Stream Reasoning using Temporal Logic and Predictive Probabilistic State Models

Mattias Tiger
Department of Computer and Information Science
Linkoping University, Sweden
Email: mattias.tiger@liu.se

Abstract—Integrating logical and probabilistic reasoning and
integrating reasoning over observations and predictions are two
important challenges in Al In this paper we propose P-MTL
as an extension to Metric Temporal Logic supporting temporal
logical reasoning over probabilistic and predicted states. The
contributions are (1) reasoning over uncertain states at single
time points, (2) reasoning over uncertain states between time
points, (3) reasoning over uncertain predictions of future and
past states and (4) a computational environment formalism that
ground the uncertainty in observations of the physical world.
Concrete robot soccer examples are given.

I. INTRODUCTION

Autonomous systems such as robots need to do both logic
and probabilistic inference over observations and other un-
certain information to reason about itself and the world. The
information available is fundamentally incremental in nature.
A flow of incrementally available information is called a
stream of information. To draw logical conclusions and react
to new situations with minimal delays incremental reasoning
over streams is necessary. This is stream reasoning.

Logical inference is mainly used to reason about high-
level facts in for example planning and execution monitor-
ing. Logics are useful since they can be used to formalize ab-
stract problem domains, allow questions in human language
and common sense reasoning to be easily expressed. A cen-
tral problem is however the disconnect between lower-level
probabilistic inference over sensor data and higher-level
logical reasoning, the so called sense-reasoning gap [1].

Good state estimation and prediction quality is a necessity
for a good world model, anticipatory behavior and safe
operations of an autonomous system. However, estimations
of the present and predictions about the future (and the
past) will be uncertain. Probabilistic inference is needed to
estimate relevant states, to make predictions about them and
to draw probabilistic conclusions.

Logic-based stream reasoning is about incrementally eval-
vating temporal logical formulas over streams of infor-
mation, which differs substantially from theorem proving.
The focus of this paper is on such incremental reasoning
over incrementally available data (stream reasoning). Metric
Temporal Logic (MTL) [2] is one example of a logic
that has been used successfully in the robotics domain for

Fredrik Heintz
Department of Computer and Information Science
Linkoping University, Sweden
Email: fredrik.heintz@liu.se

execution monitoring [3]. Statements in MTL are efficiently
and incrementally evaluated using progression [4].

Logic-based stream reasoning has previously only been
done over observations. To also reason over predictions we
present Predictive MTL (P-MTL), an extension of MTL sup-
porting reasoning over both stochastic states and stochastic
predictions of states.

The contributions are (1) reasoning over uncertain states
at single time points, (2) reasoning over uncertain states
between time points, (3) reasoning over uncertain predictions
of future and past states and (4) a computational environment
formalism that ground the uncertainty in observations of
the physical world. The grounding of probabilistic terms is
important for the reasoning to be meaningful. We therefore
present a full theoretical chain from sensor observations to
answers to logical queries and provide practical examples of
real systems from the robot soccer domain.

To achieve (1)-(4) we considers the logic, the probabilistic
models and inference as well as the computational environ-
ment for grounding the probabilistic and logical reasoning.
P-MTL includes both logical and probabilistic terms clearly
separating the logical and probabilistic inferences.

A full unification of logic and probability theory is con-
ceptually difficult for several reasons. A complete axiomati-
zation of first order logic with real valued probability values
is not even possible [5]. Despite the many difficulties there
are several impressive approaches to probabilistic logics
which show practical usefulness in areas such as robotics
[6]1[7]. One significant drawback is however that the infer-
ence methods rely on general purpose statistical sampling
methods, such as MCMC, which are too slow for many
practical usages with large models or with requirements on
low latency. Many common probabilistic inference problems
(and models) used in practice in the field of probabilistic
robotics have specialized and highly optimized inference
methods. This is something we want to take advantage of.

The work in this paper differs from work on probabilistic
logics since P-MTL is not a probabilistic logic since for-
mulas are either true or false, while in probabilistic logics
truth values are replaced with probabilities. The semantics
of P-MTL is not directly concerned with probabilistic in-
ference, instead it handles probabilistic statements through
the grounding in the computational environment. This al-

lows P-MTL to remain a first order logic with efficient
inference schemes for incremental reasoning without adding
limitations on what probabilistic inference can be done and
used as terms in P-MTL. Existing methods for probabilistic
inference can as a consequence be used with P-MTL.

The paper is structured as follows. Background to stream
reasoning is provided in Section II followed by an introduc-
tion to predictive stochastic stream reasoning in Section III.
Section IV presents the syntax of P-MTL. In Section V
the computational environment for grounding probabilistic
terms is described. The P-MTL semantics is presented in
Section VI. Sections VII and VIII provide concrete case
studies. The paper is concluded with a discussion on related
work in Section IX and a conclusion in Section X.

II. STREAM REASONING WITH MTL

We consider a stream to be a potentially infinite sequence
of time stamped states with a strict ordering on the time
stamps. States in the stream arrive incrementally. The time
of a state is assumed to be strictly larger than the time of
the previous state. It is important to note that the stream
reasoning which is considered in this paper determines if
statements are true or false over the entire stream.

