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ABSTRACT

A significant part of the software development effort is spent on detecting deviations between
software implementations and specifications, and subsequently locating the sources of such errors.
This thesis illustrates that is possible to identify a significant number of errors during static analy-
sis of declarative object-oriented equation-based modeling languages that are typically used for
system modeling and simulation. Detecting anomalies in the source code without actually solving
the underlying system of equations provides a significant advantage: a modeling error can be cor-
rected before trying to get the model compiled or embarking on a computationally expensive
symbolic or numerical solution process. The overall objective of this work is to demonstrate that
debugging based on static analysis techniques can considerably improve the error location and er-
ror correcting process when modeling with equation-based languages.

A new method is proposed for debugging of over- and under-constrained systems of equations.
The improved approach described in this thesis is to perform the debugging process on the flat-
tened intermediate form of the source code and to use filtering criteria generated from program
annotations and from the translation rules. Each time when an error is detected in the intermediate
code and the error fixing solution is elaborated, the debugger queries for the original source code
before presenting any information to the user. In this way, the user is exposed to the original lan-
guage source code and not burdened with additional information from the translation process or
required to inspect the intermediate code.

We present the design and implementation of debugging kernel prototypes, tightly integrated
with the core of the optimizer module of a Modelica compiler, including details of the novel
framework required for automatic debugging of equation-based languages.

This thesis establishes that structural static analysis performed on the underlying system of
equations from object-oriented mathematical models can effectively be used to statically debug
real Modelica programs. Most of our conclusions developed in this thesis are also valid for other
equation-based modeling languages.

This work has been supported by the EU Realsim (Real-time Simulation for Design of Multi-physics
Systems) project ,the Vinnova VISP (Virtuell Integrerad Simuleringsstödd Produktframtagning) pro-
ject, MathCore AB, KK-stiftelsens företagsforskarskola i Linköping and the ECSEL (Excellence Cen-
ter for Computer Science and Systems Engineering in Linköping) Graduate School.
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Notation

The following notation is employed in this thesis:

),( EVG = Normal undirected graph with nodes set V and edge set E.

),,( 21 EVVG = Bipartite graph with bipartitions 1V and 2V and edge set E.
(see Definition 4-1 page 38)

)(GΜ The incidence matrix of G. (see Definition 4-2 page 38)

)(
1

GvV The vertex set 1V of a graph G. 1)(
1

VGvV = .

)(
2

GvV The vertex set 2V of a graph G. 2)(
2

VGvV = .

)(Gv The vertex set of a graph G. In the case of a bipartite graph .

21)()()(
21

VVGvGvGv VV +=+= .

)(Gε The edge set of a graph G. In the case of a bipartite graph

EG =)(ε

),( vuGε The set of edges joining vertex u to vertex v in graph G.
P
GM Perfect matching associated to the bipartite graph G.

(see Definition 4-8 page 39)
max
GM Maximum cardinality matching associated to the bipartite graph G.

(see Definition 4-4 page 39)
k
GM matching with k edges associated to the bipartite graph G.

(see Definition 4-3 page 39)

)( P
GMℑ The family of all perfect matchings associated to the bipartite graph G

(see Definition 4-15 page 40)

|)(| P
GMℑ The number of all perfect matchings associated to the bipartite graph G

)( GMw The weight of a matching. (see page 109)

},,,{ 211 kvvvV …= kvvv ,,, 21 … vertices of the first bipartition of G.
(see Definition 4-1 page 38)

},,,{ 212 kuuuV …= kuuu ,,, 21 … vertices of the second bipartition of G.
(see Definition 4-1 page 38)
};|),{( 21 VvVuvuE ∈∈= The set of edges corresponding to the bipartite graph G.

};|),{( 21 VvVuvuE ∈∈= The set directed edges from bipartition 1V to bipartition 2V .

};|),{( 21 VvVuvuE ∈∈= The set directed edges from bipartition 2V to bipartition 1V .

};|),{( 21 VvVuvuE ∈∈= The set of bidirectional edges EEE ∪= .
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}),(;),(|),{( EvuEvuvuE ⊆∃⊆∃= the set of directed edges .

),,( 21 EVVG = Directed bipartite graph with edge orientation from 1V to 2V .

),,( 21 EVVG = Directed bipartite graph with edge orientation from 2V to 1V .

),,( 21 EVVG = Directed bipartite graph with all the edges bidirectional.

),,( 21 EVVG = Directed bipartite graph.

),( vu A matching edge )(),( GMvu ε∈ .
(see Definition 4-5 page 39)

}),(),(),,(,),({ 222111 kk vuvuuvvuP �= representation of an alternating path.
(see Definition 4-10 page 39)

)adj(v The list of adjacent nodes of a vertex v. (see Definition 4-6 page 38)

)(vincE The list of incident edges with vertex v. (see Definition 4-6 page 38)

)target( e The target node of a directed edge e.

)source(e The source node of a directed edge e.

vu →* A path from vertex u to vertex v.
(see Definition 4-9 page 39)

vu →= An alternating path from vertex u to vertex v.
(see Definition 4-10 page 39)

+k
GO Over-constrained subgraph associate to the bipartite graph G with k

nodes not covered by the maximum matching max
GM .

(see Algorithm 4-1 page 44)
−k

GU Under-constrained subgraph associate to the bipartite graph G with k
nodes not covered by the maximum matching max

GM .
(see Algorithm 4-1 page 44)

GW Well constrained subgraph associate to the bipartite graph G.
(see Algorithm 4-1 page 44)

)deg(v Degree of vertex v, the number off edges incident to that vertex.
(see Definition 4-12 page 39)



1

Chapter 1

Introduction

Summary: This introductory chapter provides a general overview of this thesis on the
topic of debugging declarative object-oriented equation-based languages. The research
problem is identified, followed by a formulation of the main research objective. The
main contributions of the thesis are also stated and the content of subsequent chapters
is briefly sketched.

1.1 Introduction to Modeling and Simulation
Environments

Simulation models are increasingly being used in problem solving and decision-making
since engineers, when building new products, need to analyze and understand complex
and heterogeneous physical systems. In advanced equation-based simulation environ-
ments that employ equation-based languages, users create models through a graphical
user interface (GUI) or by writing custom modeling source code.

The facility of using an integrated GUI in the form of a Model Editor (see Figure
1-1) allows simulation practitioners and knowledge engineers to express problems in
terms which they are familiar. Therefore, when employing a Model Editor minimal
knowledge of programming languages is needed and typing is kept to a minimum. The
basic functionality of a Model Editor is the selection of components from ready-made
libraries, to connect components in model diagrams, and to enter parameter values for
different components. More complex simulation models can be built by simply combin-
ing available library models. Some of the model libraries cover application areas such
as mechanics, electronics, hydraulics and pneumatics. These libraries are primarily in-
tended to tailor the simulation environment towards a specific domain by giving model-
ers access to common model elements and terminology from that domain.

Instead of using a GUI, certain applications and most library models are written with
the help of a special kind of programming languages called mathematical modeling
languages. In order to support mathematical modeling and simulation, a number of ob-
ject-oriented and/or declarative acausal modeling languages have emerged. The advan-
tage of an acausal modeling language over traditional languages is that the user can
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concentrate on the logic of the problem rather than on a detailed algorithmic implemen-
tation of the simulation model. The models can be created in a textual environment and
then transferred to the model editor for a graphical view of the model, or vice versa.
The ability of specifying user-defined libraries of reusable components in a modeling
language and its graphical representation supports model management and evolution of
models of large systems.

Figure 1-1. Screen shot of the Model Editor of the MathModelica simulation envi-
ronment.

Based on the two kinds of interaction with the modeling and simulation environment
we can differentiate between two distinct categories of users:

• Application developers who mostly interact with the environment through a
graphical user interface such as a model editor.

• Library developers or advanced users who extend the simulation capabilities of
the environment by writing new library models specified in a modeling lan-
guage.

1.2 Overview

The high level of abstraction of equation-based models presents new challenges to
modeling and simulation tools, because of the large gap from the declarative specifica-
tion to the executable machine code. The process of translating models to efficient code
becomes considerably more involved. This abstraction gap leads to difficulties in find-
ing and correcting model inconsistencies and errors, not uncommon in the process of
developing complex physical system models.
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A typical problem that appears in physical system modeling and simulation is when
too many equations are specified in the system, leading to an inconsistent state of the
simulation model. In such situations numerical solvers fail to find correct solutions to
the underlying system of equations. The user should be able to deal with over-
determined systems of equations by identifying the minimal set of equations that should
be removed from the system in order to make the remaining set of equations solvable.
For example, let us consider a physical system simulation model specified in a declara-
tive object-oriented equation-based modeling language that consists of several hundreds
of classes resulting in several thousands of equations. However, one of these equations
over-constrains the overall system making it impossible to simulate. It can easily be
imagined that, if a static debugger presents a small subset of over-constraining equa-
tions, from where the user can select the equation that needs to be eliminated from the
overall model in order to form a structurally well posed simulation, this can greatly re-
duce the amount of time required to get the simulation working.

Currently there are essentially no advanced tools that can handle the debugging of
equation-based languages at the source code level and provide useful error fixing solu-
tions. The aim of the research presented in this thesis is to improve considerably the
situation, especially with respect to debugging the Modelica language. In fact, the re-
search presented is one of the first major efforts to solve this problem.

To address this need, in this thesis we propose a methodology for declarative debug-
ging of equation-based languages by adapting graph decomposition techniques for rea-
soning and performing structural analysis of the underlying systems of equations. De-
tecting anomalies in the source code without actually solving the underlying system of
equations and constraints provides a significant advantage: a modeling error can be cor-
rected before embarking on a computationally expensive symbolic or numerical solu-
tion finding process and get the model through the compiler. Another problem to be ad-
dressed is to map error conditions in the executing simulation code or in the
intermediate code back to the places in the model where the problem originated. This is
currently problematic mostly due to the abstraction gap mentioned earlier. A model part
may influence multiple places in the executable code due to several transformational
stages in the translation process.

Our effort has also been targeted to automate as much as possible the debugging
process and the software maintenance tasks involving declarative equation-based lan-
guages. In this thesis we have restricted our approach to static analysis even if the de-
bugging process also involves a dynamic part. This is our first step in providing a com-
plete debugging environment for the Modelica language. Debugging performed during
static analysis has also been a choice influenced by efficiency criteria. Usually in a
large simulation model, compiling the model is computationally expensive and most of
the information that might be used to derive useful error messages has already been lost
during the translation and optimization phases of the compilation process.

We have also tried to attach user-oriented program analysis modules to an existing
simulation environment for the purpose of program understanding. Visualizing data
structure abstractions and transformation graphs related to the transformation and com-
pilation process turns out to be very useful for understanding the behavior and proper-
ties of complex simulation models. The program understanding modules have also
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given useful hints on how to improve future versions of the Modelica compiler, espe-
cially the optimizing part of the compiler.

Our intent was to target all the user categories of the Modelica language environ-
ments by proposing a multilevel debugging environment. Error fixing solutions can be
provided at:

• The diagram model level for end-users.
• The source code level for library developers.
• The intermediate code level for researchers and Modelica compiler developers

by visualizing the data structures and graph-based abstractions.

By achieving this, the developed tool has turned out to be useful for detecting and
automatically debuging over and under-constrained situations for software maintenance
and restructuring tasks of the existing model libraries as well as for compiler construc-
tion related research purposes.

The main challenge has been to integrate a debugger as closely as possible into exist-
ing compiler architectures and to operate on the same intermediate code as the com-
piler. The integration of the debugger at the intermediate code level has made possible
the automated debugging for certain classes of erroneous situations especially for cer-
tain over-constrained systems. When automatic debugging is not possible, obviously
user intervention is necessary, which is achieved by presenting several error-fixing so-
lutions to the user where the presentation is prioritized on the basis of annotations and
language semantics filtering schemes and algorithms.

1.3 The Research Objective

The overall objective of this work is to demonstrate that debugging based on static
analysis techniques can considerably improve the error finding process when modeling
with object–oriented declarative equation-based languages. In order to realize this ob-
jective it is necessary to investigate new methods and to adapt traditional debugging
techniques to the debugging of such languages. The developed methods should be in-
dependent of the choice of equation-based language. However, our first target language
is Modelica and its associated simulation environments.

We also formulate a general statement of the thesis that will be motivated in the fol-
lowing chapters:

Simulation practitioners and programmers can perform faster model develop-
ment if a tool is provided that identifies erroneous models and provides de-
bugging alternatives. Such a tool will also increase the understandability and
acceptance of the language.

In (Ducassé and Noyé 1994 [30]) it is emphasized that users are reluctant to use a pro-
gramming language without an appropriate programming environment. Even though
many currently available equation-based modeling languages have been reported in the
literature, most of the associated programming environments give little or no attention
to the debugging problem. In particular there is no support for structural analysis tech-
niques for debugging and program understanding. Use of inappropriate models or
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model parameters may result in erroneous simulation results. Many of the modeling
equation-based languages such as Modelica have been developed recently and some-
times need to follow a long acceptance process from the technical communities that
they target. With that in mind, we have tried to enhance the debugging technology of
the Modelica language, first by solving problems that are usually encountered during
static analysis. Support for run-time debugging of executing simulations including the
numerical solvers will be the next obvious step in providing a better interactive envi-
ronment for the Modelica language.

Since the concept of debugging equation-based languages in the context of simula-
tion environments is new, the greatest challenge for the thesis is to find new abstraction
criteria for this special debugging process and to adapt well-known abstractions from
the debugging community such as program slicing, data flow or control flow. The
acausality of the equation-based languages makes such criteria hard to find or hard to
adapt. Old criteria are mostly based on some sort of flow in the language. Some results
presented in this thesis are very well known in graph theory but seem to have been ig-
nored in the debugging community. We have tried to adapt those results to serve the
goal of helping the debugging environment in providing useful error messages to the
users.

The objective of this thesis is to bring the latest advances from the areas of debug-
ging and program analysis to develop a powerful framework that will permit the inte-
gration of debugging tools into equation-based simulation environments. These debug-
ging tools should be easy to use for a variety of end users of the simulation systems,
ranging from normal application-oriented users to advanced library developers.

1.4 Contributions

The proposed debugging approach and debugging framework allows more complex ap-
plications to be simulated. We show how, by taking advantage of the simulation prob-
lem structure, it is often possible to extract additional information that can be used for
debugging purposes.

The direct contributions of this thesis are as follows:

• The thesis illustrates that it is possible to identify a significant number of errors
during static analysis of declarative object-oriented equation-based modeling
languages. In this way certain numerical failures can be avoided later during the
execution process.

• A new method is proposed for debugging of over- and under-constrained sys-
tems of equations. The improved approach described in this thesis is to perform
the debugging process on the flattened intermediate form of the source code and
to use filtering criteria generated from program annotations and from the trans-
lation rules itself. An important advantage of both of the implemented debugger
prototypes is that they operate on the same intermediate form of the source code
as the one used by the compiler, and therefore the analyzed program does not
need be recompiled for debugging purposes. If a unique solution to the over-



6 Chapter 1 Debugging Over-Constrained Systems

constraining and under-constraining problems is found, automatic error fixing is
possible.

• The properties of over-constrained bipartite graphs with multiple sources are
analyzed from the mathematical and combinatorial point of view. The general
debugging framework is further improved by employing several structural
analysis techniques.

• In the case of under-constrained systems level-based debugging approach is
proposed where the user can select different analysis levels when analyzing er-
ror fixing solutions for such systems.

• Development of an integrated debugging kernel tightly integrated with the core
of the optimizer module of the compiler for supporting the Modelica-based
modeling and simulation environments. Nevertheless, most of our conclusions
developed in this thesis are valid for other equation-based modeling languages.

• This thesis establishes that the result of structural static analysis performed on
the underlying system of equations can effectively be used to statically debug
real programs.

The main contributions of this thesis are further discussed and compared to the related
work in Chapter 11.

1.5 Thesis Outline

Given the overview and the goal of this work, the rest of this thesis is organized as fol-
lows:

Chapter 2 starts with a discussion regarding debugging of programming languages and
associated environments with an emphasis on algorithmic automated techniques devel-
oped in recent years. The particularities of debugging declarative equation-based lan-
guages are also given and the main characteristics that a debugging tool should satisfy
are presented.

Chapter 3 presents some important language characteristics and compilation techniques
that are typical to declarative object-oriented languages. A brief survey of a number of
declarative object-oriented equation-based languages is given, before presenting Mode-
lica in more detail. Modelica is gently introduced by small modeling and simulation ex-
amples, models which will constitute the benchmarks for evaluating the proposed de-
bugging techniques in the following chapters.

Chapter 4 discusses the basic concepts of graph and combinatorial theory used in the
thesis. The key concepts are defined, such as bipartite graphs, directed bipartite graphs,
adjacency matrices, and matchings in bipartite graphs. The canonical decomposition al-
gorithm for bipartite graphs is introduced here. Several graph theoretic algorithms are
also introduced. A detailed knowledge of concepts in this chapter is a prerequisite for
the following chapters.

Chapter 5 provides some algorithms for detecting and debugging over-constrained
situations that arise during the modeling phase with equation-based languages. It
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mainly describes graph-based algorithms for detecting over-constrained situations. The
combinatorial explosion of the potential solutions found by the debugger at the inter-
mediate code level is filtered by annotations and semantics constraints generated during
the translation phase of the language. Several over-constrained simulation examples are
given in order to illustrate the applicability of the proposed debugging algorithms.

Chapter 6 introduces the debugging of under-constrained simulation models by present-
ing algorithms that handle those situations. The combinatorial explosion of the number
of solutions found by a debugger attached to the intermediate code level is even greater
than in the case of over-constrained situations. For this reason automatic algorithmic
debugging is greatly obstructed in these situations and enhanced user interaction is nec-
essary. Debugging of under-constrained systems at several depth levels is introduced.

Chapter 7 extends the debugging framework developed in the previous two chapters by
introducing structural analysis methods for handling differential algebraic equations of
higher index. Some shortcomings of the structural analysis methods employed for ap-
proximating the differential index of differential algebraic equations are also presented
here.

Chapter 8 presents the overall architecture of the two implemented debuggers and how
these debuggers can be integrated into different simulation environments. Details on
particular developed kernels are also given here.

Chapter 9 briefly surveys related work. This chapter is divided into two parts: the first
part surveys related work from the constraint programming community when the em-
phasis is on partial satisfaction of constraints and in detection of over- and under-
constrained problems. The second part surveys related work done in the area of struc-
tural analysis, diagnosability of object-oriented modeling systems, as well as debugging
and verification modules attached to simulation environments.

Chapter 10 presents an evaluation of our debugging framework based on existing us-
ability criteria developed for algorithmic automated debugging.

Chapter 11 finally summarizes the conclusions of the research, the problems left unan-
swered, and the future work.

1.6 Origins of the Chapters

Many of the chapters in this thesis are revised versions of publications that have ap-
peared elsewhere:

1. Bunus Peter and Peter Fritzson. “The Need for Debugging Tools for Declarative
Equation Based Simulation Languages”. In Proceedings of the 2000 Summer
Computer Simulation Conference (Vancouver, B.C. Canada, Jul. 16-20, 2000).

2. Bunus Peter and Peter Fritzson. “DEVS-based Multi-Formalism Modeling and
Simulation in Modelica”. In Proceedings of the 2000 Summer Computer Simula-
tion Conference (Vancouver, B.C. Canada, Jul. 16-20, 2000).



8 Chapter 1 Debugging Over-Constrained Systems

3. Bunus Peter, Vadim Engelson. and Peter Fritzson. ”Mechanical Models Transla-
tion, Simulation and Visualization in Modelica”. In Proceedings of Modelica
Workshop 2000 (October 23-24 Lund, Sweden).

4. Bunus Peter and Peter Fritzson. “Applications of Graph Decomposition Tech-
niques to Debugging Declarative Equation Based Languages”. In Proceedings
of the 2001 SIMS Conference (Telemark University College, Porsgrunn, Nor-
way, Oct. 8-9, 2001).

5. Bunus Peter and Peter Fritzson. ”An Interactive Environment for Debugging
Declarative Equation Based Languages”. In Proceedings of the International
Workshop on User-Interaction in Constraint Satisfaction. (Paphos, Cyprus, Dec
1, 2001)

6. Bunus Peter and Peter Fritzson. ”A Debugging Scheme for Declarative Equation
Based Languages” In Proceedings of the 4th International Symposium on Practi-
cal Aspects of Declarative Languages. (Portland, OR, USA, January 2002)
LNCS 2257, Springer Verlag, 2002

7. Fritzson Peter and Peter Bunus ”Modelica, a General Object-Oriented Language
for Continuous and Discrete-Event System Modeling and Simulation." In Pro-
ceedings of the 35th Annual Simulation Symposium (San Diego, California,
April 14-18, 2002)

8. Bunus Peter and Peter Fritzson. "Methods for Structural Analysis and Debug-
ging of Modelica Models." In Proceedings of the 2nd International Modelica
Conference (March 18-19, Munich Germany). 2002.

9. Fritzson Peter, Peter Aronsson, Peter Bunus, Vadim Engelson, Henrik
Johansson, Andreas Karström, Levon Saldamli. "The Open Source Modelica
Project" In Proceedings of the 2nd International Modelica Conference (18-19
March, Munich Germany) 2002.

10. Fritzson Peter and Peter Bunus. "Modelica – A Declarative Object Oriented
Multi-Paradigm Language" In Proceedings of the Workshop on Multiparadigm
Programming with Object Oriented Languages (MPOOL'02) (June 11, Malaga,
Spain 2002).

11. Bunus Peter and Peter Fritzson. "Semantics Guided Filtering of Combinatorial
Graph Transformations in Declarative Equation Based Languages". To appear in
Proceedings to 2nd International Workshop on Source Code Analysis and Ma-
nipulation SCAM2002 (Montreal Canada, October 1st 2002).

12. Bunus Peter and Peter Fritzson. "Algorithmic Automated Debugging for De-
clarative Equation Based Languages." Paper draft to be submitted to the Interna-
tional Workshop of Automated and Algorithmic Debugging (AADEBUG 2003)
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Chapter 2

The Need for Debugging

"Computer science still seems to be looking for the
magic bullet that will cause people to write correct pro-
grams without having to think. Instead, we need to
teach people how to think"

Kirk L. Kroeker COMPUTER Vol. 32, No. 5: MAY 1999, pp. 48-
57 Software Revolution: A Roundtable

Summary. In this chapter we briefly survey the debugging process and establish the
need for debugging of declarative equation-based languages. We also survey some ex-
isting techniques and usability criteria developed especially for automated debugging
systems. The motivation for integrating different debugging functionalities, techniques
and new methods in a programming environment for declarative equation-based lan-
guages are briefly discussed. This is also our first attempt to sketch the main character-
istics and properties of such debugging tools.

2.1 Introduction

A significant part of the software development effort is spent on detecting deviations
between software implementations and specifications, and subsequently localizing the
sources of such errors. Several studies have been conducted to see how much time goes
into debugging. According to (Parasoft 1997 [94]) the debugging phase of software
development takes 60-70% of the overall development time and debugging is
responsible for 80% of all software projects overruns. In (Robson et. al. 1991 [101]) it
is indicated that programmers spend 50-90% of their debugging time comprehending
existing programs. Other studies indicate that the debugging problem is constantly
ignored by the computer science community (Lieberman 1997 [77]). Based on these
facts we should attach substantial importance to the debugging phase during all the
stages of the software development process. This will require the development of new
programming environment tools for program comprehension as well as new and
improved debugging techniques. Recently developed debugging tools would be
especially important and beneficial for long-term improvement of the software-
development process.
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Sophisticated engineering systems are inherently complex. Mathematical modeling
and simulation of complex physical systems is emerging as a key technology in engi-
neering. Modern approaches built on acausal equation-based methodologies and object-
oriented constructs facilitate reusability of modeling knowledge. Declarative equation-
based languages and their associated modeling and simulation environments represent
an emerging software technology that provides an original approach to simulation. Effi-
cient and flexible simulation of physical systems is achieved by combining implemen-
tations of library components in the same formalism. Such languages have been de-
signed to allow automatic generation of efficient simulation code from declarative
specifications.

A major objective is to facilitate exchange of models, model libraries, and simulation
specifications. Equation-based declarative programming presents new challenges in the
design of programming environments. In order for these languages to achieve wide-
spread acceptance, associated programming environments and development tools must
become even easier to use. Inevitably, the use of these languages adds several difficul-
ties to the debugging problem, difficulties that are briefly summarized in the following
sections.

2.2 The Debug Paradigm

In (IEEE Std 610.12-1990 [62]) the following definition of the debug process can be
found:

Debug. To detect, locate, and correct faults in a computer program. Tech-
niques include the use of breakpoints, desk checking, dumps, inspection, re-
versible execution, single-step operations, and traces.

As can be seen from the above definition, debugging is a three-stage process. The first
stage in the debugging process is fault detection, an operation that is mainly achieved
with the help of software testing (Myers 1979 [89]) or formal verification. Obviously
the second stage is to correctly locate the bug, which is not an easy task mostly due to
the cause-effect gap between the time when an error occurs and the time when the error
becomes apparent to the programmer (Lencevicius 2000 [76]). Another problem is to
map the error back to the source code from where it originated. For example, source
level debuggers of optimized code are often unable to report the expected values of a
source variable at the breakpoint location (Jaramillo et al. 2000 [63]). The last stage in
the debugging process is obviously fault correction when a located fault needs to be
corrected in order to accommodate the system behavior according to its specification.

Several methodology paradigms have been proposed for each of the debugging
stages mentioned above. In this thesis we propose a complete debugging framework
that will handle all the stages mentioned above for debugging declarative equation-
based languages. The proposed debugging framework in this thesis is based on auto-
matic debugging techniques with the main goal to keep user interaction to a minimum.
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2.2.1 Automated Debugging Techniques

The concept of algorithmic automated debugging originates from the declarative logic
programming community (Shapiro 1982 [110]). Automated debuggers employ some
kind of knowledge in order to successfully carry out the debugging process (Ducassé
1993 [29]). This is based on the nature of the knowledge and on the strategy that is
employed. In (Ducassé 1993 [29]) algorithmic debuggers are classified into three main
categories: verification with respect to specifications, checking with respect to language
knowledge, and filtering with respect to a symptom.

• Verification with respect to specification: this strategy compares the actual pro-
gram with some formal specification of the intended program. The main disad-
vantage of this approach is the missing formal specification for most of the pro-
grams even if in recent years enormous progress has been made to automate the
process of formulation program specifications by using machine learning ap-
proaches to discover formal specifications in the original code (Ammons et al.
2002 [4]). The extracted specifications can be used later by automatic verifica-
tion tools to find bugs. An example of a related system is the SLAM project
(Ball and Rajamani 2002 [11]), (Ball and Rajamani 2001 [10]) that checks tem-
poral safety properties of sequential C programs and require that the checked
properties are encoded in a language called SLIC (Specification Language for
Interface Checking).

• Checking with respect to language knowledge. This technique is based on
automatic tools that parse the program under analysis and searches for language
dependent errors. The disadvantage of this strategy is that it does not assume
any code to be correct. Therefore all the program code needs to be checked,
which can be extremely costly for large programs, in terms of computer time.
Another disadvantage is that this technique only relies on knowledge of the
programming language. Subtle bugs, primarily those that appear during execu-
tion, are not detected.

• Filtering with respect to symptom. This strategy is effective in reducing the
amount of analysed code. Program slicing is a well known technique to reduce
the search space for program errors and focus the debugging process on the
parts of the program that are influenced by the bug symptom (Weiser 1982
[122]). This technique is effective for imperative languages (Kamkar 1993 [73])
and well suited for declarative languages, e.g. successful implementation of
program slicing have been reported in the literature for logic programming lan-
guages (Szilágyi et. al. 2002 [112]) where dependencies in logic programs and
proof trees are defined in terms of slices. Execution traces and proof trees have
been successfully adapted to the debugging of lazy functional languages by us-
ing Evaluation Dependence Trees (EDT) that abstract from the operational de-
tails such as evaluation order, instead emphasizing the source code structure of
the program (Nilsson 1998 [90]).
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2.2.2 Usability Criteria for Automated Debugging

In (Shahmehri et. al. 1995 [109]) the classification of automated debugging systems is
based on and is influenced by the type of information given to the debugger (intended
and actual program, I/O data, subject language, common bugs, application domain and
general programming expertise) and as well as the type of tasks performed by the
automated debugger (test generation, bug detection, bug localization, bug explanation,
bug correction). It is also mentioned that no existing automated debugging system uses
all these kinds of knowledge. The situation has not changed very much since the publi-
cation of the usability criteria from (Shahmehri et. al. 1995 [109]) even if highly auto-
mated debugging systems have appeared latter (Ball and Rajamani 2002 [11]), (Ball
and Rajamani 2001 [10]), (Zeller and Hildebrandt [127][85]), (Cleve and Zeller 2000
[26]) (Lencevicius 2000 [76]).

The following four user-oriented usability criteria for automated debugging systems
have been identified in (Shahmehri et. al. 1995 [109]).

• Generality. The generality property of automated debugging systems state that
an automatic tool should not be limited only to a specific type of bug, it should
provide error detection and error fixing solutions for a large variety of bugs.

• Cognitive plausibility. The debugging process should follow the user's mental
model of the program under analysis. Studies conducted on cognitive processes
of programmers engaged in software debugging have revealed multiple-level
backward chaining mechanisms for goal management. A three-level cognitive
process model is accepted by the above-mentioned studies (Hale et. al. 1999
[55]) (Hale and Haworth 1991 [56]).

o First level problem solving. This level only involves the execution of sim-
ple rules to directly eliminate a program bug once the error has been lo-
cated. First the program is evaluated and a rule that will eliminate an ob-
served error is generated. At the second stage of this first level, the
correction is implemented and the program is verified to see if the error has
been successfully eliminated

o Second level problem solving. This level is triggered when it is not possible
to find a rule to be executed. In this case a secondary goal needs to be es-
tablished instead of the primary goal. The secondary goal is refined and es-
tablished by automatically acquiring new knowledge about the problem
that will then allow the application of a direct rule.

o Third level problem solving. This level is executed if all the actions plans
used for defining the secondary goal at the second level have failed to pro-
duce a direct rule. At this stage new information is gathered that would
help to create new action plans necessary for the second level problem
solving

The study has also revealed the recursive manner in which programmers en-
gaged in the debugging process attack those problems for which solutions can-
not be diagnosed directly. Automated debugging tools should help users to
move gradually from the third level of problem solving to the first level.
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• Degree of automation. Automating the process of bug finding by keeping the
user intervention to a minimum will very much enhance the practicality of the
debugging approach. The user should be consulted only when it is necessary to
eliminate ambiguous situations.

• Appreciation of user expertise. Users of software systems usually have different
levels of expertise. An automatic debugging tool should address both beginners
and advanced users. For both user categories it is also necessary and useful to
provide detailed explanations for the encountered bugs, not just only error fix-
ing solutions. In this way the software debugging process can be transformed
into a learning and a tutoring session that will provide the user with the neces-
sary information and knowledge that will help him/her to avoid the same error
in the future.

We will evaluate our developed debugging tool in Chapter 10, based on the above men-
tioned usability criteria.

2.3 The Equation-Based Debugging Paradigm

Traditional approaches to debugging are inadequate and inappropriate for solving the
error location problem in equation-based languages. The fundamental problem is that
conventional debuggers and debugging techniques are based on observation of execu-
tion events as they occur. For example, most of the commercially available debuggers
implement the breakpoint paradigm giving the user the possibility of stopping the exe-
cution of a program and eventually continuing the execution step by step through the
control flow of the language (Rosenberg 1996 [102]). This method is especially effec-
tive for those bugs that are immediately manifested after the execution of the faulty
statement. The acausality of equation-based languages renders the breakpoint method
inappropriate for such languages. In the same manner, the declarativeness of such lan-
guages eliminates the use of program execution traces as a debugging guide.

When attempting to debug equation-based languages, most environments give some
misleading information about the underlying equations or variables of the simulation
model. The semantics of equation-based programs is different from the common im-
perative execution model, which directly implies that the notion of error is declarative.
The same notion of declarative error also applies to constraint and logic programming
environments (Aggoun et. al. 1997 [2]). Debuggers for such declarative languages
should not require the user to have knowledge of the procedural behaviour of the run-
ning system during the interaction phase. However, unfortunately, to make serious use
of many existing debugging tools for declarative languages the user is required to have
intimate knowledge of the language translation process from the declarative form to the
procedural form as well as knowledge of numerical solvers. Making abstractions of all
underlying information concerning the translation and the execution of declarative
specification in the context of a debugging tool is not always possible. In such cases,
tools for visualizing the translation process in a simple manner, understandable for us-
ers with limited knowledge of compiler internals, need to be developed.
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For example, the declarative object-oriented way of describing systems and their be-
havior offered by the Modelica language is at a higher level of abstraction than the
usual object-oriented programming style since some implementation details can be
omitted. Users do not need to write code to explicitly transport data between objects
through assignment statements or message passing code. Such code is generated auto-
matically by the Modelica compiler based on the given equations. This property is
called the "acausality" of the language and adds another dimension to the debugging
problem.

Debugging is difficult because an error is not local but can affect many completely
different fragments of model code. Typical errors that are caused by incorrect models
are missing (or extra) variables or missing (or extra) equations. These lead to over-
constrained or under constrained equation systems that cannot be solved. Methods to
discover and fix such errors need to be developed based on graph theory and the latest
achievements in constraint programming theory.

System diagnosability is a characteristic property of a system design. This is facili-
tated by component library design features and specific domain knowledge associated
with these libraries. Taking into account the characteristics of the domain libraries, an
extra reasoning layer can be added to the debugging environment, which can help in
further detection of design flaws. All these factors contribute to enhance system diag-
nosability.

