types of resource effects. Resources can be produced and con-
sumed, which adds or removes a given amount from what is currently available. It is
also possible to assign an absolute value to a resource, stating the exact amount that
will be available. A resource can be borrowed, which means that the action reserves
the resource at a timepoint or throughout an interval of time, thereafter automati-
cally returning it to a common pool of available resources. Finally, resources can be
borrowed non-exclusively, allowing a set of cooperating concurrent actions to reserve
the same set of resources. The exact semantics of these different types of resource
effects will be defined later in this section.

Definition 7.3.5 (Resource Effect Expression)
A resource effect expression for the invocation timepoint s has one of the following
forms, where τ and τ′ are temporal terms, r is a single timepoint resource term
for s and ω is a single timepoint value term for s of a sort corresponding to the sort
of f :

• [s + τ] :produce r :amount ω

• [s + τ] :consume r :amount ω

• [s + τ] :borrow r :amount ω

• [s + τ] :borrow-nonex r :amount ω

• [s + τ, s + τ′] :borrow r :amount ω

• [s + τ, s + τ′] :borrow-nonex r :amount ω

• [s + τ] :assign r :amount ω �

Example 7.3.1 (Space in the Logistics Domain)
In the following example, loading a package into truck always consumes one unit
of space.

operator load(obj, vehicle, loc) :at s
:precond [s] at(obj, loc) ∧ at(vehicle, loc)
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, vehicle) := true
:resources[s+1] :consume space(vehicle) :amount 1 �

204 7.3. Modeling Limited Resources

7.3.2 Querying Resources

Each resource has a number of different aspects modeled as fluent macros.
First, in any state, there is an initial amount of resources – the amount that would

be available if no resource effects took place in that state. Given a resource res, this
is modeled as a fluent macro init(res). The initial amount can be queried in any
state, and must be provided through observation statements for the initial state:

init ∀truck [[0] init(fuel(truck)) =̂ 30]

Second, in any given state, certain amounts of each resource res may have been
produced, consumed, borrowed non-exclusively, and borrowed exclusively. These
amounts may arise from cumulative effects of a number of concurrent operators,
and can be referred to using the fluent macros produced(res), consumed(res), borrowed-
nonex(res), and borrowed(res), respectively.

Third, it is often useful to be able to refer to the amount of resources actually
available for consumption in any given state. This amount can be referred to as
available(res). If res has been assigned a new value at the current timepoint, then
available(res) is equal to this new value. Otherwise, it is equivalent to init(res) −
consumed(res)−borrowed-nonex(res)−borrowed(res) (recall that resources produced
in a state are not available for consumption in the same state).

Similarly, one can refer to the amount of resources transferred to the next state as
transferred(res). If res has been assigned a new value at the current timepoint, then
transferred(res) is equal to this new value. Otherwise, it is equivalent to init(res) +
produced(res)− consumed(res).

Providing a completely TAL-based semantics for these macros is not possible,
since it requires summing over an unbounded number of actions in the current
plan and over all those instances of quantified conditional effects that actually take
place and affect the particular resource in which we are interested. Support for such
sums is expected to be available in a future version of the planner, based on a new,
modified L(FL) logic. For the moment, each fluent macro is provided with a value
through semantic attachment. Resource effects are also handled through semantic
attachment, and are ignored in the L(FL) translation of an operator definition.

7.3.3 Built-In and Complex Resource Constraints

For each resource res, the minimum and maximum amounts allowed can be speci-
fied using the macros minimum(res) and maximum(res). These values must be spec-
ified in the initial state. For example, the fact that it is possible to have between 0
and 60 units of fuel can be specified as follows:

init ∀truck [[0] minimum(fuel(truck)) =̂ 0 ∧ maximum(fuel(truck)) =̂ 60]

In states where a resource has been explicitly assigned a new value, it is suffi-
cient to ensure that the new value is within the allowed range. When no assign-
ment has taken place, however, there may be a number of concurrent resource

Chapter 7. Concurrency and Resources 205

effects affecting the same resource. Here, TALplanner uses a semantics where re-
sources produced in one state are available for consumption in the next state. For
the minimum constraint, this entails the assumption that all consumption in any
given state might take place before any production, leading to the constraint that
init(res)− consumed(res)− borrowed-nonex(res)− borrowed(res) ≥ minimum(res) in
all states, or, equivalently, that available(res) ≥ minimum(res) in all states. Similarly,
to ensure that the amount of resources never exceeds the specified maximum, the
planner requires that init(res) + produced(res) ≤ maximum(res) at all timepoints.

Note that since resource macros can be used in control rules, one is not limited
to these simple minimum/maximum constraints on resources. For example, it is
easy to state that no more than 5.5 units of fuel can be consumed at any given
timepoint, that it is impossible to produce and consume units of the same resource
at the same time, that equal amounts of two resources must always be available,
or even a complex constraint such that whenever some condition φ holds, a certain
resource may not be consumed during the following 6 timepoints:

control ∀t. [t] consumed(fuel) ≤ 5.5
control ∀t. [t] consumed(res) =̂ 0 ∨ produced(res) =̂ 0
control ∀t. [t] available(res) =̂ available(res’)
control ∀t. [t] φ→ [t+1,t+6] consumed(res) =̂ 0

7.3.4 Modeling Symmetric Objects using Resources

In addition to modeling limited availability, resources can also be used to model
symmetric objects.

Consider once more the gripper domain. In the case where the robot has more
than one gripper, one difficulty for a planner is recognizing that the grippers are
functionally identical; if a plan can not be completed using the left gripper to pick
up a certain object, using the right gripper instead will not fix the problem either
(this was also pointed out in Fox & Long, 1999). This difficulty can be avoided by
modeling the grippers as a resource of bounded capacity. Picking up and dropping
objects “consumes” and “produces” grippers, respectively. This also facilitates the
definition of problem instances: Rather than having to name each gripper, it suffices
to specify the number of grippers that are available.

The value domains obj for things (including the robot), ball for balls (a subtype
of obj), and room for rooms are unchanged from the previous formalization of this
domain. The integer value domain is added and the gripper value domain is no
longer used. The fluent loc is unchanged, while the fluent free is replaced with the
resource free-gripper and the fluent is-carried-in is replaced with is-carried which does
not have a gripper argument.

206 7.3. Modeling Limited Resources

domain obj :elements { ball1, ball2, ball3, robby }
domain ball :parent obj :elements { ball1, ball2, ball3 }
domain room :elements { roomA, roomB }
resource free-gripper :domain integer

feature loc(obj) :domain room

feature is-carried(obj) :domain boolean

init [0] init(free-gripper) =̂ 2 ∧ minimum(free-gripper) =̂ 0 ∧ maximum(free-gripper) =̂ 2

Given these definitions, the gripper domain operators shown in Example 6.2.11 on
page 158 can be redefined as follows:

operator pick(ball) :at s
:precond [s] loc(ball) =̂ loc(robby) ∧ ¬is-carried(ball)
:resources [s+1] :consume free-gripper :amount 1
:e�ects [s+1] is-carried(ball) := true

operator drop(ball) :at s
:precond [s] is-carried(ball)
:resources [s+1] :produce free-gripper :amount 1
:e�ects [s+1] is-carried(ball) := false

operator move-to(room) :at s
:precond [s] loc(robby) 6=̂ room
:context

:e�ects [s+1] loc(robby) := room
:context :forall ball :condition [s] is-carried(ball)
:e�ects [s+1] loc(ball) := room

7.3.5 Preventing Interference using Resources

Resources can also be used to model semaphores, which can be used as a com-
plement to prevail conditions and ordinary action effects in order to prevent in-
terference between actions. The following statements introduce a new resource
use-of(thing) to be used for this purpose in the logistics domain.

resource use-of(thing) :domain integer

init [0] ∀thing [init(use-of(thing)) =̂ 0 ∧ minimum(use-of(thing)) =̂ 0 ∧
maximum(use-of(thing)) =̂ 1]

The use-of resource ensures that an object or vehicle is never used in conflicting
concurrent actions. When packages are loaded into or unloaded from a vehicle,
the corresponding use-of resources are borrowed non-exclusively, allowing several
loading or unloading actions involving the vehicle to take place concurrently. Ac-
tions that move the vehicle borrow the resource exclusively, so that it can never be
moved to two different destinations at the same time or moved during loading or
unloading.

Chapter 7. Concurrency and Resources 207

operator load(obj, vehicle, loc) :at s
:precond [s] at(obj, loc) ∧ at(vehicle, loc)
:resources [s+1] :borrow-nonex use-of(vehicle) :amount 1,

[s+1] :borrow use-of(obj) :amount 1
:e�ects [s+1] at(obj, loc) := false, [s+1] in(obj, vehicle) := true

operator drive(truck, loc1, loc2) :at s
:duration maketime(value(s, dist(loc1, loc2))/2)
:precond [s] at(truck, loc1) ∧ city-of(loc1) =̂ city-of(loc2) ∧ loc1 6= loc2
:resources [s+1,s+maketime(value(s, dist(loc1, loc2))/2)] :borrow use-of(truck) :amount 1,
:e�ects [s+1] at(truck, loc1) := false,

[s+maketime(value(s, dist(loc1, loc2))/2)] at(truck, loc2) := true

7.4 Concurrency, Resources and Cycle Checking

Cycle checking prunes a plan candidate p if the final state generated by p is identical
to the final state generated by a proper prefix of p. Thus, in order to perform cycle
checking, all final states of proper prefixes of the current plan candidate must be
available for comparison.

For sequential plans, all such states are already available in the state sequence
generated by the current plan candidate. For example, the logistics plan candi-
date 〈〉 (the empty plan) generates a final state at time 0. Adding the action occur-
rence [0, 4] drive(truck-1, city1-1, city1-2) generates a new final state at time 4, but
the final state of the parent plan remains unaltered and can still be retrieved from
the state sequence for the extended plan. Adding yet another action occurrence
[4, 5] load(package-1, truck-1, city1-2) generates a new final state at time 5 but pre-
serves the states at times 0 and 4, and so on.

For concurrent plans, though, adding a new action may change the contents
of what was previously a final state. Consider again the logistics plan candidate
〈[0, 4] drive(truck-1, city1-1, city1-2)〉, which generates a final state at time 4. If a
new concurrent action 〈[0, 4] drive(truck-2, city2-1, city2-2)〉 is added to this plan,
the state at time 4 will change due to new effects being applied to this state. For
this reason, the concurrent planning algorithm must be altered to keep an explicit
list of the final states of all proper prefixes of the current plan. Memory usage for
this list is generally rather low, given the extensive structure sharing used by the
TALplanner implementation. Efficiency is improved by defining an arbitrary total
order on states, storing the list in sorted order, and using binary search to determine
whether a state is already present in the list.

The concept of cycle checking can be generalized by pruning a plan candidate if
the final state generated by the this plan is, by some definition, worse than the final
state generated by a proper prefix of the same plan. In most cases it may be con-
ceptually or computationally difficult to determine whether one state is worse than
another, and therefore this concept is not implemented in most forward-chaining

208 7.5. Concurrent TALplanner

planners. This is not necessarily the case in the presence of explicitly modeled re-
sources, however. Resources are often associated with a preference for greater, or
occasionally lesser, amounts of the resource. For example, in most domains where
driving consumes fuel, a state where more fuel is available is always better, all else
being equal. A plan where one drives from some location A to B and immediately
back to A should therefore be pruned, despite the fact that it does not generate a
true state cycle: Less fuel is available after driving, so the new state is not identical
to, but worse than, the original state.

TALplanner allows each resource to be associated with a preference: more, less,
or none. The syntax for resource declarations is extended accordingly:

resource res(x) :domain domain [:preference (:more | :less | :none)]

This induces a partial order on states, better-or-equal, used in the concurrent version
of TALplanner: better-or-equal(s, s′) holds iff (1) s and s′ are equal wrt. ordinary
fluents and resources with preference none, (2) for every resource with preference
more, there is at least as much available in s as in s′, and (3) for every resource with
preference less, there is at least as much available in s′ as in s.

Binary search can still be applied to the fluent portion of a state when searching
for a visited state which is better than or equal to the final state of the current plan,
preserving most of the efficiency of the standard cycle checking procedure.

7.5 Concurrent TALplanner

Though the concurrent TALplanner algorithm could theoretically allow the use of
tense control rules, our efforts have been focused on the use of TAL-based control
rules. The concurrent algorithm below is therefore based on the TAL-based TAL-
planner algorithm from Definition 6.4.8 on page 174, and all indicated differences
are relative to that algorithm.

The main differences in this variation of the algorithm relate to the fact that af-
ter adding a new action, the planner will only have complete knowledge of the
states up to and including the invocation timepoint of that action, rather than the
end timepoint. Fluents in the narrative are therefore occluded up to and including
time τ0 rather than time τ. Additional changes to the original algorithm are caused
by the addition of prevail conditions, which may also have to be queued in the con-
dition queue for future testing. Because the end timepoints of action occurrences
in a concurrent plan are not necessarily monotonically increasing, the maximum
of all end timepoints is explicitly stored in each search node (τmax). Finally, some
changes are necessitated by the differences between the sequential search tree and
the concurrent search tree, as seen in the iteration over possible successor actions.

Chapter 7. Concurrency and Resources 209

Definition 7.5.1 (Concurrent TALplanner)
Input: A goal narrative N .
Output: A plan narrative entailing the goalNgoal and the control formulasNcontrol.

1 procedure TALplanner-concurrent(N)
2 γ← ∧Ngoal Conjunction of all goal statements
3 〈init, incr, �nal〉 ← generate-pruning-constraints(Ncontrol)

�4 node← 〈init, ∅, 0, 0, 〈〉〉 〈cond. queue, visited states, latest invocation time, tmax, plan〉
5 Open← 〈node〉 Stack (depth first search)
6 while Open 6= 〈〉 do

�7 〈C, S, τ0, τmax, p〉 ← pop(Open) Current plan candidate
8 N ′ ← N ∪ p ∪ occlude-all-after(N , τ0) No knowledge about future
9 for all constraints α in C do Check queued constraints

10 if Trans+(N ′) |= Trans(α) then C ← C \ {α} Remove satisfied constraint
11 elsif Trans+(N ′) |= Trans(¬α) then backtrack Constraint violated

�12 N ′′ ← N ∪ p ∪ {tmax = τmax} Narrative with complete knowledge
13 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)

�14 if ∃s ∈ S.better-or-equal(s, final state of current plan) then backtrack
15 if Trans+(N ′′) |= Trans(γ ∧ C ∧ �nal) then Goal + queued + final ctrl satisfied
16 return N ′′
17 else Not a solution, but check children
I18 S′ ← S ∪ {final state of current plan}
�19 for all successor actions A = [ρ, ρ′] oi(c) for p according to Def 7.1.1 do
�20 C′ ← C ∪ incri[ρ, c] Old conditions + incr control
I21 C′ ← C′ ∪ {prevail condition of A} Add prevail condition
�22 push 〈C′, S′, ρ, max(τmax, ρ′), 〈p; A〉〉 onto Open

23 fail �

210 7.5. Concurrent TALplanner

Chapter 8
Domain Analysis Techniques for
Domain-Dependent Control

Preliminary benchmark tests for TALplanner were quite satisfying, both compared
to fully automated planners and compared to TLPlan. Despite this, it might be
possible to make even better use of the knowledge we have about planning do-
mains, taking the performance of a hand-tailored planner to a new level. There are
many different avenues to be explored in this area. Perhaps the control formulas
used by TLPlan and TALplanner are not the optimal form in which our current
domain knowledge can be described. Perhaps the language should be extended
to allow new types of domain knowledge to be expressed, knowledge that cannot
be described in terms of constraints on a single narrative. Some efforts have been
made to explore those paths, but our main focus has been on the use of automated
domain analysis.

Numerous domain analysis techniques for planning domains already exist in
the literature (Nebel, Dimopoulos, & Koehler, 1997; Haslum & Jonsson, 2000; Fox &
Long, 1998; Cresswell, Fox, & Long, 2002; Fox & Long, 2000b, 2000a, 2002; Gerevini
& Schubert, 1998, 2000; Scholz, 2000; Rintanen, 2000b), and the first task to be per-
formed was therefore an investigation of these techniques to determine whether
or not they would be applicable to TALplanner. As it turned out, most existing
techniques would require major extensions and modifications, for several reasons.

First, the control rules used by TALplanner are essentially specifications of tem-
porally extended goals. These rules constrain the paths by which the planner is
allowed to reach a goal state, but several analysis methods depend on the fact that
only the final state is constrained and that the path by which this state is reached
is irrelevant. Applying such techniques within the TALplanner framework may
render the planner incomplete.

Second, one of the design goals for TALplanner is the ability to plan for do-

211

212

mains with large numbers of objects and operator instances. Even if an operator
could have billions of instances, this should not be a major problem as long as suf-
ficiently strong control rules can be written to guide the planner towards choosing
“good” instances to be applied. For this reason, techniques that rely on generating
all ground instances of operators or predicates are less likely to be useful in conjunc-
tion with TALplanner. This includes techniques such as RIFO (Nebel et al., 1997)
and the methods for planning with reduced operator sets developed by Haslum
and Jonsson (2000).

Finally, another important design goal is that of permitting the use of more com-
plex types of operators, including operators with extended duration and (eventu-
ally) non-deterministic effects, as well as the use of resources and concurrency. Any
techniques depending on the use of single-step operators would require extensions
in order to be used in TALplanner.

Given these restrictions, it may be better to start not by examining analysis tech-
niques for those aspects of a planning domain that are common between TALplan-
ner and other planners but by considering techniques that would be applicable to
the main difference: Control formulas. The use of control formulas and incremental
pruning constraints can significantly reduce the number of search nodes the plan-
ner must expand and investigate, which in turn decreases the time spent applying
the effects of an action to generate a single new node or testing whether the goal
is satisfied by the current plan candidate, but also increases the amount of time
spent determining whether or not a node actually satisfies all incremental pruning
constraints. In fact, benchmarks show that evaluating incremental pruning con-
straints often accounts for more than 99% of the time used by TALplanner. This
makes formula evaluation performance paramount for the overall performance of
the planner, and any techniques that can reduce the amount of time required to
verify whether a node should indeed be accepted could become valuable weapons
in the hunt for efficiency.

There are several potential approaches that might decrease the amount of time
used for evaluating incremental pruning constraints. One of these approaches
would involve retaining the same pruning constraints but optimizing the formula
evaluator. This has been done in several stages, but the optimizations are mainly
related to implementation details and are not interesting in themselves. Another
approach would be to use some form of domain analysis to alter the incremental
pruning constraints, perhaps finding simpler constraints that would yield the same
results in terms of pruning. That is the approach taken in this chapter, based on an
ICAPS-2002 article (Kvarnström, 2002).

Borrowing a term from compiler technology, we say that TALplanner contains
an optimizer for formulas and terms. Figure 8.1 serves as an overview of the op-
timization process, the details of which will be presented in the remainder of this
chapter.

The input to the optimizer is an entity (formula or term) to be optimized, to-
gether with an optimization context providing additional information about the

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 213

Expanded
context 3

Expanded
context 2Part 2

Part 3

Combine
optimized entities

[9.1]

Combined
entity

Optimize
combined entity

[9.2, 9.3.1]

Optimized
entity

Generate/add
local var constr

[9.5.2, 9.5.3]

Expanded
constraints

Quantifier
elimination [9.5]

Optimized
entity

Necessary
bindings

Remove out-of-
scope var

constraints [9.5.4]

Initial opt
context

Entity to be
optimized

Separate
subentities

Subentity 1

Generate/add facts
for subentities
[9.3.3, 9.3.4]

Expanded
context 1

Combine variable
constraints [9.5.4]

Combined
constraints

Infer new facts
using state

invariants [9.4]

Expanded
context 3

Expanded
context 2

Expanded
context 1

Optimizer
(recursive call for part 1)

Optimizer
(recursive call for part 1)

Optimizer
(recursive call for subentity 1)

Figure 8.1: Control Analysis and Optimization

context in which the entity will eventually be evaluated. The optimizer begins by
recursively optimizing all subentities – for example, the conjuncts in a conjunction,
or the temporal term and fluent term forming a value() expression. Part of this
processing is identical for each subentity, indicated as layers of depth in the figure,
including the generation of new context information for each subentity.

Each recursive call to the optimizer returns an optimized subentity and, in case
the entity is a formula, a set of necessary constraints on variable values. Further op-
timizations may be applied once the subentities have been combined, and new vari-
able constraints may be generated from the combined entity. If sufficiently strong
variable constraints are generated, it may be possible to eliminate quantifiers, re-
ducing the time complexity of formula evaluation (Section 8.5).

214

Initial opt
context, op 1

State
invariants

Operators
Control
rules

Generate pruning
constraints [7.4.4]

Extract operator
contexts [9.3.2]

Resolution and
other inferences

[9.3.5, 9.4]

Operator
context op 1

Generate
precondition
control [9.6]

Precondition
control for op 1

from p.c. 1

Reduced
incremental
p.c. 1 for op 1

Generate state
invariants

Optimizer

Incremental
pruning

constraint 1

Optimized
incremental
p.c. 1 for op 1

Variable
constraints for
p.c. 1 for op 1

Figure 8.2: Control Analysis and Optimization

The optimizer makes use of a number of general techniques applicable to most
types of formulas and expressions, but special emphasis has been placed on the
optimization of incremental pruning constraints (Figure 8.2). As specified in the
previous chapter, each control formula in a narrative generates separate incremen-
tal pruning constraints for each operator type in a narrative. Information extracted
from an operator definition can then be used to generate an optimization context
enhancing the optimization of the associated pruning constraints. Several forms of
operator analysis have been developed for this purpose, including the extraction
of precondition and effect facts to provide information about the context in which
an incremental pruning constraint will be evaluated as well as an analysis of the
potential state transitions that may take place during the execution of an operator
instance which may aid in the optimization of triggered state transition constraints.

Existing domain analysis techniques have also been considered for inclusion in

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 215

the formula and term optimization framework. At the moment, the most suitable
candidate appears to be the automatic extraction of state invariants. In order to
verify the hypothesis that such invariants can indeed be a useful addition to the
optimizer, the first step has involved accepting and using manually declared state
invariants (Section 8.4).

Applying the optimizer to an incremental pruning constraint can often result
in a conjunction where some conjuncts only refer to the invocation timepoint of an
operator. Such conjuncts can be moved to the precondition of the operator, which
leads to fewer actions being applied and fewer states being expanded (Section 8.6).

These techniques have proven very effective in many domains. As demon-
strated by the benchmark tests at the end of the chapter, performance is improved
by a factor of 40 for the largest logistics problems from the Second International
Planning Competition (IPC-2000, held at the AIPS-2000 conference: Bacchus, 2001)
and by a factor of 400 for the largest blocks world problems.

8.1 General Optimization Framework

The general optimization framework developed in this chapter will be applied to
L(ND)∗ formulas as well as value terms, temporal terms and fluent terms. Formu-
las and terms will sometimes simply be referred to as “entities” to be optimized.

An explicit enumeration of all details of all optimizations, as they are applied to
each of the numerous types of entities supported by the optimizer, would be quite
tedious. Instead, we will generally discuss and explain the underlying principles
behind the optimizations. The optimizer function resulting from applying these
principles will be denoted by optimize().

Basic recursive optimization. If nothing else is stated, an atomic entity can be
optimized to itself, while a composite entity may be optimized by first recursively
optimizing its constituent parts and then constructing a new entity of the same type
from the optimized parts in the obvious manner. All other optimizations specified
below are added on top of this basic framework.

Initial processing. Certain optimizations discussed below may determine that a
complex value term in an incremental pruning constraint must always take on the
same value as a formal argument variable belonging to the corresponding operator,
and will then replace the value term with the variable. Such variables are later sub-
stituted with the actual arguments of an action occurrence when the pruning con-
straint is tested, as specified in Definition 6.4.8 on page 174, removing the need to
evaluate the original complex value term. For this procedure to work as intended,
the formal argument variable must occur free rather than bound in the optimized
formula. To ensure that this will always be the case, all variables bound in an en-
tity are replaced with fresh unused variables of the same sort before optimization
begins.

216 8.2. Equivalence Optimizations

Connectives. Only negations, disjunctions, conjunctions and equivalences are con-
sidered by the formula optimizer. Disjunctions and conjunctions are generalized to
support arbitrary arities.

Example 8.1.1 (Logistics Domain, continued)
Renaming bound variables in the three incremental pruning constraints for the lo-
gistics domain, as shown in Example 6.4.2 on page 177, may result in the following
constraints.

For only-load-into-plane-when-necessary:
∀obj10, plane10, loc10.

[s] ¬in(obj10, plane10) ∧ at(obj10, loc10) ∧ [s+1] in(obj10, plane10)→
∃loc’10 [goal(at(obj10, loc’10)) ∧ [s] city-of(loc10) 6=̂ city-of(loc’10)]

For only-unload-from-plane-when-necessary:
∀obj20, plane20, loc20.

[s] in(obj20, plane20) ∧ at(plane20, loc20) ∧ [s+1] ¬in(obj20, plane20)→
∃loc’20 [goal(at(obj20, loc’20)) ∧ [s] city-of(loc20) =̂ city-of(loc’20)]

For objects-remain-at-destinations:
∀obj30, loc30.

[s] at(obj30, loc30) ∧ goal(at(obj30, loc30))→ [s+1] at(obj30, loc30) �

8.2 Equivalence Optimizations

The first type of optimization performed by TALplanner involves rewriting a for-
mula α to a simpler form β such that α ≡ β. TALplanner implements a num-
ber of such optimizations, making use of well-known logical equivalences such as
φ ∧ (φ ∨ ψ) ≡ φ, φ ∧ true ≡ φ, and ∀x.(α ∧ β(x)) ≡ α ∧ ∀x.β(x) where x does not
occur in α.

At first glance it would appear that the only use for this type of optimiza-
tion would be to correct trivial mistakes made by the domain designer. After
all, who would deliberately write a formula such as [t] on(x, y) ∧ ([t] on(x, y) ∨
[t] ontable(x))? The answer lies in the fact that TALplanner conjoins incremental
pruning constraints originating from different control rules, the optimizer performs
various types of simplifications, and the optimizer may generate new precondi-
tions to be conjoined to existing preconditions. At various points in this process,
the formulas that are generated may be susceptible to equivalence optimizations
that were not applicable to the original formulas. Performing these optimizations
can therefore have a noticeable impact on the performance of the planner.