Figure 1. A stream is a sequence of time stamped states

Stream reasoning with MTL is done in two parts. First
order logic is used to reason about single states. The
second part is the metric temporal operators [1 (Always), &
(Eventually) and O (Next) which allow statements across the
state sequence to be made, i.e. formulas that relate multiple
states. The temporal operators can refer to the entire stream
(unbounded) or be constrained to a time interval (bounded).
For example, the query It is always the case that if the
altitude of uav is below 10 meters then it will be above
10 meters within 5 seconds. can be written as

O ((Altitude[uav] < 10) — <p 51 (Altitude[uav] > 10))

where uav is an object and Altitude is a feature which is
a property or relation whose value may change over time.
The interpretation of the above formula is as follows. If an
arriving state S;, contains an altitude of uav that is less
than 10 meters, then a state Sy, must arrive in which the
altitude of uav is higher than 10 meters and where ¢, —t; <
5 seconds. The formula will never become true unless the
stream is finite, but it can become false.

The semantics of these formulas are defined over infinite
state sequences. To make metric temporal logic suitable
for stream reasoning, formulas are incrementally evaluated
using progression over a stream of timed states [3]. The
result of progressing a formula through the first state in

a stream is a new formula that holds in the remainder of
the state stream if and only if the original formula holds in
the complete state stream. If progression returns true (false),
the entire formula must be true (false), regardless of future
states. Even though the size of a progressed formula may
grow exponentially in the worst case, it is always possible
to use bounded intervals to limit the growth.

III. PREDICTIVE STOCHASTIC STREAM REASONING

In typical robotics applications features are estimated from
noisy numeric observations. The noise is often handled
by treating the estimated feature as a stochastic variable
with an associated probability distribution. In logic-based
stream reasoning these stochastic variables must be reduced
to numerical values before they can be used in the logical
reasoning. It is common to use the mean or first moment,
throwing away information including the uncertainty.

Reasoning over uncertain states is however useful since it
takes into account the uncertainty of observed values through
sensors and allows the reasoning to be constrained by how
certain a system currently is about some state of the world
(something which might change over time). The formula

O (Pr((Altitude[roof] — Altitude[uav]) > 2m) > 0.99)

can guard a UAV (Unmanned Aerial Vehicle) from crossing
above a roof top if it is not sufficiently certain (here with
99% probability) that it is higher up than the roof. A compar-
ison of the raw observation values of UAV and roof altitudes
provides no such guarantee for uncertain measurements.
Reasoning over the difference in uncertainty between time
points allows an autonomous system to further monitor the
quality of perception of various properties of the world and
how it varies over time.

The stochastic feature at a specific time point can be
estimated in isolation from past observations, treating them
as independent across time. A stochastic time series model
(temporal model for short) over features however can relate
feature observations over time. It provides the possibility to
also consider previous observations to improve the estimate.
A temporal model is also necessary to estimate features
that are only indirectly observable, such as estimating the
velocity from position observations.

A temporal model does not only relate estimates at
different observation time points but also to time points for
which there are no observations. This allow interpolation and
extrapolation of stochastic features across time (referred to
as predictions in this paper).

In total there are three variants of the same feature, such
as the altitude of a UAV. First there are raw numerical
observations, secondly there are stochastic estimates and
thirdly there are stochastic predictions based on several
observations. The first is non-stochastic while the other two
are stochastic. The time of an estimate corresponds to the

time of the observation, while predictions can be made for
any time including the future or the never observed past.
To make these variants explicit P-MTL includes stochastic
features terms representing estimates and predictions. Reg-
ular features represent observed features (which are non-
stochastic). This means that the state for each time point is
extended with estimations and predictions. The stream can
be considered 2-dimensional with one dimension for stream
time and one for prediction time, as is illustrated in Figure 2.

Prediction Time

Figure 2. States of the stream state sequence in orange (which include
observations), estimated states in green and predicted states in red.

Some interesting queries require the expressiveness to talk
about predictions made from other states than the current
state. Figure 3 show a rearrangement of Figure 2 where
the prediction time now is aligned with the stream time.
For example, consider the comparison between predicted
state from time O about time 2 (Sy,|;,) and the observed
state (or state estimate) at time 2 (Sy,|s,). This requires the
predictive temporal operator to operate over both stream time
and prediction time.

Figure 3. Observed state sequence in orange (first row). Each row below
the first is the predicted state sequence of each observed state. Predicted
state is in red and estimated states (special case of prediction) are in green.

The predictive operator @/, is introduced to refer to
observed, estimated and predicted features. Estimated and
predicted features are stochastic variables and observations
are non-stochastic variables. The operator works as follows:

Observed feature value: @; Altitude[uav]
@, Altitude[uav]

@,/ Altitude[uav]

Estimated feature value:

Predicted feature value:

where ¢ is observation time (stream time) and t’ is the
prediction time. The interpretation of @, F is that it is the
observed value of feature I at time t. The interpretation of
®,; F is that it is the estimated value of feature F at time ¢,
which is a prediction made at time ¢ about the value of F' at
time ¢. The interpretation of @/, F' is that it is a prediction
made at time ¢ about the value of feature F' at time t'. ¢/
may be larger than ¢ (prediction about the future) or smaller
than ¢ (prediction about the past). Time is relative.

This allows P-MTL to compare feature values from dif-
ferent time points, which is not possible in MTL. It is
important to note that we do not present any mechanism
to distinguish if observations from two different time points
are different observations with the same value or simply the
same observation. This means that it is possible to query if
there has been no changes in observation values of a feature
in the past 5 seconds, but not if it is due to the lack of new
observations (i.e. a constant inertia assumption) or not.

Reasoning over uncertain predictions allows an au-
tonomous system to monitor the prediction quality and
consistency of different probabilistic models used to estimate
the state of the world, both current, past and future. It is
important for autonomous systems operating in unstructured
environments to be able to monitor if the model of the
world (and the future expectations/predictions of the world)
becomes inconsistent with observations. If crucial parts of
the world state can no longer be predicted sufficiently well
then more sophisticated models might have to be used,
learning needs to be prioritized or maybe the autonomous
system needs to enter a safety mode such as making an
emergency stop.

