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Abstract — One challenging problem in disaster response is to
efficiently assign resources such as fire fighters and trucks to local
incidents that are spatially distributed on a map. Existing systems
for command and control (C2/C4I) are coming with powerful in-
terfaces enabling the manual assignment of resources to the incident
commander. However, with increasing number of local incidents over
time the performance of manual methods departs arbitrarily from an
optimal solution. In this paper we introduce preliminary results of
building an interface between existing professional C2/C4I systems
and Constraint Satisfaction Problem (CSP)-solvers. We show by using
an example the feasibility of scheduling and assigning missions
having deadlines and resource constraints.
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I. INTRODUCTION

In the case of a disaster, whether local or global, the
fundamental task of disaster response teams is to allocate
available resources to particular incidents at the right time
to minimize their negative consequences. Incidents can be
very divers in their nature like fires in building, wildfires,
earthquakes or floods. Resources can either be consumable
like extinguishing water, sand bags and food or renewable
like personal, vehicles and equipment. Obviously, the available
amount of consumable resources shrinks with each application.
The available resources clearly determine the way disaster
response teams are able to cope with an incident. The effec-
tiveness of a response team depends on how well the team is
able to allocate its resources to sub-problems, to prioritize sub-
problems and to decide the best operational mode for a sub-
problem. This problem is far from trivial because of its high
number of parameters and its combinatorial complexity. This
is even more difficult for large disasters with a large number of
individual incidents and resources involved. Even if responder
are able to achieve good solutions to the problem, these
solutions might be far from the optimal assignment. Looking
for an optimal solution makes perfectly sense since it reduced
the time (impact) and resources (costs) needed for mitigating
a disaster. In most cases responders follow rules of thumb
or previously agreed operational rules that usually do not
consider actual information on resource distribution, complex
cost factors like travel times, operation costs for different types
of equipment, and various deadlines. For instance, evacuating a
flooded kindergarten obviously has to have an earlier deadline
than extinguishing a hayrick.

Research in Artificial Intelligent (AI) has a long tradition
in finding optimal and close-to-optimal solutions for planning

and scheduling problems involving resources and costs. These
types of problems are provably among the hardest problems
in AI, and thus, elegant representations and efficient heuristic
algorithms have been developed in the past. One recent and
very successful method to approach these types of problems is
to formalize them as constraint satisfaction problems (CSPs)
[2] and to solve them by efficient CSP-solvers [10], [20] that
are available.

The aim of the presented work is to emphasize the integra-
tion of advanced problem solving techniques into the proce-
dures and tools used by disaster response teams, to evaluate
their use in realistically complex and large-scale scenarios,
and to compare them to results achieved by response teams
using their actual procedures and tools. In order to achieve this
goal, a general abstraction of the resource allocation problem
existing during real mission planning is needed. On the one
hand side, such an abstraction will allow to easily apply and
compare different commercially or as open source available
automated solving methods to problem instances arising in the
disaster response domain. On the other hand side, interfacing
real systems for command and control (C2/C4I), as they are
already used by first responders, will facilitate the extraction of
interesting and more importantly, realistic problem instances
in an online or offline fashion.

The contribution of the presented work is threefold. First
the paper tackles interesting real-world resource allocation
problems that arise from the resource allocation problem in
disaster response. Second the paper presents a general problem
description that allows easy exchange of problem instances and
solutions between researchers working on disaster response
or scheduling and planning. Finally, the paper proposes an
interface to integrate the ideas into running C2/C4I systems.

The reminder of the paper is organized as follows. In the
next section we will discuss related research. In Section III
we present a proposal for enhancing existing C2/CI4 system.
The section is followed by a general problem definition.
Section V shows a concrete formalization of the problem using
CSP-techniques. The following section reports preliminary
experimental results using example problems. In Section VIII
we draw some conclusions and give an outlook on future work.

II. RELATED WORK

There have been several efforts in the past utilizing tools
from AI for decision support and mission planning. SAR-
Plan (Search And Rescue Planning) is a geographic decision



support system designed to assist the Canadian Forces in the
optimal planning of search missions. Its primary purpose is
to ensure that the available search resources are deployed in
a way to maximize the mission’s probability of success. The
tool provides optimization modules based on search theory,
on gradient search methods, and on constraint satisfaction
programming [1]. While SARPlan supports the search for
both mobile and stationary targets it is mainly designed for
search missions at sea and does not take into account complex
mission scenarios as they might occur during large scale
disaster mitigation.