Additionally, formulas in a planning domain may quantify over variables that
in certain planning problems turn out to have empty value domains, in which case
∀v.φ(v) is optimized to true and ∃v.φ(v) is optimized to false. For singleton value
domains, the formula ∀v.φ(v), where the domain of v contains the single value w,

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 217

is optimized to φ(w), and similarly for existential quantification. Also, any value
term whose associated value domain contains a single value w must necessarily
take on that value.

8.3 Context-Dependent Optimizations

The potential for optimizations can be vastly extended by considering the context
in which an entity will be evaluated.

Consider again a formula α that should be optimized, and suppose that it can
somehow be determined in advance that α will only be evaluated in a context where
another formula γ is satisfied. For example, maybe α is intended to be used as an
incremental pruning constraint for a specific operator, in which case it will be evalu-
ated immediately after applying an instance of that operator, which may guarantee
that certain conditions hold. In this case, the optimizer is not limited to finding a
simpler but equivalent formula β such that α ≡ β. Instead, it can search for a sim-
pler and potentially weaker formula β such that (α∧ γ) ≡ (β∧ γ). For any narrative
where γ holds, α will always be true iff β is true, even though this is not necessarily
the case in narratives where γ does not hold. Given that γ is sufficiently strong,
this clearly provides far better optimization opportunities than pure equivalence
optimization.

As a second step towards improving the efficiency of formula evaluation, the
TALplanner formula optimizer therefore makes use of the context in which a for-
mula will eventually be evaluated. The formula optimizer is extended to take two
arguments: A formula α to be optimized and an optimization context.

Definition 8.3.1 (Optimization Context)
An optimization context1 is a tuple containing the following elements:

• A set of formulas Φ known to hold when an entity will be evaluated.

• If an incremental pruning constraint in incri should be optimized, the operator
type oi associated with the constraint. �

If an operator type is specified, its formal arguments may occur free in α as well as
in the formula returned by the optimizer. Before evaluation, these variables will be
instantiated with the actual arguments of the particular operator instance of that
had just been applied, as specified in Definition 6.4.8 on page 174.

Below, we will explain how context information is generated automatically by
the optimizer and how this context information can be used to simplify formulas
and terms. The presentation assumes the optimization context 〈Φ, o〉 does contain
an operator type. If it does not, those parts of the optimizer that depend on the
operator type are deactivated.

1Redefined in Definition 8.4.1 on page 221 to add support for state invariants.

218 8.3. Context-Dependent Optimizations

8.3.1 Using Context Information

Context information is used in the optimization of atomic formulas, where an en-
tailment checker attempts to determine whether an atomic formula is entailed by
the context Φ (in which case it can be optimized to true) or whether its negation
is entailed (false). It should be noted that although this entailment checker must
be sound it need not be complete. Incompleteness weakens the optimizer but does
not affect correctness.

Context information is also used when optimizing terms. For example, suppose
that the optimizer is currently optimizing the complex value term ω, and suppose
that a formula in the optimization context has the form v = ω or ω = v for some
value variable v. Value variables are evaluated more quickly than complex value
terms, which implies that ω should be replaced with v – as long as this does not
violate sort constraints. For example, depending on the context in which a car-
valued term occurs, it cannot necessarily be replaced with a vehicle-valued vari-
able, where vehicle is a strict supersort of car.

Similarly, context information can be used in the optimization of Holds formulas:
Given the knowledge that [τ] f =̂ v, the formula [τ] f =̂ ω holds iff v = ω.

8.3.2 Generating Initial Context using Operator Analysis

If a formula to be optimized is an incremental pruning constraint, it is possible to
provide a certain amount of context even for the initial call to the optimizer.

Incremental pruning constraints should mainly depend on the state or states
generated by the latest operator invocation, and although the preprocessor cannot
know in advance which operator instance was invoked, it can know which operator
type was invoked (such as drive or �y in the logistics domain) – this is part of the
reason why there is a separate set of constraints incri for each operator type oi (Sec-
tion 6.4.3). This leads to the idea of extracting some context information from the
operator definitions regarding the states in which the constraints will be evaluated.

If the precondition of an operator is not satisfied, the operator instance is never
applied. If it is satisfied, the effects are applied, and if they are inconsistent, the
planner backtracks before testing incremental pruning constraints. In other words,
the incremental pruning constraints in incri are only tested if both the precondition
and the effects of the corresponding operator oi are known to hold. Consequently,
a set of known facts can be extracted from the operator quite easily. Let φ be the
precondition of oi and let φ′ be a conjunction of fixed fluent formulas extracted
from the unconditional effects of the action (for example, the effect [s + 1] at(o, l) :=
false generates the formula [s + 1] at(o, l) =̂ false). Then, the initial set of known
formulas is φ ∧ φ′.

Example 8.3.1 (Operator Analysis for the Logistics Domain)
Analyzing the drive operator from the logistics domain (Example 6.2.10 on page 157)

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 219

yields the formulas φ = [s] at(truck, loc1) ∧ city-of(loc1) =̂ city-of(loc2) ∧ loc1 6= loc2
and φ′ = [s + 1] at(truck, loc1) =̂ false∧ [s + 1] at(truck, loc2) =̂ true. �

Note that both the formal invocation timepoint of the operator oi and its formal
arguments can occur as free variables in φ or φ′. When the constraints in incri are
tested, the formal arguments will be instantiated with the values used during the
latest operator invocation, as stated in the definition of incri (Section 6.4.3). In this
way, an incremental pruning constraint can refer directly to the arguments of the
corresponding operator invocation. (Since all variables in control rules have been
replaced with fresh variables, there is no risk of mistaking one instance of a variable
for another.)

8.3.3 Passing On Context

The optimization context 〈Φ, o〉 given to optimize() is generally passed on unmod-
ified when the optimizer makes a recursive call to optimize a subformula or sub-
term. Some exceptions where new context information can be generated will be
discussed below.

8.3.4 Generating Context from Composite Formulas

For certain types of composite formulas, the optimizer is not limited to passing on
the initial context but can generate new context information for use in the optimiza-
tion of subformulas.

For a conjunction
∧n

i=0 φi, the value of any single conjunct φk is irrelevant if any
other conjunct is false, because in this case the conjunction will definitely be false.
Conversely, the value of the conjunct φk is only relevant in the case where all other
conjuncts are true. Therefore, the optimizer recursively optimizes each φk in a con-
text where all other conjuncts hold, that is, where

∧
0≤i≤n,i 6=k φi has been added to Φ.

Conjoining the resulting optimized subformulas results in a new formula which is
guaranteed to be equivalent to the original conjunction in the given context, even if
each optimized subformula taken in separation may not necessarily be equivalent
to the corresponding original conjunct. An example will be given in Section 8.3.6
below.

A dual optimization is applied to disjunctions.

8.3.5 Inferring Additional Context

The context information generated above can be augmented by an automatic infer-
ence procedure infer(Φ) which generates new facts from an existing set of facts Φ.
The return value is a set of formulas containing the original facts Φ and possibly
additional formulas that are entailed by Trans+(Φ).

220 8.4. Using State Invariants

The first version of the inference procedure uses standard equivalences to gen-
erate new facts from Φ. This reduces the amount of work done by the entailment
checker when testing whether an atomic formula is entailed by a given context.

Definition 8.3.2 (Inference Procedure)
The TALplanner inference procedure2 infer(Φ) is defined by repeatedly applying the
following inference rules to the formulas in Φ and adding any newly inferred for-
mulas to Φ until a fixpoint is reached.

• Given [τ] f =̂ ω, infer value(τ, f) = ω, and vice versa.

• Given ω1 = ω2 and ω2 = ω3, infer ω1 = ω3.

• Given ¬(α ∨ β), infer ¬α and ¬β.

• Given ∀v.α ∧ β, infer ∀v.α and ∀v.β.

• Given ¬∀v.α, infer ∃v.¬α.

• Given ¬∃v.α, infer ∀v.¬α. �

8.3.6 Optimization Example

The following example illustrates some of the optimizations described above.

Example 8.3.2 (Optimizing Pruning Constraints)
Suppose that while processing pruning constraints for the logistics domain, the
formula city = value(t, city-of(loc1)) ∧ [t] city-of(loc1) =̂ value(t, city-of(loc2)) is gen-
erated, possibly due to conjoining multiple control formulas with different ori-
gins. As specified in Section 8.3.4, each conjunct in this conjunction will be op-
timized under the assumption that the other conjunct holds. This entails opti-
mizing the formula [t] city-of(loc1) =̂ value(t, city-of(loc2)) under the assumption
that city = value(t, city-of(loc1)) holds. Applying the TALplanner inference pro-
cedure from Section 8.3.5 to this assumption allows the optimizer to infer that
[t] city-of(loc1) = city must hold. As stated in Section 8.3.1, the optimizer can now
optimize the first conjunct [t] city-of(loc1) =̂ value(t, city-of(loc2)) to the simpler for-
mula city = value(t, city-of(loc2)). Though this new conjunct is not equivalent to the
original first conjunct, the resulting complete formula city = value(t, city-of(loc1))∧
city = value(t, city-of(loc2)) is equivalent to the original complete formula. �

8.4 Using State Invariants

State invariants are conditions that hold in all states generated by any executable
plan. In the blocks world, a block that is being held is never clear, and a block that

2Redefined in Definition 8.4.2 on page 222 to add support for state invariants.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 221

is ontable is never on another block, though this is never stated explicitly in the do-
main model but is implicit in the operator definitions and in implicit constraints
on the initial state. In the standard logistics domain, a package which is in a vehi-
cle is never at a location: ∀t, obj1, vehicle1, loc1.[t] in(obj1, vehicle1) → ¬at(obj1, loc1).
(While this may appear counter-intuitive, it does follow from the way the logistics
domain is usually modeled.) Similar state invariants can be found for most plan-
ning domains, but up to now there was no natural place for these constraints to be
used in TALplanner.

The optimization techniques presented in the preceding section are based on
the use of information about the context in which a formula or term is evaluated. It
is clear that the more context information the optimizer has as its disposal, the bet-
ter the optimization opportunities – and state invariants can be used to infer new
information from existing facts. Better yet, there are already automated domain
analysis techniques in the literature that extract such constraints from domain defi-
nitions (Fox & Long, 1998; Gerevini & Schubert, 1998, 2000; Scholz, 2000; Rintanen,
2000b). Thus we return to the original idea of using existing domain analysis tech-
niques to improve the performance of TALplanner, though with a novel use of the
information extracted by these techniques.

There are two steps involved in integrating an automated state invariant ex-
traction algorithm into the planner: The algorithm must be adapted to work with
TALplanner’s operator definitions (and possibly extended to handle operators with
extended duration), and the planner must be altered to actually use the state invari-
ants once they have been generated. We have chosen to begin with the second step,
extending TALplanner to make use of manually specified state invariants. This will
provide the opportunity to test carefully whether the use of the invariants has a
sufficient impact on the planner’s performance to warrant following through with
the implementation of the automatic domain analysis. As in all formulas specified
as input to the optimizer, all variables bound in state invariants are replaced with
fresh unused variables of the same sort before optimization begins.

The optimization context used by the formula optimizer, previously specified
in Definition 8.3.1 on page 217, is extended as follows.

Definition 8.4.1 (Optimization Context)
An optimization context is a tuple containing the following elements:

• A set of formulas Φ known to hold when an entity will be evaluated.

• A set of state invariants Ψ that must always hold in all problem instances for
the current planning domain

• For incremental pruning constraints, the operator type o associated with the
constraint. �

The inference procedure from Definition 8.3.2 on the facing page is extended to take
two arguments: infer(Φ, Ψ) generates new facts from an existing set of facts Φ and

222 8.5. Eliminating Quantifiers

a set of state invariants Ψ known to hold in all problem instances for the current
planning domain. The return value is a set of formulas containing the original
facts Φ and possibly additional formulas that are entailed by Trans+(Φ ∧Ψ).

In addition to using the standard equivalences shown in the previous defini-
tion, facts are also combined with state invariants with limited use of a resolution
algorithm. This may yield further facts to be added to Φ, strengthening the infor-
mation available to the optimizer. For example, the unload operator in the logis-
tics domain provides the context fact [s] in(obj, vehicle). Combining this with the
invariant ∀t, obj1, vehicle1, loc1.[t] in(obj1, vehicle1) → ¬at(obj1, loc1) would generate
the formula ∀loc1.[s] ¬at(obj, loc1).

Definition 8.4.2 (Inference Procedure)
The extended TALplanner inference procedure infer(Φ, Ψ) is defined by repeatedly
(1) applying the inference rules from Definition 8.4.2 to the formulas in Φ and
(2) applying a resolution inference procedure to combine facts in Φ with invari-
ants in Ψ, adding any newly inferred formulas to Φ, until a fixpoint is reached. �

The performance impact of state invariants can be expected to vary depending on
the degree of correlation between state variables. In the standard four-operator for-
mulation of the blocks world, for example, state variables are highly correlated: A
block which is on another block is never on the table, a block which has another
block on top of it is never clear, the hand is empty if and only if no block is be-
ing held, and a block which is being held is never clear, on top of another block,
or on the table. Because of this high degree of redundancy, the same facts can be
expressed in many different syntactic forms. State invariants make the correlations
between state variables explicit, which makes the remaining domain analysis algo-
rithms considerably more robust against these syntactic variations. As can be seen
in the benchmark tests later in this chapter, the use of state invariants decreases
the time required to solve some blocks world problem instances by a factor of 3.
In other domains, state variables may be less correlated, which naturally decreases
the impact of using state invariants.

A future version of TALplanner may be integrated with an automatic analysis
method to avoid the need to specify state invariants as part of the planning domain
description.

8.5 Eliminating Quantifiers

Since TAL uses finite value domains, any universally quantified formula ∀x.φ(x)
can be evaluated simply by iterating over each possible value of the variable x.
However, iterating over a large set of values is quite inefficient. If it can be deter-
mined in advance that φ(x) can only be false if x belongs to some smaller set of
value terms X (and must be true for all other values of x), then it is sufficient to
verify the formula ∀x ∈ X.φ(x). A dual optimization can be applied to existentially

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 223

quantified formulas ∃y.φ(y), if it can be determined that φ(y) can only be true if y
belongs to some set of value terms Y. If X (or Y) is a singleton, this leads to the
complete elimination of a quantifier.

The formula optimizer used by TALplanner is extended to return not only an
optimized formula ψ but a tuple 〈ψ, necNeg, necPos〉, where necNeg is a set of vari-
able constraints necessary for ¬ψ to hold (corresponding to X above), and necPos

is a set of variable constraints necessary for ψ to hold (corresponding to Y above).
Each variable constraint in necNeg (necPos) has the form x 7→ {ω1, . . . , ωn} indicat-
ing that ψ can only be false (true) if

∨n
i=1 x = ωi.

Variable constraints (Section 8.5.1) are generated by certain atomic expressions
(Section 8.5.2), and are propagated and combined upwards through the call chain as
required by connectives and quantifiers. Variable constraints can also be generated
using a form of state transition analysis (Section 8.5.3).

8.5.1 Variable Constraints

Before discussing how variable constraints are generated and used, we must pro-
vide formal definitions of constraints and constraint sets, and a number of opera-
tions on these structures.

Definition 8.5.1 (Variable Constraint)
A variable constraint for the value variable x is an expression x 7→ {ω1, . . . , ωn}
where each ωi is a value term, denoting that x must take on the same value as one
of the value terms in {ω1, . . . , ωn}. An inconsistent variable constraint for the value
variable x is represented as the expression x 7→ ∅. �

The disjunction of two variable constraints consists of the union of all possible val-
ues according to either constraint.

Definition 8.5.2 (Variable Constraint Disjunction)
Let x 7→ {ω1, . . . , ωm} and x 7→ {ω′1, . . . , ω′n} be two variable constraints for the
same value variable x. Then, the disjunction of these variable constraints, denoted
by (x 7→ {ω1, . . . , ωm}) ∨ (x 7→ {ω′1, . . . , ω′n}), is x 7→ {ω1, . . . , ωm, ω′1, . . . , ω′n}. �

Conjunction of variable constraints is slightly more complicated. Each variable con-
straint maps a variable to a set of value terms. This set does not necessarily consist
of value constants – for example, it can contain value variables whose eventual
bindings are not known during optimization. A straight intersection between two
constraints x 7→ {y} and x 7→ {z} would then result in the inconsistent constraint
x 7→ ∅, which is unsound because even though y and z are distinct variables they
may eventually be bound to the same value.

Instead of retaining full information for conjoined variable constraints, we use a
weaker representation where some information is lost but where the representation
remains small in size.

224 8.5. Eliminating Quantifiers

Definition 8.5.3 (Variable Constraint Conjunction)
Let x 7→ {ω1, . . . , ωm} and x 7→ {ω′1, . . . , ω′n} be two variable constraints for the
same value variable x. Then, the conjunction of these variable constraints, denoted
by (x 7→ {ω1, . . . , ωm}) ∧ (x 7→ {ω′1, . . . , ω′n}), is constructed as follows.

Let V be the set of value name constants3 in {ω1, . . . , ωm}, and let W be the
remaining value terms in that set. Let V′ be the set of value name constants in
{ω′1, . . . , ω′n}, and let W ′ be the remaining value terms in that set. The conjunction
of the two variable constraints is x 7→ (V ∩V′) ∪W ∪W ′. �

An example may be in order.

Example 8.5.1 (Variable Constraint Disjunction and Conjunction)
Let loc 7→ {loc1, loc3, loc2, value(t, location(truck7))} and loc 7→ {loc1, loc2, loc2}
be two variable constraints. The disjunction of these variable constraints is loc 7→
{loc1, loc2, loc3, loc2, value(t, location(truck7))}: Each of the value terms represented
by the original variable constraints is a possible binding for loc.

Now consider the conjunction of the same two constraints. This should gen-
erate an overestimate of the set of values that loc could take on given that both
variable constraints are satisfied. The value terms loc1 and loc2 are present in both
constraints, and should definitely be part of the overestimate. The value term loc3
is only explicitly present in the first constraint, but could potentially denote the
same value as loc2 in the second constraint, so at least one of these terms has to be
present. Similarly, loc2 is only explicitly present in the second constraint, but could
denote the same value as loc2 or value(t, location(truck7)) in the first constraint,
so either loc2 or both loc2 and value(t, location(truck7)) must be present. Finally,
value(t, location(truck7)) is only explicitly present in the first constraint, but could
take on the same value as any value term in the second constraint, so either this
term or all value terms in the second constraint must be present.

The definition above generates the sets of value terms V = {loc1, loc3}, W =
{loc2, value(t, location(truck7))}, V′ = {loc1, loc2}, and W ′ = {loc2}. This yields
the final result loc 7→ {loc1, loc2, value(t, location(truck7))}, which satisfies all con-
ditions given in the previous paragraph. �

Variable constraints can be combined into sets.

Definition 8.5.4 (Variable Constraint Set)
A variable constraint set is a possibly empty set of variable constraints for distinct
value variables. A variable constraint set binds a value variable x iff the variable
constraint set contains a variable constraint for x.

Let c be a variable constraint set and x a value variable. If c binds x, then c[x]
denotes the unique variable constraint for x in c. Otherwise, c does not bind x, and

3Value name constants are those value constants that are declared to belong to a value domain. Due
to the use of unique name axioms, two distinct value name constants are guaranteed to denote distinct
values.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 225

c[x] denotes the (unconstraining) variable constraint x 7→ X where X contains all
values from the domain of x.

An inconsistent variable constraint set is a variable constraint set containing at
least one inconsistent variable constraint.

The conjunction of two variable constraint sets c and c′ is
{c[x] ∧ c′[x] | x is bound in c or c′}.

The disjunction of two variable constraint sets c and c′ is
{c[x] ∨ c′[x] | x is bound in c or c′}. �

8.5.2 Generating Constraints from Atomic Formulas

Variable constraints can be generated by equality expressions: Optimizing the for-
mula x = ω generates the constraint x 7→ {ω} in necPos while leaving necNeg

empty, and x 6= ω generates the variable constraint x 7→ {ω} in necNeg while
leaving necPos empty.

Similarly, a fixed fluent formula [τ] f =̂ x generates a positive variable con-
straint x 7→ {value(τ, f)}, and a fixed fluent formula [τ] f 6=̂ x generates a negative
variable constraint x 7→ {value(τ, f)}.

Optimizing [τ] f =̂ ω with a known formula [τ] f =̂ x in the optimization
context generates a positive variable constraint x 7→ {ω}. If exactly one of these
formulas is negated, a negative variable constraint x 7→ {ω} is generated instead,
while if both formulas are negated, a positive constraint is generated.

8.5.3 Generating Constraints using State Transition Analysis

Many control rules can only be violated if certain state transitions take place. This
is a natural consequence of the fact that many control rules follow a certain pattern,
where a property true in one state should either be preserved to the next state or
violated in a very specific way.

For example, only-load-into-plane-when-necessary (initially shown in Example 6.4.1
on page 168) generates incremental pruning constraints (shown in Example 8.1.1)
that state that a package should only be loaded into a plane if a plane is needed to
move it. This can also be stated in another way: If a package is not in a plane in a
certain state, then it should remain not in that plane in the next state, unless a plane is
needed in order to move it. As long as the property ¬in(obj10, plane10) is preserved
from s to s + 1 for all obj10 and all plane10, the constraint cannot be violated.

As another example, the incremental pruning constraints generated by objects-

remain-at-destinations state that if a package is at a certain location at time s, it must
remain at that location at s + 1, unless there is no goal that it should remain there. If
the property at(obj30, loc30) is preserved from s to s + 1 for all obj30 and all loc30, the
constraint cannot be violated.

Clearly, it would be a major advantage if the preprocessor could determine in
advance that these state transitions cannot take place – then, the entire incremental

226 8.5. Eliminating Quantifiers

constraints would necessarily be true, and would not need to be tested. Failing this,
it would be of almost equal benefit to the planner if it could be determined that the
state transitions can only take place for certain specific instances of a fluent, thereby
generating additional variable constraints and reducing the number of instances of
an incremental constraint that need to be tested. In fact, this can be detected in
advance, as will be demonstrated in the following example.

Example 8.5.2 (State Transition Analysis)
Returning to objects-remain-at-destinations, the incremental pruning constraints gen-
erated by this rule can only be violated if an instance of at(obj30, loc30) is made false
between s and s + 1. But s is the invocation timepoint of the latest operator, and
s + 1 is time of the effect state.

The unload operator never makes an instance of at false at s + 1, and therefore
this incremental pruning constraint is never violated for unload.

Although drive makes at(vehicle, loc1) false, this instance refers to the location
of a vehicle rather than that of an object and cannot be unified with at(obj10, loc10).
Therefore, the incremental constraint can never be violated by drive.

The load action makes at(obj, loc) false, and unifying this with at(obj10, loc10)
yields the variable constraints obj10 7→ {obj} and loc10 7→ {loc}. These variable
constraints must necessarily hold if the disjunction should be false, and can there-
fore be added to necNeg when the disjunction is analyzed. �

These insights can be used to improve the formula optimizer.

Extending the Optimizer

The following algorithm is called from the optimizer when analyzing a disjunction,
given the disjunction and an optimization context as arguments. The return value
is a variable constraint set necNeg that is required for the disjunction to be false:
If any of the variable constraints in necNeg does not hold, the disjunction will be
satisfied. Explanations will be provided below.

1 procedure �nd-necessary-constraints(
∨n

i=1 φi, 〈Φ, Ψ, o〉)
2 let conjuncts = infer(Φ ∧∧n

i=1 ¬φi, Ψ) Add negation of disjunction to Φ
3 let necNeg = ∅
4 for all [τ] f =̂ ω in conjuncts do
5 for all [τ′] f =̂ ω′ in conjuncts do Identical f !
6 if can prove τ < τ′ then
7 if can prove that ω and ω′ cannot take on the same value then
8 if can prove that τ ≥ tmax then
9 return an impossible binding

10 if sequential operator type o given then
11 let necNeg = necNeg∧ analyzeST([τ] f =̂ ω, [τ′] f =̂ ω′, 〈Φ, Ψ, o〉)
12 return necNeg

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 227

The incremental pruning constraint for objects-remain-at-destinations relative to load-

plane is

∀obj30, loc30. [s] at(obj30, loc30) ∧ goal(at(obj30, loc30))→ [s+1] at(obj30, loc30)

where the implication inside the universal quantifier prefix can also be written as a
disjunction

∨n
i=1 αi. This disjunction can be analyzed using the algorithm above.

For the disjunction to be false, it must clearly be the case that
∧n

i=1 ¬αi. There
is also a set of formulas Φ that are known to hold regardless of whether the dis-
junction holds or not, so for the disjunction to be false, we must have Φ ∧∧n

i=1 ¬αi.
The resolution inference algorithm can be used together with the state invariants
to infer additional facts: For the disjunction to be false, infer(Φ ∧∧n

i=1 ¬αi, Ψ) must
hold. For example, since it must be the case that [s + 1] at(obj30, loc30), it is possible
to infer ∀vehicle.[s + 1] ¬in(obj30, vehicle). The conjunction of the formulas returned
by infer will be denoted by

∧m
i=1 βi.

Now, suppose that βi is [τ] f =̂ ω and that β j is the formula [τ′] f =̂ ω′.
Suppose further that it can be proven4 that τ < τ′, so the second formula refers to
a later timepoint, and that ω 6= ω′. Due to βi, the fluent could not have taken on
the value ω′ at τ, but due to β j, it must take on that value at τ′. The value of f must
have changed in the interval (τ, τ′].5

What remains is trying to find a set of variable constraints that are necessary
for f to be able to change in (τ, τ′], or in the best case, to determine that f in fact
must remain constant. If any such constraints are found, they can be conjoined
to necNeg, since the constraints are necessary for the disjunction to be false. TAL-
planner uses two different types of state transition analysis for finding variable
constraints.

First, if τ ≥ tmax, then the entire interval (τ, τ′] is strictly after tmax. But no
effects can take place after tmax, so no fluents can change there. Therefore, it is im-
possible that the disjunction does not hold, and an inconsistent variable constraint
set is returned. This is useful for analyzing �nal constraints, the only constraints
that can contain the internal tmax constant.

Second, if an operator type o is specified, the disjunction will be evaluated im-
mediately after an operator of that type is invoked, and the transitions possible
during the execution interval can be analyzed. This analysis is useful for incremen-
tal pruning constraints in incri, and is described in detail below.

State Transition Analysis for Sequential Operators

The state transition analysis algorithm for sequential operators is as follows.

4Whenever we say “if we can prove φ” rather than “if φ is the case”, failing to prove this fact may
lead to a decrease in performance but is always safe. For example, the attempt to prove that τ < τ′

could be a test whether τ′ is of the syntactic form τ + n for some positive n, or could be a stronger test
involving more complex temporal reasoning.