This is especially important if the risk to hurt humans
or to damage expensive property becomes unacceptable. To
recognize such important situations it is necessary to be
able to reason over uncertain states and predictions with
the stochastic models that are used for probabilistic state
estimation and prediction in robotics.

For example, consider the UAV predicting its position
3 seconds into the future when it is about to cross over
a roof top. It is reasonable to require the UAV’s motion
to satisfy safety constraints in terms of acceptable risk
to damage property and hurt humans according to policy
and legislation. An example could be a requirement that it
always have to be the case that a) the UAV must know its
own position to be within a 1m radius sphere with 99%
probability, b) the certainty of predicting the position of the
UAV 3 seconds from now must be so high that it is within
a 1m radius sphere with 95% probability and c¢) the quality
of the prediction in b must be so high that it matches with
the observed position in 3 seconds with at least 50%. If a-c
are satisfied then the UAV is allowed to perform motions,
otherwise it should halt its operations and enter a safe mode.

The requirements a-c can be stated as

O(Pr(insideRel (®goPos[uav], Spherel.0m)) > 0.99
A Pr(insideRel(®3)oPos[uav], Spherel.0m)) > 0.95
A Og (similarity(.o‘oPos[uaV], ®_3Pos[uav]) > 0.5))

where the third conjunctive term means that after 3 seconds
the estimated position now and the predicted position about
now from 3 seconds ago should have a similarity of at least
50%. Spherel.0m is the constraint of a sphere with radius 1.0
meters. The similarity between the stochastic variables (esti-
mate and prediction) can for example be calculated using the
Hellinger distance between their probability distributions.

IV. SYNTAX OF P-MTL

The syntax of P-MTL is defined given a tuple S =
(P,FU,C,V,F,PR), where P is a set of predicate sym-
bols, FU a set of function symbols, C a set of constant
symbols, V a set of variable symbols, F a set of feature
symbols, and PR a set of probability reasoner symbols. The
set of well-formed probabilistic terms PT g is recursively
defined from f € F, const € C, t1,t3 € N and probabilistic
terms T, as

[flconst] | @, flconst] | @, flconst]

The set of well-formed logical terms LT g is recursively
defined from const € C, f € FU, g € PR, ¢; € C,
probabilistic terms 7, and logical terms 7; as

.y Cn))

The set of well-formed formulas Lg is recursively defined
from P € P, z € V, t1,ta € N, logical terms T,
probabilistic terms 7, and well-formed formulas o, 3 as

const | f(r1,...,7n) | Pr(g(mp,ca,..

P(ri,..om) | ~alanBlavi|a— 8]
Vzla] | zfa] | Oy o Op, ol Dal| O, al Ca

where P(7y,...,7,) is a predicate over terms 71, ..., Tn,
-« is the negation of «, a A B is the conjunction of «
and B, a V S is the disjunction of o and 3, a — [is the
implication of o to . Oy, v is the next operator where « is
true after ¢, time points from now, U, 1,)a is the always
operator where « is true at all times in the interval between
time point ¢; and ¢z from now, Oy, 4,1 is the eventually
operator where « is true for at least one time point in the
interval between t; and ¢, time points from now.

V. COMPUTATIONAL ENVIRONMENT

To interpret the probabilistic terms in P-MTL we need
to consider the internals of a robotics system operating in
an uncertain world observed through inexact sensors. The
running example will be a Nao robot playing soccer.

P-MTL supports statements about the state of the world.
These can be used both for decision making and monitoring
of the execution of the robot. For example, the ball needs

to be located and the robot wants to know where it is
likely to end up in the near future when it decides what
to do. The robot needs to stay localized on the soccer field
and it must make sure to not risk walking outside of the
soccer field or collide with other robots. We further want
the robot to behave anticipatory, weight expected risk and
make decisions based on predictions, rather than reactively
when it might be too late to act with sufficiently low risk.

The domain consists of a set of object sorts such as robot
and ball. There is a set of object instances such as the ball
and the robot itself, its team members and those of the
opposite team. These objects have various features so there is
a set of feature sorts such as position, velocity, acceleration
and rotation in 2D. The object instances of a specific object
sort has a set of features of the same sorts as the other
object instances in the object sort. Robots have for example
a rotation feature whereas balls do not.

The properties of objects and the world are assumed to
be changing over time and to not be directly observable,
except indirectly through noisy sensors. A feature value is
a raw non-stochastic sensor observation of the property of a
object at a specific time point.

Some feature sorts may further depend on other feature
sorts, such as velocity being the first derivative of position,
which can be used for estimating the velocity of an object
when only its positions is observable (or vice versa). We
therefore use multivariate stochastic variables, stochastic fea-
tures, to represent noisy feature instances (or constellations
of features). We have a set of stochastic feature sorts where
each element represents a single feature sort or a vector
of feature sorts (where the same feature type is allowed to
occur more than once). We also have a set of stochastic
variable instances where each stochastic instance is of a
specific stochastic variable sort, representing a vector of
feature instances with matching feature type as the stochastic
variable sort described and have a specific time point.

For example, the time series of the position of the ball
is represented as an ordered set of stochastic variables
(ordered over the unique time points of each stochastic
variable in the set) which are all of the same sort (position
feature) and associated with the ball object instance. The
reason for modeling features with stochastic variables is
to represent the uncertainty of the feature values, as each
stochastic variable is distributed according to a probability
distribution. We have a set of probability distribution sorts
and a probability distribution instance has a specific set of
parameters which fully describes the probability distribution
(e.g. the mean and variance of a Gaussian).