Modeling with components in component-based languages is sometimes difficult be-
cause many semantic properties that should be obeyed during the design are not formal-
ized in the language. For instance, an electric circuit can be created from arbitrary com-
ponents, but simulation of the circuit is possible only if a ground component has been
included in the circuit. There exist rules that users of the components should follow in
order to create semantically, mathematically, and physically correct models. If these
rules are not followed, the model may include non-matching number of equations and
variables, or alternatively at run-time during simulation, a solution cannot be found or
the found solution makes no sense from the physical point of view.

Equation-based languages are still rather hard to debug. This is to a large extent due
to the equation-based language properties mentioned previously. Currently there are es-
sentially no tools that can handle debugging of equation-based languages. We believe
that debugging is an essential phase in the process of modeling and simulation using a
declarative equation-based languages, as well as for other languages.

2.4 Requirements for a Debugging Tool for Equation-
Based Languages

This section describes the declarative program errors that the debugger should help to
identify. Once the error has been correctly located, this should be presented to the user
in an understandable way. In conclusion we can formulate some main characteristics of
an equation-based debugger in a modeling and simulation environment:

• Declarative debugging should be fully supported: knowledge of the procedural
behaviour of the running program should not be required from the user. If this
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cannot be avoided, an appropriate abstraction needs to be found to explain the
error to the user.

• The user should be exposed to the original language source code and not bur-
dened with additional information from the translation process or required to in-
spect the intermediate code.

• The debugger should support different user categories (beginners and advanced
users) and present error fixing solutions at different abstraction levels (graphical
diagram or original source code level).

• The error fixing solutions should refer to manipulating original source code
statements or graphical abstractions of the source code.

• The differential algebraic equations (DAE) and partial differential equations
(PDAE) in the language constructs bring an additional set of mathematical and
numerical issues, which inevitably lead to requirements on the debugging sup-
port. Static methods to deal with structural analysis of differential and algebraic
equations should be developed and integrated into the debugging tools.

• The possibility to present advanced abstractions of the translation process re-
lated to the intermediate code. This feature is extremely useful and provides
valuable information for programming language researchers. Having a complete
picture of the intermediate code and being able to visualize it can improve deci-
sions in future implementation of optimized compilers.

• The amount of user interaction needs to be kept at a minimum. The user should
be consulted only when needed to eliminate ambiguous situations.

Graphic model editors in modeling and simulation environments help the user to gener-
ate and refine simulation models, to store, to group and to reuse them. From the user's
point of view, the graphical editors add another view of the modeling language that lies
beneath. Graphical model editors are responsible for almost all the interaction of end
users who create models out of model components from model libraries. Therefore a
careful selection of the debugging information needs to be made and presentation of the
error fixing solutions, if possible, at the graphical level. Error fixing solutions that in-
volve adding or removing components or manipulation of object connectors can easily
be moved to this level of abstraction.

The end user who limits his/her interaction with the simulation environment to the
graphical model editor should not be exposed to the underlying code. For most ad-
vanced users, such as library developers who develop and extends their model at the
source code level, moving the error fixing solutions to another abstraction level such as
the graphical modeling environment is not desirable. Therefore a debugging tool should
have the flexibility of moving error fixing solutions between one abstraction level to
another and have the possibility to easily adapt to the needs of different user categories.
An important issue, once the error has been correctly located is where the error fixing
information should be presented to the users and what amount of information is re-
quired to explain the error. We have identified the following presentation levels for er-
ror messages:

• Error presentation at the graphical level. As many as possible of the error mes-
sages should be presented at the model editor level. Erroneous components
should be highlighted, wrong connections should be drawn in a different color.
If user intervention is required to change the behavior of a component by re-
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moving or adding equations, it should be done through carefully elaborated
graphical user interfaces.

• Error presentation at the library-developer level. The library developers using
equation-based modeling and simulation systems work at the declarative lan-
guage source level. They interact with the system at the source code editor
level. Any attempt to provide error messages at the graphical model editor level
is contra-productive for them. All the interaction should be limited at the source
code level. They also require more detailed explanation of the bugs. Prompt
feedback should be given by the environment when over- and under-constrained
situations are encountered in the system by in the source code editor highlight-
ing the over-constraining equation or indicating the component where an equa-
tion should be added for under-constrained situations respectively. At this level,
information well beyond the declarative specification makes sense such as do-
main specific information or numerical solver details.

• Advanced error presentation. This level is useful for language and compiler
construction researchers. Detailed information about the process of translating
declarative to procedural code can be given. Information related to the interme-
diate code symbolic transformations and numerical optimisations can be pre-
sented. Graphs that represent the abstraction of the flattened equations can also
be shown and it is extremely useful when visualizing optimisations and code
transformations in modeling language compilers.

In the simulation community, there is a strong demand for graphical tools which are
considered to be the best way to provide an intuitive description of what is happening.
Integration of software visualization techniques such as algorithm animation and typo-
graphic source code presentation are aimed at transforming the debugging process into
a "cognitively accessible multimedia experience" (Baecker et. al. 1997 [8]). A visual
environment can contribute significantly to the understandability of modeling lan-
guages to be addressed. Moreover, the integration of source code editors with debug-
gers needs to be substantially improved. Several tools will offer the possibility of study-
ing the program behavior from different points of view in order to help the user to
understand the simulation model behavior and to find inconsistencies in the model
specifications.
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Chapter 3

Object-Oriented Equation-Based
Modeling Languages

Summary: This chapter surveys some important object-oriented equation-based model-
ling languages and their associated environments. All of the languages surveyed in this
chapter constitute possible target implementations for our debugging framework even if
our implementation first focuses on solving the debugging problem for the Modelica
language and its associated environments. Whenever possible, we give concrete lan-
guage usage examples in order to illustrate the main syntactic and semantic concepts
employed by these kinds of modeling languages. The most important object-oriented
concepts of those languages are also presented with corresponding detailed examples
given in Modelica. This chapter covers only those language features that are necessary
to understand the ideas presented in this thesis.

3.1 Declarative Equation Based Languages and
Simulation Environments

Many object-oriented equation-based languages have originated in engineering com-
munities especially where natural laws are usually stated as equations and extreme
flexibility and reusability of equations is highly valued. The brief survey of the lan-
guages and associated environments below concentrates more on the compositional as-
pects such as object-orientation and hierarchical structuring of models rather than on
numerical simulation related aspects.

Most of these modeling languages are integrated in visual modeling programming
environments where components are grouped into libraries and represented by model
diagrams. Model diagrams make modeling languages easier to use by making concise
physical components readily available and allowing users to select those components
through the simple act of pointing, picking, and dropping the components into the
graphical editing window. Inside the graphical modeling environment the connections
between components can also be specified by drawing simple lines between the connec-
tion ports of the components. Visual modeling environments are not required by model-
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ing languages but they contribute to ease of use of such language. The more compli-
cated the physical model to be simulated, the more likely it is to benefit from a visual
modeling interface.

3.1.1 Modelica

Modelica is a new language for hierarchical object-oriented physical modeling which is
being developed through an international effort (Modelica Assoc. 2002 [84]), (Fritzson
and Bunus 2002 [41]), (Modelica Assoc. 2000 [85]), (Elmqvist et al. 1999 [35]), and
(Fritzson and Engelson 1998 [42]). The language unifies and generalizes previous ob-
ject-oriented modeling languages. Modelica is intended to become a de facto standard.
The language has been designed to allow tools to generate efficient simulation code
automatically with the main objective of facilitating exchange of models, model librar-
ies and simulation specifications. It allows defining simulation models in a declarative
manner, modularly and hierarchically and combining various formalisms expressible in
the more general Modelica formalism. The multidomain capability of Modelica gives
the user the possibility to combine electrical, mechanical, hydraulic, thermodynamic,
etc., model components within the same application model. Compared to other model-
ing languages available today, Modelica offers four important advantages from the
simulation practitioner's point of view:

• Acausal modeling based on ordinary differential equations (ODE) and differen-
tial algebraic equations (DAE). There is also ongoing research to include partial
differential equations (PDE) in the language syntax and semantics (Saldamli et.
al. 2002 [107]).

• Multi-domain modeling capability, which gives the user the possibility to com-
bine electrical, mechanical, thermodynamic, hydraulic etc., model components
within the same application model.

• A general type system that unifies object-orientation, multiple inheritance, and
generics templates within a single class construct. This facilitates reuse of com-
ponents and evolution of models.

• A strong software component model, with constructs for creating and connect-
ing components. Thus the language is ideally suited as an architectural descrip-
tion language for complex physical systems, and to some extent for software
systems.

The language is strongly typed and there are no side effects of function calls. However,
local assignments are allowed in the algorithmic part of the language. The reader of the
thesis is referred to (Modelica Assoc. 2002 [84]), (Modelica Assoc. 2000 [85]), and
(Tiller 2001 [114]) for a complete description of the language and its functionality from
the perspective of the motivations and design goals of the researchers who developed it.
Those interested in shorter overviews of the language may wish to consult (Fritzson
2002 [43]) (Fritzson and Bunus 2002 [41]), (Elmqvist et al. 1999 [35]) and (Fritzson
and Engelson 1998 [42]). More details about the Modelica language, including several
modeling examples, will be provided later in this chapter.
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3.1.2 Object-Oriented Biomedical System Modeling (OOBSML)

The OOBSML project (Hakman 2000 [54]) has been developed at Uppsala University
Hospital aimed at the development of a biomedical continuous system modeling lan-
guage. The OOBSML (Hakman and Groth 1999 [52]) (Hakman and Groth 1999 [53]) is
fully object-oriented and supports model inheritance, encapsulation, and model compo-
nent instantiation. Besides the traditional differential and algebraic equation expressions
the language also includes formal expressions for documenting models and defining
model quantity types and quantity units. It supports explicit definition of model input,
output and state quantities, model components and component connections. The
OOBSML model compiler produces self-contained, independent, executable model
components that can be instantiated and used within other OOBSML models and/or
stored within model and model component libraries. In this way complex models can be
structured as multilevel, multi-component model hierarchies. Technically the model
components produced by the OOBSML compiler are executable computer code objects
based on distributed object and object request broker technology (Pope 1997 [97]). The
most basic concept of the OOBSML language is the model concept. A model encapsu-
lates system knowledge and information related to the purpose of modeling such as: in-
put and output quantities, state quantities, types and units, and model behavior repre-
sented by algebraic and differential equations.

The syntax of the language very much resembles Omola (Andersson 1992 [5])
(Mattson and Andersson 1992 [82]). A simple example of a two compartment model
used for medical simulation is taken from (Hakman 2000 [54]) in order to illustrate the
syntax employed by the language.

model TwoCompWitMetabolism: TwoComp has
inputs

Vmeta: reaction_rate [mol/L/h]
outputs

Fmeta: substance_flow [mol/h]
behaviour Dynamic is
begin

Np'=Fpo-Fop+Fpe-Fep+Fmeta
Fmeta=Vmeta *Vp

end Dynamic
end TwoCompWitMetabolism

3.1.3 VHDL-AMS

The VHDL-AMS language (Christen and Bakalar 1999 [25]) is a hardware description
language that has been developed to support the modeling of analog, digital, mixed-
signal and mixed-technology systems. The language extends the IEEE standard digital
design language VHDL (IEEE Std 1076.1-1999 [61]) to cover mixed analog and digital
systems. The VHDL-AMS language constructs provide a concise notation for differen-
tial algebraic systems specifying the continuous aspects of physical system behavior as
well as the discrete aspects of the VHDL part. As in the case of other equation-based
modeling languages the VHDL-AMS language does not specify techniques for the
solution of the expressed DAEs, leaving the selection of a suitable numerical method to
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lution of the expressed DAEs, leaving the selection of a suitable numerical method to
the simulation environment.

A typical VHDL-AMS simulation framework is described in (Schneider et. al. 2000
[108]) and consists of a compiler and a simulator. The compiler translates the VHDL-
AMS source code into an intermediate representation structured as abstract syntax trees
with annotated symbol tables and additional semantic information. Similar to other
equation-based simulation environments, a hierarchical application model is flattened to
a set of discrete and continuous equations. An analog kernel calculates the analog solu-
tions of the equations at a specified time step by providing an interface to a numerical
solver. In this way the original model description is compiled into intermediate object
code, linked together with a simulation kernel, and directly executed. The same transla-
tion process is also used by SEAMS (Frey et. al. 1998 [40]) another VHDL-AMS based
simulation framework. SEAMS incorporates an analyzer, an analog and digital kernel, a
code generator and the compilation module. A design support environment called
SIDES (Simulation-Interactive Design Environment System) is attached to SEAMS and
includes a GUI viewer, editors, debugging and editing support, library access, and a file
and data exchange database to enable all the necessary design environment-simulator
interactions (Dragger et. al. 1998 [28]).

For reasoning and verification purposes, a denotational semantics of the language
has been developed (Breurer et al. 1999 [23]). The general behavior of VHDL-AMS
programs is derived by translating the semantics into a prototype simulator implementa-
tion.

In order to illustrate the syntax of the language the model of a simple linear resistor
is given below:

use electrical_system.all
entity resistor is

generic(resistance: real);
port(terminal n1, n2: electrical);

end entity resistor;

architecture signal_flow of resistor is
quantity vr across ir through n1 to n2;

begin
ir == vr / resistance;

end architecture signal_flow.

3.1.4 Neutral Model Format

The Neutral Models Format language (Sahlin 1996 [104]), (Sahlin 1996 [105]) has
been created to cover the needs of simulation in the building industry. However, due to
its structuring capabilities and the possibility of specifying differential algebraic equa-
tions the language can be used to specify simulation models for other engineering do-
mains as well.

The inheritance mechanism was not present in the original language proposal but
was added later to the language specification (Sahlin et. al. 1995 [106]). In the same
manner as other equation-based modeling languages, the inheritance mechanism where
equations and declarations inherited from the parent object become part of the child ob-
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ject, was introduced into NMF. Child objects have the possibility of adding new equa-
tions and declarations, specializing the behavior of the created object. Compared to
other equation-based modeling languages the distinctive feature of the inheritance pro-
posed for NMF is that overriding is permitted for uniquely identifiable declarations. A
previously declared link, variable or parameter can be overridden by new declarations
in the created class. In this way a mechanism to specialize link types is provided in the
language.

Simulation models can be translated automatically from NMF into the local repre-
sentation of a particular simulation environment. Several simulation environments have
been built around the language. One of these is the IDA Simulation Environment IDA
SE, which includes a graphical modeler, an NMF translator, and a solver. The models
expressed with NMF are easily understandable and readable for non-experts. In order to
illustrate the readability and expressiveness of the language a model of a thermal
conductance is taken from (Sahlin 1996 [104]) and presented below:

CONTINUOUS_MODEL tq_conductance
ABSTRACT "Linear thermal conductance"
EQUATIONS /* heat balance */

0 = - Q + a_u * (T1 – T2);
LINKS

/* type name variables
TQ terminal_1 T1, POS_IN Q;
TQ terminal_2 T2, POS_OUT Q;

VARIABLES
/* type name role description

Temp T1 IN "1st temp"
Temp T2 IN "2nd temp"
HeatFlux Q OUT "flow from 1 to 2"

PARAMETERS
/* type name role description

Area a S_P "cross section area"
HeatCondA u S_P "heat transfer coeff"
HeatCond a_u C_P "a * u"

PARAMETER_PROCESSING
a_u := a * u;

END_MODEL

3.1.5 The χ Language for Hybrid Systems Simulations.

The χ (Fábian [37]) language has been designed with the aim of providing a general
language for hybrid system simulations. A χ program consists of processes, systems and
function specifications, which are later instantiated by a top-level model. As is the case
with most equation-based languages, the top model instance is executed by the simula-
tion environment. A process in χ may have a discrete-event part and/or a continuous–
time part and a system may be composed from processes and system instantiations. The
continuous-time behavior in χ is expressed with the help of equation statements defined
on the local variables of the processes. Model composition in χ is achieved by the use
of channels in the interface specifications of the sub-models. The channels have the
same role as the connectors in the Modelica language. A process example taken from
(Beek 2001 [17]) is given below:



22 Chapter 3 Debugging Over-Constrained Systems

proc P =
| [V,x: real] := 0

, Q: real
,b: bool := true

{
V' = 2 - Q //eq0
,|Q| Q = sqrt(V) //eq1
,[b -> x' = 1 - x] //eq2
| not b -> |x| x = 2 //eq3
]

}
]|

3.1.6 gProms

gPROMS (Oh and Pantelides 1996 [92]) is a general modeling language for combined
lumped and distributed parameter processes described by mixed systems of integral,
partial differential and algebraic equations (IPDAEs). The modeling language is inte-
grated in a more general simulation system called gPROMS SYSTEM (Barton and
Pantelides 1993 [13]), (Barton and Pantelides 1994 [12]) designed to support both con-
tinuous and discrete simulation. The language distinguishes two modeling entities:
MODELs (which describes the physical system behavior equations) and TASKs (exter-
nal actions and disturbances imposed on the simulation model). Below, we illustrate a
lumped parameter model, taken from (Oh and Pantelides 1996 [92]) which is defined in
gPROMS as follows:

MODEL IsothemalFlash
PARAMETER

Nocomp AS INTEGER
VARIABLE

M, AS ARRAY (Nocomp) OF Holdup
F, AS ARRAY (Nocomp) OF Flowrate
V,L AS Flowrate
x,y AS ARRAY (Nocomp) OF MoleFraction
K AS ARRAY (Nocomp) OF Kvalue

………………………………………………
EQUATION

#Component mass balance
$M = F – L * x – V * y;
#Phase equilibrium relationship
FOR i:= 1 TO Nocomp DO

K(i) * x(i) = y(i);
END
SIGMA(x)=SIGMA(y)=1;

………………………………………………
END #model IsothermalFlash

In the above example it can be seen that a MODEL is composed of a set of VARI-
ABLEs and EQUATIONs. In the equation section algebraic, differential and partial dif-
ferential equations are allowed. The reusability of simulation models described with
gPROMS is achieved by hierarchical submodel decomposition and by using the inheri-
tance mechanism.
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3.1.7 Abacuss II

Abacuss II (Advanced Batch and Continuous Unsteady State Simulator) (Tolsma et al.
2002 [117]) provides an intuitive, high level, declarative input language for describing
process model simulation. The syntax of the Abacuss II language is in the tradition of
Pascal and Modula-2 and is fully described in (Barton 1992 [16]). The integrated
simulation environment built around the language uses DAEPACK (Differential-
Algebraic Equation Package) (Tolsma and Barton 2000 [115]) to perform the required
symbolic and numerical calculations.

The inheritance mechanism used by Abacuss II is in the form of single inheritance: a
model which inherits from another model gains all the attributes of the ancestor model.
The inheritance mechanism is implemented by the keyword INHERITS and the identi-
fier of the parent immediately followed by the identifier of the new model entity. This
is illustrated in (Tolsma et al. 2002 [116]) by the following example:

MODEL Father
PARAMETER PI AS REAL DEFAULT 4 * ATAN(1.0)

END

MODEL Child INHERITS Father
PARAMETER E AS REAL DEFAULT 2.718

END

The Child model will inherit all the parameters of the Parent model, and in this par-
ticular case Child will contain both PI and E as parameters. Multiple or selective in-
heritance are not allowed in the language. The benefit of these forms of inheritance
used in the context of process engineering is discussed in (Barton 1992 [16]).

The interaction of models with the environment is realized through stream attributes
that are subsets of the variables describing the time-dependent behavior of the system.
Connecting two models in Abacuss is realized by setting up a relationship between
stream attributes corresponding to each submodel providing a compressed way of
specifying interaction equations among components. The connection relationships need
to be declared in the EQUATION section of the model entity. Conditional equations are
also allowed to define dynamic changes in the topology of the simulation system. Usu-
ally equality constraints stated between stream variables is the most common kind of
constraint used in process simulation.

The Abacuss II simulation environment also incorporates a fairly advanced debug-
ging module where over- and under-constrained situations can be detected (Barton 1995
[14]) (Barton 2000 [15]). This is done by using Dulmage and Mendelsohn canonical
decomposition performed on the incidence matrix corresponding to the underlying sys-
tem of equations that defines the behavior of the simulation model. A way of visualiz-
ing the sparsity pattern is also provided for program understanding purposes. The de-
bugging module is briefly described in Chapter 9 and compared to our approach in
Chapter 11.
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3.1.8 Cob

Cob is a novel programming language based on the concept of constrained objects for
compositional and declarative modeling of engineering structures (Jayaraman and
Tambay 2002 [66]). The abstraction models are specified using a declarative object-
oriented language. The associated environment includes a graphical editor (Jayaraman
and Tambay 2002 [65]) for developing Cob class definitions, a domain-specific visual
interface where already developed components can be combined and a translator, which
takes the declarative specification and generates an equivalent CLP(R) program (Joxan
et. al. 1992 [70]). The translator represents the main difference compared to the previ-
ously surveyed languages and environments. Instead of generating an imperative
equivalent form of the original source code and linking it to numerical solvers, the Cob
translator generates an equivalent declarative specification, which is sent to an underly-
ing CLP(R) engine. In this way Cob extends the declarative properties of CLP by intro-
ducing object-orientation, conditional constraints and preferences and subsumes the
paradigms of CLP and HCLP (hierarchical CLP) (Wilson 1993 [124]) (Wilson and
Borning 1993 [125]). By introducing these additional capabilities the applicability of
constraint-based languages can easily be extended in order to consider engineering ap-
plications where components are modeled much more naturally in terms of objects and
inheritance hierarchies.

In order to present the expressiveness of the Cob language compared to the equiva-
lent generated CLP form we give an example of a simple electrical circuit taken liter-
ally from (Jayaraman and Tambay 2001 [67]).

The Cob language successfully extends previous object-oriented constraint imperative
languages such as Kaleidoscope'91 (Benson and Borning 1992 [18]) and ThingLab
(Borning 1979 [21]) with stratified preference logic programs that allows an efficient
simulation of the constraint hierarchies (Govindarajan et. al. [50]).

class component
attributes Real V,I,R
constraints V=I*R;
constructors component(V1,I1,R1){

V=V1. I=I1. R=R1. }
}
class parallel extends component

attributes component [] PC
constraints
forall X in PC: X.V = V.
sum Y in PC : Y.I=I.
sum Z in PC : (1/Z.R)=1/R.
constructors parallel(B){

PC=B}
}

pcomponent([V1, I1, R1], [V, I, R]):-
V=I*R, V=V1, I=I1, R=R1.

pparallel ([B],[V,I,R,PC]):- PC = B,
pcomponent(_,[V,I,R]), forall1(PC,X,V),
N1=I, sum1(PC,N1, Y,I),
N2=1/R, sum2(PC,N2,Z,R).

forall1([],X,V).
forall1([X|Tail],X,V)):-

X_V=V, X=[X_V,X_I,X_R],
forall1(Tail,X,V).
sum2([],0,Z,R).
sum2([Z|Tail],(1/Z_R)+Sumrest,Z,R):-

sum2(Tail,Sumrest,Z,R),
Z=[Z_V,Z_I,Z_R].
sum1([],0,Y,I).
sum2([Y|Tail],(Y_I)+Sumrest,Y,I):-

sum2(Tail,Sumrest,Y,I),
Y=[Y_V,Y_I,Y_R].
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3.2 Object-Oriented Equation-Based Language
Constructs

In this section the main language features and constructs of object-oriented equation-
based modeling languages are presented. For the general language constructs we are us-
ing a description which resembles the description presented in (Abadi and Cardelli
1996 [1]) in order to provide a framework for comparison between modeling languages
and traditional object-oriented languages.

3.2.1 Acausal Modeling

At the lowest level of the languages presented previously, equations are used to de-
scribe the relations between the quantities of a model and to define the behavior of the
class. As mentioned before, one of the distinctive features of object-oriented equation-
based languages is the acausal programming model. The computation semantics does
not depend on the order in which equations are stated. However, this property compli-
cates the debugging process.

The acausality makes the library classes more reusable than traditional classes con-
taining assignment statements where the input-output causality is fixed, since the lan-
guage classes adapt to the data flow context in which they are used. The data flow con-
text is defined by stating which variables are needed as outputs and which are external
inputs to the simulated system. From the simulation practice point of view this gener-
alization enables both simpler models and more efficient simulation. The declarative
form allows a one-to-one correspondence between physical components and their soft-
ware representation.

3.2.2 Class Definitions

Programs in object-oriented equation-based languages are built from classes like in any
other traditional object-oriented language. A class1 is intended to describe the structure
of the object generated from the class. The main difference compared to traditional ob-
ject-oriented languages is that instead of functions (methods), equations are used to
specify behavior. A class declaration contains a list of variable declarations and a list of
equations preceded by a keyword, usually equation.

The following is an example of a low pass filter in Modelica taken from (Modelica
Assoc. 2000 [85]).

1 In object-oriented modeling languages a class is also referred to as a model. For the Modelica
examples in this thesis we usually use the reserved word model instead of the word class,
even if from the "computer science" perspective the name class is more appropriate.
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class LowPassFilter
parameter Real T=1;
Real u, y (start=1);

equation
T*der(y) + y = u;

end LowPassFilter;

The model LowPassFilter can be used to create two instances of the filter with dif-
ferent time constants, “connecting” these together by an equation as follows:

class FilterInSeries
LowPassFilter F1(T=2), F2(T=3);

equation
F1.u = sin(time);
F2.u = F1.y;

end FilterInSeries;

3.2.3 Inheritance

The natural inheritance mechanism in modeling languages allows classes to be seen as
the extension of existing classes with new equations and variables as is illustrated in
Figure 3-1. This is in fact the most common inheritance mechanism for object-oriented
equation-based languages and the one from which we derive, later on, the rules for the
graph transformations associated to the intermediate form. This inheritance presents
some important benefits especially from the modeling language point of view, such as:
better support for concrete visual programming systems, and any object, can be given
individualized behavior (Borning 1986 [20]).

object child : Child extends Parent is
var cVariables;
var pVariables;

equations 1eq ;

…… ;

neq
equations 1+neq ;

…… ;

meq ;

end;

object parent : Parent is
var pVar iables;

equations 1eq ;

……
;

neq ;

end;

Figure 3-1. The inheritance mechanism

Alternatively, an equivalent model or class can be defined by a pure extension of the
parent class.
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class Child is
var pVariables, cVariables;
equations 1eq ;

…… ;

meq ;
end;

3.2.4 Class Subtyping

The notion of subtyping, especially in Modelica, is influenced by the theory of objects
(Abadi and Cardelli 1996 [1]). The notion of inheritance is separated from the notion of
subtyping. According to the definition, a class A is a subtype of a class B if class A con-
tains all public variables and parameters declared in the class B, and the types of these
variables are subtypes of the types of the corresponding variables in B. For instance, the
class TempResistor is a subtype of Resistor.

class Resistor class TempResistor
extends TwoPin; extends TwoPin;
parameter Real R; parameter Real R, RT, Tref;

equation Real T;
v = R * i; equation

end Resistor; v = I * (R+RT * (T – Tref));
end TempResistor;

Subtyping is used, for example, in class instantiation, redeclarations and function calls.
If variable a is of type A, and A is a subtype of B, then a can be initialized by a variable
of type B.

Note that TempResistor does not inherit the Resistor class. There are different
equations for the evaluation of v. If equations are inherited from Resistor, then the
set of equations will become inconsistent in TempResistor, since Modelica currently
does not support named equations and replacement of equations. For example, the spe-
cialized equation below from TempResistor:

v=i*(R+RT*(T-Tref))

and the general equation from class Resistor v=R*i are inconsistent with each other:
only one of these two equations should be present in a class.

3.2.5 Connections and Connectors

Equations in Modelica can also be specified by using the special connect equation
syntactic form. The equation form connect(v1, v2) expresses a coupling between
variables. These variables are called connectors and belong to the connected objects.
Connections specify interaction between components. A connector should contain all
quantities needed to describe the interaction. This provides a flexible way of specifying
the topology of physical systems described in an object-oriented way using Modelica.
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For example, Pin is a connector class that can be used to specify the external inter-
faces for electrical components that have pins. Each Pin instance is characterized by
two variables: voltage v and current i. A connector class is defined as follows:

connector Pin
Voltage v;
flow Current i;

end Pin;

Connection equations are used to connect instances of connector classes. A connection
equation connect(pin1,pin2), with pin1 and pin2 of connector class Pin, con-
nects the two pins so that they form one node. This implies two equations, namely:

pin1.v = pin2.v; pin1.i + pin2.i = 0

3.3 Program Transformation Rules and Semantics

This section presents rules for transforming the declarative object-oriented equation-
based code to the intermediate equation form. The set of program transformation rules
must preserve the operational semantics of the transformed code. In later chapters, dur-
ing the debugging process, the transformations applied to the corresponding graph rep-
resentation of the intermediate form must to be consistent with the program transforma-
tion rules. Therefore, a precise set of rules needs to be derived from the language
semantics that maps the original code statements with their corresponding intermediate
flattened statement.

For the purpose of debugging we are only interested in a few aspects of the program
transformations such as: the equation transformations by inheritance, by object instan-
tiation and the equations generated by connect equations. Only these aspects will be
covered in this thesis. The equations in flattened form, in the intermediate code, are of-
ten the initial point of investigation for an associated debugger. From the user perspec-
tive, it is useful, to investigate the cause of an error backwards in the original source
code from where the bug manifests itself. From the debugging perspective it is impor-
tant to map back a statement from the intermediate code to the original language as well
as to determine which other statements are affected if the transformation rule is inhib-
ited.

Let us now take the Modelica language and see how the transformations2 from the
original source code to the intermediate code takes place. It is extremely important to
detail the properties of the intermediate code because most of the debugging process
will take place after the flattening process and all the error fixing algorithms are per-
formed on the flattened equation set.

A Modelica program P is a set of class declarations. Each class consists of a set of
variable and constant declarations and a sequence of equations or connect equations.
We define an object as a collection of elements and equations 1 1[ , ]j m i n

j iv eq∈ ∈… … . The

2 This set of transformations is also called flattening mainly due to the "flat" properties of the re-
sulting intermediate language.
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following main transformation steps are performed on the original code when translat-
ing from the original form to the intermediate flattened form.

• Inheritance expansion.
• Class instantiation.
• Loop unrolling.
• Connect equation expansion

The translation of the original source code program can be summarized by the follow-
ing rule expressed in natural semantics:

[ ]
p

p p e e f
prog

fff

p p p p p p
trans

p p

→ ∧ ∧
→
� ↘

The translation of the original source code p into the intermediate form pf takes place in
different stages according to the semantic rule [ ]progtrans . The parsing stage denoted
by p

pp p→ is not really part of the semantic description, but it is of course necessary
to build a real translator. The other two main phases of the source code transformations
are the elaboration and the instantiation denoted by p ep p� and e fp p↘ respec-
tively.

• Elaboration. This phase takes place only at compile time. No data objects are
created during this phase. The natural semantics of the elaboration is defined
through an "elaborate" relation � on elements that depend on the definition of
each element in the corresponding class model. For example, the elaborate rela-
tion � extends naturally to the model source code by application to all equa-
tions present in an associated class. The notation ec c� means that the class c
is transformed through multiple steps into the elaborated form ec . This phase is
responsible for the code transformations related to the inheritance, modification
and aggregation operations.

• Instantiation. The instantiation phase is responsible for the creation of the data
objects and is defined through an "instantiate" relation ↘ . The notation
c o↘ means that the class c is instantiated and object o is created.

As was mentioned previously a program is defined as a set of classes. Elaborating a
program means that all classes that is not partial class needs to be elaborated. Fol-
lowing the elaboration and instantiation rules the final flattened form is produced.

Let us consider the following simple Modelica model and see how different transla-
tion rules affect the final flattened form of the model. During model elaboration the
variables declared in a list of variables are expanded into separate declarations, as is the
case for the Real variables declared for model A in the example below. The equations
remain unchanged during the elaboration process in this particular case.
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model A model A
Real x,y; Real x;

equation Real y;
x + y = 2; equation

end A; x + y = 2;
end A;

The convention in Modelica is that the top-level class in the instantiation hierarchy is
expanded since all instances in the total model belong to this. During elaboration the
whole program is reduced to one flattened class. Therefore model B is eliminated from
the final flattened form of the simulation model and the classes are reduced to the flat-
tened form of the model Aflattened shown on the right.

model B
Integer s;

equation
s = 0; model Aflattened

end B; Real x;
Real y;

model A Integer b.s;
Real x; equation
Real y; b.s = 0;
B b; x + y = 2;

equation x – y = 3;
x + y = 2; end Aflattened;
x – y = 3;

end A;

Below, instead of elaborating model B in class A, as above, we are extending model A
from model B using inheritance. In this case all the variables and equations declared in
model B are simply copied into the corresponding elaborated model A2 as is shown be-
low:

model B model B
Integer s; Integer s;

equation equation
s = 0; s = 0;

end B; end B;

model A2 extends B model A2flattened
Real x,y; Real x;

equation Real y;
x + y = 2; Integer s;
x – y = 3; equation

end A2; x + y = 2;
x – y = 3;
s = 0;

end A2flattened;

In one of the current Modelica language implementations (Fritzson et. al. 2002 [44])
(Aronsson et. al. 2002 [6]) the semantics is specified using the RML specification lan-
guage (Pettersson 1999 [95]). The RML language is based on Natural Semantics (Kahn
1987 [72]), The RML source code, e.g. a Modelica specification, is compiled by the
RML compiler (rml2c) to produce a translator for the described language (Fritzson et.
al. 2002 [44]) (Kågedal and Fritzson 1998 [71]). The RML compiler generates an effi-
cient ANSI C program that is subsequently compiled by an ordinary C compiler, e.g.
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producing an executable Modelica translator. The generated translator is produced in
ANSI C with a performance comparable to hand-written translators. The RML tool has
also been used to produce compilers for Java, Pascal and a few other languages.

3.4 Source Code Manipulation

We categorize source code edits into a set of atomic change operations similar to those
defined in (Ryder and Tip 2001 [103]) but adapted to the specific language constructs
of the Modelica language. The defined atomic changes and the explanations are given
in Table 3-1. The error fixing solutions for erroneous models developed in later chap-
ters should be expressible in terms of these atomic changes. The implemented debugger
will manipulate the Modelica source code in terms of atomic changes.