5TALplanner also handles negated formulas ¬[τ] f =̂ ω and ¬[τ] f ′ =̂ ω′. The extension is trivial
and is omitted to improve the clarity of the presentation.

228 8.5. Eliminating Quantifiers

1 procedure analyzeST([τ] f =̂ ω, [τ′] f =̂ ω′, 〈Φ, Ψ, o〉)
2 if can prove τ′ > inv(o) then
3 let e� = all conditional and unconditional effects of o
4 for all [τ] g := ω′′ in e� do
5 if can prove f 6= g then remove this from e�

6 elsif can prove τ 6∈ (τ, τ′] then remove this from e�

7 elsif can prove ω′ and ω′′ cannot be equal then remove this from e�

8 if {free variables in e�} ⊆ {arguments of o} then
9 let necNeg = {x 7→ ∅ | x is free in e�} Cannot violate the formula. . .

10 for all [τ] g := w in e� do
11 let necNeg = necNeg∨ unify(g, f) . . . unless unified with some remaining effect
12 return necNeg

13 return ∅
This algorithm returns a set of variable constraints that are required for f to change
values from ω to ω′ between τ and τ′, given that an instance of o is the last operator
to be invoked in the current search node. Note that f might be a fluent expression
with arguments, such as at(obj1, loc1).

Given the assumption that the last action in the current plan is an instance of
o, the only changes that can take place in (inv(o), ∞) are those explicitly caused by
this instance of o. No information is provided about what might have happened in
[0, inv(o)], though, so if it cannot be proven that τ′ > inv(o), the analysis is aborted.

Otherwise, consider every effect of the operator, conditional as well as uncon-
ditional. For load, this would be the two effects [s + 1] at(obj, loc) := false and
[s + 1] in(obj, vehicle) := true, where the analyzer has no information about what
the formal operator arguments obj, loc and vehicle will be bound to when the for-
mula will be evaluated.

If an effect cannot affect f , it is irrelevant and can be discarded. If it might
affect f but not at an interesting timepoint (in the interval (τ, τ′], when the change
must take place), it can be discarded. Finally, if the new value assigned to f by this
effect is a value term ω′′ that cannot take on the same value as ω′, then the effect
definitely cannot cause a transition from ω to ω′, and can be discarded.

The remaining effects of o might cause f to change values from ω to ω′ between
τ and τ′. Because the change we are interested in happened strictly after the invo-
cation of o, and because o is assumed to be the last operator in a sequential plan,
these effects must also be the only possible causes for f to change values in this
specific way.

If the remaining effects contain free variables that are not formal argument vari-
ables for o, then those variables must have been bound in quantified effects, and
the analysis is aborted. Otherwise, it is safe to claim that f must be equal to one of
the fluents that were affected by the action. This means it must be unified with one
of them for the desired state transition to occur, so the disjunction of all unify(gi, f)
can be returned.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 229

State Transition Analysis for Concurrent Operators

In order to generate a set of variable bindings necessary for a certain state transi-
tion to take place, the state transition analysis algorithm above must be able to de-
termine the complete set of possible effects within the temporal interval when the
state transition should occur. This is the only place where the algorithm is depen-
dent upon the fact that the specified operator o is the last operator in a sequential
plan.

It would be quite useful if a similar algorithm could be found for concurrent
operators. At first glance, this would appear difficult, because when analyzing an
incremental pruning constraint relative to one specific operator there is no way
of determining what other operators may be invoked concurrently by the plan-
ner, which means that it is not possible to determine in advance a complete set of
possible state transitions. The key to the solution is proper blame assignment: In
concurrent TALplanner, each incremental pruning constraint is tested not once per
timepoint but once for each action in the plan. If an incremental pruning constraint
can only be violated by a given state transition, it only needs to be tested by the
action responsible for causing that state transition. Consequently, the planner can
analyze each constraint relative to each operator type under the assumption that
this operator is in fact the only cause of state transitions, knowing that control rule
violations caused by state transitions that result from other concurrent actions will
be handled by the incremental pruning constraints associated with those actions.

8.5.4 Combining Constraints from Composite Formulas

When optimizing a formula of the form ¬φ, the inner formula φ is recursively op-
timized and the generated constraint sets necPos and necNeg are swapped.

When optimizing a conjunction
∧n

i=0 φi, each conjunct is recursively optimized.
Denote the return values by 〈ψi, necNegi, necPosi〉 for 0 ≤ i ≤ n. For the conjunction
to hold, the conjunction of all necPosi must hold; for the conjunction to be false, the
disjunction of all necNegi must hold. When conjoining all necPosi, it may be the
case that there is no potential common binding for a certain variable (for exam-
ple, because two conjuncts require bindings that cannot belong to the same value
domain). In this case, the resulting variable constraint set is inconsistent, and the
formula may be immediately optimized to true or false.

A dual optimization is applied to disjunctions.
For a quantified formula ∀x.φ or ∃x.φ, the variable constraint sets generated for

the inner formula are returned after removing any constraints for the quantified
variable x, which is not in scope outside the quantified formula. This does not
require iteration over possible values of x.

230 8.6. Generating Precondition Control

Generated,
tested, pruned

Generated,
tested, pruned

generated
Never

generated
Never

generated
Never

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, pruned

Figure 8.3: Fewer States Generated using Precondition Control

8.6 Generating Precondition Control

In order to test whether an instance of the operator oi violates one of its associated
incremental control formulas in incri, TALplanner generally has to begin by adding
this operator instance to the current plan candidate and calculating the new states
generated by the new operator instance. Only then can the formulas in incri be
evaluated in the new states (the left hand side of Figure 8.3).

However, after applying domain analysis and the associated optimizations to
incri, the resulting formulas often turn out to have conjuncts that only refer to the
invocation timepoint of oi. Because these conjuncts do not depend on the states
generated by applying an operator instance, they can be moved from incri into the
precondition of the operator.

In the logistics domain, for example, the precondition ∃loc′[goal(at(obj, loc′)) ∧
[s] city-of(loc) 6=̂ city-of(loc′)] is generated for the load-plane operator by the only-

load-into-plane-when-necessary control rule: There must be a goal that the object obj
to be loaded into the plane should be in another city. This formula only needs to
evaluate fluents at time s, which is the invocation timepoint of load-plane.

Given this transformation, TALplanner has a chance of detecting that an action
would cause a control rule violation even before the action is applied. This, in turn,
reduces the number of actions applied by TALplanner and thereby also the number
of states that must be generated (the right hand side of Figure 8.3).

Whether or not the generation of precondition control has a significant impact
on the total performance of TALplanner depends on the characteristics of the plan-
ning domain and the control formulas. A greater performance improvement can
naturally be found in domains where precondition control formulas are often not
satisfied, since this is a prerequisite for being able to reduce the number of actions
to be applied. The total performance improvements also depend on the relation
between the time required to evaluate a control formula and the time required to

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 231

apply an action. If states are simple and can be constructed quickly, actions are
simple and do not have complex quantified or conditional effects, and the precon-
dition control formulas that can be generated are complex, then applying actions
may take only an insignificant part of the total time required by the planner. In this
case, reducing the number of actions to be applied may have a negligible impact on
the performance of the planner. Conversely, if states and actions are complex and
precondition control formulas are simple, the performance impact of precondition
control can be very significant.

But if a control rule can be expressed as a precondition, why not simply write
it that way? In fact, the use of manually specified precondition control in TLPlan
has been discussed independently by Bacchus and Ady (1999), and yielded simi-
lar improvements compared to the progression algorithm usually used by TLPlan.
However, there are several reasons why the use of control rules is often better, per-
haps the most important of which is that it allows a more modular specification of
the control knowledge: Each constraint is specified as a single control rule, rather
than as a number of (possibly different) preconditions in each operator. Allowing
an automatic analyzer to generate preconditions wherever possible should also be
less error-prone, especially for more complex rules where interdependencies be-
tween multiple actions must be taken into account. This is done by TALplanner.

8.7 Empirical Benchmark Tests

An earlier, considerably less general version of the domain analysis techniques pre-
sented in this chapter was implemented in the version of TALplanner that com-
peted in the Second International Planning Competition (IPC-2000; see Chapter 9).
This version was also tested using the same benchmark domains and problem in-
stances already used in Section 6.7 on page 186. The results, initially presented in
Kvarnström and Doherty (2000b), are mostly superceded by more current tests but
are still interesting in two respects: They provide a snapshot of the performance
that could be expected from state-of-the-art hand-tailored planners in early 2000,
and they can be directly compared to the benchmarks from early 1999 that were
presented in Chapter 6. The results are therefore reproduced in Section 8.7.1 below.

When the full repertoire of optimization techniques in this chapter had been
developed and implemented, we performed a more thorough examination of the
benefits of each type of optimization technique. The results are presented in Sec-
tion 8.7.2 on page 233.

8.7.1 Initial Testing

Updated Results for the Logistics Domain. In our initial testing of domain analy-
sis and formula optimization techniques, benchmark results were once more gen-
erated for TALplanner with TAL-based control rules using the 30 logistics problem

232 8.7. Empirical Benchmark Tests

from the First International Planning Competition (IPC-1998, McDermott, 1998).
The results shown in Table 8.1 clearly demonstrate a great speedup for TALplanner
when compared to the previous version of the planner.

As before, TLPlan could not solve two of the problems using 256 MB of mem-
ory; the remaining problems required between 0.4 seconds and 17 hours to com-
plete. TALplanner proved to be considerably more efficient: The longest plan (for
problem 29) contained 330 actions and was created in approximately 0.3 seconds,
while the most complex problem (problem 28) resulted in 274 actions and required
0.63 seconds.

We also compared TALplanner to the most recent version of the HTN planner
SHOP, using the standard SHOP formalization of the logistics domain. In Nau,
Cau, Lotem, and Muños-Avila (1999), SHOP was found to be considerably faster
than TLPlan. Nau et al. believed the most important reason to be the fact that
SHOP in effect allows the user to design a planning algorithm, rather than prune a
search space, and that SHOP’s use of problem reduction can be more efficient than
the state space search used by TLPlan. However, even though the SHOP results in
Table 8.1 were generated using a newer, considerably faster version of SHOP than
the one used in Nau et al. (1999), TALplanner is still faster by almost two orders of
magnitude for some of the larger problem instances, despite running on a slower
computer.

Updated Results for the Blocks World. For the blocks world, we used a set of
test problems with between 25 and 5000 blocks, including the 14 problems previ-
ously used in Section 6.7. For TLPlan, the world definition and control rules from
domains/Blocks/4OpsBlocksWorld.tlp in the TLPlan distribution were used together
with an additional control rule ensuring that blocks are not placed on the table if
their final destinations are ready. This additional rule resulted in shorter plans as
well as improved performance. For TALplanner, the same control rules were trans-
lated into TAL.

Table 8.2 contains the results (times are in seconds). TLPlan was tested on the
first ten problems; for the larger problems, 256 MB of memory was not sufficient.
TALplanner solved the entire set of problem instances in less than one minute and
required approximately 70 MB of memory for the largest problem instance.

Program Versions and Test Procedures. Test results for TLPlan and TALplanner
were generated on a 333 MHz Pentium II computer running Windows NT 4.0 SP3,
with 256 MB of memory. In the logistics domain, TALplanner was also compared
with SHOP (Nau et al., 1999), a hierarchical task network (HTN) planner, which
ran on a 440 MHz Sun Ultra 10 with 256 MB of memory.

The TLPlan tests were performed using the precompiled C version that can be
downloaded from http://www.cs.toronto.edu/~fbacchus/. TALplanner is written in
Java, and TALplanner 2.741 was used together with the Java Development Kit 1.2.2-
001 and the HotSpot virtual machine (2.0rc2), both of which can be downloaded

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 233

TALplanner

Ops TLPlan SHOP before now

1 26 0.421 0.060 0.160 0.040

2 33 1.712 0.090 0.501 0.040

3 55 19.398 0.210 3.505 0.060

4 59 54.338 0.250 7.581 0.060

5 22 0.310 0.060 0.250 0.030

6 72 84.191 0.480 19.919 0.070

7 34 5.568 0.120 1.032 0.041

8 41 97.310 0.360 14.241 0.061

9 85 218.644 0.420 24.405 0.080

10 105 167.581 1.260 18.436 0.080

11 31 5.167 0.100 0.872 0.040

12 41 286.021 0.760 41.840 0.050

13 67 1073.263 1.160 50.753 0.070

14 94 802.824 1.000 36.282 0.100

15 94 24.675 0.260 3.135 0.080

16 58 168.002 0.390 10.966 0.060

17 45 90.460 0.210 6.850 0.100

18 170 4358.367 2.690 104.009 0.120

19 153 2685.021 0.960 57.112 0.110

20 150 3414.089 1.420 141.984 0.121

21 104 2102.643 0.860 95.597 0.100

22 296 11.570 1027.097 0.330

23 115 116.798 0.810 9.954 0.080

24 41 695.780 0.320 47.158 0.070

25 190 11724.910 2.530 680.428 0.220

26 194 9976.946 19.200 699.576 0.230

27 149 14994.551 1.290 463.737 0.220

28 274 6.720 4613.333 0.631

29 330 60874.834 15.510 545.845 0.291

30 136 14070.923 3.860 1036.160 0.211

Pentium II-333 UltraSparc-440 Pentium II-333

Table 8.1: Test Results for the Logistics Domain

from http://java.sun.com. SHOP is written in Lisp, and SHOP 1.6.1 was used to-
gether with Allegro Common Lisp Enterprise Edition 5.0.

8.7.2 Benchmark Analysis

The complete optimizer is based on the optimizations specified above – but it is
not possible to determine the total performance improvements given an analy-

234 8.7. Empirical Benchmark Tests

Plan length TLPlan TALplanner TALplanner

before now

16 25 16 0.100 0.060 0.090

24 50 68 1.843 1.302 0.090

25 70 86 5.528 3.715 0.090

26 70 104 7.060 4.406 0.110

27 100 158 35.321 14.060 0.110

28 140 230 175.893 41.940 0.130

29 200 350 734.546 142.996 0.151

30 280 350 2918.847 315.654 0.160

31 280 470 3067.261 474.012 0.190

32 460 470 20745.280 1899.992 0.210

33 460 794 2535.946 0.331

34 640 1118 7679.733 0.461

35 820 1478 12837.629 0.601

36 1000 1802 25028.509 0.771

37 1400 2450 1.111

38 1400 2630 1.192

39 2000 3278 1.733

40 2000 3710 1.922

41 5000 3710 6.920

42 5000 9326 8.702

43 5000 15314 18.327

Table 8.2: Test Results for the Blocks World

sis of each individual optimization. Instead, it is often the case that optimization
techniques have no discernable performance impact at all when taken in isolation,
but that combinations of such apparently irrelevant techniques can cooperate to
provide a greater synergistic effect. Nevertheless, further benchmark testing and
analysis of the current domain analysis algorithms shows that a certain pattern ap-
pears in most domains.

Operator-specific control rule analysis is absolutely essential to the performance
of the planner, to the extent that removing it generally makes the generation of
precondition control impossible (since this requires the reduction and removal of
control rule disjuncts referring to the “future”, which can only be done with an
operator-specific analysis) and makes the use of state invariants ineffective.

When the operator-specific analysis is added, the generation of precondition
control has a significant effect. Finally, when precondition control has been intro-
duced, far fewer states are expanded and the speed of testing preconditions be-
comes more important to the performance of the planner. This makes the use of
state invariants more significant, since they can be used to further simplify the aug-
mented preconditions.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 235

 0.1

 1

 10

 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Se
co

nd
s

Number of packages to be moved

No domain analysis
Add operator-specific analysis
Add precondition control
Add state invariants

Figure 8.4: Control Analysis Results for IPC-2000 Logistics Problems

This is demonstrated in a set of benchmark tests using planning domains from
the IPC-2000 and IPC-2002 planning competitions. The tests from IPC-2000 were
run on an 800 MHz Pentium III machine with 512 MB of RAM, running Red Hat
Linux 7.1 and Java 1.3. The tests from IPC-2002 were run on a 3000 MHz Pentium 4
machine with 2 GB of RAM, running Windows XP and Java 1.5.

Logistics. Competitors in the hand-tailored track of IPC-2000 were provided with
a set of logistics problem instances containing between 16 and 100 packages to be
moved. With two distinct problem variations for each problem size, there were a
total of 170 problem instances to be solved. Figure 8.4 shows the average time re-
quired for TALplanner to generate plans for each problem size given four different
levels of domain analysis. The topmost line indicates the time required to gener-
ate plans without the new domain analysis techniques. Adding operator-specific
analysis improves performance by a factor of up to 4 for the largest problem in-
stances. Adding precondition control yields another factor of 8, and finally, adding
state invariants reduces the amount of time used by a factor of 1.3. The accumu-
lated performance improvement for all domain analysis techniques ranges from
approximately a factor of 3 for the smallest logistics instances to a factor of over 40
for the largest problem instances.

Blocks World. The blocks world was also used in IPC-2000 (Figure 8.5). Here,
operator-specific analysis results in an 8-fold speedup for the largest problem in-
stances with 500 blocks, after which adding precondition control results reduces

236 8.7. Empirical Benchmark Tests

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400 450 500

Se
co

nd
s

Number of blocks

No domain analysis
Add operator-specific analysis
Add precondition control
Add state invariants

Figure 8.5: Control Analysis Results for IPC-2000 Blocks World Problems

the time by a factor of 16 and the use of state invariants yields another factor of 3.
In total, these domain analysis techniques make TALplanner up to 400 times faster
for the largest problem instances. It should be noted that the improvements caused
by domain analysis are partly due to the elimination of quantifiers and therefore
do not result in a constant factor speedup but a reduction in time complexity for
certain operations. Thus, larger problem instances are affected to a greater degree.

Depots. The Depots domain, which will be described in further detail in Sec-
tion 9.2.3 on page 262, was part of the IPC-2002 planning competition. The test
results presented in Figure 8.6 were generated using the 22 larger problem instances
intended for the “handcoded” track of the competition, and plans contain approxi-
mately 100 to 800 operator instances. In this domain, operator-specific analysis ap-
pears to improve performance by a factor of 3 to 5 for the larger problem instances.
Precondition control improves performance by another factor of 5 to 10. The per-
formance impact of adding state invariants appears to be negligible for problem
instances of this size. In total, applying these domain analysis techniques to the
Depots domain generally allows TALplanner to generate plans between 10 and 100
times faster than without domain analysis.

Rovers. Finally we consider the Rovers domain, which will be described in further
detail in Section 9.2.5 on page 268. Like the Depots domain, the Rovers domain
was part of the IPC-2002 planning competition, and the test results presented in
Figure 8.7 were generated using the 20 larger problem instances intended for the

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 237

 0.01

 0.1

 1

 5 10 15 20

Se
co

nd
s

Problem number

No domain analysis
Add operator-specific analysis
Add precondition control
Add state invariants

Figure 8.6: Control Analysis Results for IPC-2002 Depots STRIPS Problems

“handcoded” track of the competition. For this domain, plans consist of approxi-
mately 35 to 200 actions.

The Rovers domain provides a counterpoint to the three preceding domains.
Problem instances are rather small, and the branching factor is not large: The largest
problem instances do not cause TALplanner to investigate more than 2000 states,
even with all optimizations turned off. In this situation, no significant improve-
ments can be made. Adding operator-specific analysis does improve planning time
by a factor of up to 10 for many largest problem instances, but precondition control
yields no further measurable improvements. The TALplanner domain definition
for the Rovers domain does not use state invariants.

8.8 Related Work

The algorithms developed in this chapter are intended to be used in a general for-
mula optimizer, which should be applied to any formula, whether control-related
or not, without necessitating an artificial increase in the number of operators or flu-
ents in the domain and most importantly without affecting the set of possible plans
and without restricting the expressivity of operators or control formulas. If these
restrictions are lifted, a number of new possibilities open up, especially in the area
of generating precondition-based control from standard temporal control formulas.

238 8.8. Related Work

 0.1

 5 10 15 20

Se
co

nd
s

Problem number

No domain analysis
Add operator-specific analysis
Add precondition control

Figure 8.7: Control Analysis Results for IPC-2002 Rovers STRIPS Problems

Rintanen (2000a) presents a method for compiling an LTL control formula and
a set of operators into a new set of operators with explicitly embedded control
knowledge. Unlike TALplanner’s generation of precondition control, this method
can be applied to various forms of the “until” (U) operator. However, the method
is still limited to control rules having certain simple syntactic forms. It also alters
the planning domain by adding new facts keeping track of the current control state,
and operators are altered by adding new effects updating those facts.

Cresswell and Coddington (2004) describe a method for compiling LTL formu-
las into PDDL, based on the generation of a finite state machine corresponding to
an arbitrary LTL formula. The current state of the finite state machine is modeled
using a new fsm_state fluent, which is updated using automatically generated con-
ditional effects. As described by the authors, these updates may force a total order
between actions that could otherwise have been placed in parallel.

Chapter 9
Planning Competitions

The first International Planning Competition was held in 1998, at the Fourth Inter-
national Conference of Artificial Intelligence Planning and Scheduling (AIPS-98).
Intended to provide empirical comparisons of existing planning systems as well as
an incitement for improving planners and extending their applicability, the compe-
tition attracted five different planning systems: Blackbox (Kautz & Selman, 1998,
1999), HSP (Bonet & Geffner, 1998), Sensory Graphplan (Anderson, Smith, & Weld,
1998; Weld, Anderson, & Smith, 1998), STAN (Long & Fox, 1999) and IPP (Koehler
et al., 1997). Though the results were somewhat inconclusive in the sense that no
planner consistently outperformed the others, the competition was still a success,
and new competitions have been held every other year.

Unlike the first competition, the second International Planning Competition
(IPC-2 or IPC-2000) had a track for hand-tailored or knowledge-based planners.
TALplanner participated in this competition as well as in IPC-3 (IPC-2002). This
chapter presents the results from these competitions together with an extensive
discussion of the planning domains from IPC-2002 and how control rules were de-
veloped for these domains.

While reading this chapter, please keep in mind that knowledge-based plan-
ners cannot easily be tested in isolation. Whereas all fully automated planners used
identical domain definitions – the operators and facts specified by the competition
organizers – each team working with a knowledge-based planner had to generate
their own additional domain knowledge to be used with their particular planner.
What is truly tested is the combination of planner and domain knowledge. The
effort spent on investigating the properties of each domain and encoding the ap-
propriate domain knowledge may vary between teams, which can easily explain
small constant factor differences in performance as well as plan quality. Some dif-
ferences may even be explained by one team having some luck when randomly
choosing one control approach over another.

239

240 9.1. International Planning Competition 2000

9.1 International Planning Competition 2000

TALplanner participated in the hand-tailored planning track of the second Inter-
national Planning Competition in 2000 (IPC-2000). The version that was used in
the competition already contained an early version of the domain analysis im-
provements specified in Chapter 8, which helped TALplanner win the “distin-
guished planner” award, outperforming other hand-tailored planners by orders
of magnitude in several planning domains.1 TALplanner also won first place in the
ADL-plus-resources track of the Miconic 10 elevator control domain competition
(Koehler, 2000) sponsored by Schindler Lifts Ltd. and taking place as part of IPC-
2000. The planning competition and the participating planners were later described
in the fall 2001 issue of Artificial Intelligence Magazine (Bacchus, 2001; Doherty &
Kvarnström, 2001).

In this section, we will briefly present the results from the hand-tailored plan-
ning track. These benchmark results were generated on a 500 MHz Pentium III
machine with 1 GB of memory provided by the competition organizers. Results
will be presented for all five domains used in the hand-tailored track of the com-
petition: The blocks world, the logistics domain, the schedule domain, the Freecell
domain, and the Miconic 10 elevator domain. The complete PDDL domain defini-
tions and problem instances are available from the IPC-2000 home page2, together
with the raw result data files from which the graphs in this section were created.

The results for TALplanner are compared with those from several other plan-
ners. SHOP (Nau et al., 1999, 2001) is a hierarchical task network (HTN) planner,
which does not attempt to achieve a goal but to perform a task. Tasks can be decom-
posed into subtasks according to domain-specific rules, until all remaining tasks
are primitive tasks, corresponding to planning operators. System R (Lin, 2001) is
a regression-based STRIPS-like planner where domain-dependent control informa-
tion is used to order subgoals, prune subgoals, and determine the way a subgoal
is solved by regressing it to a new conjunctive goal. PbR (Ambite, 1998; Ambite
et al., 2000; Ambite & Knoblock, 2001), Planning by Rewriting, begins by quickly
generating a potentially inefficient plan and then applies domain-specific rewriting
rules to gradually improve the result. BDDPlan (Störr, 2001) uses Binary Decision
Diagrams to support reasoning in the Fluent Calculus, where a model checking al-
gorithm is used to do an implicit breadth first search. PropPlan (Fourman, 2000)
also uses Binary Decision Diagrams. Some of these planners did not participate in
all domains.

1It should be noted that TLPlan did not participate in this track, since one of its authors arranged the
competition.

2http://www.cs.toronto.edu/aips2000/

Chapter 9. Planning Competitions 241

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

TALplanner
SHOP
System R

(a) Average time (seconds) depending on number of packages

 100

 1000

 10 20 30 40 50 60 70 80 90 100

TALplanner
SHOP
System R

(b) Average plan length depending on number of packages

Figure 9.1: Results for IPC-2000 Logistics Problems

9.1.1 The Logistics Domain

The first domain used in the second International Planning Competition was the
standard logistics domain with the standard six ADL-style operators. The logistics
domain has already been used as an example earlier in this thesis. The control
knowledge used in the competition was based on an adapted version of the control
formulas used by Bacchus and Kabanza (Bacchus & Kabanza, 2000) with several
additions and improvements to decrease plan length and time requirements.

Figure 9.1 contains the logistics results from the hand-tailored track of IPC-2000.
The x axis indicates the number of packages in each problem instance, ranging
from 17 to 100. There were two problem instances for each problem size; results
have been averaged for all instances having the same number of packages. Note
the small spikes in the curve for TALplanner, resulting from Java garbage collection.

As can be seen in the figure, SHOP outperformed System R by slightly more

242 9.1. International Planning Competition 2000

than a factor of two. The relative difference between the two systems remained ap-
proximately constant over a large set of problem instances, indicating that the time
complexity of the two planners was essentially the same for the logistics domain.
TALplanner, on the other hand, increases its lead over the other two planners as
problem sizes grow, ending up faster than SHOP by a factor of over 400 for the
largest problem instances. In terms of plan quality, TALplanner and SHOP gen-
erate plans containing approximately the same number of actions, while the plans
generated by System R are up to six times as long.