Tactical decision support through software is available com-
mercially [18], [8] and even with search plan preparation func-
tionality [5], [9]. For USAR, the identification of the search
area is straightforward, but the resource demand for individual
buildings is difficult to assess and has been addressed [21]. The
resource allocation problem during USAR was tackled by [4]
and recently, even more fundamentally in [6]. All decision
support systems are limited on the one hand, by the availability
of pre-incident knowledge such as resources and infrastructure
and on the other hand, by the capability of the emergency team
to transcribe and disseminate post-incident knowledge such as
damages and progress during relief operations. The project I-
LOV aims to increase the efficiency of USAR operations on
the one hand by ameliorating search technologies and on the
other hand assisting the decision-making process [3]. This is
based on the centralized representation of all collected infor-
mation, seamless exploitation of various information sources,
information fusion [11], and Points of Interests suggestions
where further actions should be performed. Methods for task
allocation and mission planning where not considered within
I-LOV.

Constraint Satisfaction has been widely used to model
combinatorial problems in AI. Solvers to these problems
are either computing solutions that are satisfying constraints
(classical constraint satisfaction), or optimize an objective
function by selecting configurations with particular costs or
utility (constraint optimization). For both classes of solvers
there exists either centralized or distributed methods, i.e.,
solutions are either computed by a single instance or by
multiple instances communicating with each other in order
to exchange local results.

However, most constraint satisfaction and optimization
problems considered in the past were mainly of static nature,
such as the graph coloring problem. Only little attention has
been devoted to problems occurring in dynamically changing
environments such as the assignment of resources such as
responders or trucks to dynamic targets or dynamically chang-
ing areas of an environment. Koes and colleagues introduced
the COCoA architecture for handling rescue mission related
coordination by CSP-based solvers. In contrast to the presented
work, they did not discuss connectivity to real systems for
mission dispatch [12].

In the literature there exists a rich set of both complete
and incomplete algorithms for solving Distributed Constraint
Optimization Problems (DCOPs). Well known solvers are the
Distributed Stochastic Algorithm (DSA) [22], and the dis-
tributed versions of arc consistency called distributed soft arc
consistency (SAC) [16]. SAC algorithms simplify a DCOP into

a soft arc consistent DCOP in a distributed manner. Each agent
knows only about the constraints involving its variable and
must thus communicate with neighboring agents to exchange
information. A classic complete DCOP search algorithm
is Asynchronous Distributed Optimization (ADOPT) [17].
ADOPT uses lower and upper solution bounds in a distributed
and asynchronous manner for backtracking.

There have been several extensions to the DCOP formula-
tion proposed. Maheswaran et al. introduced a translation from
real-world related distributed multi-event scheduling problems
into the DCOP formalism [14]. They argued that there indeed
exist fundamental differences between the classical static sce-
narios solved by DCOP algorithms, such as the graph coloring
problem, and real-world related dynamic problems, such as
sensor networks and meeting scheduling. Therefore, they
proposed in [14] several extensions to the ADOPT algorithm
enabling them to solve problems with 50 agents.

III. SYSTEM OVERVIEW

The system proposed in this section is based on discussion
with fire fighters in Austria and Germany on actual operational
rules and their best practices used. Moreover, the system
resembles results of an examination of the official C2/C4I
system for disaster response used in the province of Styria
in Austria. Please note that in Austria and Germany most of
the disaster response is done by fire brigades.

The term C2/C4I origins from the military domain and
resemble command and control (C2) and command, control,
communications, computers, and intelligence (C4I). It deals
with making decision, executing decision, allocating and com-
manding resources, and acquiring and presenting information.
All these issues are handled in order to handle a mission. The
same mechanism applies also to civil disaster mitigation mis-
sions. In recent years professional C2/C4I computer systems
have been developed in order to support such missions. Figure
1 shows an example for a C2/C4I system for fire brigades.

Nowadays the allocation of resources to incidents is done
in a hierarchy with different levels of abstractions with respect
to time, space and resources. The involvement of the different
hierarchy levels depends on the severity and the outreach of a
disaster. One can roughly distinguish three levels: (1) incident
commander and platoon (operational), (2) command center
(strategical) and (3) staff command (strategical).

In case of moderate disasters such as local fires and floods
the command center, e.g. the local fire or police station,
receives the emergency calls directly and thus dispatches
local resources, e.g., by assigning incident commanders and
platoons of responders to different incidents. Each platoon
posses a set of resources needed to mitigate an incident.
The composition of the platoon may change from incident
to incident and is guided by operational rules. These rules
are predefined and map a particular emergency type, e.g., car
accident or fire, to a particular platoon composition. Once
an incident commander is assigned, he begins to mitigate its
incident by allocating the platoon’s resources to sub-tasks in
the right order and at the right time. For instance, the incident
commander may decide to use some resources to setup a
water supply chain first and to use the remaining resources
for extinguishing the fire. If a disaster becomes really serious



Fig. 1. Intergraph Computer Aided Dispatch (I/CAD) as example for a C2/C4I system. It shows a configuration for two monitors, additional integration of
Bing and Google Maps (left) and a standard map (right). It is able to provide resource proposal. According to available information like vehicle equipment
and type of incident it proposes how to dispatch forces in the most efficient way. (Courtesy of Intergraph SG&I Germany)

the staff command level becomes active. This level is able
to reassign resources on a more global and abstract level
and to activate additional resources like special units or the
military. Moreover, it is also responsible for the cooperation
with administration, politicians and the press.