Table 3-1. Atomic change operations performed on the original Modelica source
code

Atomic change operations at
the source code level

Description

DELEQ(eq,model) Deletes an equation eq from the model model
ADDEQ(eq,model) Adds an equation eq to model
DELVARM(var,model) Deletes a variable var from a model
DELVARE(var,eq,model) Deletes a variable var from an equation eq
DELMOD(model) Deletes an empty model
ADDMOD(model) Adds an empty model
DELLCON(conn,model) Deletes a connector conn from the model
ADDCON(conn,model) Adds a connector conn to the model

The DELVARM(var,model)kind of atomic change deletes a variable declaration from the
model This operation makes sense only if the variable scheduled for elimination is not
present in any equation that defines the behavior of the model. Eliminating only the
variable declaration will result in a program that will not compile correctly. This change
is useful for the elimination of additional declared variables in the simulation model.
The elimination of a variable from a model can also be achieved by transforming the
variable declaration into a constant declaration. At this level of the analysis we do not
distinguish between total variable elimination and transforming a variable into a con-
stant, both cases fall into the same atomic change.

For example, the following transformed model can be obtained by successively ap-
plying the following atomic changes: DELVARE(x,x+y=2,A), DELEQ(x–y=3,A), and
DELVARM(x,A).

model A model A
Real x,y; Real y;

equation equation
x + y = 2; y = 2;
x – y =3 end A;

end A;
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Just now, we ignore several source code changes that involve manipulation of constants
(adding or deleting them to and from equations) because they only change the behavior
of the model and do not affect the structural analysis method developed later in the the-
sis.

3.5 Simple Modelica Simulation Models

Let us illustrate the expressiveness and functionality of the Modelica language by sev-
eral simple simulation examples that will also be used in a slightly modified configura-
tion as examples for testing the functionality of the debugger in subsequent chapters.
Additional examples will be introduced in the thesis when necessary to illustrate some
aspects of the debugging process. The models developed here are trivial, almost be-
neath consideration from the usability point of view, but they keep the associated bipar-
tite graphs and related algorithms to a minimum complexity.

3.5.1 Simple Electrical Circuit

Our first example is a simple electrical circuit where a Resistor component is con-
nected in series together with an alternating current source VsourceAC as illustrated
in Figure 3-2 on the left.

R1AC

G

model Circuit
Resistor R1(R=10);
VsourceAC AC;
Ground G;

equation
connect(AC.p,R1.p);
connect(R1.n,AC.n);
connect(AC.n,G.p);

end Circuit

Figure 3-2. Simple electrical circuit model.

We first start by defining the interfaces for electrical components that have a pin. The
following connector class uses two Real variables: one for the current and one for
the voltage. Since in an electrical circuit the current should always be summed when
connecting two components, according to Kirchoff's law, the variable i defined in the
Pin component will have the prefix flow.

connector Pin
Real v;
flow Real i;

end Pin;

Based on the Pin connector we can define a partial class for electrical components that
have two pins. Obviously, such a class should instantiate the previously declared pin
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class twice and provide some extra equations that define the behavior of components
such as the voltage drop along the component (v = p.v - n.v) or the current inside
the component (0 = p.i + n.i; i = p.i). The partial class for TwoPin compo-
nents is given below:

model TwoPin
Pin p,n;
Real v,i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

Now we can specialize the TwoPin class by defining the Resistor class and a Vsour-
ceAC class that will inherit all the equations from their respective parent class and add
one equation that will define the specific behavior of the component class:

model Resistor model VsourceAC
extends TwoPin; extends TwoPin;
parameter Real R; parameter Real VA=220;

equation parameter Real f=50;
R * i = v; protected constant Real PI=3.141592;

end Resistor equation
v = VA * (sin(2 * PI * f * time));

end VsourceAC

The Ground component is defined as follows and will lower the voltage drop to zero at
the connection point.

model Ground
Pin p;

equation
p.v = 0;

end Ground

The whole Circuit model is obtained by combining the Resistor, VsourceAC and
Ground components R1, AC and G respectively through connect equations as illus-
trated in Figure 3-2 on the right.

The Modelica compiler will automatically generate the equations from the connect
equations present in the Circuit model. For example, the connect equation that de-
fines a connection between the positive pins of the source and resistor components
connect(AC.p, R1.p) will be expanded into two equations at the intermediate
source code level: AC.p.v = R.p.v and AC.p.i + R.p.i = 0

3.5.2 Direct Current Motor Example

The second example is a more complicated electrical circuit combined with mechanical
components defining a direct current motor model. The components within the DCMo-
tor model are taken from the Modelica Standard Library. This model illustrates the
multidomain capabilities of the Modelica language by combining electrical and me-
chanical components in the same simulation model. The connection diagram of the
DCMotor model is depicted in Figure 3-3.
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R L

DC

G

EMF

Inertia

Figure 3-3. DC electric motor model.

The corresponding Modelica source code is given below:

model DCMotorCircuit
Modelica.Electrical.Analog.Basic.Resistor R;
Modelica.Electrical.Analog.Basic.Inductor L;
Modelica.Electrical.Analog.Basic.EMF EMF;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sources.ConstantVoltage DC;
Modelica.Mechanics.Rotational.Inertia Inertia;

equation
connect(DC.p, R.p);
connect(R.n, L.p);
connect(L.n, EMF.p);
connect(EMF.n, DC.n);
connect(G.p, DC.n);
connect(EMF.flange_b, Inertia.flange_a);

end DCMotorCircuit;

At the intermediate code level this model will contain 36 equations and variables.

3.6 A More Complicated Example

Another example used later in our tests is a more complicated modeling example that
includes control, electrical, and rotational mechanical components. The components
taken from the Modelica Standard Library are combined together as is illustrated in
Figure 3-4.

Resistor1 Inductor1

SignalVoltage1
EMF1

Ground1

Inertia1 IdealGear1 Inertia2 Spring1 Inertia3

Step1

PI

PI1

-

Feedback1

w

SpeedSensor1

Figure 3-4. Simulation example involving control, electrical and rotational mechan-
ics components.

The corresponding Modelica code is given below.
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model Model1
Modelica.Electrical.Analog.Basic.Resistor Resistor1;
Modelica.Electrical.Analog.Basic.Inductor Inductor1;
Modelica.Electrical.Analog.Sources.SignalVoltage

SignalVoltage1;
Modelica.Electrical.Analog.Basic.EMF EMF1;
Modelica.Electrical.Analog.Basic.Ground Ground1;
Modelica.Mechanics.Rotational.Inertia Inertia1;
Modelica.Mechanics.Rotational.IdealGear IdealGear1;
Modelica.Mechanics.Rotational.Inertia Inertia2;
Modelica.Mechanics.Rotational.Spring Spring1;
Modelica.Mechanics.Rotational.Inertia Inertia3;
Modelica.Blocks.Sources.Step Step1;
Modelica.Blocks.Continuous.PI PI1;
Modelica.Blocks.Math.Feedback Feedback1;
Modelica.Mechanics.Rotational.Sensors.SpeedSensor

SpeedSensor1;
equation

connect(Step1.outPort, Feedback1.inPort1);
connect(Feedback1.outPort, PI1.inPort);
connect(PI1.outPort, SignalVoltage1.inPort);
connect(SignalVoltage1.p, Resistor1.p);
connect(Resistor1.n, Inductor1.p);
connect(Inductor1.n, EMF1.p);
connect(EMF1.flange_b, Inertia1.flange_a);
connect(Inertia1.flange_b, IdealGear1.flange_a);
connect(IdealGear1.flange_b, Inertia2.flange_a);
connect(Inertia2.flange_b, Spring1.flange_a);
connect(Spring1.flange_b, Inertia3.flange_a);
connect(SignalVoltage1.n, EMF1.n);
connect(Ground1.p, SignalVoltage1.n);
connect(Inertia3.flange_b, SpeedSensor1.flange_a);
connect(SpeedSensor1.outPort, Feedback1.inPort2);

end Model1;

The flattened system of equations contains 78 differential algebraic equations and 78
variables.
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Chapter 4

Graph Theoretical Preliminaries and
System Decomposition

Summary: This chapter provides a preliminary introduction to the graph theoretical
concepts and related algorithms used by the debugging framework. The fundamental
definitions and algorithms necessary for understanding susequent chapters are given
here. The algorithm for system decomposition is also presented.

4.1 Introduction

Many practical problems form a model of interaction between two different types of ob-
jects and can be phrased in terms of problems of bipartite graphs. The expressiveness of
bipartite graphs in concrete practical applications has been demonstrated many times in
the literature (Dolan and Aldous 1993 [27]) (Asratian et. al. 1998 [7]). We will show
that the bipartite graph representation is general enough to efficiently accommodate
several symbolic analysis methods in order to reason about the solvability and unsolva-
bility of the flattened system of equations. Characteristics of the simulation model's be-
havior can also be implied from the bipartite graph representation. Another advantage
of using bipartite graphs is that this representation offers an efficient abstraction neces-
sary for program transformation visualization when equation-based specifications are
translated into procedural form.

The bipartite graph representation with associated decomposition techniques is
widely used internally by compilers that translate equation-based simulation code into
procedural code (Elmqvist 1978 [36]) (Maffezzoni et. al. 1996 [78]). However, none of
the existing simulation systems use this representation for debugging purposes or ex-
pose it visually for program understanding purposes. Our debugging approach follows
the same philosophy as the method for reduction of constraint systems used for geomet-
ric modeling in (Ait-Aoudia et. al. 1993 [3]) and (Bliek et. al. 1998 [19]).

In this chapter it is our intention to present the basic definitions and some notation,
which we shall use throughout the rest of this thesis. Although fairly brief, this intro-
duction to bipartite graph theory will provide a sufficient basis for understanding the
methods and algorithms developed in this thesis.
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4.2 Basic Definitions

Definition 4-1: A bipartite graph is an ordered triple ),,( 21 EVVG = such that
},{ 11 kvvV …= and },{ 12 kuuV …= are sets of vertices, =∩ 21 VV Ø and

},};,{{ 21 VyVxyxE ∈∈⊆ the set of edges. The vertices ofG are elements of 21 VV ∪ .
The edges of G are elements of E .

Definition 4-2: Let G be a graph with a vertex set },,,{)( 21 pvvvGV …= and an edge
set },,,{)( 21 qeeeGE …= . The incidence matrix of G is the qp× matrix

[ ]ijmGM =)( , where ijm is 1 if the edge ije is incident with vertex iv and 0 otherwise.

We consider the bipartite graph associated to a given system of equations resulting
from flattening an object-oriented hierarchical model. Let 1V be the set of equations
and 2V the set of variables in the flattened model. An edge between 1Veq ∈ and

2Vvar ∈ means that the variable var appears in the equation eq . Based on this rule the
associated bipartite graph of the flattened system of equations of the simple electrical
circuit model from Chapter 2 is shown in Figure 4-1.

eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14

Figure 4-1. The associated bipartite graph of the simple electrical circuit model
from Chapter 2

The incidence matrix )(GΜ corresponding to the above presented bipartite graph is
given below:

va
r1

va
r2

va
r3

va
r4

va
r5

va
r6

va
r7

va
r8

va
r9

va
r1

0

va
r1

1

va
r1

2

va
r1

3

va
r1

4

eq1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
eq2 0 1 0 1 0 0 0 0 0 0 0 0 0 0
eq3 0 1 0 0 0 1 0 0 0 0 0 0 0 0
eq4 0 0 0 0 1 1 0 0 0 0 0 0 0 0
eq5 0 0 0 0 0 0 1 1 0 0 1 0 0 0
eq6 0 0 0 0 0 0 0 1 0 1 0 0 0 0
eq7 0 0 0 0 0 0 0 1 0 0 0 1 0 0
eq8 0 0 0 0 0 0 0 0 0 0 1 0 0 0
eq9 0 0 0 0 0 0 0 0 0 0 0 0 1 0
eq10 1 0 0 0 0 0 1 0 0 0 0 0 0 0
eq11 0 1 0 0 0 0 0 1 0 0 0 0 0 0
eq12 0 0 1 0 0 0 0 0 1 0 0 0 0 0
eq13 0 0 0 0 0 0 0 0 1 0 0 0 1 0
eq14 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Figure 4-2. The incidence matrix )(GΜ of the bipartite graph from Figure 4-1
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4.3 Bipartite Matching Algorithms.

We introduce the following notation and definitions:

Definition 4-3: A matching, denoted k
GM , is a set of k edges from a graph G where no

two edges have a common end vertex. If ),,( 21 EVVG = is a bipartite graph with bipar-
tition },{ 11 kvvV …= and },{ 12 kuuV …= , we denote by GM1∂ and GM2∂ the sets of
vertices in 1V and 2V respectively incident to arcs in GM .

Definition 4-4: A matching max
GM of a graph G is called a maximum cardinality

matching or maximum matching if it is a matching with the largest possible number of
edges.

Definition 4-5: An edge of G is called admissible if it is contained in some maximum
matching in G.

Definition 4-6: Let v and u be vertices of a graph G. If v and u are joined by an edge e
then v and u are said to be adjacent. We denote by the notation )(vadj the set of all ver-
tices adjacent to the vertex v. Moreover, v and u are said to be incident with e and e is
said to be incident with v and u. We denote by )(vincE the set of edges that are inci-
dent with the vertex v.

Definition 4-7: A vertex v is saturated or covered by a matching M if some edge of M
is incident with v. An unsaturated or uncovered vertex is called a free vertex.

Definition 4-8: A perfect matching P
GM is a matching in a graph G that covers all ver-

tices of G. In the case of a perfect matching corresponding to a bipartite graph
),,( 21 EVVG = the following relation holds: MMMG 21 ∂+∂== where the nota-

tion G denotes the cardinality of the graph G.

Definition 4-9: A path P in a graph G is a finite sequence of alternating vertices and
edges, beginning and ending with a vertex nn veevev 12211 −… such that every consecu-
tive pair of vertices xv and 1+xv are adjacent and xe is incident with xv and 1+xv .
Typically, when writing a path P we omit the vertices and use a set-like nota-
tion },,{ 21 keeeP …= . A simple path from vertex u to vertex v can be denoted by the
notation vu →* .

Definition 4-10: A path P in a graph G is called an alternating path of GM if it con-
tains alternating free and covered edges. We use the notation vu →= for an alternat-
ing path from vertex u to vertex v. The notation used to represent an alternating path
can be extended to the following notation }),(),(),,(,),({ 222111 kk vuvuuvvuP �=
where the matching and non-matching edges are represented explicitly.

Definition 4-11: An alternating path P in a graph G is called a feasible path if the end
vertices are not covered by matching edges outside the end vertices.

Definition 4-12: The degree of a vertex is the number of edges incident to that vertex.
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Definition 4-13: A partial order relation, denoted by ≺ , between two directed graphs is
defined as follows: 2

*
121 vvGG →⇔≺ for some 11 Gv ∈ and 12 Gv ∈ .

Definition 4-14: A directed graph ),( EVG = is strongly connected if for Vvu ∈∀ , ,
where V is a set of vertices of G, we have vu →* and uv →* . The strongly con-
nected components of G are its maximal strongly connected subgraphs.

Definition 4-15: Suppose that E is a nonempty set, and let nSSS …,, 21 be non-empty
subsets of E. We call a family ℑ of subsets, denoted by ),,( 21 nSSS …ℑ a collection of
the subsets nSSS …,, 21 . In comparison to the notion of set, the notion of the family
implies that an element may appear more than once.

From the computational point of view, the equation system associated to a perfect
matching is structurally well-constrained and therefore can be further decomposed into
smaller irreducible blocks and sent to a numerical solver. Figure 4-3 illustrates one pos-
sible maximum matching of the bipartite graph associated to the simulation model of
the simple electrical circuit presented in Chapter 2. It is worth noting that in this par-
ticular case the maximum matching is also a perfect matching of the associated bipartite
graph.

eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14

Figure 4-3. One possible perfect matching (marked by thick lines) of the bipartite
graph associated with the electrical circuit model.

From the computational complexity point of view, the best sequential algorithm for
finding a maximum matching in bipartite graphs is due to (Hopcroft and Karp 1973
[60]). The algorithm solves the maximum cardinality matching problem in O( 2/5n )
time and O(nm) memory storage where n is the number of vertices and m is the number
of edges. Efficient algorithms for enumerating all perfect and maximum matchings in
bipartite graphs are also proposed in (Fukuda and Matsui 1994 [47]), (Uno 1997 [120])
and (Uno 2001 [119]). The enumeration algorithm for all perfect matchings in bipartite
graphs proposed in (Fukuda and Matsui 1994 [47]) takes )( 2/1

pmNmnO + time where

pN is the number of perfect matchings in the given bipartite graph. In (Uno 1997
[120]) and (Uno 2001 [119]) improved algorithms for finding and enumerating all per-
fect and maximum matchings are presented and it take only )(nO and O(log n) time re-
spectively per perfect matching.
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It should be noted that a maximum matching or a perfect matching of a given bipartite
graph are not unique. In Figure 4-4 all the possible perfect matchings of a simple bipar-
tite graph are presented.

eq1

eq2

eq3

var1

var2

var3

eq1

eq2

eq3

var1

var2

var3

eq1

eq2

eq3

var1

var2

var3

Figure 4-4. An example of a simple bipartite graph with all possible perfect match-
ings marked by thick lines.

The developed matching algorithms are based on finding alternating paths in the asso-
ciated graph. A new matching associated with a bipartite graph can be obtained by ex-
changing matching edges with non-matching edges along an alternating cycle or along
a feasible path. When exchanging edges along alternating cycles the cardinality of the
obtained new matching is the same as the cardinality of the previous matching. The
cardinality of the matching is not preserved when edges are exchanged along a feasible
path.

Theorem 4-1 (Philip Hall - 1935): Let ),,( 21 EVVG = be a bipartite graph. Then there
exists a || 1V matching if and only if for all subsets S of 1V , |||)(| SSN ≥ , where

}),(,;{)( 2 EuvSvVuSN ∈∈∃∈= .

A complete proof of Hall's theorem can be found in (Asratian et. al. 1998 [7]).
Regarding the existence of another perfect matching in bipartite graphs the following

definition can be given:

Theorem 4-2: Let P
GM1 be a perfect matching associated to a graph G. There is another

perfect matching P
GM 2 associated to a graph G if there exists an alternating cycle in G.

In order to illustrate how a new matching can be found in a bipartite graph, based on a
given perfect matching, let us consider the simple bipartite graph ),,( 21 EVVG = where

},,,{ 43211 uuuuV = and },,,{ 43212 vvvvV = , depicted in Figure 4-5 on the left. The as-
sociated given perfect matching is represented by the thick edges. We also show in
Figure 4-5 on the right the directed graph G obtained after exchanging all the matching
edges in G with bi-directional edges and orienting all other edges from 1V to 2V .

u1 u2 u3 u4

v1 v2 v3 v4

V1

V2

u1 u2 u3 u4

v1 v2 v3 v4

Figure 4-5. A simple bipartite graph with an associated perfect matching and the
corresponding directed graph.
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In Figure 4-6 we show the rearranged directed graph from Figure 4-5. In Figure 4-6 a)
an alternating cycle and a feasible path has been found in the directed graph. In Figure
4-6 b) a new perfect matching is generated by exchanging non-matching edges with
matching edges along the alternating cycle. The cardinality of the obtained new match-
ing is the same as the cardinality of the given matching. Figure 4-6 c) illustrates the
situation where a new matching is obtained by exchanging edges along the feasible
path. The cardinality of the obtained new matching is not preserved any more, it is de-
creased by 1.

If the feasible path has an even length, the following theorem regarding the existence
of a new maximum matching in bipartite graphs can be formulated (Asratian et. al.
1998 [7]):

Theorem 4-3: A maximum matching max
GM can be obtained from any other maximum

matching max
GN by a sequence of transfers along alternating cycles and paths of even

length.

A transfer means that the edge types in a subgraph switch position. For example in a
subgraph of Figure 4-6 a) the type of edges have been rotated one step counterclock-
wise along a cycle and the graph from Figure 4-6 b) have been obtained. Likewise, the
graph from Figure 4-6 c) have been obtained by switching the nonmatching edges with
matching edges along the feasible path of the subgraph depicted in Figure 4-6 a).

For a demonstration of this theorem see (Asratian et. al. 1998 [7]). Regarding the
perfect matchings in a bipartite graph the following corollary can also be given:

Corollary 4-1: If p
GM is a perfect matching of G, any other perfect matching can be ob-

tained from p
GM by a sequence of transfers along alternating cycles relative to p

GM .

u1 u2 u3 u4

v1 v2 v3 v4

u1 u2 u3 u4

v1 v2 v3 v4
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u4 u3

v2

v4

v3

feasible
path

alternating
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u4 u3
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Figure 4-6. Finding new matchings in a directed bipartite graph.
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4.4 Dulmage – Mendelsohn’s Canonical Decomposition

In this section we shall present a structural decomposition of a bipartite graph associ-
ated with a simulation model that relies on vertex coverings. The algorithm is due to
(Dulmage and Mendelsohn 1963 [33]) and canonically decomposes any maximum
matching of a bipartite graph into three distinct parts: over-constrained, under-
constrained, and well-constrained. Let us consider a system of linear equations its asso-
ciated bipartite graph as presented in Figure 4-7. A possible maximum matching M is
represented by the thick edges.

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6 var7
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Figure 4-7. Dulmage-Mendelsohn’s canonical decomposition of a bipartite graph
associated to an equation system.

In the next step of our analysis, we exchange all the edges that are included in the
matching M with bi-directional edges and orient all other edges from equation nodes to
variable nodes. The following graph depicted in Figure 4-8 is obtained.

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6 var7
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Figure 4-8. Oriented bipartite graph

Starting from the equation nodes that are not covered by the matching we compute the
set of all nodes that are reachable from the free nodes and isolate the obtained subgraph.
In a similar way, for the free variable nodes we compute the set of all ancestors that
sink into the free node and isolate the graph. The well-constrained subgraph can further
be decomposed by isolating and defining a partial order relation among the subgraphs
induced by its strongly connected components. In this way the Dulmage & Mendelsohn
decomposition results in an ordering of variables and equations that permits the sequen-
tial solving of the diagonal blocks obtained after permutation. Performing these steps
we obtain the graph decomposition shown in Figure 4-9.
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Figure 4-9. Canonical bipartite graph decomposition

The perfect matching associated with a bipartite graph is not unique. However, the final
decomposition into irreducible blocks is unique.

The Dulmage and Mendelsohn algorithm for canonical decomposition of bipartite
graphs is given below and results in three distinct parts of the graph: the over-, under-
and well-constrained parts. Furthermore, the algorithm decomposes the well-
constrained part into irreducible components and establishes a partial order relation
among them.

Algorithm 4-1: Dulmage and Mendelsohn canonical decomposition
Input Data: A bipartite graph ),,( 21 EVVG = ;
Result: three subgraphs: well-constrained GW , over-constrained +k

GO and under-
constrained −k

GU .
begin:

– Compute the maximum matching max
GM of ),,( 21 EVVG = .

– Compute the directed graph ),,( 21 EVVG = where E is obtained by replacing each

edge that is included in max
GM by two directed edges oriented from 1V to 2V and

from 2V to 1V respectively, and orienting all other edges from 1V to 2V .
)}(),(|),()(),(|),{( maxmax

GG MEvuvuandMvuvuE εε −∈∈=
– Let +k

GO be the set of all descendants of the k sources of the directed graph G .
+k

GO is the over-constrained subgraph of G induced on
}|{ 1

1
*

21 MVusomeforGonvuVVv ∂−∈→∪∈
– Let −k

GU be the set of all ancestors of k sink of the directed graph G .
−k

GU is the over-constrained subgraph of G induced on
}|{ 2

2
*

21 MVusomeforGonuvVVv ∂−∈→∪∈
– Calculate −+ −−= k

G
k
GG UOGW . GW is obtained by deleting from G all the vertices

and edges of +k
GO and −k

GU .
– Compute the strongly connected components GsS (s=1…n) of GW .3

– Compute the subgraphs GsW of GW induced on GsS (s=1…n)

– Define the partial order on GsW (s=1…n)

– Define the partial order −+ k
GGs

k
G UWO ≺≺ for any s.

end.

3 This can be achieved by using a linear time method such as (Tarjan [94]), see section 4.5.
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The over-constrained part: the number of equations in the system is greater than the
number of variables. The additional equations are either redundant or contradictory and
thus yield no solution. A possible error fixing strategy is to remove the additional over-
constraining equations from the system in order to make the system well-constrained.
Even if the additional equations would be soft constraints which means that they verify
the solution of the equation system and are just redundant equations, they are reported
as errors by the debugger because there is no way to verify the equation solution during
static analysis without explicitly solving them.

The under-constrained part: the number of variables in the system is greater than the
number of equations. A possible error fixing strategy would be to initialize some of the
variables in order to obtain a well-constrained part or add additional equations to the
system.

Over and under-constrained situations can coexist in the same model. In the case of
an over-constrained model, the user would like to remove the over-constraining equa-
tions in a manner which is consistent with the original source code specifications, in or-
der to alleviate the model definition.

The well-constrained part: the number of equations in the system is equal to the
number of variables and therefore the mathematical system of equations is structurally
sound, having a finite number of solutions. This part can further be decomposed into
smaller solution subsets. A failure in decomposing the well-constrained part into
smaller subsets means that this part cannot be decomposed and has to be solved as it is.
A failure in numerically solving the well-constrained part means that no valid solution
exists and somewhere there is numerical redundancy in the system.

The concept of D&M decomposition can be extended to the incidence matrix corre-
sponding to the bipartite graph. In this way, we obtain the block lower triangular form
of the matrix. Thus, instead of solving the whole system of equations once, the system
can be solved by solving a sequence of smaller systems. Experience has shown that se-
quentially solving the separate blocks is far more robust than solving the whole system
of equations at once. From the dynamic debugging perspective, by solving a sequence
of smaller systems, numerical failures can be isolated to the smaller blocks and thus be-
come easier to find.

We illustrate the block lower triangular form of the incidence matrix corresponding
to the DCMotor model from Chapter 2, see Figure 4-10. Applying the D&M decompo-
sition on the bipartite graph representing the flattened system of equations correspond-
ing to the simulation model we obtain a single well-constrained graph with 14 strongly
connected components. Thirteen of these strongly connected components contain only
one equation and one big component contains 23 equations that need to be solved si-
multaneously. Big blocks obtained after the D&M decomposition can often be broken
down into smaller blocks using tearing techniques (Mah 1990 [79]), (Elmqvist and Ot-
ter 1994 [34]).
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Figure 4-10. Block Lower Triangular form of the DCMotor model obtained after
applying the D&M decomposition on the flat form of the equations.

Below, we present the output produced by the implemented debugger with the equa-
tions corresponding to the block lower triangular form of the simple DCMotor circuit.
The equations are presented to the left while the variables that are solved for are given
on the right and emphasized with italics letters. For the large block [7] the list of vari-
ables appears below the equations.

Strongly connected components: 14
STRONGLY CONNECTED COMPONENTS
[0]Inertia.flange_b.Tau == 0 Inertia.flange_b.Tau
[1]G.p.v == 0 G.p.v
[2]EMF.n.v == G.p.v EMF.n.v
[3]DC.v == DC.V DC.v
[4]G.p.v == DC.n.v DC.n.v
[5]DC.v == -DC.n.v + DC.p.v DC.p.v
[6]DC.p.v == R.p.v R.p.v
[7]R.v == -R.n.v + R.p.v

0 == R.n.i + R.p.i
R.i == R.p.i
R.i R.R == R.v
L.v == -L.n.v + L.p.v
0 == L.n.i + L.p.i
L.i == L.p.i
L.L (L.i)' == L.v
EMF.v == -EMF.n.v + EMF.p.v
EMF.i == EMF.p.i
EMF.w == (EMF.flange_b.Phi)'
EMF.k EMF.w == EMF.v
EMF.flange_b.Tau == -EMF.i EMF.k
Inertia.flange_a.Phi == Inertia.Phi
Inertia.w == (Inertia.Phi)'
Inertia.a == (Inertia.w)'
Inertia.a Inertia.J == Inertia.flange_a.Tau + Inertia.flange_b.Tau
R.n.v == L.p.v
L.p.i + R.n.i == 0



Dulmage – Mendelsohn’s Canonical Decomposition 47

L.n.v == EMF.p.v
EMF.p.i + L.n.i == 0
EMF.flange_b.Phi == Inertia.flange_a.Phi
EMF.flange_b.Tau + Inertia.flange_a.Tau == 0

R.v R.i R.p.i R.n.v R.n.i L.v L.i L.p.v L.p.i L.n.v
L.n.i EMF.v EMF.i EMF.w EMF.p.v EMF.p.i EMF.flange_b.Phi
EMF.flange_b.Tau Inertia.Phi Inertia.flange_a.Phi
Inertia.flange_a.Tau Inertia.w Inertia.a

[8]0 == EMF.n.i + EMF.p.i EMF.n.i
[9]DC.p.i + R.p.i == 0 DC.p.i
[10]0 == DC.n.i + DC.p.i DC.n.i
[11]DC.i == DC.p.i DC.i
[12]Inertia.flange_b.Phi == Inertia.Phi Inertia.flange_b.Phi
[13]DC.n.i + EMF.n.i + G.p.i == 0 G.p.i

Figure 4-11. Output of the strongly connected components corresponding to the
DCMotor circuit model.

If the model is not correctly formulated and presents over and under-constrained com-
ponents they will appear at the beginning and at the end of the sparsity pattern respec-
tively as shown in Figure 4-12. The square blocks in the middle represent the irreduci-
ble blocks of the well-constrained part obtained after the canonical decomposition.
Before embarking on a numerical solution the over and under-constrained blocks need
to be made square blocks by eliminating extra equations, and eliminating extra vari-
ables respectively 4.

Figure 4-12. D&M decomposition with one under-constrained and one over-
constrained block at the beginning and at the end of the incidence matrix.

Our structural analysis algorithms, employed in the following chapters, will use the bi-
partite graph based representation of the system of equations instead of the incidence
matrix and the sparsity pattern representation. Even if they represent the same abstrac-
tion, we believe that the graph representation is more expressive and useful for generat-
ing explanations of possible bug sources and locations than the incidence matrix repre-
sentation.

4 This constitutes the naïve approach to the over and under-constrained problems. The following
chapters will provide additional details on how to systematically debug such components.
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4.5 The Algorithm for Computing the Strongly Connected
Components

For computing the strongly connected components of a directed graph, our debugger
uses an implementation of Tarjan's algorithm (Tarjan 1972 [113]) (Duff et. al. 1986
[32]) available in the LEDA library (Mehlhorn and Näher 1999 [83]). The algorithm
has a time complexity of O(|V|+|E|) where |V| is the number of nodes and |E| is the
number of edges in the analyzed directed graph. Several improvements of the original
algorithm have been proposed in the literature (Nuutila and Soininen 1993 [91]).

By using a strongly connected components decomposition algorithm the original
problem is decomposed into smaller problems. Then the solution of the original prob-
lem can be constructed by combining the solutions of the subproblems. As was illus-
trated in Figure 4-11 the numerical solutions of the underlying system of equation rep-
resenting a DCMotor can be computed by combining the solution of the strongly
connected blocks from [0] to [13] instead of solving the whole system as one simulta-
neous system of equations.

According to Definition 4-14, in a strongly connected directed graph every two ver-
tices are reachable from each other. The strongly connected components represent all
the possible strongly connected subgraphs. In the case of undirected graphs the notion
of connected graph is used. An undirected graph is connected if every two pairs of ver-
tices are connected by a path and the connected components represent all the connected
subgraphs.

From the structural analysis and system diagnosis point of view it is interesting to
take a closer look at how the strongly connected components are identified in directed
bipartite graphs with an associated perfect matching. Let us again consider the directed
bipartite graph from Figure 4-6, which is shown in Figure 4-13.

u1 u2 u3 u4

v1 v2 v3 v4

v1

u2

u1

u4 u3

v2

v4

v3

feasible
path

alternating
cycle

Figure 4-13. Simple directed bipartite graph.

In our abstraction, according to Definition 4-14 all alternating cycles and admissible
edges from feasible paths represent strongly connected components. Then, we eliminate
all the edges from the directed graph that are not part of any cycles or admissible edges
of a feasible path. The strongly connected components are isolated in this way and the
partial order relation among the components is established based on the eliminated
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edges. The partial order relation has an inverted direction on the blocks compared to the
direction of the eliminated edges. When the directed bipartite graph represents a system
of equations, the partial order relation implies transport of variable values from one
block to another block. In this way, a dependency is created among the blocks and an
order of solving the blocks is implicitly established.

u1 u2 u3 u4

v1 v2 v3 v4

v1

u2

u1

u4 u3

v2

v4

v3

B1 B2

12 BB ≺

B3

32 BB ≺

B1

B2

B3

B1 B2 B3

13 BB ≺

v4 v3

v3

Figure 4-14. Strongly connected components of a directed graph and the partial or-
der relation between the components.

Let us consider the example in Figure 4-14. The nodes marked u represent equations
and the nodes marked v represent variables. Then the partial order graph from Figure
4-14 is interpreted as follows: first the block B2 needs to be solved. Then through the
partial order relation 12 BB ≺ and 32 BB ≺ the value of variable v3 is transported to
the blocks B1 and B3. At the next step B3 is solved which transports the value of vari-
able v4 to block B1 through the partial order relation 43 BB ≺ . In the last step block B1
can be solved. In this way the order in which the strongly connected components are
solved is given by the partial order graph of the strongly connected components.