9.1.2 The Blocks World

The second domain used in IPC-2000 was the standard blocks world with four
ADL-style operators. Again, this domain has already been used as an example
in this thesis, and control knowledge was based on the control knowledge from
Bacchus and Kabanza with some improvements that generate shorter plans under
certain circumstances.

Figure 9.2 shows the blocks world results from the hand-tailored track of IPC-
2000, where the x axis indicates the number of blocks for each problem instance. As
in the logistics domain, there were two distincs problem instances for each problem
size, and all results have been averaged for all instances of the same size.

Once more, TALplanner outperformed the competing planners by a significant
margin, taking around two seconds to generate plans for 500 blocks. System R
required up to 65 seconds, and this time generated plans only 10% longer than those
of the competing planners. SHOP used up to 4000 seconds and did not generate
plans for the largest problem instances, while the behavior of PbR was somewhat
uneven.

9.1.3 The Freecell Domain

Freecell is a solitaire card game where 52 cards are dealt into 8 columns, each card
visible to the player but only the last card of each column fully exposed. There are
also four foundations, empty locations where each suit should eventually be placed
in order of rank, and four freecells, each of which can temporarily hold a single card
in order to allow the player some more freedom when moving cards around. An
exposed card can be moved from a column or freecell to a column if it is placed on
top of a card of the next higher rank and a different color (black 8 on red 9), from
a column or freecell to a foundation in order of rank (one foundation per suit), or
from a column to any empty freecell.

There were 60 problem instances of increasing complexity for the FreeCell do-
main in IPC-2000. Results for TALplanner, SHOP and System R are shown in Fig-
ure 9.3.

As can be seen in the figure, TALplanner solved all problems, which no other
hand-tailored planner did. In terms of plan quality, TALplanner often produces

Chapter 9. Planning Competitions 243

 1

 10

 100

 1000

 50 100 150 200 250 300 350 400 450 500

TALplanner
SHOP
System R
PbR

(a) Average time (seconds) depending on number of blocks

 1000

 50 100 150 200 250 300 350 400 450 500

TALplanner
SHOP
System R
PbR

(b) Average plan length depending on number of blocks

Figure 9.2: Results for IPC-2000 Blocks Problems

plans that are better than those generated by SHOP and equally good to those
generatedy by System R – but sometimes, it generates plans that are several times
longer. The most extreme example is number 44, “freecell-10-4”, where TALplanner
requires 1110 operators as opposed to 74 operators for System R and 105 operators
for SHOP.

Why should TALplanner generate longer plans? As always, the performance
of a hand-tailored planner depends to a great degree on the domain knowledge of
the person writing the domain specification. Because we had never before played
Freecell, it was unusually difficult to find reasonable rules that allowed us to purge
moves that were “definitely stupid”. After all, winning strategies in card games
and board games often involve taking “counter-intuitive” losses that later allow
you to regain what was lost, and finding these strategies requires some experience
and learning on the part of the player. Better domain knowledge would definitely
have improved the plans generated by TALplanner.

244 9.1. International Planning Competition 2000

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

TALplanner
System R
SHOP

(a) Timing (Seconds)

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50 55 60

TALplanner
System R
SHOP

(b) Plan Length

Figure 9.3: Results for IPC-2000 Freecell Problems

This domain also serves to highlight the potential conflict between generating
good plans and generating plans quickly, and the difficulty in choosing a good
balance between these two performance criteria when generating a domain spec-
ification for an abstract competition rather than having a concrete use in mind.
Interestingly, removing certain control rules from the TALplanner domain specifi-
cation allowed TALplanner to generate plans considerably more quickly – but the
plans were considerably longer. Similarly, we could allow the planner to spend
more time on plan search instead of being satisfied with the very first plan found in
the pruned search tree. Whether the improvements in plan quality would be worth
the additional time can only be determined in relation to a specific use, and for
the planning competition we guessed that time requirements would be considered
more important than plan lengths.

Chapter 9. Planning Competitions 245

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50

TALplanner
SHOP
BDDPlan
PbR

(a) Timing (Seconds)

 10

 10 20 30 40 50

TALplanner
SHOP
BDDPlan
PbR

(b) Plan Length

Figure 9.4: Results for IPC-2000 Schedule Problems

9.1.4 The Schedule Domain

In the schedule domain, there is a collection of parts and a number of operators
that operate on these parts: polish, roll, lathe, grind, punch, drill-press, spray-paint, and
immersion-paint. Each operator has a number of effects, some of which may undo
the effects of other operators; for example, if a part has been painted, lathing it will
have the side effect of removing the paint. The goal is for each part to have a certain
shape, surface condition, and/or color.

A variety of problem sizes were made available, with between 2 and 51 parts to
be scheduled. There were three problem instances for each problem size. The test
results, which have been averaged for all instances of the same size, are shown in
Figure 9.4. The number of parts to be scheduled increases along the x axis.

Here, TALplanner is slower than SHOP for the smallest problem instances. The
reason for this is mainly that the startup time for the Java Virtual Machine and the

246 9.2. International Planning Competition 2002

Just-In-Time compilation of TALplanner (4–6 seconds) has been distributed evenly
over all problem instances. Due to the relatively small number of instances, this
contributes almost a tenth of a second to each instance, which is significant due to
the small size of each instance. For larger problems, TALplanner generally stays
below 0.2 seconds, while SHOP requires up to one second. BDDPlan and PbR both
require considerably more time and do not solve all problem instances.

In terms of quality, TALplanner, SHOP and BDDPlan consistently return plans
of almost identical length, never differing by more than one or possibly two actions,
while PbR generates somewhat longer plans.

9.1.5 The Miconic-10 Elevator Domain

Miconic 10 is an elevator system built by the Schindler Group.3 The system is in-
tended to be used in large buildings with multiple elevators, and is built on the
idea of allowing passengers to key in their destination before an elevator actually
arrives at their floor. This permits the system to place passengers headed for the
same floor into the same elevator, minimizing the number of stops.

The problem faced by the central elevator controller can be expressed as a plan-
ning problem – and in fact, the commercial Miconic 10 product is based on AI
planning techniques (Koehler & Schuster, 2000; Koehler, 2001; Koehler & Ottiger,
2002). Jana Koehler provided a set of Miconic 10 planning problems adapted to
the PDDL planning domain definition language used in the competition (Koehler,
2000). The TALplanner results in this domain were somewhat erratic (Figure 9.5),
often solving problems in well below a second but sometimes requiring up to 100
seconds, though the planner still outperformed the other hand-tailored planners.
Better search control could probably ameliorate this problem. Another potential
solution would be a modified search algorithm: Once depth first search chooses a
“bad” action, it must explore all potential extensions to that plan (a complete sub-
tree in the search tree) before being able to choose an alternative. Being able to
temporarily skip back and try another choice of actions would probably improve
search time in several difficult domains. This is a topic for future research.

9.2 International Planning Competition 2002

In the spring of 2002, TALplanner participated in the third International Planning
Competition4 (IPC-2002).

Compared to earlier years, this competition and its domain definition language
PDDL2.1 (Fox & Long, 2003) had a very strong emphasis on increasing the complex-
ity of the problem domains used as benchmark tests and the expressivity required

3http://www.us.schindler.com/SEC/websecen.nsf/pages/elev-MHR-Mic10-01
4http://www.dur.ac.uk/d.p.long/competition.html

Chapter 9. Planning Competitions 247

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

TALplanner
SHOP
PropPlan
BDDPlan

Figure 9.5: Timing Results for IPC-2000 Miconic-10 Elevator Domain Problems

to represent these domains in a planning system. Even in IPC-2000, two years be-
fore, all planning domains had mainly made use of STRIPS-level expressivity. Sup-
port for typed objects had not been required, and though some domains had used
ADL-style quantified and conditional effects, restricted STRIPS versions of these
domains had also been provided. In 2002, though, this was not sufficient. Multiple
versions of each domain were provided to the competitors, many of which required
support for conditional and quantified effects as well as operators with extended
and context-dependent duration, non-integer time, and the use of numeric state
variables. In order to generate plans of reasonable quality, support for concurrency
was also an essential requirement in IPC-2002, whereas plan quality in IPC-2000
had been measured only in terms of the number of actions in a plan without regard
to concurrency.

Although concurrent TALplanner had already been applied to a large number
of domains, the competition provided us with a more varied set of domains that
sometimes exploited concurrency in slightly different ways. This provided new
ideas for improvements to TALplanner, and several minor enhancements to TAL-
planner’s formula analysis algorithms were implemented during the first phase of
the competition, allowing it to handle certain types of control formulas more effi-
ciently when doing concurrent planning. These changes have been incorporated in
the previous chapters of this thesis.

Of the eight planning domains in the third International Planning Competi-
tion, six were intended for hand-tailored planners. Except for the final domain,
UMTranslog-2, all domains exist in at least four different variations: STRIPS, Nu-
meric (where numeric quantities are involved), SimpleTime (where operators take
constant non-unit time), and Timed (where operator durations may depend on the
actual parameters in a specific operator invocation). TALplanner participated in
all six domains, but due to lack of time for creating control rules, we limited our

248 9.2. International Planning Competition 2002

participation to the STRIPS, SimpleTime, and Timed versions of the domains.
In this section, which is mostly based on Kvarnström and Magnusson (2003),

we will describe how the domains were translated from PDDL2.1 to TALplanner,
and discuss some of the control rules that were created to handle the domains more
efficiently. The main focus will be on two domains: ZenoTravel and Satellite. For
these domains we will describe most of the control rules that were used in the com-
petition as well as the incremental process of creating the rules, omitting only a few
technical details and a couple of complex rules that turned out to have minimal
impact on planner performance and plan quality. For the remaining domains (De-
pots, DriverLog, Rovers, and UMTranslog-2) we will describe the general intuitions
behind our control rules, omitting the actual formulas.

We will also compare the performance of TALplanner with that of the other par-
ticipants in the hand-tailored track: SHOP2 (Nau et al., 2003), TLPlan (Bacchus &
Kabanza, 2000), and in some cases also FF (Hoffmann & Nebel, 2001), which is a
fully automated planner but still participated in the hand-tailored track for two of
the competition domains. All graphs are generated from the official collection of
test results5 that can be downloaded from the competition web page6. The time re-
quired to generate a plan is measured in seconds. Plan quality for STRIPS problem
instances is measured using the number of actions in each generated plan. Plan
quality for SimpleTime and Timed problem instances is measured in terms of the
plan quality metric specified in each problem instance. In all domain variations
except one, this metric was defined as the makespan of the generated plan, that is,
the total time that would be required to execute this plan. As will be seen in Sec-
tion 9.2.2, Timed ZenoTravel problem instances used another plan quality metric.

Further details regarding the basic setup of the competition, the planning do-
mains being used, and timing and plan quality results, are available in Long and
Fox (2003).

Before presenting control rules and benchmark results, we will begin with a few
comments on the process of formalizing planning domains.

9.2.1 Pre-Defined Domains: Half the Work in Twice the Time?

In order to create a formal description of a real-world planning domain, it is of
course always necessary to have a thorough understanding both of the domain
itself and of how plans for the domain are eventually going to be used. There are
several reasons why this is required, and most of these reasons are equally valid
regardless of whether the formalization will eventually be used as the input to a
fully automated planner or to a hand-tailored planner like TALplanner.

First, understanding the domain is required in order to determine what aspects
of the domain truly need to be modeled (as types, predicates and functions) and
what aspects can be abstracted away. For example, the standard formalization of

5http://planning.cis.strath.ac.uk/competition/IPCResults.tgz
6http://planning.cis.strath.ac.uk/competition/

Chapter 9. Planning Competitions 249

the logistics domain does not model distances between locations, but allows trucks
to move between any two locations in one time step. This is sufficient for some pur-
poses, but a plan that is optimal given this abstraction may be extremely subopti-
mal if actually carried out by real trucks, which usually lack teleportation abilities.
Similarly, it does not model package sizes or weights, or cargo capacities for trucks
or airplanes. Neither does it model truck drivers, acceptable working hours for
drivers, the additional costs incurred by overtime pay, or time required for mainte-
nance activities such as changing to winter tires once a year. Which of these aspects
need to be modeled depends very much on the particular application one has in
mind.

Second, a detailed understanding of the domain is required in order to deter-
mine what operators are available to the planner and exactly how their precon-
ditions and effects should be represented within the abstract logical model of the
domain.

And finally, for hand-tailored planners, the domain must be understood in or-
der to be able to guide a search algorithm using domain-dependent heuristics or
control rules.

Usually all of these aspects of a domain are modeled at the same time, and
much of the information and knowledge about the domain that was gathered in
order to find a suitable set of predicates and operators – which is needed even for
a fully automated planner – can be reused in the development of control rules or
heuristics for a hand-tailored planner.

In the planning competition, however, the task is divided into two parts: The
organizers define a set of domains using PDDL2.1, and then it is up to the competi-
tors in the hand-tailored track to find suitable ways of guiding their planners. In
one way, one could say that the competitors only need to do half the work, since
the formalization is already done and only the task of finding control rules remains.
Unfortunately it is still necessary to understand the domain just as thoroughly in
order to write control rules. For the more complex domains, doing this half of the
work in isolation might easily take twice the time, since all the constraints involved
in the domain have to be understood from a PDDL2.1 formalization rather than by
talking to domain experts. This is especially true for the complex UMTranslog-2
logistics domain, where a significant amount of time was spent trying to determine
exactly how packages were allowed to move and how they can be loaded into and
unloaded from various kinds of vehicle.

Another common problem occurring in most domains is that of striking a bal-
ance between quick search and high quality plans. Control rules can be written for
either of these purposes, but they are no panacea – finding very high quality plans
very quickly may be impossible, or the effort required to find the right rules may
be prohibitive. Usually the only realistic option is to be satisfied with finding rea-
sonable plans quickly or letting the planner spend some more time searching for
plans of very high quality. Which option should be chosen depends on the appli-
cation. In the planning competition, however, the results would not be applied in

250 9.2. International Planning Competition 2002

the usual sense of the word. Instead, we had to choose an approach based on how
we expected the results to be judged in the competition. Consequently we aimed
at the first option: Quickly producing plans of reasonable quality, often by forcing
the planner to make a choice that is usually better even though it may occasionally
be worse. Except in the satellite domain, where slew times unexpectedly did not
satisfy the triangle inequality, we believe we succeeded fairly well.

Yet another problem caused by having to use a predefined formalization of a
planning domain is that the degree of detail used in the model is determined in
advance. In the real world there would more likely be a minimum level of detail
required, and anything above this level would be acceptable. It may not seem like
this should be a problem – intuitively, adding new details to a planning problem
ought to make it harder, and so it would be best to remain at the minimum level of
detail. But this is not always true, especially not when control rules are involved.
This will be seen in the timed ZenoTravel domain, for example, where some control
rules would be both simpler and more effective if it was possible to refuel to a
specific level, just like in the real world, rather than just having a simple abstract
refuel operator that unconditionally fills the tank completely.

This should not be taken as a complaint against the organization of the compe-
tition – allowing different planners to use different formalizations would of course
be infeasible. Nevertheless, it does present some additional problems that are not
encountered to the same degree in real-world domains and that deserve to be men-
tioned here.

9.2.2 The ZenoTravel Domain

In the ZenoTravel domain, there are a number of aircraft that can fly people be-
tween cities. There are five operators available: Persons may board and debark from
aircraft, and aircraft may �y, zoom (fly quickly, using more fuel), and refuel. There
are no restrictions on how many people an aircraft can carry. Flying and zooming
are equivalent except that zooming is generally faster and uses more fuel. Figure 9.6
shows an example problem, with arrows pointing out goal locations.

ZenoTravel: STRIPS

Below we show the operator definitions for the STRIPS version of the ZenoTravel
domain. These operators have been more or less directly translated from the PDDL
representation. The main difference is that the PDDL representation uses PDDL2.1
level 1, with single-step actions, which has a stricter concept of mutual exclusion
than TALplanner does and automatically enforces certain invariants, such as the
fact that an aircraft should not leave if a person is boarding, because the location
of the aircraft is modified by �y and used in the precondition of board. The TAL-C
semantics used by TALplanner is more similar to PDDL2.1 level 3 (with durative ac-
tions), where such invariant conditions must be stated explicitly. This is done using

Chapter 9. Planning Competitions 251

Figure 9.6: A ZenoTravel problem instance (STRIPS problem 6)

prevail conditions, which are considered to be separate from true pre-conditions.
Note that in the STRIPS formalization �y and zoom take the same amount of time,
since only single-step actions are possible.

operator board(person, aircraft, city) :at s
:precond [s] at(person, city) ∧ at(aircraft, city)
:prevail [s+1] at(aircraft, city)
:e�ects [s+1] at(person, city) := false, [s+1] in(person, aircraft) := true

operator debark(person, aircraft, city) :at s
:precond [s] in(person, aircraft) ∧ at(aircraft, city)
:prevail [s+1] at(aircraft, city)
:e�ects [s+1] in(person, aircraft) := false, [s+1] at(person, city) := true

operator �y(aircraft, city1, city2, flevel1, flevel2) :at s
:precond [s] at(aircraft, city1) ∧ fuel-level(aircraft, flevel1) ∧ next(flevel2, flevel1)
:e�ects [s+1] at(aircraft, city1) := false, [s+1] fuel-level(aircraft, flevel1) := false,

[s+1] at(aircraft, city2) := true, [s+1] fuel-level(aircraft, flevel2) := true

operator zoom(aircraft, city1, city2, flevel1, flevel2, flevel3) :at s
:precond [s] at(aircraft, city1) ∧ fuel-level(aircraft, flevel1) ∧
:nothing next(flevel2, flevel1) ∧ next(flevel3, flevel2)
:e�ects [s+1] at(aircraft, city1) := false, [s+1] fuel-level(aircraft, flevel1) := false,

[s+1] at(aircraft, city2) := true, [s+1] fuel-level(aircraft, flevel3) := true

operator refuel(aircraft, city, flevel, flevel1) :at s
:precond [s] fuel-level(aircraft, flevel) ∧ next(flevel, flevel1) ∧ at(aircraft, city)
:prevail [s+1] at(aircraft, city)
:e�ects [s+1] fuel-level(aircraft, flevel) := false, [s+1] fuel-level(aircraft, flevel1) := true

252 9.2. International Planning Competition 2002

After translating the operator definitions, it is time to create a set of control rules.
There are basically two ways of doing this: First, one can sit down and think about
suitable properties for a plan, and then write control rules that ensure that these
properties will hold. Second, one can instruct the planner to show each branch
that is explored in the search tree, and by observing the output one can identify
“obviously stupid” choices made by the planner, such as choosing an action that
inevitably leads to backtracking or performing actions that are useless given the
goals. Control rules can then be written to prevent these branches of the tree from
being explored. Both of these approaches will be covered here.

We begin with the first method, attempting to find a number of reasonable con-
trol rules simply by thinking about the properties of the ZenoTravel domain. Given
some experience from other planning domains, this is in fact quite easy. For exam-
ple, in many domains there are certain goals such that once they are satisfied, one
should never allow them to be destroyed. In the ZenoTravel domain, people who
are at their destinations never need to board an aircraft, which gives rise to the
following control rule:

control :name "only-board-when-necessary"
[t] ¬in(person, aircraft) ∧ [t+1] in(person, aircraft)→
∃city, city2 [[t] at(person, city) ∧ goal(at(person, city2)) ∧ city 6= city2]

This TAL formula states that if we have a state transition from the person not being
in the aircraft at time t to the person being in the aircraft at time t + 1, (that is, if the
person just boarded the aircraft), then there must be a reason why this is allowed:
It must be the case that the person is in a certain city and that there is a goal that
the person should be in another city.

As noted previously control formulas can usually be written in many different
forms. For example, it would have been equally valid to state that if a person is at
a city (and therefore not in an aircraft), and is not required to be somewhere else,
then at the next timepoint that person should still not be on board an aircraft:

control :name "only-board-when-necessary"
[t] at(person, city) ∧ ¬∃city2 [goal(at(person, city2)) ∧ city 6= city2]→
[t+1] ¬in(person, aircraft)

Note that although it may at first glance appear that a planner would have to be
extraordinarily stupid to destroy goals that have already been satisfied, there are
also many cases where temporarily destroying a goal is necessary in order to satisfy
other goals. For example, if there is a goal that a certain aircraft should be at a
certain location and it has already reached that destination, it might still have to fly
a number of people to their destinations before it can return to its own destination.

Another natural idea (since aircraft do not follow predetermined routes in Zeno-
Travel, as they usually do in real life) would be to say that people should only
debark when they have reached their final destination:

Chapter 9. Planning Competitions 253

control :name "only-debark-when-in-goal-city"
[t] in(person, aircraft) ∧ [t+1] ¬in(person, aircraft)→
∃city [[t] at(aircraft, city) ∧ goal(at(person, city))]

There is a potential problem with this rule: In some cases an optimal plan might
require a number of people to debark from one plane and then board a number
of other planes, which could fly them to their destination concurrently, and this is
strictly forbidden by only-debark-when-in-goal-city. This is a common problem that
occurs for many planning domains, and it is up to the user to determine what to
do depending on the requirements of the application for which the planner is being
used.

There are a number of possible choices: We could ignore this problem and ac-
cept suboptimal plans, skip the rule completely and let the planner search through
a vastly greater search space in order to find a plan which is guaranteed to be op-
timal, or as a compromise, attempt to create a weaker rule that does cut down the
search space to some degree but gives optimal or closer-to-optimal plans. Dur-
ing the planning competition the conditions were somewhat artificial and were not
clearly stated – would it be beneficial for a planner to spend ten times as much ef-
fort finding a plan if this plan was only five percent better, on average? We guessed
that this would not be the case, and consequently we chose to include the control
rule as stated above. In the future, a better solution would most likely be to prefer
those plans where a person does not debark before reaching his destination but still
allow other plans.

Given these two rules, we might now continue with the second approach to
finding control rules. We run TALplanner on a simple problem instance and con-
sider the operator sequences the planner examines during the depth first search
process. This is the beginning of such a sequence for the problem instance in Fig-
ure 9.6. The complete plan generated by the planner contains 123 actions and re-
quires 60 time steps. It is shown here in the IPC-2002 STRIPS result format where
the timepoint at which an action is invoked is followed by the action itself.

0: (board person4 plane2 city1)
0: (board person5 plane1 city2)
1: (�y plane1 city2 city0 fl5 fl4)
1: (�y plane2 city1 city0 fl3 fl2)
2: (board person1 plane1 city0)
2: (board person2 plane2 city0)
3: (�y plane1 city0 city1 fl4 fl3)
3: (�y plane2 city0 city1 fl2 fl1)
4: (debark person2 plane2 city1)
4: (debark person5 plane1 city1)
5: (�y plane1 city1 city0 fl3 fl2)
5: (�y plane2 city1 city0 fl1 fl0)

6: (�y plane1 city0 city1 fl2 fl1)
6: (refuel plane2 city0 fl0 fl1)
7: (�y plane1 city1 city0 fl1 fl0)
7: (�y plane2 city0 city1 fl1 fl0)
8: (refuel plane1 city0 fl0 fl1)
8: (refuel plane2 city1 fl0 fl1)
9: (�y plane1 city0 city1 fl1 fl0)
9: (�y plane2 city1 city0 fl1 fl0)
10: (refuel plane1 city1 fl0 fl1)
11: (�y plane1 city1 city0 fl1 fl0)
11: (refuel plane2 city0 fl0 fl1)
. . .

254 9.2. International Planning Competition 2002

The beginning of the operator sequence appears to be reasonable, but after time 4,
airplanes seem to be flying around randomly. There are no control rules guiding
them, so apparently it was mainly luck that caused the planes to find reasonable
cities to fly to at time 1 and 3. To make airplanes more goal-directed, we identify
three important reasons why an airplane should move from city to city2: that the
goal asserts that the aircraft must end up in city2when the plan is complete, that one
of its passengers wants to go to city2, or that there is a person waiting to be picked
up by an airplane in city2. The following rule formalizes these three intuitions:

control :name "planes-always-�y-to-goal"
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city)→
∃city2 [[t+1] at(aircraft, city2) ∧

(goal(at(aircraft, city2)) ∨
∃person [[t] in(person, aircraft) ∧ goal(at(person, city2))] ∨
∃person [[t] at(person, city2) ∧ goal(¬at(person, city2))])]

With these control rules, TALplanner can quickly produce a set of plans for the
20 “handcoded” problems from the IPC-2002 competition, and although the plans
will not be optimal, they will not be nearly as bad as the example given above.
Together, the plans require a total of 7164 actions and 618 time steps. The plan for
the example in Figure 9.6 requires 20 actions and 7 time steps.