Figure 2 shows an overview of the different modules active
in the disaster mitigation process. On the command center
level existing C2/C4I system like the example above are
already used in the field. These systems ease and accelerate
the task of allocating resources to incidents by providing
context information, e.g., location of the caller, a blueprint
of a building, and information on the available resources
such as fire trucks in repair or maintenance. Usually the
proposed resource allocation follows predefined rules stored in
a database. These rules have a certain degree of granularity and
do not consider task-related information. For instance, there
exists a predefined platoon arrangement comprising particular
vehicles that is deployed for building on fire.

Typically resources are greedily assigned to targets with
respect to their spacial distance, i.e., the closer resources are
located to an incident the more likely they are dispatched for
it. It can easily be shown that this greedy strategy turns out
to be suboptimal, particularly when several incidents occur
at the same time. Our long-term goal is to increase system
performance and flexibility by introducing an abstract interface
for decision support. Through this interface highly optimized
constraint solvers can propose resource allocation schemes,
for example, based on task-related information such as the
actual location of resources and the current situation of road
traffic. In the subsequent sections we provide a formal problem
definition of the underlying resource allocation problem, and
a preliminary solution strategy based on CSP-techniques.

IV. PROBLEM FORMULATION

In this section we present a general formulation that captures
the problem of assigning a team of heterogenous rescue agents
for disaster mitigation during an incident. The incident is
composed of several locations of interest at which specific
activities can be carried out by the agents. Each activity
has the intention to support the disaster mitigation of an
incident. Possible activities can be, for example, to extinguish
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Fig. 2. System overview of the enhanced C2/C4I system showing incident
commanders (ICs) and platoon agents (PAs).

burning buildings, to pump water from flooded buildings, but
also to refill water tanks of fire trucks. Each activity can
require specific equipment, such as hoses and ladders, and
each member of a team can have individual capabilities too.

Formally, we denote the team of N heterogeneous agents by
R = {R1 ,R2 , . . . ,RN } and the set of M activities by A =
{A1 ,A2 , . . . ,AM }. The heterogeneity of agents is expressed
by the capability sets Cr with r ∈ {1 . . . N}, one attached
to each agent, and the specific requirements of activities are
expressed by requirement sets Qi with i ∈ {1 . . .M}, one
attached to each activity.

The individual Cr and Qi can be seen as preconditions. An
agent r is able to work on activity i if its capabilites match
the activitie’s requirements.

Typically, activities have to be carried out at different
locations that have to be reached by the agents in advance.
We denote the location where activity Ai can be carried out
by Li. Notice that we clearly distinguish here between the
activities extinguish building A and extinguish building B in
case LA 6= LB . Due to practical reasons we do not intend
to model the path planning problem as part of our problem
formulation. For path and motion planning there exist many
efficient methods such as Random Rapid Trees (RRTs) [13]
and A* heuristic search [19]. Thus, we assume the existence
of a pre-computed distance matrix {dij} denoting the real



distance between locations Li and Lj , and ttimeij as the
constant travel time needed to travel between activities Ai and
Aj assuming that agents travel at same speeds. This matrix
can efficiently be computed in O(N3) by applying the Floyd-
Warshal algorithm [7], where N is the number of activities.

An activity Ai may have a deadline Tmax
i before it has to

be completed.

V. CONSTRAINT SATISFACTION PROBLEM FORMULATION

Formally, a constraint satisfaction problem (CSP) is defined
as a triple 〈X,D,C〉, where X is a set of variables, D is
a domain of values, and C is a set of constraints. Every
constraint is in turn a pair 〈t, R〉 (usually represented as a
matrix), where t is a n-tuple of variables and R is a n-ary
relation on D. An evaluation of the variables is a function
from the set of variables to the domain of values, v : X → D.
An evaluation v satisfies a constraint 〈(x1, . . . , xn), R〉 if
(v(x1), . . . , v(xn)) ∈ R. A solution is an evaluation that
satisfies all constraints. Moreover, an objective function O :
X → R can be defined.

In order to formulize the general problem we need the
following variables and constraints:

A. Variables
• We denote the assignment of agent n to activity m by

the binary variable RnAm, i.e., RnAm is 1 if agent n is
assigned to activity m and 0 otherwise. In order to model
the fact that an agent has to travel to its first assigned
activity form its initial position for each agent i an initial
activity Ai is generated. Therefore, the set of activities
A has N +M members. The location of initial activities
are set to the initial position of the related agent.

• The integer variable Tm s denotes the absolute time when
the work on activity Am is started.