By utilizing assumptions about how we expect features to
change over time from for example physics (motion models)
we can calculate a better estimate of the feature at the
current time point by taking some extent of the history
into consideration. An estimator takes the non-stochastic
observation of the measured ball position of the current

time point together with the previous temporal model of
the ball position and produces a new temporal model of
the ball position for the current time point. The same
assumptions about expected feature-changes over time can
be used to make predictions about future or past time points.
A predictor takes a temporal model of the ball position at
any given time point together with another time point and
makes a prediction about the ball position at the other time
point. The ball prediction is a stochastic variable instance of
the other time point. If the other time point is of the same
time as the temporal model, then the predicted stochastic
variable is the best current estimate of the position of the
ball, given the temporal model in question.

Estimated and predicted stochastic variables can further
be used to answer probability queries, such as how probable
it is that the predicted ball (position wise) after 3 seconds
is inside the boundaries of the soccer field. A probability
reasoner instance takes the predicted stochastic variable
representing the ball position 3 seconds into the future and
computes a probability between 0 and 1 of the query. A
probability query can be expressed as an integral of a re-
striction (a constraint) in the state space (feature space) of a
stochastic variable over this stochastic variable’s probability
density function. The produced probability is in turn used by
the progressor as a substitute number for the probabilistic
sub-query Pr(inside(@3oPos[ball], soccerfield)).

The computational environment is made up of a number of
computation units which refine data received from sensors
to probability values as required by the progressor. What
probability function expressions are valid depends on which
can be grounded in the computational environment and
thereby calculated. The different steps (Figure 4) in the
computational environment are

1) Observe: World — Pos[ball]fbs

2) Update: Pos[ball]?bs = TM,;

3) Estimate: T M, — Pos[ball]gff

4) Predict: 7M, — Pos[ball ¢

5) Reason(probabilistic): msz'de(Pos[ball]ffljd,areaA)
— [0, 1]

6) Reason(logic): Pr(inside(®, ,Pos[ball], areaA)) >
0.95 - T/F

A. Formalization

The computational environment £ is defined as a tuple,
5 = <T7 O"F7ﬁ7 X’D7T’P>’ (1)

where 7' is a finite ordered set of time points, O is a set of
object sorts, F is a set of feature sorts, F is a set of feature
vector sorts, X is a set of stochastic feature sorts, D is a
set of probability distribution sorts, 7 is a set of stochastic
time series model sorts, P is a set of probability reasoner
sorts.

f¢: Observation Logic
Reasoner
[Query £y

| pr;: Probability

X¢|¢: Estimation

T M : Temporal Model

Probability
Predictor

[rm*]

— Reasoner

Figure 4. Schematic overview of a chain from observations to truth values.

Each of the sets O, F, F,X,D,T,P is a set of sets,
where the elements of a sort set is the instances of that
sort. Let inst(A) denote the set of instances of all sorts of
respective A € {O, F, F,X,D,T,P}. E.g. inst(O) is the
set of all object instances of all object sorts

inst(O) = {instance : Isort € O s.t. instance € sort}.
2

Definition Time: 7'

A time point t € T' C R is a real value, reflecting physical

time of the system in seconds from some fixed starting

point. The set of time points 7" is finite and contains all

time points used by the system.

Definition Object: O

An object can be anything. There are sorts of objects
Os € O which differ by what features they have. All
object individuals of a specific sort 0 € Og has the same
features. The set of features an object sort Og € O have
is a feature vector sort features(Og) € Sz. For example
ball € Balls € O.

Definition Feature: F

A feature is a property of an object such as its position.
There are different sorts of features Fg € JF. All feature
individuals f[o]: € R belong to a single object o € inst(O)
and a time point ¢ € T. For example the velocity of the ball
at time point t is 1.0 m/s.

Fs = Velocity, Velocity[ball], = 1.0 3)

where Velocity[ball]; € Fg € F and t € T.

Definition Feature Vector: F

A feature vector is an ordered set of features. There
are different sorts of feature vectors Fs € F and they
differ by the order and type of the features. A feature
vector individual f € inst(F) is an ordered set of feature
individuals f = {f" }2_, where t,, € T. f; is used if ¢,, is
equal for all n. Example: the vector of position and velocity

of the ball at time point t
Fs = [Pos, Velocity] 4)
f: = [Pos[ball];, Velocity[ball];] 5)

where fi € Fs € F, ball € inst(O) and

Pos,Velocity € Fg.

Definition Probability Distribution: D

A probability distribution assigns a probability to each
measurable subset of the possible values of a stochastic
variable. In the scope of this article we restrict the examples
to continuous probability distributions which are specified
by their probability density function (pdf). This can be
extended to other probability distribution classes such
as discrete probability distributions specified by their
probability mass functions. Each probability distribution
sort Dg € D has a different probability density function that
assigns probability over the value of a specific stochastic
feature sort. The pdf of a sort ngf = fx(x,0) has free
parameters § € R with x € X' and the range of x is over
the domain of x. The individuals of each sort d € Dg differ
by the realization of . For example the Gaussian (Normal)
distribution sort Dg and an individual d:

Ds=N €D (6)
DLV = fu(w,0) = N(@:0) = N(w; . D) ™)
d € Dg, dp = [0,0.2], d*¥ = f,(z) = N(2;0,0.2) (8)

where A (11, X)) is a Gaussian distribution with mean vector
u and covariance matrix 3, and N (z; p, X) is its pdf

N(x; p, %) = . e~ sle=m= a—l™ (g

(2m) ¥ |23
where M is the dimension of x.