Nevertheless, there are still some improvements that can be made. The first
criterion is too admissible: It allows a plane to visit its destination even if it still
needs to pick up or drop off passengers. One way of preventing this would be to
add the condition that all passengers must have reached their destinations:

de�ne [t] all-persons-arrived:
∀person, city [goal(at(person, city))→ [t] at(person, city)]

control :name "planes-always-�y-to-goal"
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city)→
∃city2 [[t+1] at(aircraft, city2) ∧

([t] all-persons-arrived ∧ goal(at(aircraft, city2)) ∨
∃person [[t] in(person, aircraft) ∧ goal(at(person, city2))] ∨
∃person [[t] at(person, city2) ∧ goal(¬at(person, city2))])]

This improves plan quality slightly, and TALplanner now requires 7006 actions and
575 time steps. But the new control rule is in fact too strict, which can be seen in the
following plan tail for handcoded STRIPS problem number 3:

14: (�y plane2 city4 city7 fl2 fl1)
14: (�y plane4 city8 city9 fl3 fl2)
14: (refuel plane1 city6 fl2 fl3)
14: (refuel plane3 city9 fl4 fl5)
15: (debark person24 plane4 city9)
15: (debark person28 plane4 city9)
15: (debark person34 plane2 city7)

15: (refuel plane1 city6 fl3 fl4)
15: (refuel plane2 city7 fl1 fl2)
15: (refuel plane3 city9 fl5 fl6)
15: (refuel plane4 city9 fl2 fl3)
16: (�y plane1 city6 city8 fl4 fl3)
16: (�y plane3 city9 city4 fl6 fl5)

Chapter 9. Planning Competitions 255

In this example, plane1 and plane3 had to wait until all passengers had debarked
from several other planes until they could go to their final destinations, even though
we can clearly see that there was no real reason for them to wait, because all po-
tential passengers had already been picked up and plane1 and plane3 already had
enough fuel. We once again alter the control rule according to this new insight: A
plane can go to its final destination if all passengers on board the plane are headed
towards the same destination and there is no person left to be picked up (that is, all
persons have already arrived or are currently on board planes).

de�ne [t] all-persons-arrived-or-in-planes:
∀person, city [goal(at(person, city))→ [t] at(person, city) ∨ ∃aircraft [in(person, aircraft)]]

control :name "planes-always-�y-to-goal"
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city)→
∃city2 [[t+1] at(aircraft, city2) ∧

((goal(at(aircraft, city2)) ∧ [t] all-persons-arrived-or-in-planes ∧
∀person [[t] in(person, aircraft)→ goal(at(person, city2))]) ∨
∃person [[t] in(person, aircraft) ∧ goal(at(person, city2))] ∨
∃person [[t] at(person, city2) ∧ goal(¬at(person, city2))])]

This yields another minor improvement, and TALplanner now requires 6918 ac-
tions and 564 time steps. For the example used above, the end of the plan now
looks as follows:

14: (�y plane1 city6 city8 fl2 fl1)
14: (�y plane2 city4 city7 fl2 fl1)
14: (�y plane4 city8 city9 fl3 fl2)
14: (refuel plane3 city9 fl4 fl5)

15: (debark person24 plane4 city9)
15: (debark person28 plane4 city9)
15: (debark person34 plane2 city7)
15: (�y plane3 city9 city4 fl5 fl4)

We once more study the plans generated by the current set of rules and quickly
identify another obvious problem: Any number of airplanes may fly to the same
location to pick up the same person. Once again, it is necessary to find a reasonable
balance between finding optimal plans and finding plans quickly. In the contest,
we attempted to find a high quality (but probably non-optimal) plan as quickly as
possible. This was done by ensuring that no more than one airplane may go to
any given place at the same time, if the sole purpose for going there is to pick up a
person who is waiting:

control :name "planes-always-�y-to-goal"
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city)→
∃city2 [[t+1] at(aircraft, city2) ∧

((goal(at(aircraft, city2)) ∧ [t] all-persons-arrived-or-in-planes ∧
∀person [[t] in(person, aircraft)→ goal(at(person, city2))]) ∨
∃person [[t] in(person, aircraft) ∧ goal(at(person, city2))] ∨
∃person [[t] at(person, city2) ∧ goal(¬at(person, city2))] ∧
¬∃aircraft2 [[t+1] at(aircraft2, city2) ∧ aircraft2 6= aircraft])]

256 9.2. International Planning Competition 2002

This rule provides a major improvement, and the complete set of plans now re-
quires 5075 actions and 434 time steps.

So far, we have controlled where airplanes fly, when people board an airplane,
and when they debark. There are no rules governing refueling, and a quick look
at a plan for one of the larger problem instances reveals that whenever an aircraft
has nothing else to do, it will refuel. This seems a little bit wasteful, but we are
satisfied with adding a rule stating that airplanes must only refuel when their tanks
are empty. This rule is not perfect, since an airplane may miss an opportunity to
“pre-emptively” refuel and it can still refuel one fuel level even if it is not going to
fly, but it does provide a significant improvement, bringing the number of actions
down to 4234. The number of time steps is still 434.

A few minor adjustments were made to these rules before they were used in the
competition. These adjustments include a modification to only-board-when-necessary

to ensure that a person who must travel from city to city2will choose a plane that
already needs to visit both city and city2, if this is possible, since this is less likely to
increase the total number of flights.

One final change is prompted by the fact that the intended differences in timing
between �y and zoom cannot be modeled correctly in the STRIPS version of the
domain. Since all operators must take the same amount of time, the only difference
between these two operators is that zoom uses twice as much fuel. Although it
would have been possible to add a control rule ensuring that zoom was not used, it
was easier to simply remove the zoom operator from the domain definition.

ZenoTravel: SimpleTime

The SimpleTime version of ZenoTravel is quite similar to the STRIPS version, the
only difference being that actions may have non-unit duration and that certain pre-
conditions must hold throughout the execution of an action. The TALplanner oper-
ator definitions are changed accordingly. For example, the board and �y operators
can be changed as follows:

operator board(person, aircraft, city) :at s
:precond [s] at(person, city) ∧ at(aircraft, city)
:prevail [s+1, s+20] at(aircraft, city)
:duration 20
:e�ects [s+1] at(person, city) := false, [s+20] in(person, aircraft) := true

operator �y(aircraft, city1, city2, flevel1, flevel2) :at s
:precond [s] at(aircraft, city1) ∧ fuel-level(aircraft, flevel1) ∧ next(flevel2, flevel1)
:duration 180
:e�ects [s+1] at(aircraft, city1) := false, [s+1] fuel-level(aircraft, flevel1) := false,

[s+180] at(aircraft, city2) := true, [s+180] fuel-level(aircraft, flevel2) := true

If we run the planner on a set of SimpleTime problem instances, we get almost
immediate results: The planner claims that there is no plan for any of the instances.

Chapter 9. Planning Competitions 257

Figure 9.7: A ZenoTravel problem instance (SimpleTime problem 3)

The reason for this is, of course, that the control rules must be satisfied in any valid
plan, and those rules were designed with the underlying assumption that actions
had unit duration. For example, consider planes-always-�y-to-goal, which states that
if a plane leaves a city at time t, it should be at a meaningful destination at t+1.
When the �y action is invoked the plane must be at some city city1, but beginning
at the next time step there will be an interval where the aircraft is not present in any
city at all, until it finally arrives in city2 180 time steps later. In other words, planes-
always-�y-to-goal now ensures that the fly operator cannot be used at all, which is
not quite what was originally intended.

One way of solving this problem would be to alter planes-always-�y-to-goal to
say that if a plane leaves a city at time t, it should be at a meaningful destination
at t+180. Unfortunately, the duration of the flight would then be encoded directly
in the control rule instead of only in the operator, and so it would not work in the
Timed version, where operators have variable durations – in fact, it would not even
work in SimpleTime, because the zoom operator must also be taken into account.

Instead, the domain model is augmented with a new fluent �ying-to(aircraft,

city) which keeps track of whether a plane is flying, and if so, what its destination
is. To ensure that this fluent is kept up-to-date, the following is added to the effects
of the �y and zoom operators:

[s+1] �ying-to(aircraft, city2) := true, [s+180] �ying-to(aircraft, city2) := false // for fly
[s+1] �ying-to(aircraft, city2) := true, [s+100] �ying-to(aircraft, city2) := false // for zoom

The planes-always-�y-to-goal rule above can now be changed as follows, stating that
if an aircraft ceases to be at city, then it must be flying to a reasonable destination:

control :name "planes-always-�y-to-goal"
[t] at(aircraft, city) ∧ [t+1] ¬at(aircraft, city)→
∃city2 [[t+1] �ying-to(aircraft, city2) ∧ . . .]

The same problem arises for boarding, and a new fluent boarding(person, aircraft)
is added and used whenever necessary. Given these changes, the following are the
first steps of the plan generated by TALplanner for the problem instance in Fig-
ure 9.7, shown in the IPC-2002 timed result format where the timepoint at which
an action is invoked is followed by the action and the duration of the action:

258 9.2. International Planning Competition 2002

0: (board person1 plane1 city0) [20]
20: (�y plane1 city0 city1 fl4 fl3) [180]
20: (zoom plane1 city0 city1 fl4 fl3 fl2) [100]

Intuitively, flying and zooming plane1 at the same time should be impossible, but
we have forgotten to specify this to the planner. Both actions have their precondi-
tions satisfied at time 20, there are no prevail conditions, the initial effects at time
21 assign the �ying-to fluent the same destination, and the final effects of the actions
do not contradict each other since they take place at different timepoints: �y ends
at time 200, while zoom ends at time 120.

There are several ways of specifying that �y and zoom are mutually exclusive.
For example, it would be possible to introduce an interval effect stating that �ying-to
(aircraft, city2) must hold throughout the inner execution intervals of these actions,
and become false at the end of each action:

[t+1,t+179] �ying-to(aircraft, city2) := true, [t+180] �ying-to(aircraft, city2) := false // for fly
[t+1,t+ 99] �ying-to(aircraft, city2) := true, [t+100] �ying-to(aircraft, city2) := false // zoom

It would also be possible to use a semaphore resource: An aircraft-specific resource
with an initial value of 1, which can be borrowed exclusively by the �y and zoom

actions. When one of these solutions is used, TALplanner finally rewards us with a
short and correct plan:

0: (board person1 plane1 city0) [20]
20: (�y plane1 city0 city1 fl4 fl3) [180]
200: (board person3 plane1 city1) [20]
200: (debark person1 plane1 city1) [30]
230: (�y plane1 city1 city0 fl3 fl2) [180]
410: (debark person3 plane1 city0) [30]
;; Plan length 6, maxtime 440

Can it be improved? Remember that the STRIPS version never made use of the
zoom operator. But in the SimpleTime version, flying takes 180 time steps and uses
one unit of fuel, zooming takes 100 time steps and uses two units of fuel, and refu-
eling one unit takes 73 time steps. 180 + 73 is more than 100 + 2 · 73 and therefore
we have the opposite situation: zoom is always better than fly. Commenting out
the unwanted fly operator yields the following plan:

0: (board person1 plane1 city0) [20]
20: (zoom plane1 city0 city1 fl4 fl3 fl2) [100]
120: (board person3 plane1 city1) [20]
120: (debark person1 plane1 city1) [30]
150: (zoom plane1 city1 city0 fl2 fl1 fl0) [100]
250: (debark person3 plane1 city0) [30]
;; Plan length 6, maxtime 280

Chapter 9. Planning Competitions 259

ZenoTravel: Timed

The Timed version further complicates the timing of the actions. Boarding and dis-
embarking times are constant but problem-specific and are defined in the respective
problem definition as two new functions, boarding-time and debarking-time. Refuel-
ing always fills the plane to its maximum capacity, but consumes time relative to
the amount of fuel received and the refuel-rate of the aircraft. Each aircraft also has
a fast-speed and a slow-speed with corresponding fast-burn and slow-burn fuel con-
sumption. The distances between cities are specified using the distance(city1, city2)

function.
In the Timed version, operator durations have to be correctly calculated with a

precision of three decimals, prompting a few minor changes to TALplanner. Once
these changes had been implemented, few changes were needed to transform the
SimpleTime domain to the Timed version.

The most important difference was perhaps the fact that depending on the speed
and fuel consumption values defined in each problem and the situation where the
operator is used, it is sometimes better to use the �y operator and sometimes better
to use the zoom operator, unlike the STRIPS version where �y was always better
and the SimpleTime domain where zoom was always better.

So when is zooming better than flying? It may seem like it would be easy to
answer this question, given that we are only interested in minimizing time: Just
check whether refueling the aircraft sufficiently to be able to zoom, followed by
zooming to the destination, would be faster than only refueling enough to be able to
fly and then flying more slowly to the destination. This is handled by the first clause
in use-�y-instead-of-zoom below. The precondition of �y is then altered to require
that use-�y-instead-of-zoom be true, and the precondition of zoom requires that use-
�y-instead-of-zoom be false. If we had been interested in minimizing a combination
of time and fuel usage, then this could also have been taken into account.

This is not quite sufficient to handle all problems, though. An airplane has a
maximum fuel capacity, so if its destination is too distant, it may not be able to
zoom. This is handled by the second clause in use-�y-instead-of-zoom.

Yet another problem is that it is not possible to tie one refueling action to each
flight, as one would expect in the real world. There are two reasons for this prob-
lem.

First, airplanes may already have some fuel in the initial state, so in some situ-
ations a plane might zoom to its destination without incurring any additional cost,
again assuming that the time required for executing the plan is the only metric be-
ing used – the plane already had enough fuel anyway and never had to refuel.

Second, unlike the SimpleTime version, an airplane cannot refuel “just enough”
– the refuel operator always fills the tank completely. This change was most likely
introduced in order to make the planning task easier by reducing the number of
possible actions to choose from (for example, a planner that needs to create all
ground instances of each operator might have some trouble if the refuel opera-

260 9.2. International Planning Competition 2002

tor would take the amount of fuel as a floating point argument). But despite the
probable intention behind this change, it introduces new problems for our control
formulas. If a plane’s tank is half full and this is enough fuel to zoom from A to B,
it might then have to fill the entire tank before continuing to C, while if it used the
�y operator, it might be able to continue to C without refueling at all. This means
that one would have to take all possible future flights into account when determin-
ing whether to fly or zoom. If the domain had been modeled in more detail, this
problem would not have existed.

Given these two complications, guaranteeing an optimal or near-optimal plan
using a control rule is not easy, which is indeed only to be expected. For the com-
petition we decided to be satisfied with a heuristic compromise, adding a third
clause to use-�y-instead-of-zoom ensuring that if zooming would require refueling
immediately but flying would not, the �y operator would be used.

// Fly is (probably) better than zoom if:
de�ne [t] use-�y-instead-of-zoom(aircraft, city1, city2):

// If fly is faster wrt speed and refueling.
([t] (10000 / slow-speed(aircraft) + 10000 * slow-burn(aircraft) / refuel-rate(aircraft)) <

(10000 / fast-speed(aircraft) +10000 * fast-burn(aircraft) / refuel-rate(aircraft))) ∨
// If zoom is impossible across the given distance.
([t] distance(city1, city2) * fast-burn(aircraft) > capacity(aircraft)) ∨
// If zoom has to refuel immediately but fly does not.
([t] fuel(aircraft) >= distance(city1, city2) * slow-burn(aircraft) ∧
fuel(aircraft) < distance(city1, city2) * fast-burn(aircraft))

ZenoTravel: Discussion

Finding control rules that yield good (but usually suboptimal) plans is not too diffi-
cult in the ZenoTravel domain. There are no risks involved in flying a plane to pick
up passengers, since there are no limits on the number of passengers that can bord
a single plane and since refueling is possible in any city. Also, since the graph of
cities is fully connected, reasonable plans can generally be generated even without
more advanced forms of route planning.

The benchmark results for this domain can be seen in Figure 9.8. In terms of per-
formance, TALplanner is close to TLPlan: Somewhat better for STRIPS problems
and the larger SimpleTime problems, and somewhat slower for the Timed prob-
lems. SHOP is generally considerably slower than either TALplanner or TLPlan. FF
(Hoffmann & Nebel, 2001), which only participated in the STRIPS domain, is con-
siderably slower than SHOP, though its performance is certainly very respectable
considering its lack of domain-specific control knowledge.

For the STRIPS version of ZenoTravel, plan quality is measured in terms of the
number of actions in the solution plan. Here, TALplanner is more or less con-
sistently somewhat better than TLPlan and SHOP2. FF often provides better or
equally good plans, though given that it is a knowledge-sparse planner it also re-
quires orders of magnitude more time to generate these plans. On the other hand,

Chapter 9. Planning Competitions 261

 0.1

 1

 10

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(a) Time (seconds, STRIPS)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(b) Plan steps (STRIPS)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 10000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Problem-Specific Cost Metric (Timed)

Figure 9.8: Results for IPC-2002 ZenoTravel Problems

262 9.2. International Planning Competition 2002

it appears that only TALplanner and SHOP2 generate concurrent plans for the
STRIPS variation of ZenoTravel. In terms of makespan (not shown here), TAL-
planner generates significantly better plans than SHOP2, which in turns generates
plans significantly better than the sequential plans created by TLPlan and FF.

For the SimpleTime version, TALplanner is more or less consistently better than
TLPlan, which now does generate concurrent plans, as well as SHOP2. Again, the
results are considerably closer if quality is measured in terms of the number of plan
steps (not shown here). Consequently, the TALplanner advantage over TLPlan in
terms of plan quality is mainly related to scheduling and better use of concurrency.

For the Timed version, each problem instance was associated with a specific
metric: Planners should attempt to minimize x · total-time+ y · total-fuel-used, where
total-time is the makespan of the plan, total-fuel-used is the amount of fuel used by
the plan, and the weights x ∈ {1, 2, 3, 4, 5} and y ∈ {0.001, 0.002, 0.003, 0.004, 0.005}
varied between problem instances. TALplanner does not support optimization,
and there was no attempt to adapt plan generation to each problem metric. Plan
quality was similar across the set of planners, though SHOP2 often generated some-
what worse plans and required significantly more time than TALplanner, which in
turn required slightly more time than TLPlan.

A fourth version of ZenoTravel, the Numeric version, was available in the con-
test but due to lack of time we decided not to compete in this domain.

9.2.3 The Depots Domain

The Depots domain (illustrated in Figure 9.9) contains locations, trucks, hoists,
crates that can be moved, and pallets whose locations are fixed. Trucks move crates
between any two locations and can carry any number of crates at the same time.
Hoists are distributed among the locations and load crates into trucks or stack
crates on surfaces (pallets or other crates). The goal is always to bring the crates
into a certain configuration of stacks, where each stack is placed on a specific pal-
let.

STRIPS. The Depots domain is a combination of two other well-known planning
domains, the logistics domain and the blocks world. Therefore it seems natural to
start by taking a look at existing control rules for those two domains, and to see
whether those rules can be combined easily or whether more complex rules are
required due to interactions between moving and stacking blocks.

We begin with the blocks world part of the problem. The unbounded blocks
world was used as a benchmark domain in IPC-2000, and there TALplanner used
a modified version of the rules in Bacchus and Kabanza (2000) which ensure that
the planner only adds blocks to “good towers”, stacks that are already in their final
position and will not have to be dismantled later in order to remove a block at a
lower level. Can these rules be reused in the Depots domain? One prerequisite
is the availability of temporary storage for all crates, since in the worst case every
single stack of crates must be torn down completely before it is possible to start

Chapter 9. Planning Competitions 263

Figure 9.9: A Depots problem instance (STRIPS problem 7)

stacking crates on top of each other. Surprisingly, although there are only a limited
number of pallets, trucks can (somewhat counter-intuitively) contain any number
of crates, and the planner can use them as storage. Had this been a real-world do-
main, we would have asked the domain experts whether this could truly be the
intention behind the domain, but since it was a competition domain, we could not
expect the organizers to change the domain in the middle of the competition. Nei-
ther could we ignore this opportunity, since other competitors would surely make
use of it. Consequently, we did use trucks as infinite storage facilities, and only mi-
nor changes to the logistics control rules were required in order to handle the two
separate types of surfaces: Pallets and crates.

Continuing with the logistics part, one simple rule can be reused from the stan-
dard logistics domain: “Only unload a crate at its goal location”. Its dual rule,
“only load a crate if it needs to be moved”, is not required. The blocks world rules
ensure that a hoist does not lift a block unless it needs to be moved, and therefore
it is already impossible to load such blocks into a truck.

It remains to ensure that vehicles only drive to those locations where they can
be of use. In the standard logistics domain, a truck can drive to another location
if there is a package that needs to be picked up or delivered there, but due to the
use of stacks of crates in the depots domain, the rule must be modified: A vehicle
may drive to a location if (1) there is a crate there that must be moved to another
location, (2) there is a crate there that must be stacked differently, or (3) there is a
crate in the truck that needs to be at the location, its destination is ready, and there
is no other crate that should also be at the same location that the truck has not yet
picked up.

SimpleTime. In the SimpleTime version, lifting and dropping crates still takes one
unit of time, loading takes three units, unloading four, and driving ten. A few
changes were made to ensure mutual exclusion. For example, hoists can only lift

264 9.2. International Planning Competition 2002

one crate at a time. Also, a driving-to fluent was introduced to keep track of where
trucks are headed, similar to �ying-to in ZenoTravel.

Timed. In the Timed domain, the time required for loading and unloading a crate
depends on how powerful the hoist is and on the weight of the crate. The time re-
quired for driving between two locations depends on the speed of the truck and the
distance between the locations. Again, only minor changes were required to handle
the domains, although higher quality plans could certainly have been produced by
taking timing into account when determining which hoists and trucks to use.

Results. Figure 9.10a shows the time required to solve the STRIPS versions of the
22 larger depots problem instances intended for the three planners in the hand-
tailored track of the competition. As can be seen in this figure, TALplanner out-
performs SHOP2 and TLPlan by approximately a factor of ten for many problem
instances. TALplanner retains much of this performance advantage for the Sim-
pleTime problem instances, as seen in Figure 9.10c, though in the timed problem
instances (Figure 9.10e), TALplanner falls back to being slower than TLPlan for the
smaller problem instances and approximately as fast for the larger instances.

For the STRIPS version, TALplanner often generates shorter plans than TLPlan
and SHOP2, though for some problem instances it generates slightly longer plans.
Neither TLPlan nor SHOP2 appear to generate concurrent plans for this domain,
giving TALplanner a considerable advantage in terms of makespan (not shown
here). In the SimpleTime version, TLPlan has a small makespan advantage over
TALplanner, while both planners create considerably better plans than SHOP2. Un-
like the ZenoTravel domain, this domain and the remaining domains in the com-
petition did not use problem-specific metrics for the Timed version of the domain,
falling back on plain makespan to compare plan quality. Here, TALplanner is again
generally better than both TLPlan and SHOP2, though TLPlan does generate better
plans for a few problem instances.

9.2.4 The DriverLog Domain

DriverLog (illustrated in Figure 9.11) is yet another logistics domain, this time in-
troducing the concept of truck drivers and road maps. A number of packages are
transported between locations by trucks. There are two sets of routes connecting
the locations: Links, where trucks travel, and paths, which drivers can walk along
when not driving a truck. A truck can only have one driver at a time but can load
as many packages as is needed.

Finding Shortest Paths. In the DriverLog domain, vehicles and people must travel
along road networks, where different roads may have different costs (lengths) and
where taking the shortest path between any two points is essential. Although a
shortest path algorithm can be defined using the TALplanner input language, the
resulting formulas can be somewhat complicated. Two new functions related to
shortest paths were therefore implemented in TALplanner: One for finding the cost

Chapter 9. Planning Competitions 265

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(a) Time (seconds, STRIPS)

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(b) Plan steps (STRIPS)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.10: Results for IPC-2002 Depots Problems

266 9.2. International Planning Competition 2002

Figure 9.11: A DriverLog problem instance (STRIPS problem 5)

of the shortest path between two given locations, and one for finding the distance
to the closest location satisfying a given formula (for example the closest location
which is a reasonable destination for a certain truck in the DriverLog domain).
These functions also provide a significant improvement in performance, and are
useful in many domains where distances are involved, including the Rovers do-
main seen later (Section 9.2.5 on page 268).

STRIPS. Several control rules used in previous logistics domains were useful for
DriverLog with minor modifications. For example, packages should only be loaded
into trucks if they need to be moved, and should not be unloaded until they have
reached their final destination.

On the other hand, a number of changes were necessary due to the use of road
maps. Most importantly, vehicles were previously only allowed to drive to loca-
tions that were immediately useful because there were packages to be picked up or
delivered. In the DriverLog domain there may only be direct roads between some
locations (specified by a predicate link(from, to)), and a truck may have to move
through several intermediate locations in order to reach its destination. Conse-
quently the control rules must be relaxed to allow trucks to visit locations that are
not useful in themselves. Nevertheless, some degree of goal-directedness is still
required. One possible method is to identify for each vehicle the set of locations
where the vehicle might be useful, and to require that it chooses one such location
and then takes the shortest path to its chosen destination. This method was used
in the competition with the help of the built-in shortest path algorithm discussed
above and a control rule stating that each step (each invocation of drive or walk)
must decrease the distance to the current destination. The following definitions
will be explained below:

Chapter 9. Planning Competitions 267

de�ne [t] reasonable-truck-location(truck, location):
// The truck has objects to deliver there.
∃obj [[t] in(obj, truck) ∧ goal(at(obj, location))] ∨

// All objects have been delivered, and
// either there’s a goal that the truck should be there
// or there’s a goal that the driver should be there
// and no goal preventing him from using the truck to drive there.
(([t] all-objects-at-their-destinations) ∧
(goal(at(truck, location)) ∨
(¬goal(¬at(truck, location)) ∧
∃driver [[t] driving(driver, truck) ∧ goal(at(driver, location))]))) ∨

// There are objects to pick up (modeled as a resource)
// and either we are already there
// or no other trucks are already there or on their way.
(([t] available(objects-to-move-at(location)) 6=̂ 0) ∧
(([t] at(truck, location)) ∨
¬∃truck2 [truck2 6= truck ∧ [t] ¬empty(truck2) ∧ [t] at(truck2, location)] ∧
¬∃truck2 [truck2 6= truck ∧ ([t] ¬empty(truck2)) ∧ [t+1] at(truck2, location)]))

distfeature driving-distance-between(from, to) :domain integer :link link

mindistfeature driving-distance-to-location-satisfying-formula

:distfeature driving-distance-between :domain integer

de�ne [t] driving-distance-to-reasonable-destination(truck, location):
driving-distance-to-location-satisfying-formula

(location, to, [t] reasonable-truck-location(truck, to))

A boolean fluent reasonable-truck-location(truck, loc) is defined in terms of a logic
formula, which specifies whether the given location is a reasonable destination for
a given truck at the timepoint when it is evaluated. The driving-distance-between

function accesses the shortest path algorithm to find the length of the shortest path
between from and to, given that the road links are specified by the link predicate.
The driving-distance-to-location-satisfying-formula function accesses another version
of the shortest path algorithm and is used in driving-distance-to-reasonable-destination

in order to find the shortest distance from location to any location to that satisfies
reasonable-truck-location. Since all links have the same cost, it is then sufficient to
require that whenever a truck moves, its driving-distance-to-reasonable-destination

decreases.
Further changes were required due to the use of drivers. There may not be

drivers for all trucks, so packages should not be loaded into a truck until the plan-
ner knows the truck will have a driver. Drivers should not disembark if there are
still packages in the truck, or if there is a goal that the truck must be somewhere
else. Drivers may have to walk along paths in order to reach a truck, so just like

268 9.2. International Planning Competition 2002

trucks, drivers must select one useful destination and then take the shortest path to
their chosen destinations.

Additional control rules ensure that multiple trucks do not choose the same
destination unnecessarily, and that multiple drivers do not choose to walk to the
same location.

SimpleTime. In the SimpleTime version, loading and unloading objects takes two
units of time, driving takes ten units, and walking takes twenty units. The oper-
ators are changed accordingly, and a going-to fluent is introduced to keep track of
drivers and trucks that are moving towards a new location but have not yet arrived.
A few minor adjustments must be made to the control rules.