4.6 Symbolic Manipulation of Equation Systems

In this section we illustrate how a simple equation system is transformed into a reduced
equivalent form by symbolically substituting one variable by another. Such techniques
are widely used when compiling equation-based languages in order to reduce the size of
the problem (Maffezzoni et. al. 1996 [78]) and to split bigger blocks obtained after the
canonical decomposition into smaller parts. We are going to show the graph transfor-
mation involved in the substitution of one variable by another when simple equality
equations in the form ji xx = are encountered in the overall system of equations.

Let us consider the simple equation system shown in Figure 4-15 and its correspond-
ing bipartite graph with an arbitrary given matching. The directed bipartite graph is also
shown where all the matching edges have been exchanged by bidirectional edges and
all the other edges have been oriented from the equation nodes to the variable nodes.
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Figure 4-15. A simple equation system and its corresponding undirected and di-
rected bipartite graph.

When attempting to manually solve the system of equations, one may take the first
equation and substitute all the occurrences of x with y in the remaining equations. The
following transformation of the system of equations can be performed:
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This transformation allows us to solve the last two equations simultaneously and to ob-
tain the values for y and z. We then substitute the obtained value of y into the first equa-
tion and calculate the value of x. Now let us take a look how this will affect the struc-
ture of the underlying directed bipartite graph.

y

eq1

x

eq3eq2

z

eq3'

y

eq1

x

eq2

z

Figure 4-16. Graph transformation after a variable symbolic substitution

Obviously the directed graph corresponding to the untransformed system of equations
constitutes a strongly connected component. By substituting variable x with y in all
other equations we obtain an equivalent system of equations that will exhibit two
strongly connected components in the structure of the corresponding bipartite graph in-
stead of one strongly connected component.

A symbolic substitution of a variable at the bipartite graph level is done in the fol-
lowing way: first the equation node that has the special structure ji xx = of a simple
equality is identified (in our particular case eq1). Then we identify the first reachable
equation node from the equation chosen in the previous step (eq3 for our example) and
the first variable node (y) that sinks into the chosen equation node. The path from the
variable node that sinks into the equation node and the equation node is an alternating
path.
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We exchange the matching edges with non-matching edges along this path and
eliminate the incident edge to the final equation node. That edge was previously part of
the alternating path (in our case the edge between variable node x and the equation node
eq3). Then an extra directed matching edge is added between the first variable node and
the final equation node (the edge represented by dashed lines in Figure 4-16 between y
and eq3). The final equation node is relabeled (eq3') indicating that the form of the
equation has been altered, by symbolically substituting a variable for another variable.
When performing a strongly connected component analysis algorithm on the obtained
bipartite graph, two components are detected now instead of only one as is indicated in
Figure 4-16 on the left.

4.7 Tree Search Algorithms

Many of the algorithms presented or mentioned in the subsequent chapters that are re-
lated to the debugging of over and under-constrained systems require a systematic
method of visiting the vertices of a tree. These include Tarjan's algorithm (Tarjan 1972
[113]) for computing the strongly connected components or (Duff et. al. 1986 [32])
There are two well-known methods for searching trees: depth-first search (DFS) and
breadth-first search (BFS) algorithms. Both algorithms list the nodes in the order in
which they are encountered during the traversal and differ only in the way in which the
node lists are constructed. For these reasons we find it useful to briefly present the
depth-first searching algorithm (Gibbons 1985 [48]) where DFN(v) is a label associated
with each vertex v.

Algorithm 4-2: DFS(G,n) Depth-First Search Algorithm

Input Data: A graph ),( EVG = and start node Vn ∈ .
Result: A list L of the traversed edges
begin:

Procedure dfs(v)
begin

DFN(v) := i;
i := i + 1;
for all )adj(vv ∈′ do

if DFN( v ′ ) =0 then
L := append(L, {(v, v ′ )});
dfs( v ′ );

end if
end for

end procedure.
for all Vv ∈ do DFN(v) := 0;

∅=L ;i := 1;
dfs(n);
return L;

end.
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The complexity of the algorithm is )( EO . For the simple labeled tree presented in
Figure 4-17 the output of Algorithm 4-2 is:

L = { (a,b), (b,c), (b,d), (d,e), (d,f), (a,g), (g,h), (g,i) }

a

b

c d

e f

g

h i

Figure 4-17. A simple labeled tree.

The algorithm DFSm is a slightly modified version of Algorithm 4-2 where the output
is changed. Instead of enumerating the edges in the traversal order the paths from the
start node to the terminal nodes, indicated by the dashed arrows in Figure 4-17, are rep-
resented explicitly in the output list. The output list L will have the following form:

L = { (a,b,c), (a,b,d,e), (a,b,d,f), (a,g,h) ,(a,g,i) } for DFSm.
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Chapter 5

Debugging Over-Constrained Systems
of Equations

Summary: This chapter proposes a method for detecting the situations when over-
constraining equations are present in a system simulation model specification. It pri-
marily describes related graph-based algorithms, which constitute the core of the im-
plemented debugging kernel for detecting such situations. An efficient way to annotate
the underlying equations in order to help the implemented debugger to choose the right
error fixing solution is also provided. This also provides means to report the location of
an error caught by the static analyzer consistent with the user's perception of the simu-
lation model. At the end of this chapter, special emphasis is given to over-constrained
bipartite graphs with multiple free vertices which corresponds to heavily over-
constrained physical system model. The algorithms and methods developed help to
statically detect and repair a broad range of errors without having to execute the simu-
lation model. Several simulation models and examples are given in this chapter in or-
der to illustrate the main situations when over-constraining equations can appear in the
system. Error detection and error solving strategies for these cases are also presented.

5.1 Introduction

A typical problem which often appears in physical system modeling and simulation is
when too many equations are specified in a system, leading to an inconsistent state of
the simulation model. In such situations the model cannot be compiled into the form
compatible with the numerical solvers. Therefore the numerical solver cannot start to
find the correct solutions to the underlying system of equations. The methods proposed
in this chapter present a strategy to deal with overdeterminancy by identifying the
minimal set of equations that should be removed from the system in order to make the
remaining set of equations solvable. The idea is to isolate the over-constraining part of
the bipartite graph associated to the underlying system of equations and to perform rea-
soning based on specific properties of the specified subgraph. Efficient graph transfor-
mations, based on rules derived from the semantics of the modeling language are also
performed on the subgraphs. We are going to show how these rules are automatically
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derived from the modeling language semantics and how the associated annotations to
the equations contribute to the filtering of the combinatorial explosion of possible error
fixing solutions.

The possibility of a systematic approach to the elimination of over-constraining
equations also needs to be considered because sometimes multiple error fixing strate-
gies are simultaneously available as a result of the graph transformations. These error
fixing strategies are always sound from the mathematical point of view (they will lead
to a structural consistent system of equations) but they might not make sense from a
physical modeling point of view (their behavior does not match the intended behavior)
and in that case intervention of a human expert is needed.

5.2 A Simple Electrical Circuit Model

Obviously, each simulation problem is associated with a corresponding mathematical
model. In dynamic continuous system simulation the mathematical model is usually
represented by a mixed set of algebraic equations and ordinary differential equations.
For some complicated simulation problems the model can be represented by a mixed
set of ordinary differential equations (ODEs), differential algebraic equations (DAEs)
and partial differential equations (PDEs). Simulation models can become quite large
and complex, sometimes involving several thousand simultaneous equations.

The system of equations describing the overall model is obtained by merging the
equations of all component models and all binding equations generated by connect
equations.

The simple electrical circuit model from Chapter 3, section 3.5.1, is reiterated here.
In Figure 5-1 the Modelica source code corresponding to the simple simulation model
from section 3.5.1 consisting of a resistor connected in parallel to a sinusoidal voltage is
given. The intermediate flattened form is also shown for explanatory purposes. The
Circuit model is represented as an aggregation of instances of the Resistor,
Source and Ground submodels connected together by means of connections between
physical ports.

This model is so trivial as to be almost beneath consideration, but it serves as a
straightforward vehicle for the introduction of several fundamental debugging concepts.
This simulation model and this modeling example will be reiterated many times in later
chapters with the purpose of illustrating concepts of structural analysis. The model is
extremely useful because it keeps the associated structural graphs to a minimum size
and complexity, but in the meantime it illustrates interesting structural and debugging
problems.
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Figure 5-1. Modelica source code of a simple simulation model and its correspond-
ing flattened system of equations, variables, parameters, and constants.

From the flattened intermediate form of the equations the associated bipartite graph
is derived and a perfect matching is found. Since there exists a perfect matching associ-
ated to the bipartite graph, the D&M decomposition leads to a well-constrained part
without any over or under-constrained parts. Given the bipartite graph and a corre-
sponding perfect matching a directed graph is derived as shown in Figure 5-2 a). Sub-
sequently, an algorithm for detecting the strongly connected components is executed on
the obtained graph. The algorithm will decompose the system into irreducible blocks
with the dependencies shown in Figure 5-2 b). By applying the algorithm for computing
the strongly connected components in the directed graphs, the solving order of the
equations can also be derived, as shown in Table 5-1 by the block lower triangular form
of the incidence matrix corresponding to the system of equations.

connector Pin
Voltage v;
Flow Current i;

end Pin;

model TwoPin
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v; 0 = p.i + n.i; i = p.i

end TwoPin;

model Resistor
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model VsourceAC
extends TwoPin;
parameter Real VA=220; parameter Real f=50;
protected constant Real PI=3.141592;

equation
v=VA*(sin(2*PI*f*time));

end VsourceAC;

model Ground
Pin p;

equation
p.v = 0

end Ground;

model Circuit
Resistor R1(R=10); VsourceAC AC; Ground G;

equation
connect(AC.p,R1.p); connect(R1.n,AC.n);
connect(AC.n,G.p);

end Circuit;

Flattened equations
1. R1.v = -R1.n.v + R1.p.v

2. 0 = R1.n.i + R1.p.i

3. R1.i = R1.p.i

4. R1.i*R1.R = R1.v

5. AC.v = -AC.n.v + AC.p.v

6. 0 = AC.n.i + AC.p.i

7. AC.i = AC.p.i

8. AC.v = AC.VA*Sin[2*time*AC.f*AC.PI]

9. G.p.v = 0

10. AC.p.v = R1.p.v

11. AC.p.i + R1.p.i = 0

12. R1.n.v = AC.n.v

13. AC.n.v = G.p.v

14. AC.n.i + G.p.i + R1.n.i = 0

Flattened Variables

1. R1.p.v 2. R1.p.i 3. R1.n.v

4. R1.n.i 5. R1.v 6. R1.i

7. AC.p.v 8. AC.p.i 9. AC.n.v

10. AC.n.i 11. AC.v 12. AC.i

13. G.p.v 14. G.p.i

Flattened Parameters
R1.R -> 10
AC.VA -> 220
AC.f -> 50

Flattened Constants
AC.PI -> 3.14159
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Figure 5-2. a) Directed graph associated to the simple electrical circuit and b) the
corresponding decomposition into irreducible blocks containing one equation each.

Table 5-1. Block Lower Triangular form of the equation system .
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eq13 X X
eq8 X
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eq10 X X
eq12 X X
eq1 X X X
eq4 X X
eq3 X X
eq2 X X
eq11 X X
eq6 X X
eq7 X X
eq14 X X X

It should be noted that the directed graph derived from the bipartite graph associated to
the system of equations only contains cycles that involve one equation and one variable
node and does not contain any alternating cycles. Therefore the irreducible blocks, ob-
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tained after applying the algorithm for detection of the strongly connected components,
only contain single equations. In principle, as was mentioned earlier, the algorithm for
detecting the strongly components operates by deleting all the edges in the directed
graph which are not part of any possible perfect matching. In our case, the perfect
matching associated to the directed graph was unique because there were no alternating
cycles in it and all the edges not part of the perfect matching were deleted. In this case,
the algorithm for computing the strongly connected components in the graph was only
useful to establish the order in which the equations should be solved.

5.3 Equation Annotations

In order to provide a mechanism to reason about the erroneous model under considera-
tion the equations need to be annotated. For annotating the equations we use a structure
which resembles the one developed in (Flannery and Gonzales 1997 [39]). We define
an annotated equation as a record with the following structure: <Equation, Name,
Description, No. of associated eqs., Class name, Flexibility
level, Connector generated >.

An example including the annotations associated with an equation extracted from the
Resistor model is given in Table 5-2. The values defined by annotations are later
incorporated in the error repair strategies. These values are used to choose the right
error-fixing solution from a series of possible repair strategies.

Table 5-2. The structure of the annotated equation

Attribute Value
Equation R1.i * R1.R == R1.v

Name “eq4”
Description “Ohm’s Law for the resistor component”
Nr. of associated eq 1
Class Name “Resistor”
Flexibility Level 3
Connector generated no

The Class Name says which class the equation comes from. This annotation is ex-
tremely useful in exactly locating the associated class of the equation and therefore pro-
viding concise error messages to the user.

The No. of associated eqs. field defines the number of equations which are specified
together with the annotated equation. In the example given in Table 5-2 the No. of as-
sociated eqs. is equal to one since there are no additional equations specified in the Re-
sistor class. For an equation that belongs to the TwoPin class the number of associ-
ated equations is equal to 3. If one associated equation of the class needs to be
eliminated the value is decremented by 1. If, during debugging, the equation R1.i *
R1.R == R1.v is diagnosed to be an over-constraining equation and therefore needs
to be eliminated, the elimination is not possible because the model will be invalidated
(the No. of associated eqs. cannot be equal to 0) and therefore other solutions need to be
investigated.
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The flexibility level, in a similar way as defined in (Flannery and Gonzales 1997
[39]) allows the ranking of the relative importance of the equation in the overall flat-
tened system of equations. The value can be in the range of 0 to 3, with 0 representing
the most rigid equation and 3 being the most flexible equation. Equations, which are
coming from a partial model and therefore are inherited by the final model, have a
greater rigidity compared to the equations defined in the final model. For example, in
practice, it turns out that the equations generated by connections are more rigid from the
constraint relaxation point of view than the equations specified inside the model. Tak-
ing into account these formal rules, for an equation defined inside a Modelica class, a
maximum flexibility value will be assigned. In conclusion a maximum flexibility value
will be defined for the equations in the final model, followed by equations defined in
partial classes and equations generated by the connect equations. We set the flexibility
value to 0 for those equations that should not be removed or modified. These equations
are locked for editing.

The Connector generated is a Boolean attribute which tells whether the equation is
generated or not by a connect equation. Usually these equations have a very low
flexibility level.

It is worth noting that the annotation attributes are automatically initialized by the
static analyzer, incorporated in the front-end of the compiler, by using several graph
representations (Harrold and Rothermel 1996 [57]) of the declarative object-oriented
program code. Therefore the user does not need to manually annotate the source code.
A debugger preprocessor takes care of the automatic generation and initialization of the
annotating code. In this way a mapping between the intermediate code and original de-
clarative code is kept during the translation phases.

5.4 Detecting an Over-Constraining Equation

In the following sections methods for iterating through all possible equations that can
be removed from the system are presented. These methods are integrated in an efficient
framework that permits a filtering strategy of the equations based on annotations and
semantic rules derived from the source language, in this case Modelica. Several proper-
ties of the over-constraining subgraphs obtained after the D&M canonical decomposi-
tion will also be presented in the following sections.

The main idea behind the framework of debugging over-constrained situations is to
filter out certain equations. Equations are eliminated based on combinatorial properties
of the bipartite graphs or if they are violating the semantic rules of the modeling lan-
guage. Only those error-fixing solutions (in the case of over-constraining systems
elimination of extra equations) are taken into account that can be performed by manipu-
lating language constructs in the modeling language in terms of atomic changes such as
those defined in Chapter 3, section 3.4. The debugger exposes the users to the modeling
language and does not burden users with information connected to the intermediate lan-
guage involved in the translation phase.

Let us again examine the simple simulation example presented in Figure 5-1, where
an additional equation (i=23) was intentionally introduced inside the Resistor com-
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ponent in order to obtain a generally over-constrained system. The D&M canonical de-
composition will lead to two different subgraphs: a well-constrained part GW and an
over-constrained part +1

GO (see Figure 5-3).
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Figure 5-3. Canonical decomposition of an over-constrained system

Equation eq11 is a non-saturated or free vertex of the equation set, therefore it is a
source for the over-constrained part +1

GO . Starting from eq11, the directed graph can be
derived from the undirected bipartite graph, as illustrated in Figure 5-4, by exchanging
all the matching edges into bidirectional edges and orienting all other edges from equa-
tion to variable nodes. An immediate fix of the over-constrained part is to eliminate
eq11, which will lead to a well-constrained part. However, first we need to examine the
annotations associated to eq11:

<AC.p.v == R1.pv, “eq11”, “ “, 2, “Circuit”, 1, yes>

We note that the equation is generated by a connect equation from the Circuit
model and the only way to remove the equation is to remove the original con-
nect(AC.p, R1.p) equation. However, removing the above-mentioned equation will
remove two equations from the flattened model, which is indicated by the No. of asso-
ciated eqs. = 2 parameter. One should also note that the flexibility level of the equation
is equal to 1, which is extremely low, indicating that the equation is extremely rigid.
Therefore another solution need to be found, removing another equation instead of re-
moving the equation AC.p.v == R1.pv.
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5.5 Over-Constrained Bipartite Graph Properties

The general error fixing strategy in the case of over-constrained equation subsystems is
to remove the extra equations. Therefore several important criteria need to be developed
based on the combinatorial properties of the over-constraining subgraph and the filter-
ing rules imposed by the modeling language semantics.

Let ( )EVVG ,, 21= be a bipartite graph and max
GM an associated maximum cardinal-

ity matching. The directed graph obtained after exchanging all matching edges in bi-
directional edges and orienting all other edges from 1V to 2V is ( )AVVG ,, 21= where

)}(),(|),(and)(),(|),{( MEvuvuMvuvuA εε −∈∈= or described equivalently

as )}(),(|),(and)(),(|),{( MuvuvGvuvuA εε ∈∈= . We denote by )(Gε the
edge set of graph G.

Definition 5-1: The removal of a node representing an equation from a given bipartite
graph G with an associated maximum cardinality matching max

GM , is safe if:

1. The corresponding undirected graph obtained after removing the node and its in-
cident edges remains connected.

2. The node is not covered by the considered maximum cardinality matching max
GM .

By the second criterion, it should be noted that only those nodes can be considered for
removal that are not covered by the maximum cardinality matching. For this reason,
those bipartite graphs which admit a perfect matching have no equation nodes in their
structure that are safe for removal. The second criterion also restricts the nodes which
are safe for removal to the free nodes contained in the over constrained subgraph

+k
GO corresponding to G. Therefore we can extend Definition 5-1 to the family of all

possible equation nodes that are safe to be removed by considering the family of all
maximum cardinality matchings )( max

GMℑ . The following theorem can be formulated
regarding the safety of equation nodes in +k

GO .

Theorem 5-1. Any equation node v of the over-constraining subgraph +k
GO correspond-

ing to the bipartite graph G is safe for removal if by removing that equation and the cor-
responding incident edges )(vincE the remaining undirected graph is connected.

Proof: We shall demonstrate that there is always a maximum cardinality matching
max
GM , which does not include a given equation node 1Vv ∈ , such that the second con-

dition of Definition 5-1 always holds. Based on the D&M decomposition (Algorithm 4-
1) the +k

GO subgraph is the set of all descendants of sources or free nodes of the bipar-
tite graph G covered by a given maximum matching max

GM . A path constructed by
starting from a free node and following the matching always starts with an unmatched
node to a node representing the second bipartition which is covered by the matching.
Then the matching edge is added to the path and the direction pointing to a node from
the first bipartition is followed. The path construction stops when there are no directed
edges to follow any more. It can stop with a node from the first bipartition covered by
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the matching max
GM . The final node is always covered by the given maximum cardinal-

ity matching because otherwise it is not reachable. In that case, there is an over-
constraining feasible path from the free starting node to the end node. The non-
matching edges along this path can easily be exchanged with matching edges. In this
way a new over-constraining feasible path is obtained which will cover the previous
free node but will uncover another node from the first bipartition corresponding to

+k
GO . Since GO k

G ⊆+ all the feasible paths contained in +k
GO are also feasible paths in

G. Exchanging the non-matching edges with matching edges along the path creates a
new maximum cardinality matching associated to G. Therefore there exists a maximum
cardinality matching of G which does not cover a certain node in the first bipartition of

+k
GO .
The path can also terminate when a cycle is detected. It terminates with a node from

the second bipartition which was previously traversed. In this case the non-matching
edges and the matching edges can also be exchanged along a feasible path excluding
the last edge. Since the terminating node has already been traversed once, there is a
guarantee that it is on the feasible path. By exchanging the edges, this node will always
be covered by a maximum cardinality matching. Following all the free edges and all the
associated feasible paths the subfamily of the maximum cardinality matching

)()( maxmax
GGS MM ℑ⊆ℑ associated to G can be deduced. This proves that there exists

at least one maximum cardinality matching which does not cover a node contained in
the first bipartition of an over-constrained subgraph +k

GO .
It should be noted that the notion of safe removal of equation nodes only refers to the

bipartite graph representation of the intermediate code of the flattened set of equations.
This is influenced by combinatorial properties of the bipartite graph. By including re-
moval criteria derived from the semantics of the modeling language the notion of safe
removal can further be extended to the modeling language source code.

5.6 Calculating the Safe Set of Over-Constraining
Equations

To describe the next step of the debugging procedure for the over-constrained system of
equations we need to introduce several definitions regarding the particular equation
subsets which have special properties from the structural analysis point of view.

Definition 5-2: The equivalent over-constraining equation set associated to an over-
constrained part of a system of equations is the set of equations { }neqeqeq �,, 21 from
where the elimination of any of the component equations will lead to a well constrained
system of equations and the associated undirected bipartite graph remains connected.

Definition 5-3: The reduced equivalent over-constraining equation set is the subset of
safe equations obtained from the equivalent over-constraining equations after the con-
straints derived from the language semantics have been applied.
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Based on the reduced over-constrained list the automated debugger can present the user
several options to resolve over-constrained conflicting situations.

From the over-constrained part +1
GO resulting from the D&M decomposition, de-

picted in Figure 5-4, we can construct an algorithm to find the equivalent over-
constraining set based on the associated directed graph of the over-constrained part.
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Figure 5-4. a) A directed graph associated to the over-constrained part starting from
eq11. b) The fixed well-constrained directed graph by eliminating equation eq5.

We describe the algorithm as follows:

Algorithm 5-1: Finding the equivalent over-constraining equations set
Input Data: The directed over-constrained graph +k

GO resulting after D&M decom-
position applied to G.
Result: The reduced equivalent over-constraining equation set L.
begin:

Initialize L={};
for each free node )( +∈ k

Gk Ovv do
Construct a depth-first search tree T in +k

GO starting with the root vertex kv
for each node Tn ∈ do

if )(
1

+∈ k
GV Ovn (n is an equation node) then

- Remove n from +k
GO

- Compute the number of strongly connected components strno of +k
GO .

if 1==strno then
- add n to L

endif.
endif.

endfor.
endif.
Output the equivalent over-constraining equations set L.

end.

The basic idea behind the algorithm for enumerating all the perfect matchings in a bi-
partite graph, presented in (Fukuda and Matsui 1994 [47]) and an improvement of the
previous algorithm given in (Uno 1997 [120]) and (Uno 2001 [119]), is the exchange of
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matching edges with other edges along an alternating cycle or a feasible path. Enumer-
ating all of the maximal matchings which include the source vertex (in our case eq11) is
not interesting, since they will lead to equivalent debugging solutions. All the obtained
maximal matchings will have eq11 as a free node. Therefore we are interested in find-
ing other maximal matchings which include the source vertex and leave other equation
nodes free. One important property of the over-constrained bipartite graph is that it only
contains alternating paths because it is constructed from a maximum matching and a
supplementary free edge. We can easily obtain all the maximal matchings in the over-
constrained graph by exchanging matching edges with non-matching edges along an al-
ternating path that starts from a free node.
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Figure 5-5. The elimination of an unsafe equation node from the over-constrained
subgraph leads to two disconnected components.

The previously computed reduced equivalent list can further be refined taking into ac-
count simple rules derived from the language semantics. An algorithm for computing
the reduced equivalent over-constraining equation list is given below:

Algorithm 5-2: Annotation based equation set reduction

Input Data: A reduced equation set L taken from the output of Algorithm 5-1.
Result: the final reduced equivalent over-constraining equation list rL .

begin:
– Eliminate from the list all of the equations that are generated by a connect

equation and for which the No. of associated eqs. parameter exceeds the
number of free nodes.

– Eliminate all the equations for which the No. of associated eqs. parameter is
equal to 1. Add those equations to the history list.

– Sort the remaining equations in decreasing order of flexibility level
– Output the sorted list of equations rL .

end.

If the length of the reduced equivalent over-constraining list is equal to the number of
free nodes of the over-constrained graph, automatic debugging of the model is possible
by eliminating the equation from the simulation model without any supplementary user-
intervention. Of course, the history list together with the elimination is output to the



64 Chapter 5 Debugging Over-Constrained Systems

user. If the length of the list is greater than the degree of freedom, this means that sev-
eral error fixing strategies are possible and therefore user intervention is required for se-
lecting the appropriate subset of equations that need to be removed. The reduced list is
output to the user starting with the equation which has the highest flexibility level.

In our case the set of equivalent over-constraining equations is {eq11, eq13, eq10,
eq5, eq9} with their associated annotations shown in Table 5-3. The equation node
eq11 was already analyzed and can therefore be eliminated from the set. Equation node
eq13 is eliminated as well, for the same reasons as equation eq11. Analyzing the re-
maining equations {eq10, eq5, eq9} one should note that they have the same flexibility
level and therefore are candidates for elimination with equal probability. However, ana-
lyzing the value of the No. of associated eqs. parameter, equation eq10 and eq9 have
this attribute equal to one, which means that they are singular equations defined inside
the model. Eliminating one of these equations will invalidate the corresponding model,
which is probably not the intention of the modeler.

Examining the annotations corresponding to equation eq5 one can see that it can
safely be eliminated because the flexibility level is high. Moreover, removing the equa-
tion will not invalidate the model since there is another equation defined inside the
model. The directed bipartite graph obtained after the removal of eq5 is depicted in
Figure 5-5. After selecting the right equation for elimination the debugger tries to iden-
tify the associated class of that equation-based on the Class name parameter defined in
the annotation structure. Having the class name and the intermediate equation form
(R1.i=23) the original equation can be reconstructed (i=23), exactly indicating to the
user which equation needs to be removed in order to make the simulation model
mathematically sound. In this case the debugger correctly located the faulty equation
previously introduced by us in the simulation model.

By examining the annotations corresponding to the set of equations which need to be
eliminated, our implemented debugger can automatically determine the possible error
fixing solutions and prioritize them. For example, by examining the flexibility level of
the associated equation compared to the flexibility level of another equation the debug-
ger can prioritize the proposed error fixing schemes. When multiple valid error fixing
solutions are possible and the debugger cannot decide which one to choose, a priori-
tized list of error fixes is presented to the user for further analysis and decision. In those
cases, the user must take the final decision, as the debugger cannot know or doesn’t
have sufficient information to decide which equation is over-constraining. The advan-
tage of this approach is that the debugger automatically identifies and solves several
anomalies in the declarative simulation model specification without having to execute
the system.

Table 5-3. The associated annotations of the equivalent over-constraining equation set

Name Equation No. of
assoc.eq.

Class name Flex.
level

Connector
Generated

eq11 AC.p.v = R1.p.v 2 connect(AC.p,R1.p) 1 Yes
eq13 R1.n.v = AC.n.v 2 connect(R1.n,C.n) 1 Yes
eq10 G.pv = 0 1 Ground 2 No
eq5 R1.i = 23 2 Resistor 2 No
eq9 AC.v = AC*VA*

sin[2*t*AC.f*AC.PI]
1 VsourceAC 2 No
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5.7 Over-Constrained Subgraphs

This section describes how the algorithms from the previous sections are modified
when multiple free nodes are present in the over-constrained subgraph.

We construct a simple electrical circuit model by connecting two resistors in parallel
with a voltage source as shown in Figure 5-6. The Modelica definition of the Ground,
VsourceAC and Resistor classes is reused from the previous example. The TwoPin
class is modified by introducing an additional over-constraining equation (i=10) in the
model definition. This extra equation will be inherited by all the classes, which extend
the TwoPin class. Therefore each instance of the Resistor and VsourceAC models
will contribute to one extra over-constraining equation to the final flattened system of
equations.

R1 R2AC

G

model TwoPin
Pin p,n;
Real v,i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
i = 10;

end TwoPin

Figure 5-6. Electrical circuit with two resistors connected in parallel with an addi-
tional equation introduced in the TwoPin class.

During model translation the flattened set of equations corresponding to the simulation
model is derived (shown in Table 5-4) and the associated bipartite graph G is con-
structed. The flattened model corresponding to the simple electrical circuit now con-
tains three extra over-constraining equations. Therefore, three equation vertices are not
covered by a maximum matching. By choosing an arbitrary maximum cardinality
matching and performing a D&M canonical decomposition the over-constrained sub-
graph +3

GO is obtained, depicted in Figure 5-7. The maximum cardinality matching for
the corresponding bipartite graph leaves three vertices uncovered corresponding to the
equations eq9, eq18 and eq17. The set of edges )( 3+

GOε is given below:

)}

,

,

{()( 3

var17,eq15,var17),(r15),(eq11),(eq11,vavar13,eq113),((eq17,var1

),var6,eq46),(),(eq5,varvar5,eq5(ar5)r9),(eq1,v),(eq20,vavar3,eq20(

,(eq1,var3))var1,eq1r1),(),(eq18,vavar19,eq16r19),(),(eq22,vavar15,eq22(

r15),),(eq21,vavar9,eq21var9),(r12),(eq6,),(eq10,vavar11,eq10),((eq6,var11

),var7,eq6r7),(),(eq18,vavar18,eq14r18),(),(eq13,vavar14,eq134),((eq19,var1

),var2,eq3r2),(),(eq19,vavar8,eq198),(),(eq8,varvar12,eq8,(eq9,var12)OG =+
ε
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Table 5-4. Flat form of the equations corresponding to the over-constrained electri-
cal circuit model from Figure 5-6.

eq1 R1.v==-R1.n.v+R1.p.v var1 R1.p.v
eq2 0==R1.n.i+R1.p.i var2 R1.p.i
eq3 R1.i==R1.p.i var3 R1.n.v
eq4 R1.i==10 var4 R1.n.i
eq5 R1.i R1.R==R1.v var5 R1.v
eq6 R2.v==-R2.n.v+R2.p.v var6 R1.i
eq7 0==R2.n.i+R2.p.i var7 R2.p.v
eq8 R2.i==R2.p.i var8 R2.p.i
eq9 R2.i==10 var9 R2.n.v
eq10 R2.i*R2.R==R2.v var10 R2.n.i
eq11 AC.v==-AC.n.v+AC.p.v var11 R2.v
eq12 0==AC.n.i+AC.p.i var12 R2.i
eq13 AC.i==AC.p.i var13 AC.p.v
eq14 AC.i==10 var14 AC.p.i
eq15 AC.v==AC.VA*sin[2*time*AC.f*AC.PI] var15 AC.n.v
eq16 G.p.v==0 var16 AC.n.i
eq17 AC.p.v==R1.p.v var17 AC.v
eq18 R1.p.v==R2.p.v var18 AC.i
eq19 AC.p.i+R1.p.i+R2.p.i==0 var19 G.p.v
eq20 R1.n.v==R2.n.v var20 G.p.i
eq21 R2.n.v==AC.n.v
eq22 AC.n.v==G.p.v
eq23 AC.n.i+G.p.i+R1.n.i+R2.n.i==0

Following the sets of the D&M canonical decomposition by starting from the free verti-
ces, all of the descendants can be computed. Each free vertex induces an over-
constrained subgraph. This over-constrained subgraph may contain cycles as well. In
the example from Figure 5-7 the over-constrained subgraph is a tree and only contains
alternating paths starting from the free equation nodes.

Three equations need to be eliminated from the over-constrained subgraph in order
to make the system well-constrained. One equation needs to be eliminated from each
over-constrained part +++ 1

2
1
2

1
1 ,, GGG OOO (see Figure 5-9).

The following equations are included in the over-constraining sets:

)(}{ 1
1

+∈ GOv3,eq1419,eq3,eq1eq9,eq8,eq

)(}{ 1
1

+∈ GOvq4eq16,eq5,eeq21,eq22,,eq1,eq20,,eq13,eq148,eq19,eq3q10,eq9,eqeq18,eq6,e

)(},7{ 1
3
+∈ GOveq11,eq15q4eq16,eq5,eeq21,eq22,,eq1,eq20,eq1

The set of safe over-constraining equations associated with each over-constrained sub-
graph can be computed using Algorithm 5-1. We obtain the following reduced set of
equation nodes:

)(}{ 1
1

+∈ GOv14eq9,eq3,eq

)(},{ 1
2
+∈ GOveq4eq21,eq16,eq14,eq20,q3eq18,eq9,e

)(}7{ 1
3
+∈ GOveq15,eq16,eq4,,eq20,eq21eq1
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Figure 5-7. The over-constrained directed graph

All the possible combinations that can be scheduled for elimination are represented by
the following graph where at the top we have the equations which are included in +1

1GO ,
in the middle the equation nodes from +1

2GO and at the bottom equations from +1
3GO . If

three nodes (one from each subset) are linked together with edges, this means that it
constitutes a valid set that can be considered for elimination.

eq9 eq3 eq14

eq18 eq3 eq14 eq20 eq21 eq16 eq4

eq17 eq20 eq21 eq16 eq4 eq15

Figure 5-8. The possible elimination combinations.
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It should be noted that some equations appear in more than one safe equation set. For
example, eq3 appears in the safe equation sets associated to the subgraphs +1

1GO and
+1

2GO . This means that eq3 can be made a free vertex by exchanging matching edges
with non-matching edges along the path += ∈→ 1

139 GOeqeq or += ∈→ 1
2318 GOeqeq .

If eq3 is scheduled for elimination from the subgraph +1
1GO it cannot be scheduled again

for elimination from the subgraph +1
2GO , even though it is present in the set of safe

equations associated to the subgraph. Moreover, if eq13 is scheduled for elimination
from subgraph +1

1GO , this will also affect the elimination of node eq14 from subgraph
+1

2GO . The operation of exchanging the non-matching edges with matching edges along
the path += ∈→ 1

139 GOeqeq will affect the path += ∈→ 1
21418 GOeqeq isolating eq14.

Therefore eq14 cannot be selected any more for elimination from +3
2GO even if it previ-

ously had a valid path to the free node eq18.
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Figure 5-9. The +++ 1
2

1
2

1
1 ,, GGG OOO components of the +3

GO over-constrained subgraph.