Definition Stochastic Feature: X’

A stochastic feature is a multivariate stochastic variable of a
feature vector sort with a joint probability distribution over
all features in the feature vector. Different sorts Xg € X
of stochastic features differ by their feature vector sort and
probability distribution sort. A stochastic feature individual
X¢,|t, € inst(X) consists of the object instances of each
feature in the feature vector, a probability distribution
instance and two time points t1,to € T. t; is prediction
time and %o is stream time. Example: the velocity of the
ball at time point t is a stochastic feature that is Gaussian
distributed with mean velocity 1.0 m/s and a standard
deviation of 0.1 m/s.

Xg = (Velocity, N) (10)
xyj¢ = Velocity[ball],, ~ AV(1.0,0.1%) (11)
= (t, t, Velocity, ball, N'(1.0,0.1%)) (12)

where x;; € Xs € X, t € T, Velocity €]E", N(1.0,0.1%) €
N € D, ball € inst(O). A feature vector f can be converted

to a stochastic feature x by setting x to be distributed
according to a dirac distribution with its parameter 6 set
to the values of the feature vector instance, x ~ & 7 where
the pdf is fy(v) = d¢(v) and

1.0 if feC(x)

00 if f¢Cx) (13)

fx(z)de = {

C(=)

where C(z) is a constraint on the domain of x.

Definition Stochastic Time Series Model: T

A stochastic time series model (temporal model for short)
is a model that relates stochastic features over time taking
into consideration uncertainty of the observations and of
the generating process. There are different sorts of temporal
models, Tg € 7. The sorts differ by the feature vector
sort that is used as input (observations) and the stochastic
feature sort that is estimated (predictions). A temporal
model instance T M; € inst(T) may contain a history of
observations and represents the best model instance for the
estimated stochastic feature at a specific time point ¢ € T.
Each sort has an estimator function 7" and a predictor
function TgP . The estimator takes a temporal model
instance of a previous time point ¢’ together with a feature
vector individual of a later time point ¢ (an observation) and
produces a new temporal model instance of time point .
The predictor takes a temporal model instance of a specific
time point ¢ together with a predicted time point ¢ and
produces a prediction of the stochastic feature at time point
t'. If t = t’ the prediction is the estimate of the stochastic
feature at time t.

TM; =T (TMi_r, £°%), 7>0 (14)

xffljd = TP T My, t) (15)
X = Ts" (T My, t) (16)

where TM_., TM, € Ts €T.

Definition Probability Reasoner: P

A probability reasoner (PR) evaluates a probabilistic query
that is of the form of What is the probability that x is
constrained according to C(x € domain(x)) given that
x have pdf f?. The different sorts of PR differ by what
stochastic feature type taken as input together with what
constraint C(z) is used. Given a continuous stochastic
variable x € Sy with pdf f.(z) and constraint C(x) the
probability is calculated by integrating C(x) over f(z)

fx(x)dz (17
C(z)

P(Cx)) =

VI. SEMANTICS OF P-MTL
The semantics of P-MTL is defined over the model

M= (S8,E1T) (18)

where S is a set of symbols as defined in section IV, £
is a computational environment as defined in equation 1
and 7 is an interpretation. The interpretation maps predicate
symbols to relations OV where N is the arity of the
predicate, function symbols to functions O +— O where
N is the artify of the function, constant symbols to objects
in O, feature symbols to features in F, probability reasoner
symbols to probability reasoners in PR.

A formula « is true in M at ¢ iff M, ¢ = « defined as:

Mt = P(r, ..., 1) iff (eval(M, t,11), ...,
eval(M,t,7,)) € I(P)

Mt = —aiff Mt }E
MitEanBiff Mt =Eaand M tES
MitEaVBiff Mt =aor Mt =g

MitEa— Biff Mt aor Mt ES
Mt |= 3xfa] iff 3o € O M, t = alz/0]
M, t = Vzla] iff Yo € O M, t = afz/0]
Mt EOp () iff Mt +t' E «
Mt DOp, o) (@) iff ¥V < <tyg Mt +1' =
M, t = O(a) iff M, t |= O o)
Mt = O, py)(a) iff 3ty <" <to Mt 4+t = a
Mt = Ofa) iff M, t | O o)
The function eval(M, t, p) recursively evaluates logical and
probabilistic terms according to:
eval(M, t, const) = I(const)
eval(M,t, f(71,...,7)) = I(f)(eval(M,t,11),...,
eval(M,t,m,))
1(F) I (const)]

eval(M, t, flconst]
eval(M, t, ®,, flconst|

eval(M,t, @, 4, fconst]

—_— — — —

fx(z)dx

C(z)

eval(M,t, Pr(g(7p, c1, .., m))

where 7;‘“(1 is the predictor and 7 M is the temporal model
associated with the feature f[const], fx is the probabil-
ity density function associated with the stochastic feature
x = eval(M,t,7,) and C(z) = C(z,c1,..,¢m,) is the
probabilistic reasoner associated with the symbol g. This
provides the bridging between the logical reasoning and the
probabilistic reasoning.

Since the probabilistic terms can be computed independently
for each time-point P-MTL can be used for stream reasoning
in the same way as MTL through progression [4].

VII. EXAMPLE SCENARIO 1 — BALL TRACKING

For a soccer playing robot it is important to know where
the ball is and where it is likely to end up in the future.

eval(M,t + t1, flconst])
= 7—§)red (TM{_E_ct(;nst] 4 t1>

This is especially true when the ball is moving fast since
the robots are substantially slower. Example queries are “Is
the probability of the ball staying inside the soccer field
within the next 3 seconds always at least 95%?”