Timed. In the Timed version, the time required to walk or drive between two lo-
cations is determined by a pair of functions specified in each problem instance.
Since individual road segments can have different lengths, the method we used to
ensure drivers and trucks used the shortest path to their current destination is no
longer sufficient, and must be modified slightly. Other than this, there are no major
changes for the Timed version.

Results. TALplanner generates plans quite quickly for STRIPS instances but has
somewhat worse performance for SimpleTime and Timed problems, with TLPlan
generally taking the lead (Figure 9.12). For the STRIPS version, TALplanner and
TLPlan generate plans of approximately equal quality in terms of plan steps, though
once again TLPlan does not generate concurrent plan and is therefore at a disad-
vantage in terms of makespan (not shown here). SHOP generates somewhat longer
plans than TLPlan, but does generate concurrent plans. For the SimpleTime ver-
sion, no planner appears to consistently produce better plans than any other. In
the Timed version, the plans generated by TALplanner generally have a longer
makespan than those created by TLPlan, though they do tend to contain fewer ac-
tions (not shown here).

9.2.5 The Rovers Domain

The Rovers domain simulates a simplified planetary exploration expedition. A lan-
der vessel carries a number of rovers to the planet surface and provides a com-
munication link back to Earth. Each rover has a subset of the general capabilities:
retrieving soil samples, retrieving rock samples and capturing images using cam-
eras that support different imaging modes. The cameras are mounted on the rovers,
as are storage compartments, one for each rover, which can hold one soil sample
or one rock sample. Data from a sample must be sent to the lander by a commu-
nication link. All missions revolve around navigating waypoints on the surface of
the planet to collect samples and take images of specified objectives that are only
visible from certain waypoints. The terrain may prevent rovers from going directly
between two waypoints and different rovers handle different terrain so a list of
routes each rover can use is provided.

Chapter 9. Planning Competitions 269

 0.1

 1

 10

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(a) Time (seconds, STRIPS)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(b) Plan steps (STRIPS)

 0.1

 1

 10

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 1

 10

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.12: Results for IPC-2002 DriverLog Problems

270 9.2. International Planning Competition 2002

STRIPS. Following a control scheme similar to the one used in DriverLog, we limit
the movements of rovers to locations where they can perform some useful action
like collecting a rock sample or capturing an image. The problem of finding a path
from one waypoint to another is also solved in the same way as in DriverLog, ex-
cept that each rover has its own set of routes between waypoints.

SimpleTime. The changes in the SimpleTime version are trivial: Operator dura-
tions are changed, a few mutual exclusion relations need to be enforced, and a
new fluent calibrating(camera) keeps track of whether a certain camera is being cal-
ibrated.

Timed. The Timed version introduces the concept of energy, where each rover has
a limited amount of energy and each action it does consumes some of the energy.
This is similar to the use of fuel in the ZenoTravel domain, but there is also a ma-
jor difference: The rovers have been equipped with solar panels that recharge the
rover, but only some of the waypoints that a rover can go to are directly exposed to
the sun, which is a requirement for the solar panels to work. The airplanes in the
ZenoTravel domain can refuel anywhere, and so fuel usage is only relevant in terms
of minimization of resource usage, whereas a rover that uses its energy unwisely
can get stuck in the shade, unable to do anything or go anywhere. To prevent this
we can either let the planner backtrack and search for a better plan, or we can in-
troduce stricter rules that keep energy levels in mind when deciding what a rover
is allowed to do. The latter approach is taken below.

The critical point is when a rover does not have enough energy to reach a way-
point in the sun and recharge. Using the shortest path algorithm it is possible for a
control rule to determine the distance to the closest waypoint that is exposed to the
sun. In addition to all waypoints that were previously allowed, it is also reasonable
for a rover to go to a waypoint that is exposed to the sun if the rover does not have
enough energy to perform an action and then go recharge, or if there do not exist
any other waypoints that are both affordable and reasonable to visit.

Results. Timing results for the Rovers domain varied significantly between dif-
ferent planners (Figure 9.13). In the STRIPS domain, TALplanner took the lead
over TLPlan by a factor of 10 for the larger problem instances, while SHOP2 was
slower by another factor of 20. FF generally beat SHOP2 despite being a fully auto-
mated planner, but rarely came close to the performance of TLPlan and TALplan-
ner. For the SimpleTime version, the margin between TALplanner and TLPlan was
narrowed to a factor of 3 for the larger problem instances, and for Timed instances,
TALplanner was only slightly faster than TLPlan while SHOP2 remained consider-
ably slower.

Plan quality results for this domain are quite interesting. For the STRIPS ver-
sion, TALplanner generated plans of consistently somewhat worse quality com-
pared to its competitors, both in terms of plan steps and in terms of makespan.
For SimpleTime instances, plans were of similar length and almost identical execu-
tion time. For Timed instances, though, TALplanner generated plans with almost

Chapter 9. Planning Competitions 271

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(a) Time (seconds, STRIPS)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(b) Plan steps (STRIPS)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 1

 10

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.13: Results for IPC-2002 Rovers Problems

272 9.2. International Planning Competition 2002

Figure 9.14: A Satellite problem instance (STRIPS problem 4)

twice as many actions (not shown here) but still generally managed to stay within
a shorter makespan than the other planners. Further analysis reveals this to be due
to a simple systematic mistake in the Rovers domain which should have been eas-
ily discovered: When there were fewer tasks left to be performed than there were
rovers, the superfluous rovers would move around aimlessly, occasionally recharg-
ing to be able to keep moving. This does not affect the execution span of the plan,
since the remaining rovers were still able to perform their tasks without interfer-
ence.

9.2.6 The Satellite Domain

In the Satellite domain a number of satellites orbit the Earth, each equipped with
a set of scientific imaging instruments. The satellites turn in space, targeting stars,
planets and interesting phenomena to capture images of them using different in-
strument operation modes. These modes can include regular or infrared imaging
and spectrographic or thermographic readings but are different for each problem.
The planner’s task is to schedule a series of observations so that the satellites are
used efficiently. Figure 9.14 shows a small example problem instance, with arrows
showing the directions in which the satellites are pointing.

Directions are not represented as explicit coordinates. Instead, satellites can turn
to a new direction by giving the turn-to operator an argument specifying the star,
planet or phenomenon that the satellite should point to. Instruments first need to
be activated using switch-on, then calibrated at a calibration target with the calibrate

operator before they can capture images using take-image. Each satellite has only
enough power to operate one instrument at a time, so switching active instruments
is always initiated by the switch-o� operator to deactivate the first instrument.

Chapter 9. Planning Competitions 273

Satellite: STRIPS

Since the task consists of collecting a number of images, we begin by restricting the
use of take-image to images that are mentioned in the goal.

control :name "only-take-pictures-of-goals"
[t] ¬have-image(direction, mode) ∧ [t+1] have-image(direction, mode)→
goal(have-image(direction, mode))

The next step is to restrict the directions in which satellites turn to those that may
actually help in collecting the images. The task is split into a control rule, only-point-
in-goal-directions, and a definition of goal directions. A satellite is allowed to turn
towards a direction to take a picture, to calibrate an instrument or if a goal specifies
that the satellite should point in the direction and there is no more work left to do.

de�ne [t] goal-direction(satellite, direction):
[t] take-image-possible(satellite, direction) ∨
∃instrument [
[t] power-on(instrument) ∧ ¬calibrated(instrument) ∧
[t] calibration-target(instrument, direction) ∧ on-board(instrument, satellite)] ∨
goal(pointing(satellite, direction)) ∧ [t] all-images-collected

The take-image-possible function checks not only if an image is to be collected but
also that it has not already been taken and that the satellite has the necessary in-
strumentation ready. If the active instrument is not calibrated, the satellite may
first have to turn towards another direction and calibrate it.

de�ne [t] take-image-possible(satellite, direction):
∃mode [goal(have-image(direction, mode)) ∧

[t] ¬have-image(direction, mode) ∧
∃instrument [

[t] power-on(instrument) ∧ calibrated(instrument) ∧
[t] on-board(instrument, satellite) ∧ supports(instrument, mode)]]

The switch-on and switch-o� operators are still not regulated by control rules and
the planner quickly takes up the habit of repeatedly flipping the power to different
instruments on and off. Once an instrument has been powered on and calibrated,
using it as much as possible before switching to another instrument seems rea-
sonable. A usefulness function, putting a value on the usefulness of a particular
instrument, helps decide which instrument to power on first.

de�ne [t] usefulness(instrument):
value (t, $sum(<mode>, [t] supports(instrument, mode) ∧ mode-needed-for-goal(mode), 1))

de�ne [t] mode-needed-for-goal(mode):
∃direction [goal(have-image(direction, mode)) ∧ [t] ¬have-image(direction, mode)]

274 9.2. International Planning Competition 2002

Add one to the usefulness score of an instrument for each imaging mode that it
supports and that is needed in some goal. This score is then used in a control rule
that chooses a satellite’s most useful instrument, if it has any.

control :name "use-the-most-useful-instrument"
[t] ¬power-on(instrument) ∧ [t+1] power-on(instrument)→
[t] usefulness(instrument) > 0 ∧
¬∃satellite, instrument2 [
[t] usefulness(instrument2) > usefulness(instrument) ∧
[t] on-board(instrument, satellite) ∧ on-board(instrument2, satellite)]

Switching off an instrument is only allowed if the instrument is no longer required.

control :name "do-not-switch-instrument-o�-if-you-do-not-have-to"
[t] power-on(instrument) ∧ [t+1] ¬power-on(instrument)→
[t] ¬∃mode [supports(instrument, mode) ∧ mode-needed-for-goal(mode)]

We have run out of more or less obvious improvements, but analyzing the plan-
ner output reveals one remaining inefficiency: The satellites often simultaneously
decide to turn to the same direction because a picture needs to be taken in that
direction, despite the fact that only one satellite needs to take the picture. This is
similar to the situation in the ZenoTravel domain where a number of aircraft may
concurrently choose to pick up the same passenger, but there are some differences
due to the fact that the only reason for a satellite to point in a certain direction is in
order to calibrate itself or take an image, which makes the task somewhat easier.

Therefore this problem can be solved in a different way, using a resource for
mutual exclusion. This resource, called point-towards(direction) and having a capac-
ity of 1, can be borrowed temporarily by turn-to for the duration of the turn. If one
satellite turns towards a specific direction d, no other satellite can turn towards d
without causing a resource conflict.

This still leaves one problem: When the first satellite has finished turning, it no
longer owns the point-towards(d) resource and therefore another satellite can imme-
diately start turning towards d. It is no longer possible for more than one satellite
to turn towards the same direction at once, but while the first satellite is taking
pictures, other satellites can turn to that direction one by one, until finally all the
desired pictures have been taken in that direction and goal-direction sees that there
is no longer any valid reason to point towards d. This can be solved either by
changing the definition of goal-direction or by letting take-image borrow the same
resource.

Clearly, this type of “swarming” problem occurs quite often in concurrent do-
mains and a more principled solution should be investigated in the future.

Satellite: SimpleTime

The SimpleTime version changes the duration of some operators. Turning takes
five time units, switching an instrument on takes two units, calibrating it takes five

Chapter 9. Planning Competitions 275

 0.1

 1

 10

 100

 1000

 5 10 15

TALplanner
SHOP2
TLPlan
FF

(a) Time (seconds, STRIPS)

 100

 5 10 15

TALplanner
SHOP2
TLPlan
FF

(b) Plan steps (STRIPS)

Figure 9.15: Results for IPC-2002 Satellite Problems: STRIPS

units and taking a picture takes seven units. A couple of helper fluents, turning-
towards, calibrating, have-image-generalized (an image exists or is being taken) and
power-on-generalized (power is on or a switch-on action is being executed) keep track
of actions that have begun but not completed. The affected control rules are up-
dated accordingly.

Satellite: Timed

The Timed version of the Satellite benchmark domain includes two new functions.
The calibration-time specifies the time required to calibrate, while the slew-time func-
tion represents the time required for a satellite to turn between two directions. Nei-
ther of these changes prompts any significant changes to the SimpleTime control.

Satellite: Results and Discussion

The Satellite domain does not provide a real challenge as long as the planner is only
trying to find a correct solution to each problem instance. Finding a short solution
is harder, especially in the Timed version, and would require additional analysis to
determine in which order images should be collected and which satellites should
be used for each image. Doing this using control rules seemed a bit like overkill,
especially since we had not yet created control rules for the complex UMTranslog-2
domain. For this reason, we decided to be satisfied with what we had done so far.

For the STRIPS version, TALplanner turned out to generate plans approximately
as quickly as the other planners (Figure 9.15). The plans were slightly longer than
those of TLPlan, SHOP2 and FF in terms of plan steps, but generally shorter in
terms of makespan (not shown here).

276 9.2. International Planning Competition 2002

In the SimpleTime domain, TLPlan was considerably faster, but for the Timed
version, TALplanner was once again approximately as fast as TLPlan and faster
than SHOP2 (Figure 9.16). However, we were quite surprised to find out that the
plans we generated were considerably worse than those from the other planners in
terms of makespan – worse by up to a factor of 10!

After the contest, we were informed of the reason, or at least the main reason:
The automatic problem generator that created the problem instances randomized
the slew times between every pair of directions and did not check for geometrical
consistency that would be present in a real world situation. We had subconsciously
assumed that the problem instances satisfied the triangle inequality, but this was
not the case, and the other planning teams had discovered this. For example, in
handcoded problem 14, turning a satellite directly between phenomenon86 and
groundstation4 takes 82.860 units of time, while turning it through two carefully
selected intermediate directions requires 1.183 units of time. But going through
intermediate directions also requires a greater number of actions, which can clearly
be seen in the Figure 9.16 where TALplanner consistently uses considerably fewer
actions than its competitors for the Timed domain.

Taking this into consideration and once again using the built-in shortest path
algorithm yields significantly shorter plans when plan length is measured by the
time point at which the goals have been satisfied. Another potential improvement
would be to change the last clause in goal-direction to allow satellites to turn towards
a direction specified in the goals as soon as one has started taking the last picture,
rather than waiting until one has finished taking the last picture.

9.2.7 The UMTranslog-2 Domain

The UMTranslog-2 domain is another logistics domain, but with 14 distinct object
types, 38 predicates, 24 functions and 38 operators, its size and complexity is in-
comparable to the previously encountered logistics domains in the contest.

Since the formal domain definition was the only information provided about
the domain and there was no high-level description, we had to work out all the
information about the domain from the PDDL definition. This was not a major
problem for the previous domains, since they were generally quite simple and easy
to understand, but it did give us some problems in UMTranslog-2. A significant
amount of time was spent trying to determine exactly how packages were allowed
to move and how they can be loaded into and unloaded from various kinds of
vehicles. In retrospect, it would probably have been better to do as some other
teams did: Skip the UMTranslog-2 domain completely and spend that time on the
Numeric and Complex versions of the other domains.

The domain. Trucks, trains or aircraft transport packages between locations but
they must follow strict movement patterns. A few locations are transportation
hubs, some are transportation centers while the rest are ordinary locations. A pack-
age is only allowed to move up and down through this hierarchy once and only

Chapter 9. Planning Competitions 277

 0.1

 1

 5 10 15

TALplanner
SHOP2
TLPlan

(a) Time (seconds, SimpleTime)

 1

 10

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(b) Time (seconds, Timed)

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(c) Plan steps (SimpleTime)

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(d) Plan steps (Timed)

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(e) Makespan (SimpleTime)

 1000

 5 10 15

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.16: IPC-2002 Satellite Problems: SimpleTime and Timed

278 9.2. International Planning Competition 2002

move between two locations in the same layer once. The longest possible route for
a package is thus from an ordinary location to a transportation center to a hub to
another hub to a transportation center and finally to another ordinary location.

The domain groups locations into cities, which are then grouped in regions.
Trucks travel between any two locations in the same city or by an existing road
route between two cities. Trains and planes always use predefined routes between
transportation centers and hubs. A great number of restrictions further complicate
movements. Packages must be compatible with the vehicle they are loaded into,
the vehicle must have enough free space, not be loaded too heavily and not be
wider, longer or higher than the route and destination location accepts. Finally, the
locations, vehicles and routes must all be available for use.

Control rules. As in previous domains, we specify what a reasonable location is
and limit vehicle movements to destinations that are reasonable. A truck might
want to pick up or deliver a package at the location or, if the truck cannot reach
the goal location of the package, unload the package at a transportation center to
be picked up by another vehicle. Our control rules do not allow trucks to pick up
several packages. This makes finding optimal solutions impossible in the general
case but simplifies the search for acceptable solutions a great deal. There is an im-
minent risk that any other packages the truck is carrying will end up at the wrong
location if it is allowed to travel about, picking up more packages along the way.
Since all packages must move according to the specified pattern of transportation
centers and hubs, moving a package that has once arrived at a location that is not a
transportation center is not allowed and the package will be stuck there. Restricting
trucks to picking up one package at a time avoids this problem.

There is also a large group of loading and unloading rules controlling, among
other things, the opening or closing of valves and doors and loading or unloading
of packages. This part of the problem would perhaps be more succinctly solved
by a HTN-style planner or by some form of macro operator, since it involves spe-
cific sequences of actions that must always be performed in the same order. For
example, loading a package into an aircraft always involves attaching a conveyor
ramp, opening the airplane door, loading the package, closing the airplane door,
and detaching the conveyor ramp, in exactly that order. Nevertheless, writing con-
trol rules ensuring the proper order is not difficult – merely somewhat tedious.

Finally, packages are only loaded into vehicles that are actually able to take them
to a useful location.

Of the 15 contest problems provided, all created automatically by a problem
generator, only ten were actually solvable. The remaining five were unsolvable for
different reasons. This may have been intentional, and the ability of a planner to
terminate in reasonable time given an unsolvable problem is certainly a valuable
quality, as many real world problem instances might be unsolvable. Though de-
termining solvability may be impossible in the general case, it is certainly possible
for sequential classical planning due to the use of a finite state space and a finite

Chapter 9. Planning Competitions 279

 1

 10

 5 10 15

TALplanner
SHOP2

(a) Time to solve solvable problem instances

 100

 5 10 15

TALplanner
SHOP2

(b) Plan steps for solvable problem instances

Figure 9.17: Results for IPC-2002 UMTranslog-2 Problems

number of possible action instances together with the fact that the applicability of
an action only depends on the invocation state as opposed to the entire history of
preceding states.

Creating control rules and meeting the contest deadline left no time to get the
domain working with concurrent planning. Instead, we had to make do with se-
quential planning.

Given more time, the set of control rules could definitely be improved. If plan-
ning speed is less of an issue, more search can be allowed and higher quality plans
generated. More and better problem instances would be needed as guidelines when
developing better control rules since the contest problems did not make full use of
the intended transportation scheme with transportation centers and hubs.

Nevertheless, the plans generated by TALplanner were of comparable quality
to those generated by SHOP2, the only other hand-tailored planner where the team
took the time to generate control knowledge for this complex domain (Figure 9.17).
TALplanner was also considerably faster than SHOP2 when generating these plans.

280 9.2. International Planning Competition 2002

Chapter 10
Discussion

In the final chapter of the planning section, it is time to take a step back for a critical
view of the work that has been done, the decisions that were made, and the lessons
that have been learned along the way. We start by inspecting the initial reason for
developing a new planner.

10.1 TALplanner and the WITAS Project

The original decision to take the step from the field of reasoning about action and
change (RAC) to the field of planning was grounded in the necessity for a fast and
expressive action planner in the WITAS unmanned aerial vehicle (UAV) project
(Doherty et al., 2004; Doherty, 2004; Merz, 2004; Doherty et al., 2000).

Developing an autonomous UAV is clearly a long-term project, where a great
number of different functionalities must be integrated into a single coherent archi-
tecture with support from higher level deliberative systems as well as lower level
control systems responsible for ensuring that the UAV remains stable under vary-
ing conditions. Though it would perhaps be possible in theory to first design a
complete architecture and then commence working on all subsystems in parallel,
integrating the entire system when the subsystems are ready, an incremental ap-
proach is far more likely to yield a satisfactory result. Such an approach involves
beginning with an architecture comprising the most essential subsystems, work-
ing on these subsystems and their integration until the system is sufficiently stable,
and then incrementally adding new subsystems and improving existing ones as re-
quired in order to extend the set of tasks that the autonomous system can perform.

Some of the first systems to be integrated into the WITAS UAV include the basic
control systems that allow the UAV to fly autonomously (and later also take off and
land autonomously, which is a considerably more difficult task), multiple naviga-
tion systems including GPS and inertial navigation allowing the UAV to determine

281

282 10.2. Hand-Tailored versus Fully Automated Planning

where it is relative to a given coordinate system, and image processing systems
that identify ground vehicles and allow the UAV to track such vehicles along road
networks. The current UAV architecture has also evolved to include a framework
for storing and accessing qualitative knowledge representing various aspects of the
environment that the UAV inhabits (Heintz & Doherty, 2005, 2004a, 2004b), a path
planner allowing the system to generate (and then fly) a path between its current
location and its destination given a map containing buildings and other objects to
be avoided (Pettersson, 2003; Pettersson & Doherty, 2004), and a chronicle recogni-
tion system that can be used to identify and classify the behaviour of other agents
in the environment (Heintz, 2001).

The system now provides a useful set of high-level operators that could be used
by an action planner, and consequently the time has come to integrate TALplan-
ner into the UAV architecture. In the first phase, this will merely require some
additional work in terms of interfacing the planner with the CORBA-based system
architecture, ensuring that the higher interface levels of the system can and do ac-
cess the planning functionality when this is relevant to the current mission, and of
course also creating a TAL-based model of the UAV domain at an appropriate level
of abstraction. Thereafter, another research phase will begin, aimed partly at deter-
mining which parts of UAV missions are best solved by traditional action planning
as opposed to more “hard-coded” solutions and partly at determining which as-
pects of the planner will need to be developed further in order to provide better
functionality to the UAV system. We expect the most challenging issues to arise
in the area of uncertainty: The UAV domain involves a great deal of uncertainty
regarding observed values as well as regarding the true effects of an action, and
exogenous events must be taken into account. Plans may have to support sens-
ing actions and may have to repeat actions until a desired result is achieved. Also,
the plan execution framework may have to be taken into account in the planning
phase, with explicit support for safety conditions. All of these are interesting future
research issues, and will also be discussed under “Future Work” below.

It remains to be seen whether all extensions that will be required in the future
can be cleanly integrated into the current TALplanner framework or whether more
extensive modifications will be required. Regardless of the eventual outcome, TAL-
planner has turned into an intensely interesting research topic in its own right.

10.2 Hand-Tailored versus Fully Automated Planning

As discussed previously, there is no binary distinction between hand-tailored and
fully automated planning. Many “fully automated” planners can be tuned for par-
ticular problems using configuration settings that affect various parameters con-
trolling the planning algorithm, and some may even be dependent upon such set-
tings for reasonable performance, while some “hand-tailored” planners can assist
in the generation of the secondary domain-specific information they require as in-

Chapter 10. Discussion 283

put. Nevertheless, it must be admitted that there is in general an additional effort
involved in using a hand-tailored planner.

Some may use this as a reason for questioning the existence of hand-tailored
planners, preferring to unconditionally follow a “pure” approach where a planning
algorithm only requires an absolute minimum of information in order to solve a
planning problem. Though we agree that fully automated planning is certainly an
interesting and worthy field of research, we believe there are several reasons why
hand-tailored planners may in some cases be a better short-term approach for an
applied research project and may in fact always be a step ahead of fully automated
planners in certain respects.

Our first argument relates to the fact that it may not be immediately obvious to
what extent a certain kind of information would be useful for a given planning al-
gorithm. Perhaps introducing this information would improve performance by or-
ders of magnitude for many common domain types, or perhaps the impact would
be negligible. In such cases, a hand-tailored planner can be seen as a temporary
step on the way towards full automation, where only that aspect of the planner
that makes use of the new information is implemented. If the information did
indeed turn out to be of use, the project can then proceed by implementing the
information-gathering aspect of the planner. This approach, which was used to test
whether introducing state invariants would improve the performance of the TAL-
planner formula optimizer, saves time and helps reduce the amount of time spent
researching what may turn out to be a dead end.

Even if it is in fact apparent that a certain kind of information would be useful,
it may be the case that the proper knowledge for a domain is immediately obvious
to a human but difficult to extract for a machine – or, more realistically, that finding
this information involves a not completely negligible amount of work for a human,
and that it requires a comprehensive understanding of the problem domain that we
cannot realistically expect to achieve algorithmically in the near or medium term.

If the gain from using this information is sufficiently large for a particular plan-
ning application, either in terms of speed or in terms of plan quality, the decision
between having or not having the information available may not be difficult. In our
experience with the temporal control formulas used by TALplanner, this has often
been the case.

Permitting the use of additional information to guide a planner may also allevi-
ate the need to restrict the expressivity of its domain definition language. There are
a multitude of interesting domain analysis techniques that assist fully automated
planners in reducing the complexity of the planning task or in finding heuristics or
other forms of guidance relevant to a particular fully automated search algorithm,
but in many cases such techniques appear to be founded on the assumption of
single-step operators, sequential planning, conjunctive preconditions, and/or the
ability to generate all ground instances of all facts and operators (Nebel et al., 1997;
Haslum & Jonsson, 2000; Fox & Long, 1998; Cresswell et al., 2002; Fox & Long,
2000b, 2000a, 2002; Gerevini & Schubert, 1998, 2000; Scholz, 2000; Rintanen, 2000b).

284 10.3. Using Control Rules

Allowing the domain designer to provide a certain amount of guidance will fa-
cilitate the task of stepping outside of the classical framework and preparing the
ground for richer and more expressive models of real-world planning domains.

10.3 Using Control Rules

If we accept the use of hand-tailored information as input to a planner, there is still a
question of what shape this information should take. TALplanner uses a set of con-
trol formulas that must be entailed by the final solution generated by the planner.
Our article on TALplanner in the third International Planning Competition (Kvarn-
ström & Magnusson, 2003), most of which is included as part of Chapter 9, includes
a number of domain-dependent control rules for the competition domains. Rather
than presenting an exhaustive list of pre-packaged control rules, we attempted to
place more emphasis on explaining the incremental analysis process that eventually
leads to the final formulas, going into particular detail for the ZenoTravel domain.

As could be seen in these examples, control rules are often simple, natural
common-sense rules, and not very difficult to generate given some basic knowl-
edge about the planning domain. Some rules are more complex, but still not dif-
ficult to understand or verify once someone has spent the effort to generate them.
And then, unfortunately, there are a few rules that are quite unintuitive, rules that
are too complex to be easily understood, and rules that occasionally forbid optimal
plans.