The previous example has demonstrated that a mechanism to quickly check if certain
equation subsets can constitute a safe removal set is needed. The following section in-
troduces a special graph structure which captures the dependencies among the equa-
tions. We also present an algorithm that verifies the validity of certain equation subsets.
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5.8 Alternating Paths Dependency Graphs

In order to illustrate the path selection algorithm and to show the dependencies among
the over-constraining variables, the set of safe over-constraining equations associated
with each over-constrained subgraph is expanded to a set of paths where each equation
element is replaced by the path from the free variable to itself. The safe over-
constraining equation sets become:

}149,39,99{ * eqeqeqeqeqeq →→→ == for +1
1GO

}418,1618,2118

,2018,1418,318,1818{ *

eqeqeqeqeqeq

eqeqeqeqeqeqeqeq

→→→

→→→→
===

===

for +1
2GO

}1517,417

,21617,2117,2017,1717{ *

eqeqeqeq

eqeqeqeqeqeqeqeq

→→

→→→→
==

===

for +1
3GO

A cut variable node is the first shared variable node along two considered paths, e.g. as
depicted in Figure 5-10. Each path can be extended by including the cut variable node
in the path. For example, considering the paths += ∈→ 1

139 GOeqeq and
+= ∈→ 1

21418 GOeqeq the first common variable node which is included in both paths
is var12. Including the cut variable node the path 39 eqeq →= becomes

.312var9 eqeq →→ == The list of all cut variable nodes {var12, var1, var9, var5}
associated with +1

GO can be computed and used to expand the path sets as shown below,
and depicted in Figure 5-10.

}1412var9,312var9,99{ * eqeqeqeqeqeq →→→→→ ====

}169var18,219var18,41var18

,161var18,211var18,201var18

,1412var18,312var18,1818{ *

eqeqeqeqeqeq

eqeqeqeqeqeq

eqeqeqeqeqeq

→→→→→→

→→→→→→

→→→→→

======

======

====

}1517,45var17

,165var17,41var17,161var17

,211var17,201var17,1717{ *

eqeqeqeq

eqeqeqeqeqeq

eqeqeqeqeqeq

→→→

→→→→→→

→→→→→

===

======

====

An edge starting from a free equation and pointing back to itself denotes a free variable.
For generality, it can be considered as an alternating path with the number of edges
equal to zero. If a free equation is chosen for elimination, then only the associated path
is eliminated as well as the incident edges.
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var12 var1 var9 var15

eq9 eq18 eq17

eq3 eq14 eq20 eq21 eq16 eq4 eq15

Free equation
nodes

Cut variables

Safe equation
nodes

Figure 5-10. Shortened representation of the alternating paths.

Any further computation involving the equation node elimination can now be per-
formed on the shortened representation of the alternating paths. Let us illustrate the rea-
soning performed on the above mentioned graph representation by choosing equation
node eq3 for elimination from the set of safe nodes included in +1

1GO . In order to safely
eliminate eq3, the matching edges need to be exchanged with non-matching edges
along the path += ∈→ 1

139 GOeqeq . By performing exchange of edges all the paths that
have common edges with the modified path are affected making the safe nodes un-
reachable from the free equation node. Therefore all the edges incident to eq3 can be
eliminated. Then we follow the chosen path backwards including the cut variable
var12.

All the associated edges incident with the node var12 will be eliminated as well from
the path graph. We go backwards on the chosen path one more time and reach the free
equation node. All the incident edges with the free equation node are also removed. An
edge between the free equation node and the chosen safe equation node can be drawn
indicating that equation node eq3 has been made a free node instead of equation node
eq9 as shown in Figure 5-11 a). It should be noted that the safe equation node eq14 be-
comes isolated and cannot reach a free node any more.

In the next step another equation node need to be selected from the safe equation sets
associated with the second over-constrained subgraph +1

2GO . Equation node eq13 has al-
ready been selected for elimination in subgraph +1

1GO and eq14 is not reachable any-
more. An equation from the set )(},{ 1

1
+∈ GOveq21,eq16eq14,eq20,eq18,eq9 needs to be

chosen for elimination. Let us choose eq21 along the path 2118 eqvar9eq →→ == .
All the edges incident with nodes eq21, var9, and eq18 are removed from the graph to-
gether with the cut variable node var9.

Moving to the next over-constrained subgraph +1
3GO we might choose eq4 for elimi-

nation, which is available along the path 41var17 eqeq →→ == as depicted in
Figure 5-11 b). By following the alternating path backwards and eliminating the extra
edges and the cut variable node, we finally obtain the graph shown in Figure 5-11 c).

It should be noted that the three safe equation nodes eq3, eq21, and eq4 have been
arbitrarily chosen just for illustrating the functionality of the path graph reduction algo-
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rithm. All the possible combinations of three equations need to be taken into account by
the debugger when generating error-fixing hypotheses.

var1 var9 var15

eq9 eq18 eq17

eq3 eq14 eq20 eq21 eq16 eq4 eq15

Free equation
nodes

Cut variables

Safe equation
nodes

a)

var1 var15

eq9 eq18 eq17

eq3 eq14 eq20 eq21 eq16 eq4 eq15

Free equation
nodes

Cut variables

Safe equation
nodes

b)

eq9 eq18 eq17

eq3 eq14 eq20 eq21 eq16 eq4 eq15

Free equation
nodes

Cut variables

Safe equation
nodes

c)

Figure 5-11. Transformation of the shortened alternating path graph by choosing
a) eq3 b) eq3 and eq21 c) eq3, eq21 and eq4 for elimination.

The shortened alternating path graph is useful for quickly checking if a given subset of
safe equations chosen by the user or by the debugger, if eliminated from the overall sys-
tem of equations lead to a remaining well-constrained system of equations. In conclu-
sion the following recursive algorithm Algorithm 5-3 is given for automatically check-
ing the validity of an equation subset. The number of equations in the subset which is
checked by the algorithm must be equal to the number of free nodes in the over-
constrained subgraph. Table 5-5 describes functions called from Algorithm 5-3.
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Algorithm 5-3: CHKOC( +k
GSO , },{ 21 keqeqeq … ) Checks if a subset of equation

constitutes a valid elimination set to remove from the flattened set of equations
Input Data: The shortened alternating path graph +k

GSO and a subset of equations
},{ 21 keqeqeq …

Result: a Boolean value: true if the subset of equations constitutes a valid elimination
set, false otherwise.
begin:

Procedure chkoc(G, eqList)
begin

if (size(eqList) != 0) then

keq = pop_last(eqList);
pathList := DFSm(G, keq );

optimize(pathList);
for all pathListp ∈′ do

for all nodes pv ′∈ do
),(gesand_inc_edhide_node_ vG ;

end for;
if Leqk ⊄ then L := append(L, { keq });
chkoc (G,eqList);

),(c_edgesdes_and_inrestore_no vG ;
end for;
push_back(eqList ,eqk);

endif;
end procedure.

∅=L ;
chkoc( +k

GSO , },{ 21 keqeqeq … )
if (L == },{ 21 keqeqeq … ) then return true;
else return false;

end.

The set of equations is traversed by checking if each equation has a valid path to a free
node. If a valid path for an equation is found, the corresponding nodes of the path are
eliminated from the graph. The procedure CHKOC is called recursively having as pa-
rameters the reduced graph and the set of free equations from where the already
checked equation was eliminated. If the next equation node does not have a valid path
to a free node, then the search returns to the equation node checked just before and a
new path is considered. The general step is repeated until each path associated with that
equation node has been checked. At each general step, if a valid path is found, the equa-
tion node is automatically added to a global list L. At the end of the procedure the list L
contains the maximum number of equation nodes having a valid path to a free equation
node. If the set L is the same as the input set then the combination of equation nodes
from the input set constitutes a valid set and can safely be removed from the over-
constrained system of equations in order to make the system consistent.
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In Algorithm 5-3 the following functions and conventions have been used:

Table 5-5. Functions called from CHKOC

Function Convention description
pop_last(list) Returns the last element from the list and modifies the list

by deleting the popped element.
push_back(list ,elem) Adds an element elem at the end of the list list.
hide_node_and_inc_
edges(G,v)

Hides the node v and all the incident edges from the graph
G.

restore_node_and_inc_
edges(G,v)

Restores the hidden node v and all the incident edges from
the graph G.

append(list, elemt) Appends an element elem to a list list.
size(list) Returns the size of the list list.
optimize(list) Optimizes the path list by eliminating all those paths that

do not terminate with a safe edge.
delete(node) Deletes the node and all the incident edges from the graph.
DFSm(G,node) The modified version of the Depth First Search algorithm

By checking each possible combination with Algorithm 5-3 the graph from Figure 5-8
can be reduced. The resulting reduced graph is shown in Figure 5-12, which still has a
high complexity.

eq9 eq3 eq14

eq18 eq3 eq14 eq20 eq21 eq16 eq4

eq17 eq20 eq21 eq16 eq4 eq15

Figure 5-12. Reduced safe nodes combinations graph.

5.9 Filtering with Constraint Rules Based on Language
Semantics

Applying Algorithm 5-1 and taking into account the structural information regarding
the over-constrained subgraph, the number of possible combinations of safe nodes have
been reduced. There are still too many combinations of safe equations. Presenting them
to the user at this stage is not very useful. These combinations represent the error fixing
solutions at the flattened intermediate code level. However, the user has only the possi-
bility of making modifications at the source code level. Many of the possible combina-
tions are impossible to get just by applying atomic changes to the original source code.
Therefore a filtering mechanism to remove invalid solutions from the modeling lan-
guage point of view is needed.
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Let us consider the mapping between the original Modelica source code and the gen-
erated intermediate form of the flattened equations shown in Figure 5-13. In Figure
5-13 only the relevant statements from the original Modelica code that directly generate
the intermediate form are shown. Model definitions, variable declarations and other
language constructs for our purposes irrelevant have intentionally been eliminated.
Only the equation including connect equations have been kept.

Until now the over-constraining detection algorithm only works on the intermediate
form of the equations. However, only those fixing strategies can be taken into account
that can operate on the original language constructs.

Figure 5-13. Correspondence between the Modelica source code statements and the
corresponding generated set of flattened equations. Safe equations are in bold font.

The safe equations which are also present in the shortened alternating path are empha-
sized in Figure 5-13 by bold letters. As was mentioned earlier, three equations from the
set of safe equation nodes need to be eliminated. Therefore any further analysis can be
performed on this set and on the associated shortened alternating path. The correspon-
dence graph from Figure 5-13 can be simplified only taking into account the set of safe
equation nodes and the corresponding source code statements which generated them
through program transformations. Those original code statements that generate inter-
mediate equations that are outside the set of safe equations can be discarded from the
graph. The simplified form of the correspondence graph is given below:

Modelica source code Flattened Equations
v=p.v-n.v; eq1 R1.v==-R1.n.v+R1.p.v

eq2 0==R1.n.i+R1.p.i
0=p.i+n.i; eq3 R1.i==R1.p.i

eq4 R1.i==10
i=p.i; eq5 R1.i R1.R==R1.v

eq6 R2.v==-R2.n.v+R2.p.v
i=10; eq7 0==R2.n.i+R2.p.i

eq8 R2.i==R2.p.i
R*i=v; eq9 R2.i==10

eq10 R2.i*R2.R==R2.v
v=VA*(sin(2*PI*f*time)) eq11 AC.v==-AC.n.v+AC.p.v

eq12 0==AC.n.i+AC.p.i
p.v=0; eq13 AC.i==AC.p.i

eq14 AC.i==10
connect(AC.p,R1.p); eq15 AC.v==AC.VA*sin[2*time……

eq16 G.p.v==0
connect(R1.n,AC.n); eq17 AC.p.v==R1.p.v

eq18 R1.p.v==R2.p.v
connect(R1.p,R2.p); eq19 AC.p.i+R1.p.i+R2.p.i==0

eq20 R1.n.v==R2.n.v
connect(R1.n,R2.n); eq21 R2.n.v==AC.n.v

eq22 AC.n.v==G.p.v
connect(AC.n,G.p); eq23 AC.n.i+G.p.i+R1.n.i+R2.n.i==0
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Figure 5-14. Reduced correspondence graph between the original source code and
the corresponding generated set of flattened equations.

As can be seen in Figure 5-14 we have only kept those statements in the original source
code that generate at least one equation in the reduced set of safe equations. Only these
statements can be manipulated by the user with the help of atomic changes performed
on the original source code.

Let us now analyze the equations: eq4, eq9, and eq14. They were obtained by
inheritance from the original equation i=10 in the TwoPin class. By eliminating the
original source code statement, using the atomic change command,
DELEQ(i=0,TwoPin) all the three equations will be removed from the flattened in-
termediate form. Any attempt to eliminate only one of the equations from the interme-
diate form by removing a statement from the original source code will not succeed. In
conclusion, all the incident edges with the nodes that represent eq4, eq9, or eq14 in the
graph from Figure 5-12 that includes a node which is not among them, can safely be
removed.

Inheriting the equation i=p.i will generate three equations eq3, eq8 and eq13 in the
intermediate code. Only eq13 is among the equation nodes that need to be eliminated. It
should be noted that the elimination of eq3 is only possible by removing i=p.i
DELEQ(i=p.i,TwoPin). However, the removal of i=p.i will trigger the elimina-
tion of two additional equations which are not members of the safe equation set. There-
fore eq3 cannot be considered for elimination and all the incident edges with eq3 in the
graph of Figure 5-12 can be removed. For the same reason all the incident edges with
eq17, eq18, eq20, eq21 can also be removed from the graph that represents the valid
combinations.

After performing all the simplifications we obtain the graph of Figure 5-15 that only
contains edges linking eq4, eq9, and eq14 equation nodes. This means that the user can
eliminate the statement i=10 from the TwoPin component in the original source code.
This statement was exactly the additional statement introduced at the beginning of this
analysis in order to over-constrain the simulation model.
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eq9 eq3 eq14

eq18 eq3 eq14 eq20 eq21 eq16 eq4

eq17 eq20 eq21 eq16 eq4 eq15

Figure 5-15. The simplified graph denoting the possible equation node combina-
tions that can be scheduled for elimination.

By eliminating eq9, eq14 and eq4, the over-constrained graph from Figure 5-7 becomes
a well-constrained graph as illustrated below:
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Figure 5-16. Well-constrained graph obtained after elimination of three over-
constraining equations.

The same over-constraining final effect, and the same form of the flattened intermediate
code can be achieved by over-constraining each class derived from TwoPin instead of
over-constraining the parent class itself with an extra equation. In conclusion the classes
Resistor, VsourceAC will get an extra equation i=10 each. The generated flattened
form of the equations will be the same and therefore only the last part of the error fixing
algorithm is responsible for detecting and providing the user the right solution. The
graph from Figure 5-14 will be changed and is presented in Figure 5-15.
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Figure 5-17. Reduced correspondence graph when the Resistor and VsourceAC
component are over-constrained.

Reasoning based on the semantic language constraints, we obtain the following graph
that represents the valid combinations, depicted in Figure 5-18. However there is an ad-
ditional constraint that eq9 and eq4 should be selected together (they cannot appear in-
dependently in the selection set).

eq9 eq3 eq14

eq18 eq3 eq14 eq20 eq21 eq16 eq4

eq17 eq20 eq21 eq16 eq4 eq15

Figure 5-18. Possible equation combinations scheduled for elimination.

The following equation sets can be selected for elimination:

• {eq9,eq14,eq4} by eliminating i=10 from the Resistor component and i=10
from the VsourceAC component.

• {eq9,eq16,eq4} by eliminating i=10 from the Resistor component and
p.v=0 from the Ground component.

• {eq9,eq4,eq15} by eliminating i=10 from the Resistor component and
v=VA*sin(2*PI*f*time) from the VsourceAC component.

• {eq14,eq16,eq15} by eliminating i=10 and v=VA*sin(2*PI*f*time) from
the VsourceAC component, p.v=0 from the Ground component.
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By using the equation annotations from section 5.3 and reasoning based on the attached
annotations the option set can be further reduced. It can easily be seen that equation
eq16 (p.v = 0) from the Ground component cannot be eliminated because it is the
only equation that defines the behavior of this component. In conclusion, after perform-
ing all the filtering algorithms including the filtering based on the equation annotations,
for this particular example the debugger will present the following message to the user
as depicted in Figure 5-19.

ERROR!!!
Over-constrained situation detected in model Circuit.

No. of equations = 23
No. of variables = 20

General debugging options: Level 1
Secondary debugging options: Level 1

equation elimination

solution 1:
model Resistor

remove equation i = 10
model VSourceAC

remove equation i = 10

solution 2:
model Resistor

remove equation i = 10
model VSourceAC

remove equation v = VA * sin(2 * PI * f * time)

annotation based filtering of solutions.

solution 3:
model Resistor

remove equation i = 10
model Ground

remove equation p.v = 0

solution 4:
model Resistor

remove equation i = 10
model VSourceAC

remove equation i = 10
remove equation v = VA * sin(2 * PI * f * time)

Figure 5-19. Debugger output for the simple Circuit model when the Resistor
and VsourceAC classes are over constrained.

The debugger operates by using general level and secondary level settings that are ex-
plained in Chapter 8 section 8.3.6. In this case an annotation based filtering was also
used that makes solutions 3 and 4 less probable. By implementing solution 3 the only
equation that defines the behavior of the Ground component is removed. In a similar
manner, the implementation of solution 4 will remove all the equations that define the
behavior of the VsourceAC component.
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5.10 Conclusions

The case studies presented in this chapter indicate the spectrum of potential applications
of the developed algorithms for debugging and structural analysis of simulation models.
While the case studies demonstrate the applicability of the bipartite graph decomposi-
tion and over-constrained subgraph properties in detecting over-constraining equations,
they also reveal some shortcomings and troublesome aspects of the simulation models
specified in object-oriented equation-based modeling languages.

For example, when an over-constraining equation is present in a partial class, this
will lead to a number of over-constraining equations in the flattened set of equations
equal to the number of the instantiated models present in the final simulation model
which inherits that partial class. Therefore the number of free nodes in the over-
constrained subgraph will be equal to the number of instances corresponding to those
components which extend the over-constrained faulty parent class. Our debugging ap-
proach first detects all the over-constraining equations in the instantiated models, and
then, based on the information provided by the equation annotations and on the corre-
spondence graph between the original source code and the intermediate code, detects
the over-constraining equation that originates the failure. Of course, detecting the over-
constraining equations in the instantiated model is computationally expensive and in the
worst case implies a traversal of almost all equations in the flattened set of equations.
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Chapter 6

Debugging of Under-Constrained
Systems of Equations

Summary: Debugging of under-constrained systems of equations is much more difficult
than the debugging of over-constrained systems mostly due to the combinatorial explo-
sion in error fixing solutions at the intermediate code level. When debugging such sys-
tems two distinct strategies can be considered. The first strategy considers the removal
of the free variables while the second strategy considers the addition of new equations
to the overall system of equations, which must contain the free variables. Additionally,
the second strategy takes into account extra variables that can be added to the intro-
duced new equation. New equations can be introduced at different levels in the object
hierarchy. The multitude of error fixing solutions requires a lot of user interaction and
makes an associated debugger sometimes very tedious to use. Another problem is the
complex interaction between the under- and over-constrained subsystems when they
appear simultaneously. In this chapter, methods for detecting under-constrained situa-
tions and several algorithmic techniques to automate the error fixing process are pro-
posed.

6.1 Overview of the Under-Constrained Problem

Let us consider the number of equations m from a model and the number of variables n
incident in those equations. For a typical under-constrained situation the number of
variables is greater than the number of equations (n>m).

Definition 6-1: The degree of under-constraining is the difference between the number
of variables and the number of equations mnDu −= . In a similar way as in (Ramirez
1998 [98]) uD is called the number of degrees of freedom of the problem.

In the following sections we will illustrate the possible error fixing solutions for a typi-
cal under-constrained situation and the reasoning involved in the graph transformation
system. Let us consider the following system of equations presented on Figure 6-1 on
the right, with the degree of under-constraining 1=uD . The corresponding bipartite
graph to the system of equations is also given in Figure 6-1 on the left.
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Figure 6-1. A simple system of equations with the associated bipartite graph.

One possible maximal matching (represented by thicker edges) of the bipartite graph
the D&M canonical decomposition is given in Figure 6-2:

eq1
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eq5

var1

var2

var3

var4

var5

var6

under-constrained
part

well-constrained
part

Figure 6-2. Maximum matching and canonical decomposition of the bipartite
graph.

The first step when performing the canonical decomposition algorithm is to transform
the undirected bipartite graph G into a directed graph G by exchanging all the edges
which are part of the maximal matching for bi-directional edges, and by orienting all
other edges from equations to variable nodes. The corresponding directed graph G is
shown in Figure 6-3.

eq1

eq2
eq3 eq4 eq5

var1 var2

var3 var4 var5var6

Figure 6-3. Directed graph associated with the system of equations.
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Based on the D&M canonical decomposition algorithm the under-constrained part
1−

GU contains all the equation and variable nodes that sink into the free variable node.
The variables contained in an under-constrained part constitute an eligibility set. In our
small example the eligibility set is {var4, var5, var6}. Any of the variables from the
eligibility set can be taken away and the remaining associated graph will be well con-
strained.

The issue of under-constrained simulation models in object-oriented declarative
equation-based frameworks is discussed in (Ramirez 1998 [98]). The work presented in
(Ramirez 1998 [98]) is particularly concerned with issues involving modeling and solu-
tions of conditional models where the system of equations in the model is different for
each conditional alternative. In (Ramirez 1998 [98]) the eligibility set is constructed by
following the Steward paths in the incidence matrix (see Figure 6-4) associated to a sys-
tem of equations.

var1 var2 var3 var4 var5 var6
eq1 X X
eq2 X X
eq3 X X
eq4 X X X X
eq5 X X

Figure 6-4. Incidence matrix corresponding to the system of equations from Figure
6-1.

The method of computing the Steward paths is similar to the construction of the under-
constrained subsystem of the D&M canonical decomposition method. First one variable
is assigned to each equation, which is similar to finding a matching in the correspond-
ing bipartite graph. Such an assignment is indicated in Figure 6-5 by a circle drawn
around the symbol that indicates the incidence of the variable in the equation. A Stew-
ard path starts from a free variable and then moves horizontally in the incidence matrix
to an assigned variable, marking as eligible each variable encountered along each path
as is illustrated by the arrows starting from the free variable var6 in Figure 6-5.

Figure 6-5. The eligibility set computation following the Steward paths.

Our analysis of the under-constrained systems is performed on the bipartite graph asso-
ciated with the system of equations instead of on the incidence matrix as in (Ramirez
1998 [98]). As seen in Figure 6-2, variable var6 is not covered by the maximal match-
ing and therefore is a free vertex. In the directed graph G , it can be noticed that there

var1 var2 var3 var4 var5 var6
eq1 X X
eq2 X X
eq3 X X
eq4 X X X X
eq5 X X
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are two alternating paths that sink into the free vertex var6 (as indicated by the dashed
arrows in Figure 6-3):

)}6,4(),4,4{( vareqeqvar and )}6,5(),5,5{( vareqeqvar

Exchanging the matching edges with non-matching edges and the non-matching edges
with matching edges along an alternating path, a new matching can be obtained which
covers the free vertex var6 but will uncover another vertex from the eligibility set.
Therefore, an error fixing strategy must take into account all the possible combinations
that remove one variable node from the eligibility set.

During the first stage of the error fixing process only those solutions which involve
the elimination of a variable from the eligibility set are taken into account. We have the
following possible solutions illustrated in Figure 6-6.

eq4

eq5

eq4

eq5

eq4

eq5

var4

var5

var5

var6

var4

var6

eq4

eq5

var4

var5

var6

eliminate
var6

eliminate
var4

eliminate
var5

Figure 6-6. Error fixing solutions when one variable is eliminated from the eligibil-
ity set.

By removing var6 from the under-constrained subsystem 1−
GU the considered maxi-

mum matching becomes a perfect matching of the remaining bipartite graph. Therefore
the associated system of equations can be considered to be structurally sound. However,
by removing var6 the resulted bipartite graph will be disconnected and an independent
edge (eq5,var5) appears in the system, which is not connected to the main bipartite
graph. This situation is unusual in physical system modeling and it means that some
variables are computed locally, inside a component, without contributing to the general
behavior of the simulated system. As an example, the following Modelica Resistor
model integrated in a circuit model will produce two disconnected subgraphs.

model Resistor
extends TwoPin;
parameter Real R;
Real s;

equation
R*i=v;
s=10;

end Resistor

The variable s and the equation s=10 are redundant in the system. Therefore the situa-
tion when an extra variable is eliminated and the remaining bipartite graph is discon-
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nected needs to be analyzed further. In our particular case from Figure 6-1, for example,
a solution that involves the elimination of variable var6 and the presence of an extra
variable var1, var2, var3 or var4 in equation eq5 might be acceptable.

It should also be noted that multiple error fixing strategies are possible in the case
of an under-constrained subsystem. Another error fixing strategy for an under-
constrained system is to add one extra equation to the system and link the free variable
to the added equation instead of eliminating it. This strategy applied for the free vari-
able var6 is presented in Figure 6-7 where an extra equation eq6 is added to the overall
system of equations.

eq4

eq5

eq6

var4

var5

var6

eq4

eq5

var4

var5

var6

var4

var5

var6

eq4

eq5

eq6

?

?

?

.

Figure 6-7. Error fixing strategy involving adding an extra equation.

This strategy involves two steps: at the first step an extra equation is added and linked
to the free variable. Then, at the second step, additional checking is performed in order
to see if other variables from the system might be present in the added equation. This
last step turns out to be very useful, because it helps the users to reconstruct missing
equations from simulation models.

When modeling with object-oriented equation-based languages extra equations can
be added at different levels in the class hierarchy, complicating the debugging process.
The user must be able to select from a number of possible classes where the extra equa-
tion can be added. A detailed example of how this process is automatically performed
by the debugger will be given in the following sections.

Under-constrained situations appear mostly when an equation has been accidentally
deleted from the simulation model. Based only on structural information, the general
form of the eliminated equation needs to be reconstructed. In such a case, just eliminat-
ing the free variables from the eligibility set is obviously not a valid error fixing solu-
tion. The debugger must provide the location of the extra equation and the possible
variables that can be included in that equation. The user decides on a subset of variables
that can be used in the equation and will also provide the right form of the equation.

To summarize, we consider two main strategies when debugging under-constrained
equation systems:

• Removal of the free variable nodes
• Addition of new equation nodes to the overall system of equations and inserting

the free variable into the created equations.
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6.2 Simple Under-Constrained Circuit Example

Let us again analyze the simple electrical circuit model from Chapter 3, section 3.5.1,
where the Resistor component is changed again by declaring an extra variable (Real
s) and introducing this variable into the Resistor model equations as shown below:

model Resistor
extends TwoPin;
parameter Real R;
Real s;

equation
R*i=v*s;

end Resistor

Obviously, this modification will introduce one extra variable without increasing the
number of equations in the system. The directed graph obtained from the associated bi-
partite graph of the flattened underlying system of equations and one possible corre-
sponding maximum cardinality matching, is given in Figure 6-8. The correspondence
between the variable and equation node labels is given in Table 6-1.

Table 6-1. Flat form of the equations corresponding to the under-constrained elec-
trical circuit model with a modified resistor.

eq1 R.v = -R.n.v + R.p.v var1 R.p.v
eq2 0 = R.n.i + R.p.i var2 R.p.i
eq3 R.i = R.p.i var3 R.n.v
eq4 R.i * R.R = R.s * R.v var4 R.n.i
eq5 AC.v = -AC.n.v + AC.p.v var5 R.v
eq6 0 = AC.n.i + AC.p.i var6 R.i
eq7 AC.i = AC.p.i var7 R.s
eq8 AC.v = AC.VA * sin[2*time*AC.f*AC.PI] var8 AC.p.v
eq9 G.p.v = 0 var9 AC.p.i
eq10 AC.p.v = R.p.v var10 AC.n.v
eq11 AC.p.i + R.p.i = 0 var11 AC.n.i
eq12 R.n.v = AC.n.v var12 AC.v
eq13 AC.n.v = G.p.v var13 AC.i
eq14 AC.n.i + G.p.i + R.n.i = 0 var14 G.p.v

var15 G.p.i

The uncovered variable when using the considered maximum cardinality matching is
var15, and the computed eligibility set is {var15, var4, var2, var6, var7, var11, var9,
var13}, with the corresponding variables {G.p.i, R.n.i, R.p.i, R.i, R.s,
AC.n.i, AC.p.i, AC.i}
From the under-constrained directed subgraph we can derive the following alternating
paths (indicated in Figure 6-8 by the dashed arrows) to the uncovered variable var15:

)}()()())(()()(){( eq4,var7,var6,eq4,eq3,var6,var2,eq3eq2,var2,var4,eq2,eq14,var4,var15,eq14

)}(),(),(),)((),(),(),({ eq6,var11var9,eq6eq11,var9var2,eq11eq2,var2var4,eq2eq14,var4var15,eq14

)}(,)7(),(),)((),(),(),({ eq7,var13var9,eqeq11,var9var2,eq11eq2,var2var4,eq2eq14,var4var15,eq14

By following each alternating path and by eliminating the variables one by one from the
eligibility set we notice that eliminating only one of the variables from {var15, var4,
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var7, var13} corresponding to {G.p.i, R.n.i, R.s, AC.i} will not disconnect the
bipartite graph. Therefore this reduced set will be further analyzed.
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Figure 6-8. Directed graph corresponding to the under-constrained simple electrical
circuit.

Based on a similar reasoning as for over-constrained situations, we can deduce that only
var7 can safely be removed from the Modelica code in order to obtain a well-specified
equation system. We will briefly explain why the removal of var15, var4, and var13
have not been considered as possible error fixing solutions to our under-constrained
problem:

• Variable var15 i.e. G.p.i In order to remove variable var15 i.e. G.p.i from
equation eq14 (AC.n.i + G.p.i + R.n.i = 0) at the intermediate code
level, the connect equation connect(AC.n, G.p) which connects the Ground
element to the main circuit needs to be removed. This implies the removal of
equation eq10(AC.p.v = R.p.v), an operation that will over-constrain the
overall system.

• Variable var4 i.e. R.n.i. The elimination of variable var4 i.e. R.n.i from
equation eq14 (AC.n.i + G.p.i + R.n.i = 0) and eq2 (0 = R.n.i +
R.p.i) implies the removal of the connect equation connect(R.n, Ac.n)
from the original source code. This modification will trigger the removal of
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equation eq2 from the flattened system of equations, making the system over-
constrained.

• Variable var13 i.e. AC.i. Removing var13 i.e. AC.i from equation eq7 (AC.i
= AC.p.i) is possible at the source code level by removing the variable i from
the equation i = p.i by substituting i with a constant value, from the TwoPin
component. This modification will trigger at the intermediate code level the re-
moval of var6 i.e. R.i from eq4 (R.i * R.R = R.s * R.v) that becomes
R.R = R.s * R.v and from eq3 (R.i = R.p.i) that becomes const =
R.p.i. These modifications will disconnect the resulting bipartite graph.

We call the set of variables obtained after performing the reasoning based on variable
annotations and filtering according to the language semantic rules the reduced eligibil-
ity set. In our small example the reduced eligibility set contains only one element: var7.

var6
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var2
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var11

eq6

var9

eq11

var15

eq7
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eq4

var7 var6
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var11

eq6

var9

eq11

var15

eq7
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eq4

var7

free variable

free variable

Figure 6-9. Exchanging matching edges with non-matching edges along an alternat-
ing path for obtaining a new matching that will cover var7 and let var15 be uncov-
ered.

In the example presented above the fault was detected by applying the first strategy
when debugging under-constrained systems that implies the removal of a free variable
node. However, if the user is not satisfied with the given solution or the reduced eligi-
bility set is empty, the debugger can enter into the second stage where possible connec-
tions of the adjacent equation nodes to those variables nodes that disconnect the bipar-
tite graph are checked. If a possible coupling of a variable to those equations is found
the adjacent disconnecting variable node might also be considered for elimination. The
possible coupling of variables to equations is performed by a variable reachability
analysis based on algorithms applied to the inheritance graph of the underlying simula-
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tion model. The variable reachability analysis computes the set of the variables that can
be inserted into certain equations at certain levels in the class hierarchy.

A second strategy when debugging under-constrained systems is when extra equa-
tions need to be added and coupled to the free variable. For example, in our case, add-
ing an extra equation s=10 in the Resistor class on page 86, is a mathematically
sound solution even though if it might not reflect the modeler intent. In a similar way
extra equations can be added for each variable from the eligibility set. The user has the
possibility of specifying which strategy should be applied and which level of debugging
he/she would like to perform on the erroneous model. In this way, some of the error
messages can be filtered out and incremental error fixing can be performed.

6.3 Variable Reachability Analysis

When extra equations need to be added to the overall system of equations in order to
repair under-constrained situations it is useful to know which variables can be included
in the inserted new equations. We start by constructing the inheritance-instantiation
graph of the simple electrical circuit (see Figure 6-10).