3
O(/\ Pr(inside(®,oPos[ball], soccerField)) > 0.95)

t=0 (19)
and “Is the probability always less than 95% that the ball
is getting as close as Im or less to the robot within the next
3 seconds?”

O(Pr(insideRel(@30 Pos[nao], @3, Pos[ball],

circlel.0m)) < 0.95) (20)

where the latter example can be used as a trigger when
evaluated to false for a robot to advance towards a ball only
when sufficiently close.

We assume that the position of the ball is passively ob-
served by a Nao robot according to an assumed measurement
model with additive Gaussian noise

Pos[ball]?® = Pos[ball]"°"" +¢,, ¢ ~ N(0,%%) (21)

where Pos[ball]fbs is the observed position of the ball at
time point ¢, Pos[ball]}“m"ld is the true position of the ball
and . is a covariance matrix we assume is known which
capture the uncertainty of the observation. The uncertainty
of the position observation might vary over time as the ball
move closer or further away from the robot’s camera. The
uncertainty increases the further away the ball is since it
will appear smaller on the image sensor of the camera. By
assuming that the soccer field is flat and by knowing the
transformation from the image-plane to the soccer field plane
which the robot feet are standing on we can estimate the
distance and the uncertainty.

We use a Kalman Filter [8] since an additive Gaussian
noise assumption of our observations is sufficient for our
needs. The inference can be expressed in closed form and
is very efficiently computed in comparison to if we would
have employed a Particle Filter with the same assumptions.

We assume that the initial physical state and physical state
uncertainty of the ball is 2o and Py respectively, which
are given or guessed. Further we use a constant acceleration
motion model for modeling the dynamics of the ball through
time. The reason for this is that a free moving ball will
eventually stop on the soccer field due to friction from the
grass which provides a negative acceleration that we assume
is constant with some noise. By modeling the acceleration
it is possible to predict the ball more accurately until rest.

The state x; consists of the stochastic position, velocity
and acceleration with 2 dimensions each and we assume the
state to be Gaussian distributed with covariance matrix P;

Xt NN(i’t,Pt)’ E(Xt) :jtv CO’U(Xt) :Pt (22)

The linear state space model used by the Kalman filter de-
scribes how the state progresses through time (the dynamics)
and how the state is observed (y;)

Tipr = Froy + GTUa
yr = Hai + €

Cov(v) = Q, (23)
Cov(e) = Xt (24)

€

With a constant acceleration motion model and where no ac-
tions are performed (passive observation only), the matrices
are given by

12 7'12 L;IQ %:IQ
F, = 0o 0o I y GT: 7—712) (25)
02 02 02 71,

H=[110000]T,
Q = diag([0.12 0.12 0.12 0.12 0.05% 0.05%]7),

where I, is the identity matrix of size n X n, 7 is the
time difference between the current time point ¢ and some
other time point, F; is the state transition matrix, G, is the
process noise, Q) is the process noise covariance, H is the
observation matrix, x; is the state vector at time ¢, y; is the
observation vector at time ¢ and ¢; is the observation noise
at time t. We assume that the process noise is equal in both
spatial dimensions and that the standard deviation is 0.1m
for position, 0.1m/s for the velocity and 0.05m/s? for the
acceleration.

The measurement update of the Kalman filter is calculated

Ty = Ty + Ko (yt - Hit\t'); (26)
Py = (I — KiH) Py 27
where t' < ¢ and K, = Py HT (HPyp HT +54)
The prediction of the state is calculated as
Ty)p = Frop Tyt (28)
Py = Ft—t’Pt|tthlt' + G-QGY (29)
where t' can be smaller or larger than ¢ depending on if the

prediction is into the past or into the future.
The computational environment £ is in this example

F = {Pos, Velocity, Acceleration} (30)

F = {Fs, : [Pos], (31)
Fs, : [Pos, Velocity, Acceleration]” }

O = {Ball : Fs,} (32)

D ={Dg, : N(z,0)} (33)

X = {Xs, : (Fs,,Ds,)} (34)

T = {KalmanConst AccelerationModel : (35)
(observation : Fs,, state: Xs,)}

P = {inside : (C1(x), {Xs, }), (36)
insideRel : (Ca(x),{Xs,, Xs, })}

The estimator of KalmanConstAccelerationModel is
specified by eq. (26)-(27), where the observed feature vector

is y = Pos[ball](’bg € Fgs,, together with eq. (28)-(29). The
predictor is specified by eq. (28)-(29) and each temporal
model instance is simply 7 M; = (Zy;, P;¢). Prediction of
the ball position at time point ¢ given measurements up to
time point ¢ is given by

Pos[ball]t/‘t ~ N(.’fitl‘t(l :2), Ptl‘t(l :2,1: 2)) 37

where Ty 4(1:2) is the vector of the first two elements of
2y, containing the 2D position mean and Py 4(1:2,1:2) is
the 2 x 2 sub-matrix of P, containing the covariance of
the 2D position.

The probability reasoner inside is evaluated as

inside(x € Xsl, soccerField) (38)

o

where the soccer field is aligned with the coordinate system
shared with the ball and bounded by X~ and X on the
x-axis and Y~ and YT on the y-axis respectively. dx() and
dx 2 denote that the integration is over the first and second
dimension of x respectively.

The probability reasoner insideRel is evaluated as

N (3 Tegpe, (02, Py, (1:2,1:2))dzoydze)

insideRel(Xy, ¢, € Xs,, Yi,|t, € Xs,, circlel.0m)

= // N(z; 2, P,)dzodze 39)
circlel.0m

where z2 = .Mxt2‘t1 — Nytfmg’ P, = PX62|}1 + P}'tfl\tg and
circlel.0m is the constraint of a circle with a radius of 1
meter centered at the origin in Cartesian coordinates over
both dimensions of .