To some extent, such rules might be avoided by gaining more experience in
good practices for writing control rules, by extending the expressivity of the lan-
guage in which control rules are written so that complex conditions can be ex-
pressed more succinctly or in a more natural manner, or simply by spending a little
bit more time on the control rules than was available during the planning competi-
tion. However, another important cause for the complexity of certain rules is most
likely that we are attempting to express all search control knowledge in the same
way: As control rules that prune the search tree to such a great extent that even a
simple depth first search algorithm is sufficient for efficiently finding good plans in
the remainder of the tree.

Not all search control knowledge can easily be expressed in this manner, but
this certainly does not mean that control rules should be abandoned altogether.
Instead, what we learn from this experience is that control rules might not be the
one and only multi-purpose planning tool that will efficiently and easily solve all
our planning problems. Just like one would expect, they are one very useful tool
that deserves a place in our toolbox but should be combined with other approaches
to planning.

To mention one rather obvious example, it would be possible to devise a heuris-
tic forward-chaining planner whose search tree would be pre-pruned using control
rule techniques from TALplanner. Control rules could be written to exclude plans

Chapter 10. Discussion 285

where the heuristic gives a suboptimal result, potentially providing plans that are
closer to optimal, and even for domains where the heuristic search function pro-
vides good plans it may often be more efficient to state a number of constraints
as explicit control rules. This would also reduce the need to use extremely strong
control rules that provide strong guidance but may prevent the generation of op-
timal plans. For example, one of the standard logistics control rules states that no
packages should be unloaded from a plane until the final destination city has been
reached. If this rule is removed, packages will be unloaded from airplanes ran-
domly. If the rule is included in its current shape, it unfortunately also prevents
packages from being moved between airplanes at any time, even if this would lead
to better overall performance. A well-chosen heuristic function would most likely
yield better plans in such cases.

Also, we have noticed a tendency to generate unnecessary plan steps in certain
concurrent domains, where attempting to exclude these plan steps instead leads
to a decrease in flexibility and a potentially longer makespan. The Rovers domain
is a case in point. When a rover was not needed for a specific task, our control
rules allowed it to drive around aimlessly, which increased the number of actions
in each plan but may have shortened makespans slightly: When the planner saw
the need for a rover at a certain point, one of the free rovers might already be there.
Integrating a technique such as PbR, Planning by Rewriting (Ambite, 1998; Ambite
et al., 2000; Ambite & Knoblock, 2001), would allow such plans to be rewritten in
a post-processing step where unnecessary actions would be removed. Though this
particular case might be viewed as a patch for bad control rules, it would neverthe-
less be interesting to investigate the applicability of this combination for a larger
variety of domains.

Various combined planning techniques have been considered at least since some
time before the second planning competition in 2000, and it has long been clear
to us that such approaches should eventually be examined and explored. Before
we could start working on this, though, the strengths and weaknesses of control
rules had to be explored in more depth. Our work has therefore focused mostly on
investigating how far it is possible to take TALplanner in its current shape, with
explicit control rules being the only means for controlling the search process. This
work has proved rather fruitful in itself, and TALplanner did well in IPC-2000 as
well as in IPC-2002.

10.4 Using TAL in TALplanner

One primary requirement for being able to trust the solutions generated by a plan-
ner is the use of a well-defined domain modeling language with a formal semantics
for planning domains and problem instances.

TALplanner makes use of a modified version of the TAL-C logic for this pur-
pose, a choice that has served us well in most respects. In the first version of

286 10.4. Using TAL in TALplanner

TALplanner, TAL-C provided a suitable semantics for control rules, initial states,
goals, and sequential single-step operators. When it was time to extend the plan-
ner to support operators with extended duration, and concurrent plans, the formal
semantics was already available – and perhaps even more importantly, the intu-
itions and reasoning behind that semantics, which was developed within the field
of reasoning about action and change.

We must admit, though, that the use of an unmodified version of the common
TAL base logic L(FL) has occasionally been somewhat problematic. Providing a
proper semantics for recursively defined fluents would require an extension from
first-order to fixpoint logic, an extension that has been planned for some time but
does not belong within the TALplanner project itself. Modeling arbitrary goals
within the logic is trivial as long as only the planning algorithm has to refer to
those goals and test whether they are satisfied in a given plan candidate, but control
rules need the ability to test whether a formula is entailed by the goal, which cannot
easily be given a semantics within L(FL) when disjunctive and existential goals
are allowed. Resource effects are given a semantics partly outside the logic using
semantic attachment. An extended version of the base logic could remedy most or
all of these problems.

The use of TAL in TALplanner is closely related to the use of evaluation rather than
progression for control formulas. Both of these approaches have advantages and
disadvantages in terms of computational and conceptual complexity.

The process of extracting pruning constraints is conceptually somewhat more
complex than the use of progression in TLPlan. This complexity is especially ap-
parent when considering the analysis and optimization algorithms discussed in
Chapter 8. Also, certain types of control formulas using the U operator currently
cannot be integrated into the incremental pruning constraint framework, making
progression a better choice for such formulas.

On the other hand, control formulas that truly require the use of the U (until) op-
erator tend to be rare in our experience, and evaluating the optimized incremental
pruning constraints produced by TALplanner is often considerably more efficient
than progressing a control formula through all new states generated by an operator,
which is a strong point in favor of the use of formula evaluation. These optimiza-
tions are more difficult to apply to a progression algorithm, and would lead to a
hybrid technique that could no longer truly be called progression.

There is also no need to store a progressed control formula in each search node
when evaluation-based control is used, which saves considerable amounts of mem-
ory.

In recent work, these two approaches have been unified into a single planner
using both progressed tense control rules and evaluated TAL control rules. This
enables the user to take advantage of the relative strengths of each approach within
any planning domain.

Chapter 10. Discussion 287

10.5 Future Work

Before considering potential future work within the planning area, let us step back
and briefly recapitulate the work has already been presented.

The very first version of TALplanner, implemented during the first two months
of the project, was based on ideas from TLPlan. A new underlying formal seman-
tics was developed, based on the use of a modified version of TAL-C providing a
declarative semantics for all aspects of the planning process. The action model was
significantly extended to allow actions with extended temporal duration and ef-
fects at arbitrary timepoints during the execution of the action. TAL-based control
formulas were introduced, together with a method for testing such formulas incre-
mentally as a plan was being built. We developed a concurrent version of TAL-
planner and investigated several techniques for modeling non-interference con-
ditions for concurrent actions. Explicit resource constraints were introduced into
the modeling language. A general formula and term optimization framework was
developed and applied to incremental pruning constraints as well as other formu-
las. New operator analysis techniques were added to the optimization framework,
and the applicability of existing state transition analysis techniques was investi-
gated. Taken together, these techniques often allow the generation of new pre-
conditions from control formulas and improve the performance of the planner by
orders of magnitude for some domains. TALplanner has been empirically tested
at various points during its development and has participated in two international
planning competitions, winning the highest “distinguished planner” award in the
hand-tailored track of IPC-2000.

The main problem during the development of the planner has not been finding
interesting and fruitful research issues but prioritizing between all the different
directions our research could take.

For example, it has long been clear that there can be much to be gained by
combining the use of control rules with other planning techniques into a hybrid
planner, as discussed in Section 10.3.

TALplanner currently provides no optimality guarantees, neither in terms of
domain-independent measures such as plan length or makespan nor in terms of
problem-specific measures specified for each problem instance. In some sense, plan
quality can be improved by writing sufficiently good control rules that forbid plans
of low quality, but this approach is indirect and provides no optimality guarantees.
The very simplest approaches to generating optimal plans might involve applying
standard optimal search algorithms to the pruned search tree generated by TAL-
planner. Some preliminary work has already been done in this area, but further
research needs to be done to determine whether this simple approach is sufficient
or whether more complex optimization procedures need to be developed. There
are also ideas for new types of domain knowledge to be introduced into the plan-
ner which should improve the performance of optimal planning by providing con-

288 10.6. Acknowledgments

straints applied across multiple plans in addition to the current control rules which
only constrain the state sequence generated by a single plan.

In order to apply TALplanner to real-world dynamic domains such as the UAV
domain, support for incompletely defined initial states and incompletely specified
effects of actions will be very important. Though the planner has not yet been
extended in this direction, some of the underlying research related to querying
incomplete state structures has already been done by other researchers (Doherty,
Łukaszewicz, & Szałas, 2003b, 2003c, 2004a, 2004b, 2000, 2003a; Doherty & Sza-
łas, 2004; Doherty, Grabowski, Łukaszewicz, & Szałas, 2003; Doherty, Kachniarz, &
Szałas, 2003).

Many of these topics will be pursued in the future.

10.6 Acknowledgments

TALplanner research has been supported in part by the Wallenberg Foundation,
the Swedish Research Council for Engineering Sciences (TFR) and the ECSEL / EN-
SYM graduate studies program. Special thanks to Patrick Doherty, Patrik Haslum,
and Martin Magnusson, who have coauthored a number of papers on which this
part of the thesis is based.

Some of the figures in this part of the thesis were generated using TPVis, a do-
main visualization framework that can animate the movements of objects between
different locations and containers in order to give a better instinctive feeling for the
quality of the plans generated by a given set of control rules. TPVis was developed
by Martin Magnusson after IPC-2002.

Bibliography

Abadi, M., & Cardelli, L. (1996). A Theory of Objects. Monographs in Computer
Science. Springer-Verlag New York, Inc. See http://www.luca.demon.co.uk/

TheoryOfObjects.html.

Alur, R., Feder, T., & Henzinger, T. A. (1991). The benefits of relaxing punctuality. In
Proceedings of the Tenth ACM Symposium on Principles of Distributed Computing
(PODC-1991), pp. 139–152, Montréal, Canada. ACM Press. Available at http:
//www.cis.upenn.edu/~alur/Podc91.ps.gz.

Alur, R., & Henzinger, T. A. (1992). Back to the future: Towards a theory of timed
regular languages. In Proceedings of the 33rd IEEE Symposium on Founda-
tions of Computer Science (FOCS-1992), pp. 177–186, Pittsburgh, Pennsylva-
nia, USA. IEEE Computer Society Press, Los Alamitos-Washington-Brussels-
Tokyo. Updated version available at http://www-cad.eecs.berkeley.edu/~tah/
Publications/back_to_the_future.ps.

Ambite, J. L. (1998). Planning by Rewriting. Ph.D. thesis, University of Southern
California. Available at http://www.isi.edu/~ambite/thesis.ps.gz.

Ambite, J. L., & Knoblock, C. A. (2001). Planning by rewriting. Journal of Artificial
Intelligence Research, 15, 207–261. Available at http://www.jair.org/contents/
v15.html.

Ambite, J. L., Knoblock, C. A., & Minton, S. (2000). Learning plan rewriting rules.
In Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth
International Conference on Artificial Intelligence Planning and Scheduling (AIPS-
2000), pp. 3–12, Breckenridge, Colorado, USA. AAAI Press, Menlo Park, Cal-
ifornia, USA. Available at http://www.isi.edu/~ambite/2000-aips.ps.

Amir, E. (1999). Object-oriented first-order logic. Electronic Transactions on Artificial
Intelligence, 3, 63–84. Available at http://www.ep.liu.se/ej/etai/1999/008/.

Amir, E. (2000). (De)Composition of situation calculus theories. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Conference

289

290 Bibliography

on Innovative Applications of Artificial Intelligence (AAAI-2000 / IAAI-2000), pp.
456–463, Austin, Texas, USA. AAAI Press, Menlo Park, California, USA / The
MIT Press, Cambridge, Massachusetts, USA. Available at http://www.cs.uiuc.
edu/~eyal/papers/oo-sitcalc-aaai00.ps.

Anderson, C. R., Smith, D. E., & Weld, D. S. (1998). Conditional effects in Graph-
plan. In Reid G. Simmons, Manuela M. Veloso, S. S. (Ed.), Proceedings of the
Fourth International Conference on Artificial Intelligence Planning Systems (AIPS-
1998), pp. 44–53, Pittsburgh, Pennsylvania, USA. AAAI Press, Menlo Park,
California, USA.

Artale, A., & Franconi, E. (1998). A temporal description logic for reasoning about
actions and plans. Journal of Artificial Intelligence Research, 9, 463–506. Avail-
able at http://www.jair.org/contents/v9.html.

Bacchus, F. (2001). The AIPS’00 planning competition. AI Magazine, 22(3), 47–56. See
also http://www.aaai.org/Library/Magazine/Vol22/22-03/vol22-03.html and the
competition web page at http://www.cs.toronto.edu/aips2000/.

Bacchus, F., & Ady, M. (1999). Precondition control. Available at http://www.cs.
toronto.edu/~fbacchus/Papers/BApre.pdf.

Bacchus, F., & Kabanza, F. (1996a). Planning for temporally extended goals. In Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Conference on Innovative Applications of Artificial Intelligence (AAAI-1996 / IAAI-
1996), pp. 1215–1222, Portland, Oregon, USA. AAAI Press, Menlo Park, Cali-
fornia, USA / The MIT Press, Cambridge, Massachusetts, USA. Available at
ftp://newlogos.uwaterloo.ca/pub/bacchus/BKAAAI96.ps.gz.

Bacchus, F., & Kabanza, F. (1996b). Using temporal logic to control search in a for-
ward chaining planner. In Ghallab, M., & Milani, A. (Eds.), New Directions in
AI Planning, pp. 141–153. IOS Press, Amsterdam, The Netherlands. Available
at ftp://newlogos.uwaterloo.ca/bacchus/BKEWSP96.ps.gz.

Bacchus, F., & Kabanza, F. (1998). Planning for temporally extended goals. Annals
of Mathematics and Artificial Intelligence, 22, 5–27. Available at ftp://newlogos.
uwaterloo.ca/pub/bacchus/BKAMAI98.ps.gz.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 116(1–2), 123–191. Available at
ftp://newlogos.uwaterloo.ca/pub/bacchus/BKTlplan.ps.

Bäckström, C., & Klein, I. (1991). Planning in polynomial time: The SAS-PUBS class.
Computational Intelligence, 7(3), 181–197.

Blum, A. M., & Furst, M. L. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, 90(1–2), 281–300. Available at http://www-2.cs.cmu.edu/

~avrim/Papers/graphplan.ps.

Bonet, B., & Geffner, H. (1998). HSP: Heuristic search planner.. Available at http:
//www.ldc.usb.ve/~hector/.

Bibliography 291

Booch, G. (1991). Object-Oriented Design with Applications. The Benjamin / Cum-
mings Publishing Company, Inc.

Borgida, A., Brachman, R., McGuinness, D., & Resnick, L. (1989). CLASSIC: A struc-
tural data model for objects. In Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 58–67, Portland, Oregon, USA.

Brachman, R., Fikes, R., & Levesque, H. (1983). KRYPTON: A functional approach
to knowledge representation. Computer, 16, 67–73.

Carbonell, J. G., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C.,
Minton, S., Pérez, A., Reilly, S., Veloso, M., & Wang, X. (1992). Prodigy 4.0:
The manual and tutorial. Tech. rep. CMU-CS-92-150, School of Computer
Science, Carnegie Mellon University.

Cresswell, S., & Coddington, A. M. (2004). Adapting LPGP to plan with deadlines.
In de Mántaras, R. L., & Saitta, L. (Eds.), Proceedings of the Sixteenth Eureopean
Conference on Artificial Intelligence (ECAI-2004), pp. 983–984, Valencia, Spain.
IOS Press, Amsterdam, The Netherlands.

Cresswell, S., Fox, M., & Long, D. (2002). Extending TIM domain analysis to
handle ADL constructs. In McCluskey, T. L. (Ed.), Proceedings of the AIPS-
2002 Workshop on Knowledge Engineering Tools and Techniques for A.I. Plan-
ning. Available at http://www.cis.strath.ac.uk/research/publications/papers/

strath_cis_publication_80.pdf.

Currie, K., & Tate, A. (1991). O-Plan: The open planning architecture. Artificial
Intelligence, 52(1), 49–86.

de Kleer, J., & Brown, J. S. (1984). A qualitative physics based on confluences. Arti-
ficial Intelligence, 24(1–3), 7–83.

Doherty, P. (1994). Reasoning about action and change using occlusion. In Cohn,
A. G. (Ed.), Proceedings of the Eleventh European Conference on Artificial In-
telligence (ECAI-1994), pp. 401–405, Amsterdam, The Netherlands. John Wi-
ley and Sons, Chichester, England. Available at ftp://ftp.ida.liu.se/pub/labs/
kplab/people/patdo/ecai94.ps.gz.

Doherty, P. (1996). PMON+: A fluent logic for action and change, formal specifica-
tion, version 1.0. Tech. rep. LITH-IDA-96-33, Department of Computer and
Information Science, Linköping University, Linköping, Sweden. Available at
http://www.ida.liu.se/publications/techrep/96/tr96.html.

Doherty, P. (2004). Advanced research with autonomous unmanned aerial vehi-
cles. In Dubois, D., Welty, C., & Williams, M.-A. (Eds.), Proceedings of the Ninth
International Conference on Principles of Knowledge Representation and Reason-
ing (KR-2004), pp. 731–732, Whistler, British Columbia, Canada. AAAI Press,
Menlo Park, California, USA. Extended abstract for plenary talk.

Doherty, P., Grabowski, M., Łukaszewicz, W., & Szałas, A. (2003). Towards a frame-
work for approximate ontologies. Fundamenta Informaticae, 57(2-4), 147–165.

292 Bibliography

Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman,
E., & Wiklund, J. (2000). The WITAS unmanned aerial vehicle project. In
Horn, W. (Ed.), Proceedings of the Fourteenth European Conference on Artificial
Intelligence (ECAI-2000), pp. 747–755, Berlin, Germany. IOS Press, Amsterdam,
The Netherlands.

Doherty, P., & Gustafsson, J. (1998). Delayed effects of actions = direct effects +
causal rules. Linköping Electronic Articles in Computer and Information Science,
3. Available at http://www.ep.liu.se/ea/cis/1998/001.

Doherty, P., Gustafsson, J., Karlsson, L., & Kvarnström, J. (1998). TAL: Temporal
Action Logics – language specification and tutorial. Electronic Transactions on
Artificial Intelligence, 2(3–4), 273–306. Available at http://www.ep.liu.se/ej/etai/
1998/009/.

Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., & Wingman, B. (2004). A
distributed architecture for intelligent unmanned aerial vehicle experimen-
tation. In Alami, R. (Ed.), Proceedings of the Seventh International Symposium
on Distributed Autonomous Robotic Systems (DARS-2004), Toulouse, France.
Springer-Verlag.

Doherty, P., Kachniarz, J., & Szałas, A. (2003). Using contextually closed queries
for local closed-world reasoning in rough knowledge databases. In Pal, S.,
Polkowski, L., & Skowron, A. (Eds.), Rough-Neuro Computing: Techniques for
Computing with Words, Cognitive Technologies, chap. 9, pp. 219–250. Springer-
Verlag New York.

Doherty, P., & Kvarnström, J. (1998). Tackling the qualification problem using flu-
ent dependency constraints: Preliminary report. In Khatib, L., & Morris, R.
(Eds.), Proceedings of the Fifth International Workshop on Temporal Representation
and Reasoning (TIME-1998), pp. 97–104, Los Alamitos, California, USA. IEEE
Computer Society Press.

Doherty, P., & Kvarnström, J. (1999). TALplanner: An empirical investigation of a
temporal logic-based forward chaining planner. In Dixon, C., & Fisher, M.
(Eds.), Proceedings of the Sixth International Workshop on Temporal Representation
and Reasoning (TIME-1999), pp. 47–54, Orlando, Florida, USA. IEEE Computer
Society Press. Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/

time99-�nal.ps.gz.

Doherty, P., & Kvarnström, J. (2001). TALplanner: A temporal logic-based planner.
AI Magazine, 22(3), 95–102. See also http://www.aaai.org/Library/Magazine/

Vol22/22-03/vol22-03.html.

Doherty, P., & Łukaszewicz, W. (1994). Circumscribing Features and Fluents: A
fluent logic for reasoning about action and change. In Gabbay, D. M., &
Ohlbach, H. J. (Eds.), Proceedings of the First International Conference on Tem-
poral Logic (ICTL-1994), Vol. 827 of Lecture Notes in Artificial Intelligence, pp.
82–100. Springer Verlag London.

Bibliography 293

Doherty, P., Łukaszewicz, W., & Szałas, A. (2000). Efficient reasoning using the local
closed-world assumption. In Cerri, S. A., & Dochev, D. (Eds.), Proceedings of
the Ninth International Conference on Artificial Intelligence: Methodology, Systems
and Applications (AIMSA-2000), Vol. 1904 of Lecture Notes in Artificial Intelli-
gence, pp. 49–58, Varna, Bulgaria. Springer-Verlag.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2003a). Approximation transducers
and trees: A technique for combining rough and crisp knowledge. In Pal, S.,
Polkowski, L., & Skowron, A. (Eds.), Rough-Neuro Computing: Techniques for
Computing with Words, Cognitive Technologies, chap. 8, pp. 189–218. Springer-
Verlag New York.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2003b). Information granules for intelli-
gent knowledge structures. In Wang, G., Liu, Q., Yao, Y., & Skowron, A. (Eds.),
Proceedings of the Ninth Internationall Conference on Rough Sets, Fuzzy Sets, Data
Mining, and Granular Computing (RSFDGrC-2003), Vol. 2639 of Lecture Notes in
Artificial Intelligence, pp. 405–412, Chongqing, China. Springer-Verlag.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2003c). Tolerance spaces and approx-
imative representational structures. In Günter, A., Kruse, R., & Neumann,
B. (Eds.), Proceedings of the 26th Annual German Conference on Artificial Intelli-
gence (KI-2003), Vol. 2821 of Lecture Notes in Artificial Intelligence, Hamburg,
Germany. Springer.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2004a). Approximative query tech-
niques for agents using heterogeneous ontologies. In Dubois, D., Welty, C.,
& Williams, M.-A. (Eds.), Proceedings of the Ninth International Conference on
Principles of Knowledge Representation and Reasoning (KR-2004), pp. 459–468,
Whistler, British Columbia, Canada. AAAI Press, Menlo Park, California,
USA.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2004b). Approximative query tech-
niques for agents with heterogeneous perceptual capabilities. In Svensson,
P., & Schubert, J. (Eds.), Proceedings of the Seventh International Conference on In-
formation Fusion (Fusion-2004), pp. 175–182, Stockholm, Sweden. International
Society of Information Fusion, Mountain View, California, USA.

Doherty, P., & Szałas, A. (2004). On the correspondence between approximations
and similarity. In Tsumoto, S., Slowinski, R., Komorowski, J., & Grzymala-
Busse, J. W. (Eds.), Proceedings of the Fourth International Conference on Rough
Sets and Current Trends in Computing (RSCTC-2004), Vol. 3066 of Lecture Notes
in Artificial Intelligence, Uppsala, Sweden. Springer-Verlag.

Edelkamp, S., & Hoffmann, J. (2004). PDDL2.2: The language for the classical part of
the fourth international planning competition. Tech. rep. 195, Albert Ludwigs
Universität, Institut für Informatik, Freiburg, Germany. Available at http://
www.mpi-sb.mpg.de/~ho�mann/publications.html.

294 Bibliography

Emerson, E. A. (1990). Handbook of Theoretical Computer Science, volume B: Formal
Models and Semantics, chap. Temporal and Modal Logic, pp. 997–1072. Elsevier
and MIT Press.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). UMCP: A sound and complete proce-
dure for hierarchical task-network planning. In Hammond, K. J. (Ed.), Pro-
ceedings of the Second International Conference on Artificial Intelligence Planning
Systems (AIPS-1994), pp. 249–254, Chicago, Illinois. AAAI Press, Menlo Park,
California, USA.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3–4), 189–208.

Finger, J. J. (1987). Exploiting Constraints in Design Synthesis. Ph.D. thesis, Stanford
University, Stanford, California, USA.

Fourman, M. P. (2000). Propositional planning. In Proceedings of the AIPS-2000 Work-
shop on Model-Theoretic Approaches to Planning. Available at http://homepages.

inf.ed.ac.uk/mfourman/tools/propplan/PlanningPaper/Planning.pdf.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM.
Journal of Artificial Intelligence Research, 9, 367–421. Available at http://www.
jair.org/contents/v9.html.

Fox, M., & Long, D. (1999). The detection and exploitation of symmetry in planning
problems. In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-1999), pp. 956–961, Stockholm, Sweden.
Morgan Kaufmann Publishers, San Francisco, California, USA.

Fox, M., & Long, D. (2000a). Automatic synthesis and use of generic types in plan-
ning. In Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of
the Fifth International Conference on Artificial Intelligence Planning and Scheduling
(AIPS-2000), pp. 196–205, Breckenridge, Colorado, USA. AAAI Press, Menlo
Park, USA.

Fox, M., & Long, D. (2000b). Utilizing automatically inferred invariants in graph
construction and search. In Chien, S., Kambhampati, S., & Knoblock, C. A.
(Eds.), Proceedings of the Fifth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-2000), pp. 102–111, Breckenridge, Colorado,
USA. AAAI Press, Menlo Park, California, USA.

Fox, M., & Long, D. (2001a). PDDL+ level 5: An extension to PDDL2.1 for modelling
planning domains with continuous time-dependent effects. Available at http:
//www.dur.ac.uk/d.p.long/pddllevel5.ps.gz.

Fox, M., & Long, D. (2001b). PDDL2.1: An extension to PDDL for expressing tempo-
ral planning domains. Available at http://www.dur.ac.uk/d.p.long/pddl2.ps.gz.

Fox, M., & Long, D. (2002). Extending the exploitation of symmetries in planning. In
Ghallab, M., Hertzberg, J., & Traverso, P. (Eds.), Proceedings of the Sixth Interna-

Bibliography 295

tional Conference on Artificial Intelligence Planning and Scheduling (AIPS-2002),
pp. 83–91, Toulouse, France. AAAI Press, Menlo Park, California, USA.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing tem-
poral planning domains. Journal of Artificial Intelligence Research, 20, 61–124.
Available at http://www.jair.org/contents/v20.html.

Gerevini, A., & Schubert, L. K. (1998). Inferring state constraints for domain-
independent planning. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence
Conference (AAAI-1998 / IAAI-1998), pp. 905–912, Madison, Wisconsin, USA.
AAAI Press, Menlo Park, California, USA / The MIT Press, Cambridge,
Massachusetts, USA.