Circuit
Resitor R
Vsource AC
Ground G

Ground
Pin p

VSourceACResistor

G.p.i;G.p.v

TwoPin
Pin p
Pin n
Real v
Real i

Pin
Real i
Real v

i;v

p.i;p.v

p.i;p.v;
n.i;n.v;
v;
i

p.i;p.v;
n.i;n.v;
v;i

p.i;p.v;
n.i;n.v;
v;i

R.p.i;R.p.v;
R.n.i;R.n.v;
R.v; R.i

AC.p.i;AC.p.v;
AC.n.i;AC.n.v;
AC.v; AC.i

Legend

inheritance

instantiation

Figure 6-10. The variable propagation via the inheritance and instantiation relation
for the Circuit model simulation, shown using UML graph notation.

The analysis starts from the bottom of the graph. In our example the Pin class declares
two Real variables i and v. Only these two variables can be used in an equation that is
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defined inside the Pin class. The declared variables i and v are propagated via the in-
stantiation relation to the TwoPin and Ground objects where they get a prefix during
the translation process. For example, by instantiating the Pin component (Pin p) in
the TwoPin class, the real variables i and v declared in Pin are transformed into p.i
and p.v. The variable transformations are repeated for the other declarations of a Pin
component (Pin n) and the obtained variable names are added to the set of variables
that can be used inside the TwoPin class. The other variables declared in the TwoPin
class are also added to this set. The set of variables that can be used in a class is propa-
gated unchanged through the inheritance relation. The Resistor and VsourceAC
components will inherit the set of variable from the TwoPin class. Since the Resistor
and VsourceAC classes don't declare any additional variables, the set remains un-
changed and it is propagated through the instantiation relation to the Circuit class
where each variable from the set is prefixed by the corresponding instance name.

The correspondence between the variable names at the class levels and the variable
names at the intermediate flattened code level is illustrated in Table 6-2. It should be
noticed that at the Circuit class level all the variables present in the flattened inter-
mediate form can be used when creating a new equation at this level.

Table 6-2. Correspondence table between the variable names at the class levels and
the variable names at the intermediate flattened code level.

Model Variables available
(original code form)

Variables available
(intermediate code form)

Constants
Available

Circuit
R.p.i R.p.v
R.n.i R.n.v
R.v R.i
AC.p.i AC.p.v
AC.n.i AC.n.v
AC.v AC.i
G.p.i G.p.v

R.p.i; R.p.v;
R.n.i; R.n.v;
R.v; R.i
AC.p.i; AC.p.v
AC.n.i; AC.n.v
AC.v; AC.i
G.p.i; G.p.v

Resistor p.i p.v
n.i n.v
v i

R.p.i; R.p.v
R.n.i; R.n.v
R.v; R.i

R

VSourceAC p.i p.v
n.i n.v
v I

AC.p.i AC.p.v
AC.n.i AC.n.v
AC.v AC.i

Ground p.i p.v G.p.i G.p.v

TwoPin p.i
p.v
n.i
n.v
v
i

{R.p.i; AC.p.i}
{R.p.v; AC.p.v}
{R.n.i; AC.n.i}
{R.n.v; AC.n.v}
{R.v; AC.v}
{R.i; AC.i}

Pin
i

v

{R.p.i; R.n.i; AC.p.i;
AC.n.i; G.p.i;}
{R.p.v; R.n.v; AC.p.v;
AC.n.v; G.p.v;}

Based on Table 6-2 and Figure 6-10 we illustrate the transformations performed on
variable i declared at the Pin class level in Figure 6-11. The variable names below the
class names, as shown in Figure 6-11, are used at the original source code level when
new equations are added to the corresponding class behavior. When adding new addi-
tional equations to the model, the fact that they might generate multiple equations at the
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flattened source code level should also be taken into account. For example, introducing
an extra equation at the TwoPin class level that uses the variable p.i will create two
equations in the flattened flat form: one equation that uses variable R.p.i and another
equation that will use variable AC.p.i.

Pin
i

TwoPin
p.i

Resistor
p.i

Circuit
R.p.i

VSourceAC
p.i

Ground
p.i

Circuit
AC.p.i

Circuit
G.p.i

Figure 6-11. Transformations performed on the variable i declared in the TwoPin
component through the inheritance and instantiation relations.

6.4 Insertion of Additional Equations

In order to illustrate the usability of the variable reachability analysis, presented in the
previous section, let us consider a simple simulation model of a liquid tank model with
a simple PID controller taken from (Fritzson 2002 [43]) and presented in Figure 6-12.
Fluid can enter the tank through a pipe at a rate controlled via a valve and leaves the
tank via another pipe. In our case, a fluid source object generates the fluid entering the
tank. The fluid level h in the tank must be maintained at a fixed level as closely as pos-
sible by introducing a PID (proportional integrative derivative) continuous controller.

TankWithPIDController

pidContinuous

tank

tActuatortSensor

qIn qOut
source

cOutcIn

Figure 6-12. Simple Tank model with a PID controller.

The Modelica source code of each component is given below. A complete description
of the model behavior including several simulation results is presented in (Fritzson
2002 [43]).
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connector ActSignal connector ReadSignal
Real act; Real val;

end ActSignal; end ReadSignal;

connector LiquidFlow
Real lflow;

end FlowIn;

partial model Controller
parameter Real Ts = 0.1; //sampling time[s]
parameter Real K = 2; //gain
parameter Real T = 10; //time constant[s]
parameter Real ref = 0.25;
Real error, outCtr;
ReadSignal cInp; ActSignal cOut;

equation
error = ref-cInp.val;
cOut.act = outCtr;

end Controller;

model PIDcontinuousController
extends Controller(K = 2,T = 10);
Real x; // state variable of continuous controller
Real y; // state variable of continuous controller

equation
der(x) = error/T;
y= T * der(error);
outCtr = K * (x + error + y);

end PIDcontinuousController;

model LiquidSource
LiquidFlow qOut;
parameter Real flowLevel=0.02;

equation
qOut.lflow = flowLevel;

end LiquidSource;

model Tank
ReadSignal tSensor; // Connector, reading tank level
ActSignal tActuator; // Connector, actuator controlling

// the input flow
parameter Real area =0.5; //[m2]
parameter Real flowGain =0.05; //[m2/s]
Real h(start=0.0); //tank level [m]
LiquidFlow qIn; // flow through input valve[m3/s]
LiquidFlow qOut; // flow through output valve[m3/s]

equation
der(h) = (qIn.lflow - qOut.lflow)/area; //mass balance
qOut.lflow = -flowGain * tActuator.act;
tSensor.val = h;

end Tank;

The final simulation model is obtained by connecting together the Tank and the PID-
continuousController model instances tankm and pid. The LiquidSource
model connected to the Tank provides the input liquid flow.
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model TankWithPIDController
LiquidSource source(flowLevel = 0.02);
PIDcontinuousController pid(ref = 0.25);
Tank tankm(area = 1);

equation
connect(source.qOut,tankm.qIn);
connect(tankm.tActuator, pid.cOut);
connect(tankm.tSensor, pid.cInp);

end TankWithPIDController;

Let us show a simple debugging session performed on this model. Before starting the
translation process we eliminate the equation

qOut.lflow = - flowGain * tActuator.act;

from the Tank model. Obviously, this modification will lead to an under-constrained
underlying system of equations. The flat form of the equations and the variables corre-
sponding to the final simulation model, after the above mentioned equation removal,
are given in Table 6-3 below:

Table 6-3. Flat form of the equations and variables corresponding to the simple
Tank simulation model

eq1 source.qOut.lflow = source.flowLevel var1 source.qOut.lflow
eq2 pid.error = pid.ref - pid.cInp.val var2 pid.error
eq3 pid.cOut.act = pid.outCtr var3 pid.outCtr
eq4 (pid.x)'= pid.error / pid.T var4 pid.cInp.val
eq5 pid.y = pid.T(pid.error)' var5 pid.cOut.act
eq6 pid.outCtr = pid.K

*(pid.error+pid.x+pid.y)
var6 pid.x

eq7 (tank.h)' = (tankm.qIn.lflow –
tankm.qQut.lflow) / tankm.area

var7 pid.y

eq8 tankm.tSensor.val==tankm.h var8 tankm.tSensor.val
eq9 source.qOut.lflow==tankm.qIn.lflow var9 tankm.tActuator.act
eq10 tankm.tActuator.act==pid.cOut.act var10 tankm.h
eq11 tankm.tSensor.val==pid.cInp.val var11 tankm.qIn.lflow

var12 tankm.qOut.lflow

The intermediate flattened form of the equations is mapped into bipartite graphs, a
maximum cardinality matching is computed. All the edges that are not matching edges
are directed from equation to variable nodes, and all the matching edges are trans-
formed into bidirectional edges. We obtain the directed graph presented in Figure 6-13:



94 Chapter 6 Debugging of Under-Constrained Systems

var6 var3

eq3

var5

eq10

var9

var7

eq5

var2

eq4

var4

eq11

var8

eq8

var10

eq7

var12 var11

eq9

var1

eq1

eq2

eq6

well-constrained
sub-graph

pidContinuous.cInp.val

tankm.tSensor.val

tankm.h

tankm.qOut.lflow
tankm.tActuator.act

pidContinuous.cOut.act

pidContinuous.out

pidContinuous.x

pidContinuous.error

pidContinuous.y

Figure 6-13. Directed graph corresponding to the tank simulation model.

By performing a D&M canonical decomposition the under- and well-constrained parts
are isolated. In our particular example the well-constrained part is relatively small and
contains only two equations and two variable nodes indicated by the dashed rectangle
in Figure 6-13. The chosen maximum cardinality matching does not cover variable
var12. A dashed arrow indicates the path via the equation and variable nodes that sinks
into the free variable node var12. Any of the variable nodes along this path can be made
into a free variable by exchanging matching edges by non-matching edges along the
subpath from the chosen variable to the free variable var12.

At the fist stage, we consider the debugging alternative when a free variable is elimi-
nated from the system. The set of variables that represents the eligibility set along the
alternating path is:

{var12, var10, var8, var4, var2, var6, var7, var5, var9}

We eliminate from the set all the variable nodes that will disconnect the underlying bi-
partite graph if they are removed. We obtain the following set:

{var12, var6, var7, var9}.

The set {var12, var6, var7, var9} represents the set of variables at the intermediate
code level but the error fixing messages need to be presented to the user at the original
Modelica source code level. Let us first examine the error fixing solutions involving the
elimination of the free variables from the set:

• Remove variable var12 from equation eq7. This removal can be achieved by
modifying the mass balance equation from the Tank model:
der(h) = (qIn.lflow - qOut.lflow)/area; into
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der(h) = qIn.lflow / area;
The declaration LiquidFlow qOut from the Tank model can also be removed.

• Remove variable var6 from eq4 and eq6. The removal can be achieved by re-
moving variable x from
der(x) = error / T and from outCtr = K * (x + error + y)
in the PIDcontinuousController model. The equations are transformed
into: const = error / T and outCtr = K * ( error + y);
The variable declaration Real x; can also be removed from the PIDcontinu-
ousController model.

• Remove variable var7 from eq5 and eq6. In a similar way as for the previous
case this modification is achieved by removing variable y from
y = T * der(error) and outCtr = K * (x + error + y).
The equations are transformed into:
const = T * der(error) and outCtr = K * ( error + y);

• Remove variable var9 from eq10. The removal is achieved by modifying the
connect equation connect(tankm.tActuator,pid.cOut) from the Tank-
WithPIDController model. However, entirely eliminating the connect
equation will eliminate eq10. The system is still under-constrained because we
have eliminated one variable and one equation instead of eliminating only one
variable. The debugger has all the necessary information to automatically in-
validate and discard this case.

If none of the above mentioned error fixing solutions is convenient, the debugger can
enter the second phase where instead of removing free variables from the system the
possibility of adding a new equation which contains at least one free variable is taken
into account.

We perform a variable reachability analysis and obtain the following correspondence
table where X marks the possible presence of a variable inside the equations of the
classes shown in the rows. For example, var12 can be present in equations defined in-
side the TankWithPIDController, Tank, and LiquidFlow classes. For the exact
form of the variables at the source code level a table that resembles Table 6-2 is also
constructed.

Table 6-4. Variables from the eligibility set that can be used inside the classes of
the simulation model.

Model

va
r1

2

va
r1

0

va
r8

va
r4

va
r2

va
r6

va
r7

va
r5

va
r9

TankWithPIDController X X X X X X X X X
Tank X X X X
PIDcontinuousController X X X X X
LiquidSource
LiquidFlow X
ActSignal X X
ReadSignal X X

By choosing the second level of debugging, multiple error fixing alternatives can be
found. The user is, at this stage, required to provide the location where the additional
equation should be inserted. For example, if the user chose to fix the problem at the
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Tank model level, the set of free variables filtered by the reachability analysis is pre-
sented to the user. The additional equation that needs to be introduced will be con-
structed based on the provided set of free variables and set of parameters and constants
that can be used at that level. The LiquidFlow, ActSignal, and ReadSignal mod-
els are not considered in any error fixing solution for this case because they are connec-
tor classes and cannot have an equation section. This semantic rule prevents the addi-
tion of an extra equation at this level. Let us now analyze the complete output given by
the debugger:

ERROR!!!
Under-constrained situation detected in model TankWithPIDController.
No. of equations = 11
No. of variables = 12
General debugging options:
General debugging options: Level 1
Secondary debugging options: Level 4

Debugging STAGE1: free variable elimination

solution 1:
model Tank

remove variable qOut.lflow from der(h) = (qIn.lflow - qOut.lflow) / area;
remove declaration LiquidFlow qOut;

solution 2:
model PIDcontinuousController

remove variable x from der(x) = error / T and from outCtr = K * (x + error + y)
remove declaration Real x;

solution 3:
model PIDcontinuousController
remove variable y from y = T * der(error) and from outCtr = K * (x+ error + y)
remove declaration Real y;

Debugging STAGE2: adding extra equations

solution 4:
model TankWithPIDController

add new equation
list of variables {pid.error, pid.outCtr, pid.cInp.val, pid.cOut.act, pid.x, pid.y,
tankm.tSensor.val, tankm.tActuator.act, tankm.h, tankm.qOut.lflow}

solution 5:
model Tank

add new equation
set of variables { tSensor.val, tActuator.act, h, qOut.lflow}

solution 6:
model TankWithPIDController

add new equation
set of variables {error, outCtr, cInp.val, cOut.act, x, y}

Figure 6-14. Debugger output for the under-constrained Tank simulation model

Unfortunately refining the quality and quantity of the output relies heavily on the vari-
able and equation annotations. The annotations can greatly reduce the number of possi-
ble options. Let us assume that the PIDcontinuousController model class has been
taken from a previously developed library and has been used successfully in several
simulation models. The user is confident regarding the behavior and the correct func-
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tionality of this model, and he/she can annotate the equations with low flexibility levels
or even lock them. Any error fixing solution involving the equations of the PIDcon-
tinuousController model can be filtered out by the debugger. The previous debug-
ger output presented in Figure 6-14 becomes:

ERROR!!!
Under-constrained situation detected in model TankWithPIDController.

No. of equations = 11
No. of variables = 12

General debugging options:
General debugging options: Level 1
Secondary debugging options: Level 4

Debugging STAGE1: free variable elimination

solution 1:
model Tank

remove variable qOut.lflow from der(h) = (qIn.lflow - qOut.lflow) / area;
remove declaration LiquidFlow qOut;

Debugging STAGE2: adding extra equations

solution 2:
model TankWithPIDController

add new equation
set of variables {pid.error, pid.outCtr, pid.cInp.val, pid.cOut.act, pid.x, pid.y,
tankm.tSensor.val, tankm.tActuator.act, tankm.h, tankm.qOut.lflow}

solution 3:
model Tank

add new equation
set of variables { tSensor.val, tActuator.act, h, qOut.lflow}

Figure 6-15. Filtered output of the debugger for the under-constrained Tank model.

By analyzing the first solution given by the debugger and performing the prescribed
modifications, the tank model will be transformed into a model from where the output
valve (previously represented by LiquidFlow qOut) is eliminated as shown below.
Even if by this modification the underlying system of equations is mathematically
sound, the model becomes physically incorrect because no output valve is provided any
more.

model Tank
ReadSignal tSensor; // Connector, reading tank level
ActSignal tActuator; // Connector, actuator
parameter Real area =0.5; //[m2]
parameter Real flowGain =0.05; //[m2/s]
Real h(start=0.0); //tank level [m]
LiquidFlow qIn; // flow through input valve[m3/s]

equation
der(h) = qIn.lflow /area; //mass balance
tSensor.val = h;

end Tank;

The user, based on modeling and physical considerations, can reject this solution,
which was automatically provided by the debugger.
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Analyzing the second solution provided by the debugger, one can notice that an error
fixing solution involves too many combinations of variables that come from instances
declared in the TankWithPIDController model. User intervention at this level can
be postponed and is required only if other error fixing solutions provided by the debug-
ger have failed. In general it is a good strategy to postpone the error fixing solutions
that involve modifications in the final instantiated model.

Obviously the correct solution is to add an extra equation at the Tank model level
involving the variables qOut.lflow and tActuator.act. This situation is covered
by solution 3 provided by the debugger output shown in Figure 6-15. The additional
equation that needs to be introduced is: qOut.lflow = - flowGain * tActua-
tor.act; that provides an acceptable solution, both from the mathematical and the
physical modeling points of view. One may also notice that the same effect can be
achieved by introducing a new equation in the TankWithPIDController model:

tankm.qOut.lflow = - tankm.flowGain * tankm.tActuator.act

However, this solution will fix the problem for the present TankWithPIDController
example and also results in a correct simulation model. An attempt to use the Tank
model in another configuration will yield the same error.

The correct error fixing solution that involves the insertion of a new equation:
qOut.lflow = - flowGain * tActuator.act in the Tank model is illustrated
in Figure 6-16, where the previous under-constrained subgraph from Figure 6-13 is
transformed into a well-constrained graph:
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pidContinuous.out

pidContinuous.x

pidContinuous.error
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new equation

Figure 6-16. Making an under-constrained subgraph well-constrained by introduc-
ing an extra equation at the Tank model level.

A general algorithm (Algorithm 6-1) for debugging under-constrained systems with the
degree of under-constraining 1=uD , can be given. It is composed of two distinct
stages. First the eligibility set corresponding to the under-constrained subgraph is com-
puted. In the first stage, each variable from the eligibility set is checked to determine
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whteher it disconnects the bipartite graph by elimination. If the variable doesn't split the
graph the elimination need to be validated semantically by the function validate-
Sem(var). The function validateSem(var) checks at the original source code level if the
elimination of the variable var at the intermediate code level is possible by applying
simple atomic changes to the source code.

Algorithm 6-1: Debugging under-constrained subsystems

Input Data: The under-constrained subgraph −1
GU resulting after D&M decomposi-

tion has been performed on a graph G.
Result: list of all the possible error fixing solutions.
begin:

Find all the nodes )(Gvn ∈ that sink into the free variable node freev and put them
into the list L.

Compute the eligibility set )}(|,{
21 GvvandLvvvL Vkkkel ∈⊂= …

//stage1: free variable elimination
for each elk Lv ∈ do

remove kv from −1
GU

compute the number of strongly connected components strno of −1
GU .

if 1==strno then
//validate semantically the elimination of kv from the adjacent equations
if validateSem( kv ) then

output("remove kv from equation adj( kv ) ");
end if;

end if;
end for;

//stage2: add new equations
for each elk Lv ∈ do

classList = reach( kv );
for each class classListc ∈ do

varList = reach(c);
output("add new equation in class c that must contain variable kv ");
output("additional variables varList that can be included in the equation");

end for;
end for;

end.

The second stage is concerned with the addition of a new equation. The function
reach() performs a reachability analysis. When this function is called with a parameter
that is a variable, it returns the names of the classes in which the variable can exist. A
new equation that contains the selected variable from the eligibility set can be added at
the level of the returned classes. The second call to the function reach(), this time with
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a class name as parameter, will return the set of variables that can be used and included
in the new equation to be created. After consulting the set of all possible solutions, it is
the user's responsibility to choose where the new equation should be added and which
variables need to be included in the equation.

6.5 Debugging Simultaneous Over and Under-
Constrained Situations

Let us consider the following simple electrical circuit where two Ground objects are
present in the circuit instead of only one. The definition of the Resistor, VsourceAC
and Ground objects are reused from the previous examples, only the Circuit model is
modified by introducing a second instance of the Ground component and connecting it
to the main circuit, as shown in Figure 6-17.

R1AC

G1

model TwoGroundCircuit
Resistor R(R=10);
VsourceAC AC;
Ground G1,G2;

equation
connect(AC.p,R.p);
connect(R.n,AC.n);
connect(AC.n,G1.p);
connect(AC.p,G2.p);

end TwoGroundCircuit;

G2

Figure 6-17. Modified circuit model with two Ground objects.

Obviously, the TwoGroundCircuit model is structurally inconsistent. Let us analyze
the structure of the corresponding bipartite graph of the flattened form of the associated
system of equations. By applying the D&M canonical decomposition we obtain an
over-constrained subgraph and an under-constrained subgraph simultaneously present
in the simulation model as shown in Figure 6-18. Both subcomponents have one node
uncovered by the maximum matching, which means that we need to eliminate one
equation node from the over-constrained component +1

1GO and one variable node from
the under-constrained component −1

1GU .
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Figure 6-18. The over-constrained and under-constrained subgraphs obtained after
the canonical decomposition of the bipartite graph representing the TwoGround-
sCircuit.

The easiest way to solve this problem is to introduce the free variable into the free
equation. In this case, both the under- and over-constrained situations can be solved si-
multaneously. A variable reachability analysis will immediately indicate that introduc-
ing var14 into equation eq9 is possible for example by modifying the equation p.v =

0 from the Ground class to p.v = 2 * p.i.
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AC.n.i+G1.p.i+R.n.i=0

0 = AC.n.i+AC.p.i

AC.i==AC.p.i
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model Ground
Pin p;

equation
p.v = 2* p.i;

end Ground

former under-constrained
part

former well-constrained
part

former over-constrained
part

Figure 6-19. The transformation of the under- and over-constrained subgraphs cor-
responding to the TwoGroundCircuit into a well-constrained graph by introduc-
ing the equation p.v = 2 * p.i in the Ground component.
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Performing this modification the model becomes consistent and it can be successfully
compiled and even executed. But obviously the behavior of the model will not match
the specification behavior and therefore another error fixing solution needs to be found.
In other examples of simulation models introducing a free variable into an over-
constraining equation might be a valid error fixing solution.

We start the debugging process by first analyzing the under-constrained component
−1

1GU . Variable nodes var10 and var8 can immediately be eliminated from any further
consideration because their removal disconnects the remaining bipartite graph which is
not feasible. Therefore only variable nodes var14 and var12 are included in the safe
variable list. Let us first consider var12 for elimination. The only way to eliminate
var12 (Ac.i) from eq7 (AC.i==AC.p.i) is by removing the equation i = p.i from
the TwoPin class. However, this removal will trigger the removal of the equation R.i

= R.p.i that is not in the equation node present in the over-constrained graph +1
1GO . In

conclusion, taking away var12 from the under-constrained graph is not possible by
simple source code manipulations without structurally affecting the whole underlying
bipartite graph.

The next step is to check whether the elimination of var14 (G1.p.i) is possible or
not. The only way to remove var14 from equation eq16 (AC.n.i+G1.p.i+R.n.i=0)
is to remove the connect equation connect(AC.n,G1.p)from the TwoGroundCir-
cuit model. Equation eq16 will not totally be removed because the connect equation
connect(R.n,AC.n)which still is present in the model will generate the equation
AC.n.i + R.n.i=0. However the removal of the connect equation will totally re-
move another equation from the flattened intermediate form: eq15 (AC.n.v =
G1.p.v).

The removal of eq15 will disconnect the associated bipartite graph and isolate eq9
and var13. This solution is only acceptable if we are also allowed to eliminate eq9 and
var13 from the graph. However, by more carefully examining eq9 and var13 we notice
that they are variable and equation nodes that define the behavior of the Ground com-
ponent as is illustrated in Table 6-5.

Table 6-5. The Ground component and its equations and variables.

Ground Model
Definition

Generated equations and vari-
ables

Scheduled for
elimination

G1.p.i yes

G1.p.v yes

model Ground
Pin p;

equation
p.v=0;

end Ground G1.p.v = 0 yes

connect(AC.n,G1.p) AC.n.i+G1.p.i+R.n.i=0 remove only G1.p.i

All the variables and equations that define the instance G1 of the Ground component
can be removed from the bipartite graph and a new bipartite graph with a perfect match-
ing can be obtained as is illustrated in Figure 6-20. The removal of eq15 from the over-
constrained subgraph was dictated by a variable removal from the under-constrained
subgraph. If we would attempt to treat the over-constrained problem in isolation, eq15
wouldn't be considered for elimination due to the fact that its removal disconnects the
remaining bipartite graph.
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This example has illustrated that when over- and under-constraining problems appear
simultaneously in a model they cannot be treated individually. Modifications in one
subgraph can easily trigger modifications in the other subgraph and the error fixing so-
lution validation need to be made globally. This example also revealed the interaction
between the variable and equation elimination mechanisms. Finding systematic and
algorithmic methods to efficiently treat the complex interactions between the under-
and over-constrained situations when they appear simultaneously is still part of the
future work of this debugging framework.
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Figure 6-20. The bipartite graph corresponding to the simple circuit model from
which the Ground component G1 has been removed.

6.6 Conclusions Regarding Under-Constrained Systems

Obviously, the multitude of error fixing solutions at the second stage when additional
equations need to be added to the system of equations is the bottleneck of the method.
At this stage the user must specify in which class the new equation should be inserted.
This task can be simplified if certain class components have previously been marked as
correct with the help of annotations in other simulation configurations. However, pro-
viding the location where a new equation should be inserted and the list of adjacent
variables to that equation has turned out to be extremely useful for the user. The im-
plemented debugger prototype uses enhanced variants of Algorithm 6-1 for automatic
debugging of under-constrained situations. Algorithm 6-1 has been also extended to
handle under-constrained situations with a high degree of under-constraining ( 1>uD ).
Filtering the error fixing solutions based on the equation annotations is also included in
the enhanced algorithm used by the prototype debugger.
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Chapter 7

Structural Consideration of DAE index
in Physical System Simulation

Summary: This chapter presents structural considerations of the high index problems
when modeling with equation-based languages since the notion of index influences the
debugging process. There are two definitions of index: the differential index which is
the basic definition, and the structural index which is an approximation. The structural
index is usually but not always identical to the differential index. An algorithm for
computing the structural index based on matchings in bipartite graphs is also given.
Current limitations of the graph-based structural approach are briefly presented. For
example, the structural index of a linear differential-algebraic equation (DAE) with
constant coefficients and with index 1 may be arbitrarily high, a phenomenon which is
not always captured by the graph based structural analysis. Due to this phenomenon
numerical cancellation may occur because Pantelides’ algorithm applied to DAEs of
index 1 may perform an arbitrary high number of iterations and differentiations. In
such cases a debugger based on graph based structural analysis algorithms might fail
to render the correct answer when this situation occurs. Symbolic pre-processing meth-
ods for the computation of consistent initial conditions and reduction of higher index
DAE problems to an index one problem are also presented here in the context of the
proposed debugging framework.

7.1 Introduction

Many physical problems are most naturally described by systems of differential and al-
gebraic equations. Usually, differential equations originate from balances of mass, en-
ergy, and momentum, from constitutive equations (equations of state, pressure drops,
heat transfer, etc.) and from design and modeling constraints. Many dynamic problem
formulations contain path constraints on the state variables, which will inevitably lead
to high index problems. Numerical methods applicable for DAE with index 1 might not
be useful for high index problems. High index DAE systems require special solvers or
symbolic reduction of the problem to index 1. Numerous modeling examples exist that
exhibit a high differential index. These cases are generally interesting from the struc-



106 Chapter 7 Structural Consideration of DAE index in Physical System Simulation

tural analysis point of view. The debugging of many physical system models is influ-
enced by the notion of index. The following sections present several examples derived
directly from simulation models and details of how these situations affect the debug-
ging of such models.

7.2 Differential Index

The index of a system of differential algebraic equations is one of the measures of solv-
ability for the numerical problems in physical system simulation when solving differen-
tial equations. We should start by giving the most general representation of a DAE sys-
tem in the nonlinear implicit form 0),,( =yyuF � , where )(ty represents the unknown
state variables and )(tu denotes the known input variables. Sometimes the system is an
ODE (ordinary differential equation system), if it only contains ordinary derivatives (of
one or more dependent variables) with respect to a single independent variable and it
can be rewritten to the explicit form ),( yuFy =� .

Definition 7.1: The differential index of a general DAE system is the minimum number
of times that all parts of the system must be differentiated with respect to u to reduce
the system to a set of ODEs for the variable y (determine y� as a continuous function of
y and u).
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(7-1)

Remark: The index of an ODE is always 0.

Example: Let us consider the semi-explicit form of a DAE system. In order to deter-
mine the index of the DAE system, we need to determine the minimum number of
times that 0),,( =tzxg need to be differentiated with respect to time in order to yield a
pure ODE. The general transformation is given below:
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Now, let us determine the differential index for the following DAE system:
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We can start the process of transformation of this DAE equation system into an ODE
by differentiating )(0 2 tx γ+= and substituting x� in )(1 tzx γ+=� .
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We differentiate the first equation )()( 12 ttz γγ −−= � again in the obtained system of
equations:
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The index gives a classification of DAEs with respect to their numerical properties and
can be seen as a measure of the distance between the DAE and the corresponding ODE
(Günther and Feldmann 1995 [51]). When solving an ODE the solution procedure only
involves integration. However, when solving a DAE system the solution may involve
differentiation as well. For systems with index greater than 1, numerical methods may
converge poorly, may converge to the wrong solutions, or may not converge at all.
Higher index DAE may have hidden algebraic constraints between the dependent vari-
ables and/or derivatives. Hidden algebraic constraints complicate the problem of pro-
viding proper initial conditions for the system and also present difficulties for numerical
integration methods.

Several approaches for solving high index DAE have been proposed in the literature.
These are basically divided into two general approaches (Unger et. al 1995 [118])

• Numerical integration methods for specifically designed higher-index solvers.
• Reduction of the index by symbolic methods and applying a normal DAE index

1 solver for computing the solutions.

7.3 Structural Index

The structural index has been proposed as an efficient computational alternative to the
differential index. As will be shown in the next section, an efficient computational algo-
rithm for computing the structural index can be implemented within the more general
framework for compiling equation-based languages. Computing of the structural index
is reduced to the problem of finding maximum weighted matchings of different cardi-
nalities in bipartite graphs that represent the system of differential equations.

7.3.1 Definition and Algorithm

The following definition of the structural index is given in (Feehery and Barton 1998
[38]) and is closely related to Pantelides' algorithm (Pantelides 1988 [93]).

Definition 7.2: (Structural Index of a DAE): The structural index stri of a DAE is the
minimum number of times that any subset of equations in the DAE is differentiated us-
ing Pantelides’ algorithm.
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In order to illustrate the structural index algorithm let us consider the planar pendulum
model taken from (Mattsson et. al. 2000 [81]), (Pantelides 1988 [93]) and (Modelica
Assoc. 2000 [85]). The pendulum model (see Figure 7-1) is expressed in a Cartesian
coordinate system and consists of a heavy body of mass m suspended by a rigid rod of
length L. The air resistance and friction is ignored in this model representation.

-mg

L

ϕ

Figure 7-1. Planar pendulum model

Applying Newton’s second law to the pendulum results in a nonlinear second order dif-
ferential equation:

mgF
L

y
ymF

L

x
xm −−=−= ���� ; (7-2)

where F is the force in the rod, g is the gravitational acceleration and x,y are the coordi-
nates of the mass m. In order to fully specify the physical system the following
geometrical constraint need to be added:

222 Lyx =+ (7-3)

Combining the differential equations from (7-2) and (7-3) we obtain the DAE system of
(7-4) below. It is impossible to directly solve equation (7-4) because the geometric con-
straint does not contain the higher order derivatives yx ���� , and F. The length constraint
equation needs to be differentiated, which yields the system of equations presented in
(7-5). The equation system obtained still does not contain the higher derivates and
therefore needs to be differentiated once more. This operation will result in the system
of equations shown in (7-6). In conclusion, the equation (7-4) has been differentiated
twice in order to get the system into a suitable form for computing the solutions with a
general use index 1 solver. Therefore the differential index of the system is equal to 2.
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Now, a method that computes or approximates the differential index only based on
structural information needs to be provided. The algorithm for computing the structural
index starts by constructing the bipartite graph associated to the system of differential
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equations. When considering the bipartite graph representation of the DAE system the
numerical values of the coefficients are ignored. To each edge a weight is assigned. The
value of the assigned weight is equal to the order of the highest derivative of the vari-
able present in the equation. For those edges that do not represent the presence of a de-
rivative in an equation, a weight equal to zero is assigned

As was mentioned in the previous chapters, a matching M associated to the bipartite
graph G is a set of edges from graph G where no two edges have a common end vertex.
The weight of a bipartite matching is defined as the sum of the weights corresponding
to each edge included in the matching. The algorithm for computing the structural index
will proceed by computing the weight of the perfect matching associated to the bipartite
graph.

∑
=

=
M

i
iwMw

1

)( where M is the number of edges contained in the matching M.

The algorithm for computing the structural index is presented below:

Algorithm 7-1: Computing the Structural Index

Input Data: system of differential algebraic equations
Result: The numerical value of the structural index )(Aistr

begin:
– Associate the corresponding bipartite graph ),,( 21 EVVG = to the system of dif-

ferential equations where },,,{ 211 nvvvV …= and },,,{ 212 nuuuV …= are the
sets of vertices.

– Assign a weight to each edge )(),( GEuv ts ∈ where nts ≤≤ ,1 equal to the or-
der of the highest derivatives of the variable tu present in the equation sv .

– Find the family of all matchings of size n )( nΜℑ in the bipartite graph G .