VIII. EXAMPLE SCENARIO 2 — NORMATIVE BEHAVIOR

It is important for autonomous systems that operate in
an unstructured environment with requirements on safety
to be aware of the short-comings of their world models.
New situations are bound to appear and incorrect as well as
dangerous actions can be taken when the world model does
not sufficiently match the real world.

Consider an industry assembly robot that works along side
with humans in a factory. Its models might be based on some
expected behavior of the human workers such that they walk
and move slowly and consistently when close to the robot.
For trained workers this is not an issue, but for a visitor
that passes dangerously close to a working robot this can
be a problem. To ensure that an unexpected situation results
in no danger the robot should stop its work and enter a
temporary safe mode. To stop whenever a human is within
a certain distance will be too late if the distance is small and
the human moves fast. On the other hand, if the distance or
area is too large then it is hard for the humans and machine
to work tightly together which reduce efficiency. The key
here is that the suitable behavior of the machine is for it to
stop not only reactively but rather when the expected near

future behavior of the humans have a high risk of being
dangerous. Especially important is it for the machine to stop
in an unexpected situation, where it cannot confidently be
sure that there is no imminent high risk.

How do we detect an unexpected situation then? An
obvious way is to compare how well one’s predictions of
the environment correspond to what is actually happening.
If the predictive capability is bad then it is highly uncertain
if safety can be assured as a future consequence of one’s
actions. A suitable example query is “Is the precision of the
predicted human position in 2 seconds always at least within
a 0.5m radius circle and is the prediction always within 50%
of the actual position of the human in 2 seconds?”:

O(Pr(insideRel (®2oPos[human], circle0.5m)) > 0.95
A Og (similarity(®g)_oPos[human],
@0 Poslhuman]) > 0.5))

In truly unstructured environments unexpected situations
will frequently occur and it is not sufficient to always stand
still doing nothing when there are tasks that need to be
done. The solution is then to observe and learn normative
patterns of the surrounding environment while standing still,
to be able to make better predictions next time and thereby
avoid being needlessly paralyzed. The idea is simply: stop
when the world diverges too much from the current world
model, which is detected by when predictions are starting
to become way off. While still, observe and learn about the
unexpected behavior. Next time the same behavior happens
it can now be predicted and it is no longer necessary to stop.
Of course there are additional issues when safety has to be
guaranteed as well as the fact that it might not be safe to
stop wherever or whenever. It is however an important step
towards autonomous systems that can operate in natural and
unstructured environments in a safe way.

IX. RELATED WORK

A lot of progress has been made in the area of stream
reasoning, covering both Data Stream Management Systems
(DSMS) and Complex Event Processing (CEP) approaches.
A comprehensive survey on these approaches is presented
in [9]. Recent work on logic-based stream reasoning was
done on DyKnow [10] and LARS [11]. In the context
of the Semantic Web, which set out to make the web
machine-readable, there has been an increasing awareness
of the importance of stream reasoning. Continuous RDF
query languages for stream processing are for example Event
Processing SPARQL (EPSPARQL) [13] and Continuous
SPARQL (C-SPARQL) [14].

Two different approaches to semantics of first-order logics
of probabilities are considered and combined by [5]. The first
approach is probabilistic over the domain (“The probability
that a randomly chosen UAV is above the roof top is 0.97)
and the second is over possible worlds (“The probability

that uav is above the roof top is 0.9”). The probabilities are
over predicates and well formed formulas, with a special
probability operator that takes a well formed formula and
produces a probability value term. The probability term can
in turn be compared with other numeric terms using the
ordinary comparator predicates. The probability distributions
considered are discrete, either a distribution over all the
objects in a domain or over the truth values of a well formed
formula in possible worlds.

The work presented in this paper is complementary and
concerns probabilities that arise from uncertain term values
from observations and predictions. The latter is regarding
possible future and past worlds but regarding terms as
properties of objects. The uncertainty in terms propagates
upwards and implicitly affects the probabilities of formulas
being true and false, both at the current time and at other
predicted times. Formulas are however not probabilistic
themselves.

When using P-MTL for stream reasoning the goal is to
incrementally evaluate formulas over streams of information.
This is different from model checking as it only considers
one particular execution of the system rather than a model of
the system. There are approaches to model checking logics
combining both temporal and probabilistic aspects [15].

In P-MTL it is possible to explicitly talk about the past
using @, F' as long as ¢ is a valid time and history exists for
F. MTL is an extension of Linear Temporal Logics (LTL)
and there exists extensions such as LTL with Past (PLTL)
that in addition has corresponding temporal operators about
the past as LTL has about the future. It is possible to translate
all temporal formulas about the past from PLTL to LTL, it
is however expensive. The succinctness of a translation is
exponential in the number of propositions [16].

There exists work on robust system verification and execu-
tion monitoring from noisy continuous and discrete signals
using MTL [17]. MTL is used to write specifications that
describe how the value of a signal is allowed to vary over
time. Degree of robustness of a signal is defined as the bound
of perturbations (noise) that the signal can have before it
violates the MTL formulas. The treatment of the signals
and the noise is non-stochastic. Our work provides several
complementary abilities which could benefit their approach.