Gerevini, A., & Schubert, L. K. (2000). Discovering state constraints in DIS-
COPLAN: Some new results. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Conference on Innovative Applications
of Artificial Intelligence (AAAI-2000 / IAAI-2000), pp. 761–767, Austin, Texas,
USA. AAAI Press, Menlo Park, California, USA / The MIT Press, Cambridge,
Massachusetts, USA.

Ghallab, M., Howe, A. E., Knoblock, C., McDermott, D., Ram, A., Veloso, M. M.,
Weld, D. S., & Wilkins, D. (1998). PDDL—the planning domain definition
language. Technical report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control, New Haven, Connecticut, USA.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers, San Francisco, California, USA.

Ginsberg, M. L., & Smith, D. E. (1988). Reasoning about action II: The qualification
problem. Artificial Intelligence, 35(3), 311–342.

Giunchiglia, E., & Lifschitz, V. (1995). Dependent fluents. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence (IJCAI-1995), pp.
1964–1969, Montréal, Québec, Canada. Morgan Kaufmann Publishers, San
Mateo, California, USA.

Green, C. (1969). Applications of theorem proving to problem solving. In Pro-
ceedings of the First International Joint Conference on Artificial Intelligence (IJCAI-
1969). Morgan Kaufmann.

Gupta, N., & Nau, D. S. (1992). On the complexity of blocks-world planning. Arti-
ficial Intelligence, 56(2-3), 223–254.

Gustafsson, J. (2001). Extending Temporal Action Logic. Ph.D. thesis, Linköping Stud-
ies in Science and Technology, Dissertation No. 689.

Gustafsson, J., & Doherty, P. (1996). Embracing occlusion in specifying the indirect
effects of actions. In Aiello, L. C., Doyle, J., & Shapiro, S. C. (Eds.), Proceedings
of the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR-1996), pp. 87–98. Morgan Kaufmann Publishers, San Francisco,

296 Bibliography

California, USA. Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/
�nal-kr96.ps.gz.

Gustafsson, J., & Kvarnström, J. (2001). Elaboration tolerance through object-
orientation. In Proceedings of the Fifth Symposium on Logical Formalizations of
Commonsense Reasoning (Common Sense-2001). Available at http://www.cs.nyu.
edu/faculty/davise/commonsense01/�nal/kvarnstrom.ps.

Gustafsson, J., & Kvarnström, J. (2004). Elaboration tolerance through object-
orientation. Artificial Intelligence, 153, 239–285.

Hanks, S., & McDermott, D. V. (1986). Default reasoning, nonmonotonic logics,
and the frame problem. In Proceedings of the Fifth National Conference on Arti-
ficial Intelligence (AAAI-1986), pp. 328–333, Philadelphia, Pennsylvania, USA.
Morgan Kaufmann Publishers, Los Altos, California, USA.

Haslum, P., & Jonsson, P. (2000). Planning with reduced operator sets. In Chien,
S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000),
pp. 150–158, Breckenridge, Colorado, USA. AAAI Press, Menlo Park, Califor-
nia, USA.

Heintz, F. (2001). Chronicle recognition in the WITAS UAV project – a preliminary
report.. Presented at the Swedish AI Society Workshop (SAIS), Skövde, Swe-
den.

Heintz, F., & Doherty, P. (2004a). DyKnow: A framework for processing dynamic
knowledge and object structures in autonomous systems. In International
Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems
(MSRAS-2004), Plock, Poland. Springer-Verlag.

Heintz, F., & Doherty, P. (2004b). Dyknow: An approach to middleware for knowl-
edge processing. Journal of Intelligent and Fuzzy Systems, 15(1), 3–13.

Heintz, F., & Doherty, P. (2005). DyKnow: A framework for processing dynamic
knowledge and object structures in autonomous systems. In Dunin-Keplicz,
B., Jankowski, A., Skowron, A., & Szczuka, M. (Eds.), Monitoring, Security,
and Rescue Techniques in Multiagent Systems, Advances in Soft Computing, pp.
479–492. Springer-Verlag Heidelberg.

Henschel, A., & Thielscher, M. (1999). The LMW traffic world in the fluent calculus..
Available at http://www.ida.liu.se/ext/etai/lmw/.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.
Available at http://www.jair.org/contents/v14.html; planner available at http:
//www.mpi-sb.mpg.de/~ho�mann/�.html.

Immerman, N. (1998). Descriptive Complexity. Texts in Computer Science. Springer-
Verlag New York.

Bibliography 297

Karlsson, L., & Gustafsson, J. (1999). Reasoning about concurrent interaction. Jour-
nal of Logic and Computation, 9(5), 623–650.

Karlsson, L., Gustafsson, J., & Doherty, P. (1998). Delayed effects of actions. In
Prade, H. (Ed.), Proceedings of the Thirteenth European Conference on Artificial
Intelligence (ECAI-1998), pp. 542–546, Brighton, UK. John Wiley and Sons,
Chichester, England. Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/

patdo/ecai98.ps.gz.

Kautz, H., & Selman, B. (1998). BLACKBOX: A new approach to the application
of theorem proving to problem solving. In Working notes of the Workshop on
Planning as Combinatorial Search (in conjunction with AIPS-1998), Pittsburgh,
Pennsylvania, USA. AAAI Press, Menlo Park, California, USA. See http://

www.cs.washington.edu/homes/kautz/satplan/blackbox/.

Kautz, H., & Selman, B. (1999). Unifying SAT-based and graph-based planning.
In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-1999), pp. 318–325, Stockholm, Sweden. Morgan
Kaufmann Publishers, San Francisco, California, USA. See http://www.cs.

washington.edu/homes/kautz/satplan/blackbox/.

Kibler, D., & Morris, P. (1981). Don’t be stupid. In Drinan, A. (Ed.), Proceedings of the
Seventh International Joint Conference on Artificial Intelligence (IJCAI-1981), pp.
345–347, Vancouver, British Columbia, Canada.

Koehler, J. (2000). Miconic 10 elevator domain web page.. http://www.informatik.

uni-freiburg.de/~koehler/elev/elev.html.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extending planning
graphs to an ADL subset. In Steel, S. (Ed.), Proceedings of the Fourth Euro-
pean Conference on Planning (ECP-1997), Vol. 1348 of Lecture Notes in Com-
puter Science, pp. 273–285, Toulouse, France. Springer-Verlag. Available at
http://www.mpi-sb.mpg.de/~ho�mann/papers/ecp97.ps.gz.

Koehler, J. (2001). From theory to practice: AI planning for high performance el-
evator control. In F. Baader, G. Brewka, T. E. (Ed.), Proceedings of the Joint
German/Austrian Conference on AI: Advances in Artificial Intelligence (KI-2001),
Vol. 2174 of Lecture Notes in Computer Science, pp. 459–462, Vienna, Austria.
Springer-Verlag.

Koehler, J., & Ottiger, D. (2002). An AI-based approach to destination control in
elevators. AI Magazine, 23(3), 59–78. See also http://www.aaai.org/Library/

Magazine/Vol23/23-03/vol23-03.html.

Koehler, J., & Schuster, K. (2000). Elevator control as a planning problem. In Chien,
S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000),
pp. 331–338, Breckenridge, Colorado, USA. AAAI Press, Menlo Park, Califor-
nia, USA.

298 Bibliography

Koubarakis, M. (1994). Complexity results for first-order theories of temporal con-
straints. In Doyle, J., Sandewall, E., & Torasso, P. (Eds.), Proceedings of the
Fourth International Conference on Principles of Knowledge Representation and Rea-
soning (KR-1994), pp. 379–390. Morgan Kaufmann Publishers, San Francisco,
California, USA.

Kvarnström, J. (1997–2005). VITAL. An on-line system for reasoning about action
and change using TAL. Software available at http://www.ida.liu.se/~jonkv/
vital/.

Kvarnström, J. (2002). Applying domain analysis techniques for domain-
dependent control in TALplanner. In Ghallab, M., Hertzberg, J., & Traverso,
P. (Eds.), Proceedings of the Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-2002), pp. 101–110, Toulouse, France. AAAI
Press, Menlo Park, California, USA.

Kvarnström, J., & Doherty, P. (2000a). Tackling the qualification problem using
fluent dependency constraints. Computational Intelligence, 16(2), 169–209.

Kvarnström, J., & Doherty, P. (2000b). TALplanner: A temporal logic based forward
chaining planner. Annals of Mathematics and Artificial Intelligence, 30, 119–169.

Kvarnström, J., Doherty, P., & Haslum, P. (2000). Extending TALplanner with con-
currency and resources. In Horn, W. (Ed.), Proceedings of the Fourteenth Euro-
pean Conference on Artificial Intelligence (ECAI-2000), Frontiers in Artificial In-
telligence and Applications, pp. 501–505, Berlin, Germany. IOS Press, Amster-
dam, The Netherlands. Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/
patdo/www-ecai.ps.gz.

Kvarnström, J., & Magnusson, M. (2003). TALplanner in the Third International
Planning Competition: Extensions and control rules. Journal of Artificial Intelli-
gence Research, 20, 343–377. Available at http://www.jair.org/contents/v20.html.

Lifschitz, V. (1987). Formal theories of action. In Brown, F. M. (Ed.), The Frame
Problem in Artificial Intelligence: Proceedings of the 1987 Workshop, pp. 35–58,
Lawrence, Kansas, USA. Morgan Kaufmann Publishers, Los Altos, California,
USA.

Lifschitz, V. (2000). Missionaries and cannibals in the causal calculator. In Proceed-
ings of the Seventh International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR-2000), pp. 85–96. Morgan Kaufmann Publishers, San
Francisco, California, USA.

Lin, F. (2001). A planner called R. AI Magazine, 22(3), 73–76. See also http://www.

aaai.org/Library/Magazine/Vol22/22-03/vol22-03.html.

Lin, F., & Reiter, R. (1994). State constraints revisited. Journal of Logic and Computa-
tion, 4(5), 655–678.

Bibliography 299

Long, D., & Fox, M. (1999). Efficient implementation of the plan graph in STAN.
Journal of Artificial Intelligence Research, 10, 87–115. Available at http://www.
jair.org/contents/v10.html.

Long, D., & Fox, M. (2003). The third international planning competition: Results
and analysis. Journal of Artificial Intelligence Research, 20, 1–59. Available at
http://www.jair.org/contents/v20.html.

McCain, N., & the Texas Action Group (1997). The causal calculator.. Available at
http://www.cs.utexas.edu/users/tag/cc/.

McCain, N., & Turner, H. (1995). A causal theory of ramifications and qualifica-
tions. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-1995), Montréal, Québec, Canada. Morgan Kaufmann Pub-
lishers, San Francisco, California, USA.

McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, pp. 75–91, London. Her
Majesty’s Stationary Office. Available at http://www-formal.stanford.edu/jmc/

mcc59.html.

McCarthy, J. (1980). Circumscription – a form of non-monotonic reasoning. Artificial
Intelligence, 13(1–2), 27–39. Reprinted in McCarthy (1990).

McCarthy, J. (1986). Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 28(1), 89–116. Reprinted in (McCarthy, 1990).

McCarthy, J. (1990). Formalization of common sense, papers by John McCarthy edited by
V. Lifschitz. Ablex.

McCarthy, J. (1998). Elaboration tolerance. In The 1998 Symposium on Logical Formal-
izations of Commonsense Reasoning (Common Sense-1998), London. Available at
http://www-formal.stanford.edu/jmc/elaboration.html.

McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4, 463–502.

McDermott, D. (1998). AIPS98 planning competition results. http://ftp.cs.yale.edu/
pub/mcdermott/aipscomp-results.html.

Merz, T. (2004). Building a system for autonomous aerial robotics research. In IFAC
Symposium on Intelligent Autonomous Vehicles (IAV-2004), Lisbon, Portugal. El-
sevier.

Morgenstern, L. (1998). Inheritance comes of age: Applying nonmonotonic tech-
niques to problems in industry. Artificial Intelligence, 103(1–2), 237–271.

Moss, C. (1994). Prolog++, The power of object-oriented and logic programming.
Addison-Wesley.

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wo, D., & Yaman,
F. (2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence
Research, 20, 379–404. Available at http://www.jair.org/contents/v20.html.

300 Bibliography

Nau, D. S., Cao, Y., Lotem, A., & Muños-Avila, H. (2001). The SHOP planning
system. AI Magazine, 22(3), 91–94. See also http://www.aaai.org/Library/

Magazine/Vol22/22-03/vol22-03.html.

Nau, D. S., Cau, Y., Lotem, A., & Muños-Avila, H. (1999). SHOP: Simple hierarchical
ordered planner. In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-1999), pp. 968–973, Stockholm, Swe-
den. Morgan Kaufmann Publishers, San Francisco, California, USA. Available
at http://www.cs.umd.edu/~nau/papers/shop-ijcai99.pdf.

Nebel, B., Dimopoulos, Y., & Koehler, J. (1997). Ignoring irrelevant facts and op-
erators in plan generation. In Proceedings of the Fourth European Conference on
Planning (ECP-1997), pp. 338–350, Toulouse, France.

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and
the Situation Calculus. In Brachman, R. J., Levesque, H. J., & Reiter, R. (Eds.),
Proceedings of the First International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-1989), pp. 324–332, Toronto, Ontario, Canada.
Morgan Kaufmann Publishers, San Mateo, California, USA.

Pettersson, P. O. (2003). Helicopter path planning using probabilistic roadmaps.
Master’s thesis, Linköping University. Available at http://www.ida.liu.se/

~peope/.

Pettersson, P. O., & Doherty, P. (2004). Probabilistic roadmap based path planning
for an autonomous unmanned aerial vehicle. In Proceedings of the ICAPS-2004
Workshop on Connecting Planning Theory with Practice. Fourteenth International
Conference on Automated Planning and Scheduling, ICAPS’2004. Available
at http://www.ida.liu.se/~peope/.

Rintanen, J. (2000a). Incorporation of temporal logic control into plan operators. In
Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI-
2000), pp. 526–530, Berlin, Germany. IOS Press, Amsterdam, The Netherlands.

Rintanen, J. (2000b). An iterative algorithm for synthesizing invariants. In Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence (AAAI-2000 / IAAI-
2000), pp. 806–811, Austin, Texas, USA. AAAI Press, Menlo Park, Califor-
nia, USA / The MIT Press, Cambridge, Massachusetts, USA. Available at
http://www.informatik.uni-freiburg.de/~rintanen/CV.html.

Sacerdoti, E. D. (1975). The nonlinear nature of plans. In Proceedings of the Fourth
International Joint Conference on Artificial Intelligence (IJCAI-1975), pp. 206–214,
Tiblisi, Georgia, USSR.

Sandewall, E. (1994). Features and Fluents: A Systematic Approach to the Representation
of Knowledge about Dynamical Systems, Vol. 1. Oxford University Press.

Sandewall, E. (1999). Logic modelling workshop: Communicating axiomatizations
of actions and change. Available at http://www.ida.liu.se/ext/etai/lmw.

Bibliography 301

Sandewall, E., & Rönnquist, R. (1986). A representation of action structures. In
Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-1986),
pp. 89–97, Philadelphia, Pennsylvania, USA. Morgan Kaufmann Publishers,
Los Altos, California, USA.

Scholz, U. (2000). Extracting state constraints from PDDL-like planning domains.
In Proceedings of the AIPS-2000 Workshop on Analyzing and Exploiting Domain
Knowledge for Efficient Planning, pp. 43–48.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. The MIT Press, Cambridge, Massachusetts, USA.

Shoham, Y. (1987). Nonmonotonic logics: Meaning and utility. In McDermott, J. P.
(Ed.), Proceedings of the Tenth International Joint Conference on Artificial Intelli-
gence (IJCAI-1987), pp. 388–393, Milan, Italy. Morgan Kaufmann Publishers,
Los Altos, California, USA.

Slaney, J., & Thiébaux, S. (2001). Blocks world revisited. Artificial Intelligence, 125(1-
2), 119–153.

Smith, D. E. (2003). The case for durative actions: A commentary on PDDL2.1.
Journal of Artificial Intelligence Research, 20, 149–154. Available at http://www.
jair.org/contents/v20.html.

Smith, D. E., & Weld, D. S. (1999). Temporal planning with mutual exclusion rea-
soning. In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-1999), pp. 326–337, Stockholm, Sweden.
Morgan Kaufmann Publishers, San Francisco, California, USA. Available at
ftp://ftp.cs.washington.edu/pub/ai/ijcai99-tgp.ps.

Störr, H.-P. (2001). Planning in the fluent calculus using binary decision diagrams.
AI Magazine, 22(3), 103–106. See also http://www.aaai.org/Library/Magazine/

Vol22/22-03/vol22-03.html and the BDDPlan web page at http://www.stoerr.
net/bddplan.html.

Tate, A. (1977). Generating project networks. In Reddy, R. (Ed.), Proceedings of
the Fifth International Joint Conference on Artificial Intelligence (IJCAI-1977), pp.
888–893, Cambridge, Massachusetts, USA.

Thielscher, M. (1996a). Causality and the qualification problem. In Aiello, L. C.,
Doyle, J., & Shapiro, S. C. (Eds.), Proceedings of the Seventh International Con-
ference on Principles of Knowledge Representation and Reasoning (KR-1996), pp.
51–62, Cambridge, Massachusetts, USA. Morgan Kaufmann Publishers, San
Francisco, California, USA.

Thielscher, M. (1996b). Qualification and causality. Tech. rep. TR-96-026, Interna-
tional Computer Science Institute (ICSI), Berkeley, California, USA.

Thielscher, M. (1997). Qualified ramifications. In Kuipers, B., & Webber, B. (Eds.),
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-

302 Bibliography

1997), Providence, Rhode Island, USA. The MIT Press, Cambridge, Massa-
chusetts, USA.

Thielscher, M. (1998). Introduction to the fluent calculus. Electronic Transactions
on Artificial Intelligence, 2(3–4), 179–192. Available at http://www.ep.liu.se/ej/
etai/1998/006/.

Veloso, M. M., Carbonell, J. G., Pérez, A., Borrajo, D., Fink, E., & Blythe, J. (1995).
Integrating planning and learning: The PRODIGY architecture. Journal of Ex-
perimental and Theoretical Artificial Intelligence, 7(1), 81–120.

Vere, S. A. (1983). Planning in time: Windows and durations for activities and goals.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 5(3), 246–
267.

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending graphplan to handle
uncertainty and sensing actions. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence and Tenth Innovative Applications of Artificial Intel-
ligence Conference (AAAI-1998 / IAAI-1998), pp. 897–904, Madison, Wisconsin,
USA. AAAI Press, Menlo Park, California, USA / The MIT Press, Cambridge,
Massachusetts, USA.

Wilkins, D. E. (1988). Causal reasoning in planning. Computational Intelligence, 4(4),
373–380.

Winograd, T. (1972). Understanding Natural Language. Academic Press.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Com-
piler and its Implications for Ideal Hardware,
1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File
Queries in a Meta-Database System 1978, ISBN
91-7372-232-4.

No 51 Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive De-
sign of Applications Software, 1980, ISBN 91-
7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in
a Well-Structured Pattern Matcher through Par-
tial Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The
Human-Computer Interface in Commercial
Systems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981, ISBN
91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability
in large Software Systems, 1982, ISBN 91-7372-
527-7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Com-
pilation,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-
7870-133-3.

No 165 James W. Goodwin: A Theory and System
for Non-Monotonic Reasoning, 1987, ISBN 91-
7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Auto-
mated Synthesis of VLSI Systems, 1987, ISBN
91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued
Logic of Quantified Belief, 1988, ISBN 91-7870-
374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for
an Object Oriented Knowledge Base, 1989, ISBN
91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description
and Verification Method, 1989, ISBN 91-7870-
517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN
91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Sup-
port and Discourse Management in User Inter-
face Management Systems, 1991, ISBN 91-7870-
720-X.

No 244 Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-7870-
746-3.

No 252 Peter Eklund: An Epistemic Approach to In-
teractive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN
91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992,
ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Ab-
stract Machines: Contributions to a Methodol-
ogy for the Implementation of Logic Programs,
1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of
Tense-bound Object References, 1992, ISBN 91-
7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic Func-
tions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-
078-2.

No 312 Arne Jönsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Mod-
elling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Problem-
atic Control Situations, 1995, ISBN 91-7871-603-
9.

No 413 Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Indus-
trial Training from an Organisational Learning
Perspective - Development and Evaluation of
the SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

No 437 Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-
9.

No 459 Olof Johansson: Development Environments
for Complex Product Models, 1996, ISBN 91-
7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions
in Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Pro-
gramming : A Multi-Level View of Query An-
swering, 1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrn-
ing - En studie av hur ekonomiska styrsys-
tem utformas och används efter företagsförvärv,
1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of
Requirements-Driven Impact Analysis in
Object-Oriented Software Evolution, 1997, ISBN
91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The
Cooperative Perspective on Knowledge-Based
Decision Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997,
ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri
Nets in a CLP framework, 1997, ISBN 91-7219-
011-6.

No 498 Thomas Drakengren: Algorithms and Com-
plexity for Temporal and Spatial Formalisms,
1997, ISBN 91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Het-
erogeneous Real-Time Systems, 1997, ISBN 91-
7219-035-3.

No 503 Johan Ringström: Compiler Generation for
Data-Parallel Programming Langugaes from
Two-Level Semantics Specifications, 1997, ISBN
91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och
flexibla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications,
1998, ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Pre-
vention - An Empirical Study in Software En-
gineering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN
91-7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for
Lazy Functional Languages, 1998, ISBN 91-
7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level
Synthesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data
- From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On
geographical dispersion in organisations, 1999,
ISBN 91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image Rein-
terpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organi-
zational Aspects of Requirements Engineering
Methods - A practice-oriented approach, 1999,
ISBN 91-7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class
Overload Management in Real-Time Database
Systems, 1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in
the Design of Information Systems and Services
in the Public Sector: A Methods Approach,
1999, ISBN 91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective
on the Analysis of Impacts of Information Tech-
nology: From Case Studies in Health-Care
towards General Models and Theories, 1999,
ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in
Computer-Supported Taskforce Training, 1999,
ISBN 91-7219-547-9.

No 607 Magnus Merkel: Understanding and enhanc-
ing translation by parallel text processing, 1999,
ISBN 91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sen-
sory data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture Per-
spective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i prak-
tiken - En studie av logiker i fyra projekt, 1999,
ISBN 91-7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interac-
tive Simulation, and Visualization of Object-
Oriented Models in Scientific Computing, 2000,
ISBN 91-7219-709-9.

No 637 Esa Falkenroth: Database Technology for Con-
trol and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowl-
edge Together: Information Systems Design for
Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level De-
sign for Testability Methodology, 2000, ISBN 91-
7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Ac-
tion Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information
Provision - Managing Mandatory and Discre-
tionary Use of Information Technology, 2001,
ISBN-91-7373-126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207
9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN
91 7373 208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Manage-
ment to Task Management in Electronic Mail,
2002, ISBN 91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach
to Intelligent Help for Web Information Sys-
tems, 2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-
ted Inter-organisational Collaboration - A Case
Study in the Swedish Public Sector, 2002, ISBN
91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for
Non-Profit Organisations - Extended Participa-
tory Design of an Information System for Trade
Union Shop Stewards, 2002, ISBN 91-7373-318-
0.

No 765 Stefan Holmlid: Adapting users: Towards a
theory of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for
Locating Errors in Constraint Logic Programs,
2002, ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication
Among Programmers Worldwide, 2002, ISBN
91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dy-
namic Systems Using a Logic-Based Frame-
work, 2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computa-
tional Complexity of Temporal Reasoning, 2002,
ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools,
2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En
studie av den Internetbaserade encyklopedins
bruksegenskaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination
of Complex Systems´ Development, 2003, ISBN
91-7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av in-
formationsystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics - pro-
gramming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of In-
formation Systems with GIS Functionality in
Public Health Informatics: A Requirements En-
gineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-
Time Garbage Collection, 2003, ISBN 91-7373-
666-X.

No 833 Paul Pop: Analysis and Synthesis of Communi-
cation-Intensive Heterogeneous Real-Time Sys-
tems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour
of Large Distributed Systems to Improve De-
velopment and Testing - An Empirical Study in
Software Engineering, 2003, ISBN 91-7373-779-
8.

No 867 Erik Herzog: An Approach to Systems En-
gineering Tool Data Representation and Ex-
change, 2004, ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Con-
trol: Studies in Complex Information Naviga-
tion for Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enter-
prise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of
Ontologies in Information-Providing Dialogue
Systems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for
Equation-Based Languages, 2004, ISBN 91-
7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Effi-
cient Monitoring of Events, 2004, ISBN 91-7373-
956-1.

No 883 Magnus Bång: Computing at the Speed of Pa-
per: Ubiquitous Computing Environments for
Healthcare Professionals, 2004, ISBN 91-7373-
971-5

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linquistic Elements in Spoken Swedish. Studies
of Productive Processes and their Modelling us-
ing Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Produc-
tion-inventory systems - Modellling and Analy-
sis in both a traditional and an e-business con-
text, 2004, ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Inter-
action, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between
Strategy and Management Control - Theoreti-
cal Framework and Empirical Evidence, 2004,
ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News:
Genre Perspectives on Interaction Design, 2004,
ISBN 91-85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN
91-85295-42-6.

No 920 Luis Alejandro Cortés: Verification and
Scheduling Techniques for Real-Time Embed-
ded Systems, 2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of
Fault-Tolerant Middleware, 2005, ISBN 91-
85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus:
Three Case Studies on Management Accounting
and Customer Relations, 2005, ISBN 91-85297-
64-X.

No 937 Jonas Kvarnström: TALplanner and Other Ex-
tensions to Temporal Action Logic, 2005, ISBN
91-85297-75-5.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering
- att skapa samstämmighet mellan informa-
tionssystemarkitektur och verksamhet, 1998.
ISBN-9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och använd-
barhet - en studie av datorstödd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos
informationssystem och affärsprocesser, 2000.
ISBN 91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier
för processbestämning vid verksamhetsanalys,
2001, ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssys-
tem i företag och nätverk, 2002, ISBN 91-7373-
278-8.

No 7 Pär J. Ågerfalk: Information Systems Actabil-
ity - Understanding Information Technology as
a Tool for Business Action and Communication,
2003, ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra sys-
temutvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens vär-
den - Effekter av IT i äldreomsorg, 2004, ISBN
91-7373-963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisa-
tions, 2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005,
ISBN 91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning
- Att organisera systemförvaltningsverksamhet
med hjälp av effektiva förvaltningsobjekt, 2005,
ISBN 91-85297-60-7.