– for each M in )( n
GΜℑ do

– Calculate the weight of each matching ∑
∈

=
Mji

ijwMw
),(

)(

– if n
GmaxMMw >)( then )(MwmaxM n

G = .

end for.
– Find the family of all matchings of size n-1 )( 1−ℑ n

GΜ in the bipartite graph G .

– for each M in )( 1−ℑ n
GΜ do

– Calculate the weight of each matching ∑
∈

=
Mji

ijwMw
),(

)(

– if 1n
GmaxMMw −>)( then )(MwmaxM 1n

G =− .

end for.
– Compute the structural index 1)( +−= − n

G
1n

Gstr maxMmaxMGi 5

end.

5 For a complete demonstration of how this formula is obtained see Murota [28]
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One naïve solution to the problem of computing the maximum weighted maximum
matching is to compute all the maximum cardinality matchings, calculating the weight
of each of these matchings and choose the one with the maximum weight. This method
is used in Algorithm 7-1. Efficient implementations of algorithms for directly comput-
ing the maximum weighted matchings can be found in (Mehlhorn and Näher 1999
[83]).

Let us now consider the bipartite graph associated to the system of DAEs from (7-4)
shown in Figure 7-2 a) below. Since the highest derivatives yx ���� , are present in the first
and the second equation we are assigning a weight equal to 2 to the edges (eq1,x) and
(eq2,y). From the bipartite graph representation the family of all the maximum
weighted matchings (family of size 3 in our case), },{)( 3

2
3
1

3
GGG MM=ℑ Μ is computed.

The weights corresponding to the perfect matching

)}),3(),,2(),,1{(},,,{},3,2,1({3
1 xeqyeqFeqFyxeqeqeqM G =

is represented in Figure 7-2 b) with thicker lines and is equal to 2 because it includes
one edge (eq2,y) which has a weight equal to 2, the weight of the other edges being
equal to 0. It is computed by the following formula:

2020),3(),2(),1()(
3

1

3
1 =++=++==∑

=

xeqwyeqwFeqwwMw
i

iG

Another possible maximum weighted perfect matching of the bipartite graph is
)}),3(),,2(),,1{(},,,{},3,2,1({3

2 yeqFeqxeqFyxeqeqeqM G = with the same numerical
value for the weight 2)( 3

2 =GMw . In conclusion for computing the maximum weight
of the family of perfect matchings we can choose either 3

1GM or 3
2GM .
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Figure 7-2. a) Associated bipartite graph for the DAE system presented in (7-4) b)
Perfect matching of the bipartite graph c) Matching where equation eq3 and variable
F have been eliminated from the bipartite graph.

The maximum weighted matching of cardinality equal to 2 is shown in Figure 7-2 c).
and has a total weight equal to 4. The structural index is computed by the following
formula (Murota 2000 [87]):

31241)(max)(max)(
)(

1

)( 11
=+−=+−=

ℑ∈

−

ℑ∈ −−

n
G

M

n
G

M
str MwMwGi

n
G

n
G

n
G

n
G ΜΜ

which in this case corresponds to the value of the differential index.
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By differentiating equation (7-3) we can check whether the DAE system structural
index is decremented by one. By differentiating equation (7-3) the DAE system (7-5) is
obtained which has the associated bipartite graph shown in Figure 7-3. Weights equal to
2 are associated with the edges (eq1,x) and (eq2,y) and weights equal to 1 are associated
with the edges (eq3,x) and (eq3,y). By differentiating equation (7-3) the first order de-
rivatives of variables x and y will be present in these equations resulting in the corre-
sponding edges having a weight equal to 1.
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Figure 7-3. a) The associated bipartite graph to the system of DAE equations from
(7-5). b) Perfect matching of the bipartite graph c) Maximum lover size matching.

Computing the maximum weighted matchings of size 3 and 2, and computing the struc-
tural index:

21341)(max)(max)(
)(

1

)( 11
=+−=+−=

ℑ∈

−
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G ΜΜ

Here we see that the structural index decreased by one when equation (7-3) was
differentiated.

7.3.2 Index Preserving Differential Equation Rewriting

Since most equation-based modeling languages only support syntax for first order de-
rivatives we rewrite equations (7-2) by introducing xv and yv for the velocity compo-
nents.
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Figure 7-4. Pendulum model equations and the corresponding bipartite graph.
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Now we are going to demonstrate that the symbolic substitution of the highest deriva-
tive and introduction of one extra equation and variable in the system of differential
equations will not change the maximum weight of the matching corresponding to the
associated bipartite graph. Therefore the value of the computed structural index will not
be influenced by equation transformations that introduce implicit definitions of high or-
der derivatives by adding a new algebraic variables. Similar transformations on differ-
ential equation systems are employed by certain index reduction algorithms such as the
dummy derivatives method (Mattsson and Söderlind [80]). Therefore it is important to
demonstrate that the structural index remains unchanged during such equation trans-
formations.

The transformation, at the equation level, consists of introducing a new lower order
derivative variable dx to represent 1+dy wherever it appears in the system of differen-
tial equations.

For example the differential equation 0),,( 1 =+d
d

yyt
dt

dF
from (7-1) will be substi-

tuted by the equation 0),,(
1

=
−

d
d

xyt
dt

dF
and a new variable x together with a new

equation dd xy =+1 will also be added to the overall equation system in order to avoid

introducing an over-constrained situation.
In the corresponding bipartite representation this will transform an edge into an al-

ternating path. The weight assigned to the substituted edge is equal to the highest de-
rivative present in the equation to be substituted. A two-step edge substitution is pre-
sented below together with the corresponding graph transformation:









=
=
=

⇒








=
=

⇒=
tx

st

s

sx

s
x

�

�

��

��

��

����

eq1'

eq2

eq3

x

s

t

x

s

x eq1'

eq2

eq1
3

1

2

1

1

1

Figure 7-5. Transformation of an equation containing a third order derivative into
three equations containing first order derivatives.

Theorem 7-1: The structural index of a DAE is not changed by simple symbolic de-
rivative rewriting transformations.

Proof: Let us consider a balanced bipartite graph ),,( 21 EVVG = , which has a corre-
sponding perfect matching M . Let },,,{ 211 nvvvV …= and },,,{ 212 nuuuV …= . We
shall show that:
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1. The graph G′ obtained by exchanging an edge )(),( GEuv ts ∈ where
nts ≤≤ ,1 , with a sequence of edges )},(),,(),,{( 1111 tnnnns uvvuuv ++++′ is bipar-

tite and admits a perfect matching M ′ .
2. If iuvw ts =)),(( where )(),( GEuv ts ∈ and 1)),(( 1 =′ +ns uvw ,

0)),(( 11 =++ nn vuw and 1)),(( 1 −=+ iuvw tn where
)(),(),,(),,( 1111 GEuvvuuv tnnnns ′∈′ ++++ then )()( MwMw ′= .

1: The demonstration that G′ is bipartite is obvious. It is clear that 1V and 2V are two
distinct sets such that no two vertices from the same set are adjacent because the graph
G is considered to be a bipartite graph. The equation node 1+nv is adjacent to 2Vut ∈
and 1+nu . The variable node 1+nu is adjacent to 1Vvs ∈ and 1+nv . The introduced new
vertices 1+nv and 1+nu can be added to 1V and to 2V respectively without having verti-
ces that are adjacent to the same set. Then it follows that G′ only has edges joining
vertices from }{ 111 ++=′ nvVV and }{ 122 ++=′ nuVV and therefore that G′ is bipartite.
That G′ admits a perfect matching is a consequence of Hall’s Theorem (see Chapter 4,
Theorem 4-1).

2: Clearly it suffices to consider the case where the only weighted edges in the corre-
sponding bipartite graphs are )(),( GEuv ts ∈ and )(),(),,( 11 GEuvuv tnns ′∈++ . If

)(),( GMuv ts ∈ then

∑
∈

===
Mji

tsij iuvwwMw
),(

),()( .

Eliminating the edge ),( ts uv means that ts uv , are edges which are not covered any

more by a matching and therefore M ′ will contain two extra matching edges

),( 1+ns uv and ),( 1 tn uv + because the vertices sv and tu need to be covered by match-

ing edges. The weight of M ′ is given by the following formula:

∑
′∈

++ =−+=+==′
Mji

tnnsij iiuvwuvwwMw
),(

11 1)1(),(),()( .

If )(),( GMuv ts ∉ then 0)( =Mw . Eliminating the edge ),( ts uv from G will not
change the structure of the associated matching M and the vertices sv and tu are cov-
ered. Therefore any edge incident with these vertices does not need to be a matching
edge in a new matching. In conclusion only ),( 11 ++ nn vu can be a matching edge in the
formed new matching M ′ . Since ),( 11 ++ nn vuw = 0 then )(Mw ′ is also equal to 0.
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7.4 Limitations of Graph Based Structural Analysis

The current limitations of the graph-based structural approach are presented in the fol-
lowing subsections. First an example taken from (Reissig et. al. 2000 [100]) is pre-
sented where a system of DAEs with differential index 1 may have an arbitrarily high
structural index. This phenomenon is not always captured by a structural approach and
therefore numerical cancellation may occur later at the numerical solving phase of the
equations. Another "embarrassing" phenomenon is when the structural index is less
than the differential index of the associated differential equations, which also may pose
difficulties to index reduction algorithms and to numerical solvers.

7.4.1 Structural Index Higher than the Differential Index

Let us consider the example of a simple electrical circuit taken from (Reissig et. al.
2000 [100]). An electrical resistor R is connected in series to a constant voltage source
DC and a capacitor C as shown in Figure 7-6. If node 2 is chosen as the ground node
the system of equations (7-7) is derived from the circuit.

(7-7)

Figure 7-6. A Resistor-Capacitor circuit and the associated system of equation

Now we will compute the structural index of the equation system from Figure 7-7. Dur-
ing the first steps the bipartite graph associated to the DAE system is generated. A
weight is assigned to each edge, which represents the existence of a higher order deriva-
tive in the equation tied to the edge.
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Figure 7-7. The system of equations for which the structural index is computed and
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According to the weight assignment rule the following relation holds since the variables

1v� and 3v� are present in equations eq1 and eq2:

1),2(),2(),1(),1( 3131 ==== veqwveqwveqwveqw

In the next step the algorithm will try to find a maximum weighted perfect matching in
the bipartite graph. The family of corresponding perfect matchings includes only one

perfect matching: }{)( 3
1

3
1 GG M=ℑ Μ , where:

)}},3(),,2(),,1{(},,,}{3,2,1{{ 1331
3
1 veqveqieqivveqeqeqM G = .

Since there is only one perfect matching in the family of all perfect matchings there is
no need to search for another maximum weighted matching. Therefore, the weight of

3
1GM can be calculated directly:

∑
∈

=++=++==
Mji

ijG veqwveqwieqwwMw
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Figure 7-8. Maximum weighted matchings corresponding to the bipartite graph.

Comuting the family of the matchings of size 2 we obtain five different matchings in
the family },,,,{)( 2

5
2
4

2
3

2
2

2
1

2
GGGGGG MMMMM=ℑ Μ where:

)}},2(),,1}{(,{},2,1{{ 3131
2
1 veqveqvveqeqM G = 2)( 2

1 =GMw

)}},2(),,1}{(,{},2,1{{ 1331
2
2 veqveqvveqeqM G = with the 2)( 2

2 =GMw

)}},3(),,2}{(,{},3,2{{ 1331
2
3 veqveqvveqeqM G = corresponding 1)( 2

3 =GMw

)}},3(),,1}{(,{},3,1{{ 11
2
4 veqieqiveqeqM G = weights 0)( 2

4 =GMw

)}},3(),,1}{(,{},3,1{{ 1331
2
5 veqveqvveqeqM G = 1)( 2

5 =GMw

We should note that the two matchings 2
1GM , 2

2GM respectively have their maximum
weight equal to 2.

Applying the structural index formula we obtain a structural index equal to 2 where the
underlying DAE system of equations clearly has a differential index equal to 1.
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If we choose node 1 or node 3 as the ground node, both the differential index and the
structural index will be equal to 1. In Figure 7-9 we illustrate the associated bipartite
graph and the two maximum weighted matchings for the same electrical circuit pre-
sented above but this time the node 3 is chosen to be ground node.
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Figure 7-9. Electrical circuit with ground located in node 3.

7.4.2 The “Embarrassing Phenomenon” Revisited

Let us consider the simple electrical circuit presented in (Murota 2000 [87]) and (Cel-
lier 1991 [24]) This circuit consists of two resistors R1 and R2, a voltage source VA an
inductor L and a capacitor C, connected together as illustrated in Figure 7-10. By ana-
lyzing the example from Figure 7-10, we are going to demonstrate that the graph theo-
retical structural approach for computing the structural index of the physical circuit
model is only valid to a certain extent.

The equations generated by the component connections describe the relations among
the voltages and currents respectively of the interconnected electrical components when
applying the two laws of Kirchhoff. Kirchhoff ‘s Current Law states that the sum of the
currents along any cut set of the network graph is zero. Kirchhoff ‘s Voltage Law states
that the sum of the voltages along any circuit of the network graph is zero.

Considering the equations representing the conservation of the voltage along the
loops R1-R2-C, R2-L and VA-C we obtain the directed bipartite graph as presented in
Figure 7-11 a). The edges )10var,10(eq and )4var,9(eq are marked with thicker lines
because they represent the presence of a differentiated variable in an equation and
therefore will be weighted equal to 1. It should be noted that the edge )4var,9(eq is
also a matching edge. The edge )10var,10(eq can never be part of a perfect matching
corresponding to the bipartite graph because it is not included in any cycle. When
calculating the weight of the perfect matching we obtain 1 which is also a maximal
weight for the family of perfect matchings since no other perfect matching include more
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for the family of perfect matchings since no other perfect matching include more
weighted edges. The path

)}6,6var(),6var,3(),3,10var(),10var,10(,)10,5(var),5var,1{( eqeqeqeqeqeq

is a feasible path. Therefore we can exchange the matching edges with non-matching
edges and obtain another matching with a lower cardinality.
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Figure 7-10. A simple electrical circuit model together with corresponding equa-
tions and variables.

After exchanging the edges we obtain the following path:

)}6,6(var),6var,3(),3,10(var),10var,10(),10,5(var),5var,1{( eqeqeqeqeqeq .

This time, the edge )10var,10(eq is a matching edge and therefore will add its weight
when computing the weight of the corresponding matching. Calculating the weight of
the matching of size 9 obtained by exchanging matching edges from the above men-
tioned path we obtain the value 2, which is also a maximal value because it includes
both weighted matchings. Therefore there is no need to iterate to all the possible match-
ings of size 9. Now we can easily calculate the structural index of the equation system:

21121)(max)(max)( 10
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)( 101099
=+−=+−=
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M
str MwMwGi

GGGG ΜΜ

which is equal to the differential index.
Now we describe the circuit from Figure 7-10 considering the equations representing

the conservation of the voltage along the loop VA-R1-L instead of the loop VA-C. The
corresponding directed bipartite graph with an associated perfect matching is presented
in Figure 7-11 b). It should be noted that we can easily find a perfect matching which
includes both weighted edges because edge )4var,9(eq is already included in the per-
fect matching and the edge )5var,10(eq is included in an alternating cycle
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)}2,5)(var5var,10(

),10,10var(),10var,4(),4,8var(),8var,8(),8,3var(),3var,2{

eqeq

eqeqeqeqeqeq

where we can easily exchange the matching edges with non-matching edges and obtain
another matching with the same cardinality which includes the weighted edge. Comput-
ing the structural index:
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we obtain a value

which is less than the corresponding differential index associated with the DAE system.
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Figure 7-11. a) The directed bipartite graph for the simple electrical circuit when
the Kirchoff's Voltage Laws along R2-C, R2-L and VA-C were considered. b) The
corresponding directed bipartite graph for the simple electrical circuit when the
Kirchoff's Voltage Laws along R2-C, R2-L and VA-R1-L were considered.

Different views of the same problem can lead to different models. Empirical compari-
son might be worthwhile. This phenomenon is mentioned in the literature as an “embar-
rassing” phenomenon (Murota 2000 [87]) and several practical examples were identi-
fied such as the above mentioned electrical circuit (Murota 2000 [87]) or analysis
problems arising from distillation columns in chemical engineering (Unger et. al. 1995
[118]). This situation is unlikely to appear when the circuit model is specified with the
help of a modeling language such as Modelica, where the same equation system is ob-
tained from the same model topology.
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7.5 Conclusions Regarding the Structural Index

The structural index is not uniquely determined for a physical engineering system, as
has been demonstrated by several examples. It depends on the system description and
therefore is dependent on modeling choices made by the user. However, structural con-
siderations and the computation of the structural index provides a meaningful and com-
putationally efficient method to characterize large and/or highly nonlinear DAEs where
numerical and symbolic methods are extremely expensive or are not even possible.

The first structural algorithm for computing the structural index is due to (Duff and
Gear 1986 [31]). This algorithm answers the question whether the index of DAE system
exceeds the value of two. For certain problems the algorithm exhibits non-polynomial
computational complexity. Fortunately Algorithm 7-1 has a wider applicability since it
can be applied to DAE systems of any index and does not require that the equations
should be written in a special form. For this reason, the computation of a structural in-
dex associated with DAE system constitutes the first step in reducing the index of
higher index problems (Pantelides 1988 [93]) as will be presented in the next section.

It should also be noted that the algorithm for computing the structural index can eas-
ily be integrated into a general debugging and compilation framework of equation-
based languages. The perfect matching of the bipartite graph associated to a DAE sys-
tem of equations was already computed by the Dulmage-Mendehlson canonical decom-
position algorithm and can be reused here. Furthermore the family of all perfect match-
ings is also computed as a preliminary step for computing the strongly connected
components of the associated bipartite graph. Only the computation of the family of
lower cardinality matchings introduce an extra computational burden.

7.6 Index Reduction Algorithms

The term high-index DAE is commonly used to refer to equation systems where the dif-
ferential index 2≥di (Brenan et. al. 1989 [22]) Standard numerical methods such as
BDF or implicit Runge-Kutta applied to some form of higher-index DAE experience
difficulties and need to be adapted to special categories of problems. There are only a
few higher-index solvers and only special kinds of higher-index problems may be
solved directly at present. Therefore index reduction techniques are necessary to reduce
higher-index problems to index 1 problems, which can successfully be solved with gen-
eral purpose numerical DAE solvers such as DASSL (Differential Algebraic System
Solver) (Petzold 1982 [96]).

7.6.1 A Higher Index Problem from Two Rigidly Connected Masses

In the following we will try to analyze a modeling example of two rigidly connected
masses where the index of the underlying DAE system is greater than 1. Then
Pantelides' index reduction algorithm is applied to the simulation model in order to
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show the transformation performed on equations during the optimization phase of the
compiler.
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Figure 7-12. Two rigidly connected masses

The corresponding Modelica source code is given below:

connector Flange_a "1D rotational flange "
Real phi "Absolute rotation angle of flange";
flow Real tau "Cut torque in the flange";

end Flange_a;

connector Flange_b "1D rotational flange "
Real phi "Absolute rotation angle of flange";
flow Real tau "Cut torque in the flange";

end Flange_b;

partial model Rigid
"Rigid connection of 2 rotational flanges"

Real phi "Absolute rotation angle of component
Flange_a flange_a "(left) driving flange”;
Flange_b flange_b "(right) driven flange";

equation
flange_a.phi = phi;
flange_b.phi = phi;

end Rigid;

model Inertia "1D-rotational component with inertia"
extends Rigid;
parameter Real J=1 "Moment of inertia";
Real w "Absolute angular velocity of component";
Real a "Absolute angular acceleration of component";

equation
w = der(phi);
a = der(w);
J*a = flange_a.tau + flange_b.tau;

end Inertia;

model RigidlyConnectedMasses
Inertia m1;Inertia m2;

equation
connect(m1.flange_b,m2.flange_a);

end RigidlyConnectedMasses;

When translating the RigidlyConnectedMasses model we obtain the following set
of flattened equations and variables (shown in Table 7-1).
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Table 7-1. The flattened set of equations and variables at the intermediate code level
corresponding to the rigidly connected masses model.

eq1 m1.flange_a.phi = m1.phi var1 m1.phi
eq2 m1.flange_b.phi = m1.phi var2 m1.flange_a.phi
eq3 m1.w = (m1.phi)' var3 m1.flange_a.tau
eq4 m1.a = (m1.w)' var4 m1.flange_b.phi
eq5 m1.a * m1.J= m1.flange_a.tau +

m1.flange_b.tau
var5 m1.flange_b.tau

eq6 m2.flange_a.phi = m2.phi var6 m1.w
eq7 m2.flange_b.phi = m2.phi var7 m1.a
eq8 m2.w = (m2.phi)' var8 m2.phi
eq9 m2.a = (m2.w)' var9 m2.flange_a.phi
eq10 m2.a m2.J = m2.flange_a.tau +

m2.flange_b.tau
var10 m2.flange_a.tau

eq11 m1.flange_b.phi = m2.flange_a.phi var11 m2.flange_b.phi
eq12 m1.flange_b.tau + m2.flange_a.tau = 0 var12 m2.flange_b.tau
eq13 m1.flange_a.tau = 0 var13 m2.w
eq14 m2.flange_b.tau = 0 var14 m2.a

By transforming the flattened equations into a corresponding bipartite graph representa-
tion and applying a strongly connected component algorithm on the directed graph we
obtain the following block lower triangular form of the equations:

Strongly connected components: 5
STRONGLY CONNECTED COMPONENTS
[0] m1.flange_a.tau = 0 m1.flange_a.tau
[1] m2.flange_b.tau = 0 m2.flange_b.tau
[2] m1.flange_b.phi = m1.phi

m1.w = (m1.phi)'
m1.a = (m1.w)'
m1.a * m1.J = m1.flange_a.tau + m1.flange_b.tau
m2.flange_a.phi = m2.phi
m2.w = (m2.phi)'
m2.a = (m2.w)'
m2.a m2.J = m2.flange_a.tau + m2.flange_b.tau
m1.flange_b.phi = m2.flange_a.phi
m1.flange_b.tau + m2.flange_a.tau = 0

m1.phi m1.flange_b.phi m1.flange_b.tau m1.w m1.a m2.phi
m2.flange_a.phi m2.flange_a.tau m2.w m2.a

[3] m1.flange_a.phi = m1.phi m1.flange_a.phi
[4] m2.flange_b.phi = m2.phi m2.flange_b.phi

Figure 7-13. Presentation of the strongly connected components corresponding to
the model of rigidly connected masses.

We discard blocks [0][1] and [3][4] which only contain one equation each, have index
0, and do not influence the index of the total system. We concentrate our analysis only
on block [2] on which an index reduction algorithm needs to be applied. During the first
step we need to compute the structural index of the system of equations. Applying
Algorithm 7-1 on the weighted bipartite matching we obtain the structural index value
3.
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Figure 7-14. The bipartite graph and the weighted directed bipartite graph corre-
sponding to block [2] of the rigidly connected masses.

Obviously, being a strongly connected component, block [2] obtained after performing
the block lower triangular form decomposition is a cycle as shown in the right part of
Figure 7-14. Before performing the structural index calculation, in order to limit our
analysis and make the example more illustrative we perform some symbolic variable
substitutions. Simple equality expressions such as ji xx = can be recognized and elimi-
nated from analyzed equations as already was illustrated in Chapter 3. In our example
the variable m1.flange_a.phi from the equation m1.flange_a.phi = m1.phi
can be substituted by the variable m1.phi in all the equations in which it appears. Ap-
plying this substitution, equation m1.flange_b.phi = m2.flange_a.phi becomes
m1.phi = m2.flange_a.phi. Now we can repeat the same process for the variable
m2.flange_a.phi and substitute it in equation m2.flange_a.phi = m2.phi that
becomes m1.phi = m2.phi as illustrated below:

m1.flange_b.phi = m1.phi
m1.flange_b.phi = m2.flange_a.phi
m2.flange_a.phi = m2.phi

m1.flange_b.phi = m1.phi
m1.phi = m2.flange_a.phi
m2.flange_a.phi = m2.phi

m1.flange_b.phi = m1.phi
m1.phi = m2.flange_a.phi
m1.phi = m2.phi

In conclusion: eq6 (m2.flange_a.phi = m2.phi) is transformed into eq6' (m1.phi
= m2.phi). The variables present in equations eq2 and eq11 can be computed later
based on the value of the variable var1. The same symbolic substitution of variables
can be done for variables var14, var10, var5, and var7 and transform the equation eq4:
m1.a = (m1.w)' into the equation eq4': m2.a = (m1.w)' by substituting m1.J = 1,
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m1.flange_a.tau = 0 from solving the previous block and from
m1.flange_b.tau = m2.a and m1.a = m2.a.
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Figure 7-15. Symbolic substitution of the variables.

After the symbolic substitutions of the variables involved in simple variable equality
equations we obtain the reduced system of equations from block [2] that need to be
solved:

eq3 m1.w = (m1.phi)'
eq4' m2.a = (m1.w)'
eq8 m2.w = (m2.phi)'
eq4 m2.a = (m2.w)'
eq6' m1.phi = m2.phi

(7-8)

7.7 Index Reduction Algorithm

In this section we perform Pantelides' index reduction algorithm (Pantelides 1988 [93])
on the set of equation (7-8) resulting from the symbolic simplification of block [2] from
the BLT form. For readability purposes we rewrite the equation system expressed in the
intermediate flattened code form into a more mathematical notation. We are also relabel
the equations as follows:

eq3 m1.w = (m1.phi)' eq1 11 Φ�=ω

eq4' m2.a = (m1.w)' eq2 12 ω�=a
eq8 m2.w = (m2.phi)' eq3 22 Φ�=ω

eq4 m2.a = (m2.w)' eq4 22 ω�=a
eq6' m1.phi = m2.phi eq5 21 ΦΦ =

(7-9)

The first step in Pantelides' algorithm is to compute the structural index based on the
weighted matching of the directed graph. Therefore we construct the weighted bipartite
graph
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corresponding to the system of differential algebraic equations from (7-9) (see the left
part of Figure 7-16.
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Figure 7-16. Corresponding weighted bipartite graph, perfect matching and n-1 size
maximum cardinality matching corresponding to the system of equation (7-9).

The bipartite graph shown in the middle of Figure 7-16 represents a possible perfect
matching. For computing the structural index we need to find a maximum weighted
perfect matching. The total weight of the chosen perfect matching is 2)( 5

1 =GMw . In
order to be sure that no other perfect matching associated with the bipartite graph has a
higher total weight, we construct the directed bipartite graph corresponding to the
graph, together with all possible perfect matchings, see Figure 7-17.
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Figure 7-17. All possible perfect matching of the bipartite graph associated to the
system of equations (7-9).

The other possible perfect matching present for the system also has its total weight
equal to 2, 2)( 5

2 =GMw , as illustrated in the right part of Figure 7-17. The maximum
weight n-1 cardinality matching has a weight equal to 4, which is illustrated in in the
right part of Figure 7-16. We apply Algorithm 7-1 to the weighted bipartite graph to
compute the structural index 31241)( =+−=+−= − n

G
1n

Gstr maxMmaxMGi .
In order to reduce the computed structural index the total weight of the perfect

matching need to be increased without increasing the weight of the lower cardinality (n-



Conclusions 125

1) matching. This can be achieved if we can assign a weight equal to 1 to the
edges ),5( 1Φeq or ),5( 2Φeq , which is equivalent to differentiation of eq5. Differentiat-
ing eq5, the maximum weighted perfect matching and the maximum weighted lower
cardinality matching are recomputed based on the updated weighted bipartite graphs as
shown in Figure 7-18.
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Figure 7-18. The updated weighted bipartite graph with the associated maximum
weighted perfect matching and the maximum weighted lower cardinality matching
obtained after differentiating eq5.

The new structural index becomes 21341)( =+−=+−= − n
G

1n
Gstr maxMmaxMGi .

Differentiating eq5 one more time the structural index can further be reduced. A weight
equal to 2 will be assigned to the edges ),5( 1Φeq and ),5( 2Φeq . The structural index is
recomputed once more 11441)( =+−=+−= − n

G
1n

Gstr maxMmaxMGi and is equal to
1, which means that no further differentiation is necessary. By differentiating eq5 twice
the system of equations from (7-9) becomes:

m1.w = (m1.phi)'

m2.a = (m1.w)'

m2.w = (m2.phi)'

m2.a = (m2.w)'
m1.phi = m2.phi

m1.phi' = m2.phi'

m1.phi'' = m2.phi''

(7-10)

Equation (7-10) contains 7 equations and 9 variables (m2.a, m2.w, m1.w, m1.phi,
(m1.phi)', (m1.phi)'', m2.phi, (m2.phi)', (m2.phi)''). Thus two vari-
ables out of the variable set can be given an arbitrary initial value in order to make the
system well-constrained.

7.8 Conclusions

We have presented a graph theoretic approach based on Pantelides' algorithm
(Pantelides 1988 [93]). This algorithm is used to find consistent initial values for high
index DAEs. The algorithm can also be used for symbolically reducing the index of a
DAE. The main conclusions of this chapter is that the abstractions used for symboli-
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cally reducing the index and providing consistent initial values for DAEs to a very large
extent are similar to the abstractions used for debugging equation-based languages and
presented in the previous chapters. Therefore the compiler and the debugger can easily
be built based on the same graph theoretical abstraction. Moreover, the same abstrac-
tion can be used to specify the three main components of the structural analysis of
DAEs:

• Detecting over-constraining equations.
• Detecting under-constraining equations.
• Consistent initialization of DAEs.

The last component is already provided by any equation-based language compiler that
employs DAEs. Therefore it is important for the two components of a debugger that
handles over- and under-constraining equations to be tightly integrated with the com-
piler.
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Chapter 8

Debugging Environments for
Declarative Equation-Based
Languages

Summary: For the previously presented graph decomposition techniques to be useful in
practice, we must be able to construct and manage the graph representation of equa-
tion-based specifications efficiently and integrate them into automatic or semi-
automatic debugging tools. Another important factor that must to be taken into account
is the integration of the debugger into an existing language compiler. To support effec-
tive debuggers, static analyzers need to be added to the existing simulation environ-
ments that employ equation-based languages. In this chapter, we outline the architec-
ture and organization of the two implemented debugging tools. One of the tools has
been attached to the MathModelica simulation environments that employs the Modelica
language.

8.1 Overview of the Algorithmic Automatic Debugging
Framework

At this stage we are able to provide an overview of the proposed framework developed
for the Modelica language and Modelica-based simulation environments. Even if we
have limited our prototype implementations to the Modelica language, the developed
debugging kernels can easily be adapted to handle other object-oriented equation-based
languages. In the present work we have tried to deal only with the static aspects of the
debugging process, namely the detection and correction of over and under-constrained
error situations. The next step should be to improve the already developed techniques
by providing better user interaction and extending the debugger to handle dynamic error
situations as well, e.g. to support locating and fixing numerical failures and inconsis-
tencies. It is important to note that the proposed debugging framework can easily be in-
tegrated into the existing Modelica compilers.

In the following subsections details about our two prototype debugging systems will
be presented:
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• The MathModelica debugging kernel prototype.
• The AMOEBA debugging kernel for the Open Source Modelica System.

8.2 MathModelica Based Debugging Kernel

Our first prototype debugger was built and attached to the MathModelica simulation
environment as a testbed for evaluating the usability of the previously presented graph
decomposition techniques for debugging declarative equation-based languages. The
implemented debugger is just a research prototype and is not part of the MathModelica
commercial product.

MathModelica is an integrated problem-solving environment (PSE) for full system
modeling and simulation (Jirstrand 2000 [68]) (Jirstrand et. al 1999 [69]) (Fritzson et.
al. 2002 [45]). The environment integrates Modelica-based modeling and simulation
with graphic design, advanced scripting facilities, integration of code and documenta-
tion, and symbolic formula manipulation provided via Mathematica (Wolfram 1996
[126]). Import and export of Modelica code between internal structured and external
textual representation is supported by MathModelica. The environment extensively
supports the principle of literate programming and integrates most activities needed in
simulation design: modeling, documentation, symbolic processing, transformation and
formula manipulation, input and output data visualization.

The model corrections presented by the debugger will of course lead to a mathemati-
cally sound system of equations. However some of the solutions might not be accept-
able from the modeling language point of view or from the physical system model per-
spective. The debugger focuses on those static model errors whose identification does
not require the solution of the underlying system of equations.

As indicated previously, it is necessary for the compiler to annotate the underlying
equations to help identify the equations at the intermediate code level and to help the
user to choose the right solution. Accordingly, we have modified the front end of the
compiler to annotate the intermediate representation of the source code where equations
are involved. The annotations are propagated appropriately through the various phases
of the compiler. When an error is detected, the debugger uses the annotations to elimi-
nate some of the error fixing solutions and to identify the problematic equations. Then,
error messages, consistent with the user perception of the source code of the simulation
model, are generated automatically.

The implemented debugger has been successfully tested on declarative models in-
volving several hundred differential algebraic equations.

The general architecture of the implemented debugger attached to the MathModelica
environment is presented in Figure 8-1. The debugging algorithm proceeds as follows:
based on the original object-oriented equation-based source code an intermediate repre-
sentation is generated. From the intermediate representation the overall system of equa-
tions is extracted and transformed into bipartite graph form. The associated bipartite
graph is canonically decomposed and error-fixing strategies are applied if the decompo-
sition leads to over- or under-constrained components. The debugger will try to solve
the errors automatically without the explicit intervention of the user. If automatic error
fixing is not possible due to missing information, the user will be consulted regarding
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the repair strategy. When the user is interrogated, all the valid options that will lead to a
numerically sound system of equations are presented.

..................
model Resistor

extends TwoPin;
parameter Real R;

equation
R * i = v;

end Resistor;
..................