Discrete and continuous stochastic variables as well as
their probability distributions are treated as distinct objects
in distributional clauses in the work on inference for hybrid
relational domains [6]. A clause is a first-order formula
with a head and a body, where the head is an atomic
formula and the body is a conjunction of atomic formulas
or their negations. A distributional clause is then a clause
(h ~ D < by,...b,)0 which means that the stochastic
variable h is distributed according to probability distribution
D with parameters 6 whenever by, ...,b, holds. Further
they introduce a term ~ (h) that represents the value of
the stochastic variable h, i.e. when a random sample is

drawn from its probability distribution. Inference is based on
statistical simulation by using Monte-Carlo sampling tech-
niques. It is a very powerful formalism for describing logical
and probabilistic relations, which includes relations over
time. They are for example defining a stochastic transition
function for the position of an object from one time point to
the next as the current position with additive Gaussian noise
but only if certain other clauses hold.

The work presented in this paper takes a slightly different
route, where the details of probability distributions, temporal
models (e.g. transition function) and probabilistic queries are
abstracted away. Instead there is a common formal interface
that allow for arbitrary stochastic variables, temporal models
and probabilistic queries without additional extensions to the
logic. Probabilities for probabilistic queries over stochastic
variables produced from temporal models can be reasoned
over at a higher level. Switching between different inference
methods for temporal models is easier in our approach.
Further, adding a non-parametric probability distribution
such as a Gaussian process requires no extensions on our
part (it is simply another temporal model) but it is not a
minor extension to their work. Gaussian processes can for
example be used to build good models about the history of a
signal by collecting observations of the signal as the growing
set of parameters of the distribution. This is important in
robotics applications such as classification and prediction of
motion patterns learned online in unstructured environments
[18].

X. CONCLUSION

We have presented P-MTL, a metric temporal logic which
can reason over probabilistic and predicted states in a stream
reasoning context. This addresses two important problems
in Al integrating logical and probabilistic reasoning and
integrating reasoning over observations and predictions. This
allows a robot to explicitly reason about the uncertainty of
the world, the expected development of the world and the
quality of its observations and predictions.

The benefit of our approach is that we impose very few
limitations on the probabilistic reasoning (such as meth-
ods and models), allowing the usage of existing methods
commonly used in practice in robotics. The logical stream
reasoning inference in P-MTL is as efficient as for MTL
since the necessary extension to the progression inference
method is regarding the grounding of terms only. The
evaluation of the predictive operators and the probability
reasoners will however contribute to the overall complexity
of evaluating P-MTL formulas.

Important temporal and probabilistic aspects of the prob-
abilistic side is expressible on the logical level together with
the results of probabilistic queries as terms to reason over.
This allow logical reasoning upon probabilistic reasoning in
an explicit and semantically connected manner with many
immediate uses in robotics.

REFERENCES

[1] F. Heintz, J. Kvarnstrom, and P. Doherty, “Stream-based
reasoning support for autonomous systems,” in Proc. ECAI,
2010.

[2] R. Koymans, “Specifying real-time properties with metric
temporal logic,” Real-Time Systems, vol. 2, no. 4, pp. 255—
299, 1990.

[3] P. Doherty, J. Kvarnstrom, and F. Heintz, “A temporal logic-
based planning and execution monitoring framework for
unmanned aircraft systems,” Autonomous Agents and Multi-
Agent Systems, vol. 19, no. 3, pp. 332-377, 2009.

[4] F. Heintz, “Dyknow : A stream-based knowledge processing
middleware framework,” Ph.D. dissertation, Linkping Univer-
sityLinkping University, The Institute of Technology, KPLAB
- Knowledge Processing Lab, 2009.

[5] J. Y. Halpern, “An analysis of first-order logics of probability,”
Artificial Intelligence, vol. 46, pp. 311-350, 1990.

[6] D. Nitti, T. D. Laet, and L. D. Raedt, “A particle filter for
hybrid relational domains,” in Proc. IROS, 2013.

[71 S. Russell, Unifying Logic and Probability: A New Dawn for
Al?, 2014.

[8] R. E. Kalman, “A New Approach to Linear Filtering and
Prediction Problems,” Transactions of the ASME Journal of
Basic Engineering, no. 82 (Series D), pp. 35-45, 1960.

[9] G. Cugola and A. Margara, “Processing flows of informa-
tion: From data stream to complex event processing,” ACM
Computing Surveys (CSUR), vol. 44, no. 3, p. 15, 2012.

[10] F. Heintz and P. Doherty, “DyKnow: An approach to middle-
ware for knowledge processing,” Journal of Intelligent and
Fuzzy Systems, vol. 15, no. 1, 2004.

[11] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink, “Lars: A logic-
based framework for analyzing reasoning over streams,” in
Proc. AAAI 2015.

[12] ——, “Towards a logic-based framework for analyzing stream
reasoning,” in Proc. Int. Workshop on Ordering and Reason-
ing, 2014.

[13] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-
spargl: a unified language for event processing and stream
reasoning,” in Proc. WWW, 2011.

[14] D. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Gross-
niklaus, “C-sparql: Sparql for continuous querying,” in Proc.
WWW, 2009.

[15] S. Konur, M. Fisher, and S. Schewe, “Combined model
checking for temporal, probabilistic, and real-time logics,”
Theor. Comput. Sci., no. 503, pp. 61-88, 2013.

[16] E. Laroussinie and N. Markey, “Temporal logic with forget-
table past,” in Proc. LICS, 2002.

[17] G. E. Fainekos and G. J. Pappas, “Robustness of temporal
logic specifications for continuous-time signals,” Theoretical
Computer Science, vol. 410, no. 42, pp. 4262 — 4291, 2009.

[18] S. Ferguson, B. Luders, R. C. Grande, and J. P. How,
Algorithmic Foundations of Robotics XI, 2015, ch. Real-Time
Predictive Modeling and Robust Avoidance of Pedestrians
with Uncertain, Changing Intentions.