Modelica source
code specification

Graphical model
specification

Model flattening

..................................................
R1.v == -R1.n.v + R1.p.v
0 == R1.n.i + R1.p.i,
R1.i == R1.p.i,
R1.i R1.R == R1.v
C.v == -C.n.v + C.p.v
0 == C.n.i + C.p.i, C.i == C.p.i,

..................................................

Flattened set of equations
(Constraints store)

Intermediate code
annotation

<R1.v == -R1.n.v + R1.p.v,“eq11”,“ “,2,“TwoPin”,1,no>
.....
<AC.p.v == R1.pv,“eq11”,“ “,2,“Circuit”,1,yes>
.....
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Figure 8-1. The debugging framework
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The main advantage of using the MathModelica debugger is that the intermediate flat-
tened form of the equations can be visualized together with the corresponding bipartite
graph representation as shown in Figure 8-2. Of course, this facility is useful only for
small simulation models. However, in order to address different categories of users, the
MathModelica debugging kernel has been designed to allow multiple debugger win-
dows. Each of these windows is associated to the original file that contains the model
that needs to be debugged. One debugging window similar to that shown in Figure 8-2
can be generated with detailed information regarding the translation process, the inter-
mediate flattened equations from, the bipartite graph representation together with the
associated matchings, and the description of the steps performed by the debugger.

Figure 8-2. Screen shot of the MathModelica debugging kernel visualization of the
intermediate flattened form of the equations and the corresponding bipartite graphs.
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The second debugging window provides error-fixing solutions similar to those pre-
sented in Chapter 6, Figure 6-14 and Figure 6-15. Based on the information provided in
this window the necessary modifications can be made in the original electronic docu-
ment that contains the simulation source code.

8.3 AMOEBA – Automatic MOdelica Equation Based
Analyzer

AMOEBA (Automatic MOdelica Equation-Based Analyzer) is the second debugging
kernel that we have designed and implemented in order to attach it to the Open Source
Modelica Environment. The tool is able to successfully detect and provide error-fixing
solutions for typical over and under-constrained situations, which might appear during
the modeling stage using Modelica. The debugging kernel is in a prototype stage and is
intended to be integrated fully with the Open Source Modelica compiler (Fritzson et. al.
2002 [44]), (Aronsson et. al. 2002 [6]). At this stage the flattened form of the equations
are generated from the MathModelica environment.

Below we present each phase of the debugging process with the corresponding mod-
ule.

Modelica
source code

Equation flattener
(program transf.)

Flattened form of
the equations

Graph Decomposer
Over-constrained Well-

consrained
Under-Constrained

BLT
form

Code
generation

Graph Mapper Bipartite Graph
Representation

Over and under
constraint analyser

Intermediate code
program correction

Original Code
Transformer

Original Program
Modification

Error Presentation

equation annotations

semantic rules

Figure 8-3. Overview of the debugging kernel architecture.
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AMOEBA has been implemented in C++ using LEDA (Mehlhorn and Näher 1999
[83]), a library of efficient data types and algorithms for graphs and combinatorial
computing. As output and presented results, AMOEBA produces error fixing messages
for erroneous models and a block lower triangular form for models that compile cor-
rectly and do not contain any over- or under-constrained parts. However, the code gen-
eration module has not been implemented yet and constitutes our next obvious step for
the open source Modelica compiler in order to be able to simulate corrected models.

8.3.1 Equation Flattener

The first stage when analyzing Modelica programs is to flatten the model classes into a
system of equations without object-oriented structure in order to obtain the overall sys-
tem of equations that needs to be solved. The Equation Flattener accepts as input the
equation-based model code and outputs a set of flattened equations and variables. For
debugging purposes we have enhanced this module, by adding a set of annotations to
each flattened equation. The annotations help the debugger to later prioritize the error
fixing solutions. In this way, for example, the flexibility level attributes to the equations
can be provided. Furthermore, many of the existing library models have been well
tested in different simulation configurations, validated, and can be trusted. Tested li-
brary components are usually assigned a low flexibility level. They can even be locked
to prevent modification. The debugger will later automatically eliminate all those error
fixing solutions that require modification of the behavior of such components. The cor-
respondence between the original source code statements and the statements in the in-
termediate code is also preserved by the equation flattener.

8.3.2 Graph Mapping

The flattened equations are transformed into the bipartite graph representation by a
Graph Mapping module. Modeling the intermediate flattened code with the help of bi-
partite graphs gives a good insight into the structure of the equations. Even information
about the solvability or insolvability of the equation system can be derived as has al-
ready been demonstrated in the previous chapters.

For testing purposes the Graph Mapping module can accept as input a general graph
file format such as GML (Himsolt 1996 [59]), (Himsolt 1997 [58]). GML supports at-
taching arbitrary information to graphs, nodes and edges. Therefore equation annota-
tions can easily be specified. The Graph Mapping module can also save the flattened
system of equations in an external file in GML format. At this level the user has the
possibility of accessing and visualizing all the three representations of the flattened sys-
tem of equations (flattened form, bipartite graph form, and GML form.). In Figure 8-4
below we show the three different representations of the overall system of equations at
the intermediate code level.
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graph [
directed 0
node[id 1 label "eq1 1"]
node[id 2 label "eq 2"]
node[id 3 label "eq 3"]
node[id 4 label "eq 4"]
node[id 5 label "eq 5"]

node[id 6 label "x"]
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edge[source 1 target 6] edge[source 1 target 7]
edge[source 2 target 6] edge[source 2 target 7]
edge[source 3 target 7] edge[source 3 target 8]
edge[source 3 target 9] edge[source 4 target 7]
edge[source 4 target 8] edge[source 4 target 9]
edge[source 4 target 10] edge[source 5 target 10]

]
a) b) c)

Figure 8-4. Various representations of the system of equations at the Graph Map-
ping module level: a) flattened form b) bipartite graph form c) GML format

8.3.3 Graph Decomposer

The canonical decomposition algorithm applied by the Graph Decomposer module
splits the graph into three distinct subgraphs corresponding to an over-constrained sys-
tem of equations (too many equations are present), an under-constrained system (too
few equations or too many variables are present in the system) and a well-constrained
system of equations (the number of variables is equal to the number of equations). A
simple heuristic filtering rule assumes that the well-constrained part obtained after de-
composition will lead to a solvable system of equations and therefore need not be in-
cluded in any repair strategy. If under- or over-constrained situations are detected, this
means that there are some inconsistencies in the model. One should note that if no in-
consistencies are detected in the model, the compilation process follows the path from
the original declarative code to the transformed procedural code through the Equation
Flattener, Graph Mapping, Graph Decomposer, and Code Generation modules.

8.3.4 Constraint Analyser

The Constraint Analyzer takes the over- or under-constrained graphs obtained from the
previous phase and performs a graph transformation in order to transform these graphs
into a well-constrained graph and then generates a program modification at the inter-
mediate source code level based on the transformed computed graph. Different graph
transformations are applied for over- and under-constrained components. Details on
how these transformations are performed have already been discussed in Chapter 5 and
Chapter 6. Based on structural properties of the underlying over- and under-constrained
subgraphs intermediate code program modifications is performed by the Constraint
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Analyser. The program modifications always lead to well-constrained systems of equa-
tions and thereby eliminate the symptom of the bug.

8.3.5 Code Transformer

The Code Transformer module needs to validate the program correction: it must assure
that there exists a semantically correct source code program that can be translated into
the intermediate program correction. The source code transformations must be per-
formed only using atomic changes at the original source code level. Finally, the error
fixing solution is output by the debugger in terms of atomic changes that need to be per-
formed on the original source code in order to obtain a valid original source code pro-
gram that will generate corresponding program modifications at the intermediate code
level. When multiple error fixing solutions exist, the annotations attached to the flat-
tened equations help to eliminate some of the modifications and prioritise the remaining
ones.

8.3.6 Error Output

This module is responsible for presenting error messages to the user based on the previ-
ously obtained valid source code modifications. Before being presented to the user, the
output is filtered. For example, all the modifications that would involve atomic changes
on locked components are eliminated and the remaining corrections are prioritized
based on the annotations provided by the Equation Flattener. This module handles
most of the user interaction necessary for the debugger to complete the missing formal
specification of the program. At this level the user can be confronted with several error
fixing corrections that will eliminate the symptom of the detected bug at the intermedi-
ate code level. The corrections that most closely correspond to the programmer's view
of the model behavior should be selected.

For the implemented debugger the user has the possibility of specifying different
levels of filtering the error messages. First, we have provided two general levels of de-
bugging:

• General Level 1: Generate error messages that exclude error-fixing modifica-
tions for those components and library models that previously have been
marked as "locked". Usually well-tested libraries such as those included in the
Modelica Basic Library are safe and can be market as "locked". Error fixing so-
lutions that include modification of the "locked" library models are not taken
into account. Recently developed models can be "locked" by the user through
the selection facilities provided in the class browser associated to the source
code editor or even through the graphical model editor.

• General Level 2: Generate error messages that include modifications for any
components.

The debugging of over-constrained systems includes two secondary levels:
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• Secondary Level 1: Present corrections, not including those equations that dis-
connect the underlying bipartite graph corresponding to the equation system.

• Secondary Level 2: Present all the possible corrections that might involve the
elimination of equations including those that disconnect the underlying bipartite
graph. However in these cases a reachability analysis is performed in order to
find possibilities of reconnecting the bipartite graph.

For debugging under-constrained models an additional four secondary levels of debug-
ging might be present which are suboptions to the two general levels:

• Secondary Level 1: Take into account those corrections that imply the removal
of free variables from the under-constrained system. However do not use those
variable removals that will disconnect the associated graph.

• Secondary Level 2: Remove extra variables and provide additional linking in-
formation to those cases where the removal of a variable will disconnect the
underlying bipartite graph. This means that a reachability analysis is performed
on the system.

• Secondary Level 3: Instead of only removing free variables, the addition of ex-
tra equations is also taken into account. Reachability analysis is then performed
on the added equations in order to show the user the possible presence of other
variables in the equations.

• Secondary Level 4: Present all possible error fixing solutions for the user.

Our experience of using the debugger has shown that the most efficient settings is when
the general and the secondary level are set to level1, for models that contains small de-
viations such as accidentally removed equations, duplicate equations, uninitialised vari-
ables, and wrong connections among components.

The remaining debugger level combinations are more useful in detecting subtle bugs,
especially in those cases where the overall model contains many missing equations. The
remaining levels are also useful in the design phase by providing additional information
regarding possible model combinations and possible presence of variables in different
equations.

8.4 Implementation Status

Both debuggers are in a prototype stage. The debugger attached to the MathModelica
environment has been developed to test the debugging hypotheses presented in this the-
sis. First debugging experiments conducted in the MathModelica environment have
yielded encouraging results that started the development of the second debugging ker-
nel designed for the Open Source Modelica compiler. The experience with the proto-
type has shown that the proposed debugging scheme presented in this thesis provides a
low-cost, practical approach to statically debug Modelica programs. Moreover, a Mode-
lica debugger and compiler can be built using the same graph theoretical abstraction
providing in this way a uniform framework.
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We are currently working on expanding the scope and functionality of the AMOEBA
debugger and integrate it in the Open Source Modelica project. Obviously the scope of
the debugger needs to be extended with dynamic debugging capabilities. Currently,
AMOEBA's functionality is limited mostly due to our inability to provide automatic
equation annotations. For this reason only a limited number of examples with limited
size and complexity have been tested. At the current implementation stage AMOEBA
is able to decompose the flattened system of equations based on Dulmage-Mendelsohn
algorithm and provide error-fixing messages for the over- and under-constrained com-
ponents. Moreover, the debugger is also able to decompose the system into a Block
Lower Triangular form, reduce the index of differential algebraic equations, and pro-
vide consistent initialisation of DAEs
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Chapter 9

Related Work

Summary: This chapter surveys the work which is most closely related to ours. The re-
lated work overview can clearly be divided into three distinct parts: one part is related
to constraint satisfaction approaches, the second part surveys related work done in the
area of structural analysis, and the third part deals with failures in object-oriented
modeling and simulation systems as well as diagnosability of such systems.

9.1 Introduction

Structural analysis techniques are widely used for assessing the correctness and the
credibility of mathematical models expressed with the help of equations. Experience
has taught us that pre-processing a system of equations pays high dividends by reducing
the time for finding inconsistencies and efficiently correcting them. From the user point
of view, such techniques are extremely beneficial because they provide guidance during
early stages of the simulation model building process and do not require solving the
equations.

Nowadays, complex simulation models are often specified with the help of pro-
gramming languages such as logic/constraint or equation-based languages. Despite this
close connection to programming languages much of the literature on structural analysis
primarily focuses on purely mathematical methods and mathematical characterization
of the modeled systems. Obviously, a connection between structural analysis and pro-
gramming languages needs to be established in order to improve the debugging tech-
nology available for modeling and simulation environments.

The use of graph-based tools in structural analysis is of great interest both in display-
ing properties of systems of equations and also in following and performing symbolic
manipulations of variables and equations. For this reason, most of the related work pre-
sented below uses a graph-based abstract representation in order to provide a more in-
tuitive depiction of the computation process. The user is provided with different views
at different levels of detail, which allows an easy understanding of the whole modeling
process when using equation-based languages.
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9.2 Constraint Satisfaction Approaches

Our debugging approach follows the same philosophy as the method for reduction of
constraint systems used for geometric modeling in (Ait-Aoudia et. al. 1993 [3]). In this
system the algebraic equations resulting from a geometric modeling by constraints
problem are decomposed into well-constrained, over- and under-constrained subsys-
tems for debugging purposes. The well-constrained systems are further decomposed
into irreducible subsystems. This speeds up the resolution in case of reducible systems
which are decomposed into smaller reducible subsytems. The methods developed in the
paper help to gain knowledge on the combinatorial structure of the underlying equation
systems to geometric constraints and provide valuable information for debugging such
systems.

In (Bliek et. al 1998 [19]) attention is paid to the well-constrained part of a system of
equations by proposing new algorithms for solving the structurally well-constrained
problems by combining the use of constraint solvers with intelligent backtracking tech-
niques. The backtracking of the ordered blocks is performed when a block has no solu-
tion. This approach deals mostly with numerical problems, which of course are due to
erroneous modeling and wrong declarative specification of the problem, and requires
the use of constraint solvers. In (Bliek et. al 1998 [19]) an algorithm for under-
constrained problems is presented as well, which deals with the problem of selecting
the input parameters that lead to a good decomposition.

In (Bakker et. al. 1993 [9]) a method called DOC (Diagnosis of Over-determined
Constraint satisfaction problems) is described that solves over-determined constraint
satisfaction problems by generating a set of constraints that should be relaxed in order
of increasing cost. The method first identifies the set of least important constraints that
should be relaxed to solve the remaining constraint satisfaction problem. If the solution
is not acceptable for the user, the next-best set of least important constraint is scheduled
by the method until an acceptable solution from the user point of view is found and
validated. The classification mechanism of DOC is based on weighting the underlying
set of constraints.

(Müller 2000 [86]) proposes an interactive tool called Constraint Investigator for
debugging constraint-based application models. The tool is targeted at problems like
wrong, void, or partial solutions, and is not restricted to any specific constraint system.
Internally the debugging tool uses a graph-based representation that makes it possible to
efficiently emphasize different aspects of the constraints in the constraint solver.

9.3 Structural Analysis Techniques

(Murota 2000 [87]), (Murota 1987 [88]) presents matroid-theoretic combinatorial
methods for equation system analysis. In Murota's approach equation systems are de-
scribed by mixed polynomial matrices. Mathematically, the analysis of mixed polyno-
mial matrices is based on the combinatorial canonical form, which generalizes the
Dulmage-Mendelsohn's decomposition. Structural solvability criteria are also formu-
lated based on graphical and matroidal conditions.
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In (Leitold and Hangos 2001 [75]) the variable structure of dynamic models is repre-
sented by a directed graph for the purpose of solvability analysis. The graph representa-
tion is suitable for computing the structural differential index of lumped dynamic proc-
ess models. A structural decomposition is derived as well. The paper proposes a graph
theoretical method for index analysis and also develops index reduction methods. The
ODEs and DAEs of a dynamic simulation model are represented by dynamic graphs (a
sequence of static graphs corresponding to each step of numeric integration).

(Gilli and Garbely 1996 [49]) presents structural analysis techniques for diagnosing
macro-economic models. By means of graph theoretic approaches the normalization of
equations is computed as a necessary condition for the nonsingularity of the Jacobian
matrix. The paper analyses, in a systematic way, those situations in which the model
does not admit normalization and therefore the local uniqueness of the solution of a sys-
tem of equations is no longer guaranteed. In this case, the Jacobian matrix is reordered
based on the minimum cover of the bipartite graph associated to the system of equa-
tions. The reordering permits isolation of the error and clearly indicates where the
modifications of equations should occur in order to obtain a normalization.

The Abacuss II environment (Tolsma et. al. [117]) provides a debugging module for
structural analysis of the underlying systems of equations. The environment gives the
user the possibility to output a file which lists all the equations, initial conditions, vari-
able and parameters. The equations are presented in flattened form. Starting from the
Dulmage & Mendelsohn canonical decomposition of the incidence matrix, Abacuss II
also has the possibility to visualize the over- and under-constrained components (Bar-
ton 2000 [15]) (Barton 1995 [14]). All the variables and equations of the under- and
over-constrained equation system blocks can be inspected. If a block is sufficiently
small, simple inspection of the equations provides valuable information for the mod-
eler. The debugging capabilities of Abacuss II are completed by the Block Solver Diag-
nosis module that permits the visualization of the equations and variables that have
failed during the solving process. The bounds on the variables and the current values of
the variables can also be visualized by the Block Solver Diagnosis module. In this way
the source of runtime errors resulting from the failure of the attached numerical solver
to compute a solution is reduced to a small block of equations.

9.4 Diagnosability of Modeling Systems

(Ramos et. al. 1998 [99]) propose a methodology which adds a layer of physical knowl-
edge in the analysis of simulation models described with object-oriented equation-based
modeling languages such as Dymola or Omola. The topology of submodel interconnec-
tions is analyzed and well known algebraic problems such as systems of simultaneous
equations and high index DAEs are identified based on the extracted information. Some
numerical problems are avoided by exchanging submodels with equivalent submodels
with better numerical properties. The authors have developed a symbolic formula ma-
nipulation kernel in Maple in order to obtain the mathematical representation of the
equivalent model behavior.

Regarding systems modeled with non-linear and linear differential algebraic equa-
tions, (Krysander and Nyberg 2002 [74]) present an algorithm for finding a small set of
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submodels, which can be used to derive consistency relations with the highest possible
diagnosis capability. The fault diagnosability of the system is characterized by the
minimal structurally singular (MSS) set of equations. The proposed algorithm operates
by first detecting the over-constrained submodels; subsequently the submodels are
transformed into consistency relations. The MSS set of equation is computed by means
of matchings in bipartite graphs.

In (Wani and Gandhi 2000 [121]) a method developed on the basis of relationships
between system performance parameters and physical objects for mechanical and
hydraulical systems for assessment of diagnosability is presented. The relationships are
modeled in terms of a bipartite graph called the Diagnosability Bipartite Graph (DBG)
and the associated matrix to the bipartite graph called Diagnosability Matrix (DM).
Various diagnostic parameters are obtained from these representations, which aid the
designer in evaluating and comparing the diagnosability of various design variants of
the system. The diagnosability of the system is based on proposed parameters such as:
maximum number of set conflicts (MNS), maximum number of parameters in a set con-
flict (MNCS), diagnosability effort and cost (DEC), and average merit of diagnosabil-
ity.
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Chapter 10

Evaluation Based on Usability Criteria

Summary: This section presents our evaluation of our debugging framework based on
existing usability criteria developed for algorithmic automated debugging.

10.1 Evaluation of the Debugging Framework.

The objective of this research is to bring the latest advances from the areas of debug-
ging and program analysis to develop a powerful framework that will permit the inte-
gration of debugging tools into simulation environments that employ declarative equa-
tion-based languages. These debugging tools should be easy to use by a variety of
simulation system end users with varying mathematical and computational expertise
ranging from normal users to expert library developers. In this section we analyze and
evaluate our debugging framework based on the usability criteria for automated algo-
rithmic debuggers presented in (Shahmehri et al. 1995 [109]) and in relation to the
automated debugging techniques presented in (Ducassé [29])

10.1.1 Usability Criteria Based Evaluation

Generality. At this stage our framework successfully handles two classes of bugs: over-
constrained and under-constrained situations. These kinds of bugs are usually the most
frequent error situations encountered when programming with declarative equation-
based languages. Most of the erroneous specifications at the equation level will fall into
one of these categories. Our approach successfully handles over-constrained situations
when multiple equations overconstrain the problem, under-constrained problems with
missing equations and/or many variables, as well as combined errors when over and
under-constrained situations are simultaneously present in the model specification.

Cognitive plausibility. Bug localization is performed at the intermediate code level be-
cause only at this level can the structural dysfunctionality of the system of equations be
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detected. In order to provide meaningful error messages and error fixing solutions the
trace of transformations from the original code to the intermediate code is saved. On the
other hand, these transformations are used to generate powerful filtering rules for the
combinatorial explosion at the level of the intermediate code.

Each time an error is detected in the intermediate code and the error fixing solution
is elaborated, the debugger queries for the original source code statement before pre-
senting any information to the user. Moreover, the algorithmic part of the debugging
session, when the user interacts with the debugger and tries to supplement the missing
formal specification, is performed at the original source code level. Furthermore, if pos-
sible the interaction is performed at the graphical editor level although these situations
do not occur very common. For example, error-fixing solutions that involve the re-
moval of connectors or model components from the whole simulation model can be
presented at the graphical level. This facility is useful for end-users who interact with
the system at the graphical model editing level, but has turned out to be counter-
productive for library developers.

Most of the bugs that would usually require a third-level problem solving cognitive
process from the user, (Hale et. al. 1999 [55]) (Hale and Haworth 1991 [56]) have been
automatically moved by the debugger and transformed into problems that require first-
level problem solving cognitive processes which only involve the invocation of simple
atomic code modification rules to directly eliminate the program bug.

Degree of automation. In our prototype system a high degree of automation of the de-
bugging process has been achieved, reducing the user interaction to a minimum. Only
at the end of the debugging process is the user interrogated concerning the correct error
fixing solution that needs to be applied. The structural analysis and filtering algorithms
are fully automated, the annotation of the equations is automatically generated and the
filtering rules are derived from the language semantics and saved during the translation
phase of the compiler.

Appreciation of the user's expertise. In our system the user-interaction is reduced to
"yes" and " no" answers. In the debugging tool, we have provided the possibility of se-
lecting different levels of debugging, especially for under-constrained systems, as pre-
sented in Chapter 6. The users interested in the detailed translation and equation opti-
mization process have the possibility of saving and visualizing the bipartite graph that
represents the flattened intermediate form. The Block Lower Triangular form obtained
after equation sorting can also be visualized by the debugger for program understanding
purposes.

We can summarize the evaluation of our system in the following table:

Table 10-1. Evaluation of the debugging framework based on usability criteria

Generality Cognitive Plau-
sibility

Degree of
Automation

Appreciation of
User Expertise

Yes High
Semiautomatic
Full (when applicable)
otherwise partly manual

Yes
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10.1.2 Strategies for Automated Debugging

Verification with respect to a specification: Usually this technique is not so useful for
large programs if the complete specification is missing or in the absence of an auto-
mated tool that is able to extract the specifications (Ammons et. al. [4]). In our case it
turns out that purely mathematical specifications encoded as graph matching abstrac-
tions are sufficient to provide an acceptable formal specification of the intermediate
flattened code. After applying different filtering techniques the intended program is rep-
resented by a modified program expressed in the intermediate code obtained from pro-
gram modifications. Since the error location problem is handled at the modified inter-
mediate code level, the transformation traces saved during the compilation process are
used to map the error back to the original source code.

Slicing. This technique in the case of imperative programming languages is a data flow
dependency analysis triggered by "wrong value output variable" or "wrong control se-
quence". In our debugger, the slicing is used to flatten the if statements in the interme-
diate code and select the set of equations on which the canonical decomposition is go-
ing to be applied.

Heuristic Filtering. The main heuristic filtering rules of our debugging framework are
mostly based on structural analysis performed on the underlying systems of equations
and from graph connectivity considerations. At the first stage the equations and vari-
ables of the well-constrained part of the D&M canonical decomposition are eliminated
from any further consideration. Only the remaining equations of the under- and over-
constrained parts are kept by the debugger. The second main filtering rule is only based
on structural consideration of the bipartite graphs the system of equations. For example,
as shown in Chapter 5 all the equation nodes that being eliminated disconnect the un-
derlying bipartite graph are eliminated from any error fixing strategies implying over-
constrained systems.

Program Corrections. After applying the heuristic filtering the debugger has all the
necessary information to create program corrections (also called mutations by some au-
thors) of the intermediate source code that will cause the symptoms of the bugs to dis-
appear. In most of the cases a combinatorial explosion is experienced at this stage
where many possible error fixing solutions might be feasible.

Program Transformation. At this stage the original program needs to be modified to
generate a corrected intermediate program. These modifications were defined at the
previous step where mutated versions of the intermediate code were created. Several
powerful filtering rules derived from the semantics of the language will guide the trans-
formations of the original program, eliminating most of the mutated intermediate code
variants.

Algorithmic behaviour verification. This stage is necessary to help the user to select the
error-fixing solutions that will yield the correct behaviour of the modelled systems. A
strategy for error fixing, based on equation annotations, has already been presented by
the debugger but usually the heuristics involved in the annotation process are quite
weak and the user validation is necessary at this step. It is worth noting that this stage is
performed at the original source code level and not on the flat intermediate form. This
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was facilitated by saving the translation traces for each original statement to the inter-
mediate code during the compilation phase.

10.2 The Debugging Process from the Automated
Debugging Perspective

Now, let us summarize the debugging process from the automated debugging perspec-
tive, by showing the order in which each of the above mentioned techniques are used.
The debugging process starts by first filtering the problem at the intermediate code level
by verifying each valid "slice" of the program.

Then based on the mathematical formal specifications concerning the solvability of
the system of equations coded as matching algorithms, sets of equations are isolated by
performing canonical decomposition on the corresponding graph. A simple heuristic fil-
tering rule assumes that the well-constrained part obtained after decomposition will
lead to a solvable system of equations and therefore need not be included in any repair
strategy.

Based on structural properties of the underlying over and under-constrained graph,
program correction is used to create a model program at the intermediate code level.
Then program transformation is used to validate the corrections (sometimes called mu-
tants) and provide error messages in terms of the original program. When several valid
program transformations have been selected algorithmic behaviour verification is nec-
essary: the user acts like an "oracle" completing the missing formal specifications and
selecting the right behaviour of the problem. The algorithmic debugger traverses the
equation dependency tree for over-constrained systems and a multilevel decision tree
for under-constrained systems, asking the user about the removal of an equation or the
removal of a variable or new equations additions.

When multiple errors are present in the program, the debugger will try to locate all of
them at the same time. Repeating the whole process for an over-constrained and an un-
der constrained situation simultaneously present in the model is not necessary, both er-
rors can be fixed in the same debugging session.
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Chapter 11

Conclusions and Future Work

Summary: This presents our conclusions to the work presented in this thesis. We also
provide an insight into future research related to debugging of equation-based declara-
tive languages. While some more experimental work remains ahead of us, initial ex-
perience is promising.

11.1 Discussion and Comparison

Our work and the previously presented related work share the common goal of provid-
ing users with an effective way of debugging constraint or equation-based problems.
However, none of the environments presented in the related work section maintains a
mapping between the source text, the original intermediate representation, and the op-
timized intermediate representation. To our knowledge, no other existing simulation
system which employs an equation-based modeling language performs a mapping be-
tween information obtained from graph decomposition techniques and the original pro-
gram source code.

In particular, the Abacuss debugger (Tolsma et. al. [117]), (Barton 1995 [14]) has
some similarities to our approach and shares a common goal. The Abacuss debugger is
also based on the Dulmage-Mendehlson decomposition. However, no filtering based on
rules derived from the semantics of the original language or from structural information
is provided. The Abacuss II environment only visualizes the over- and under-
constrained components. The user can isolate the over-constraining equation or the free
variable by visually examining these components. For very small systems the error can
easily be found but for larger systems this quickly becomes an extremely difficult and
error-prone task. The same technique is employed in (Ait-Aoudia et. al. 1993 [3]) for
debugging constraint systems used for geometric modeling. We believe that just isolat-
ing and showing the user the over and under-constrained components is not enough in
the context of debugging equation-based languages. Therefore, our approach differs in a
number of ways, even though the first step also uses the D&M canonical decomposi-
tion.

We have presented derivations of the analysis of over and under constrained compo-
nents obtained after the Dulmage-Mendehlson decomposition that are more extensible
than previous approaches and more effective for program debugging purposes. The
main contribution of this thesis is to apply semantic filtering rules on the over and un-
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der-constrained components. Moreover, filtering rules obtained from structural proper-
ties of the over- and under-constrained graphs contribute to a substantial reduction in
number of error messages. We argue that simple elimination of equation or variable
nodes that disconnect the underlying bipartite graph cannot be considered as valid solu-
tions from the modeling point of view. Our system takes such considerations into ac-
count. In this way efficient error fixing messages can be presented to the programmer in
a natural and intuitive manner and only those solutions are validated that can be ob-
tained by source code manipulations.

Compared to other approaches of dealing with under-constrained systems that only
consider the elimination of the free variables from the system, we have extended our
approach by also considering the addition of new equations into the system. In this
context the reachability analysis is proposed to assist the user to provide the right form
of the introduced new equation. This technique supervises the debugging process by in-
teractively providing hints and immediately checking the correctness of a modification.

The debugging framework, presented in this thesis, also allows the analysis of com-
plex erroneous situations when over and under-constrained appear simultaneously. We
have pointed out that these situations cannot be treated by considering the over and un-
der-constrained problems in isolation. They need to be debugged simultaneously. It re-
mains an open question whether there is a general algorithm that will be able to auto-
matically handle such situations.

We have also explored the possibility of annotating the equations to narrow down
the number of error fixing choices and to prioritize the solutions. In that way we can
take advantage of library models that are fully tested and eliminate them from any error
fixing solutions. This also provides a means to use and attach domain related informa-
tion to the equations and to elaborate domain specific filtering strategies on top of the
semantic and structural filtering rules.

Our debugging framework is enhanced by incorporating ordinary and differential al-
gebraic equations (DAEs) into the static analysis by manipulating the system of equa-
tions to achieve an acceptable index and by providing consistent initial conditions
(Pantelides 1988 [93]). The debugging framework tries to keep a mapping between the
source text, the original intermediate representation and the symbolically optimized in-
termediate representation.

We have tried to automate our debugger as much as possible and to keep the user in-
teraction to a minimum. To achieve this goal we propose an automated debugging
framework. Details on how this goal has been achieved is given in Chapter 8.

We claim that the techniques developed and proposed in this thesis are suitable for a
wide range of equation-based languages and can easily be adapted to the specifics of a
particular simulation environments. Our claim is based on the close integration of the
developed debugging techniques and the compilation process. System decomposition,
partial ordering of equation blocks into BLT form, symbolic manipulation, index reduc-
tion, tearing, and providing consistent initial conditions can be done using the same
graph theoretical abstractions based on the bipartite graphs.
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11.2 Prospects for Future Improvements

While some more experimental work remains ahead of us, initial experience is promis-
ing. In the work presented we have tried to deal with the static aspects of the debugging
process, namely the detection and fixing of over and under-constrained situations. Ob-
viously the next step would be to improve these techniques by providing better user in-
teraction and extending the debugger to handle dynamic situations as well.

The following specific issues are planned to be addressed in our future work con-
cerning the debugging of equation base languages:

• The ideas presented in the thesis have been tried only on a very limited scale of
examples, even through the principles, especially those handling over-
constrained system situations have been developed in detail. The implemented
debugger kernel will be useful when it can handle large system models. The re-
strictions were imposed mostly by our inability to provide automatic equation
annotations and to save the transformation rules during the previous phases of
the debugging. The parser and the modules involved with the transformation of
the language need to be modified and extended in order to provide better sup-
port for such annotations.

• To extend the algorithms that are concerned with over- and under-constrained
situations when they appear simultaneously in the same model. Usually the er-
ror fixing solutions are much more complex than separately handling each
situation. These situations involve a complex interaction, as was shown in the
simple example from Chapter 6, section 6.5.

• Development of an integrated debugging kernel tightly integrated with the core
of the optimizer module of the compiler for supporting Modelica environments.
We intended to couple the debugging and the optimization kernel into one
module that should be integrated into a free Modelica compiler (Fritzson et al.
[73]). Nevertheless, most of our results developed during this research should
be also applicable for other equation-based modeling languages. We aim to de-
velop a language independent debugging and optimization kernel.

• Development of static system diagnosis modules with enhanced domain knowl-
edge information. These modules will be responsible for mapping the error
conditions to specific domain patterns taken from physical system domain
knowledge databases. This will contribute to an improved diagnosability and
advanced failure analysis of complex physical systems.

• Development of dynamic diagnosers which will perform localization of pro-
gram errors from symptoms found at the numerical solver level. Such numerical
singularities cannot be detected by static analyzers.

• Extension of the debugging kernel for model-based debugging in order to locate
faulty components in a given physical system simulation model. The model-
based diagnosis is performed by having a model of a system under considera-
tion, a logical representation of the correct behavior, and a set of observations
(Wieland 2001 [123]).
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• Extend the approach to environments that employ constraint satisfaction solvers
and adapt the developed techniques for equation-based languages to partial con-
straint-satisfaction problems.

11.3 Final Words

We expect that this work will considerably improve the debugging technology for sys-
tem modeling using declarative equation-based languages. Such progress in the devel-
opment of debugging environments for these languages might increase the acceptance
of a new language such as Modelica in the engineering communities that it targets. The
general debugging framework developed during the project can also serve as a basis for
compiler construction research regarding equation-based modeling languages as well as
providing valuable information on how to design efficient optimizing compilers for
equation-based languages.
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