• The integer variable RnAm s denotes the absolute time
when the work on activity Am by agent Rn is started.
Notice that by this agents can join the work on a task
at arbitrary times. RnAm s is zero if the binary variable
RnAm is zero.

• The integer variable RnAm d denotes the amount of time
(duration) agent Rn works on activity Am. RnAm d is
zero if the binary variable RnAm is zero. Per default the
duration of initial activities are zero as well.

B. Constraints

∀t∈{1...N+M}
∑

r∈{1..N}

RrAt = 1

Each activity Am is assigned to exactly one agent Rn. A
agent may perform more than one activity, but not in parallel.

∀t∈{1,...,N},r∈{1,...,N}RrAt =

{
1 if r = t
0 otherwise

∀t∈{1,...,N}∀r∈{1,...,N}RrAt s = 0

∀t∈{1,...,N}∀r∈{1,...,N}RrAt d = 0

The initial activities are assigned to their related agents. The
start time and duration of the initial activities are zero.

∀r∈{1...N}
∑

t∈{1..N+M}

RrAt ·Qt ≤ QRr

Each activity At needs the resource Qt to be executed. Each
agent r cannot invest more than its own resource QRr for all
task allocated to it.

∀t∈{1,...,N},r∈{1,...,N}RrAt s ≥ 0

All start times of activities have to be greater than zero. No
activity can be started in the past.

∀t∈{1,...,N},r∈{1,...,N}RrAt d = dt ·RrAt

The time needed to complete an activity t by an assigned
agent r is given by dt. The time is zero for unassigned agents.

∀r∈{1...N}∀i,j∈{1..N+M},i<j

(RrAi s+RrAi d+ di,j) · aij ≤ RrAj s · aij ∨
(RrAj s+RrAj d+ di,j) · aij ≤ RrAi s · aij

with aij = RrAi ·RrAj

This ensures that no two activities Ai and Aj assigned to
an agent Rr overlap in time and that the agent needs at least
the travel time between both activities di,j in between.

∀t∈{1,...,N+M}Tt s =
∑

r∈{1,...,N}

RrAt s ·RrAt

∀t∈{1,...,N+M}Tt d =
∑

r∈{1,...,N}

RrAt d ·RrAt

The start time and duration of a activity At is determined
by the time and duration of the agent assigned to it.

∑
t∈{1,...,N+M}

∑
r∈{1,...,N}

RrAt · Ut ·
Tmax
t

Tmax
t + Tt s

The objective function for the problem is the sum of the
individual utilities of the activities discounted by a factor
for later start. Please note that unassigned activities do not
contribute to the function. In order mitigate the problems faster
this function has to be maximized.

VI. HOMOGENOUS AGENT EXAMPLE

We consider the problem of assigning fire fighters for
extinguishing fires as shown in Figure 3. In this problem the
time for extinguishing a burning building but also the danger
that fires spread to neighboring buildings increases the longer
the fire exists. Hence, fire agents need to be assigned to fires
as early as possible since at early stages both risks for fire
spread and time needed for extinguishing are low. In our
example we assume that each agent can reduce the amount
of water needed for extinguishing a burning building during
each discrete time step t by one unit. The amount of water
Wb needed to extinguish a burning building b depends on the
size and the number of storeys of the building.



Furthermore, there exists a deadline Tmax
b after that the

building will be destroyed by the fire, and a time dependent
utility Ub(t) for extinguishing the building. Since we assume
here that every agent can extinguish the buildings in the
same way (homogeneous agent team), we can reduce the
capability sets Ci to a single integer representing the amount
of water per agent. As an example we consider the case of four
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Fig. 3. Simple extinguishing example with 4 activities/fires (A3, A4, A5,
A6) and two firefighting agents (R1,R2). The agents are located initially at
position (3,0) and (9,10).

simultaneously burning buildings and two firefighting agents
shown in Figure 3. The parameters of this problem are defined
as follows:
• Bldg. 1: L1 = (3, 8), W1 = 100, Tmax

1 = 120, U1 = 5
• Bldg. 2: L2 = (0, 2), W2 = 10, Tmax

2 = 100, U2 = 2
• Bldg. 3: L3 = (3, 4), W3 = 5, Tmax

3 = 10, U3 = 1
• Bldg. 4: L4 = (16, 4), W4 = 20, Tmax

4 = 100, U4 = 5
• Agent 1: I1 = (3, 0), QR1 = 140
• Agent 2: I2 = (9, 10), QR2 = 140

Resulting in the activities:
• A1 = (0, (3, 0), 0, 0) ... initial activity R1

• A2 = (0, (9, 10), 0, 0) ... initial activity R2

• A3 = (100, (3, 8), 120, 100) ... building 1
• A4 = (10, (0, 2), 10, 10) ... building 2
• A5 = (5, (3, 4), 10, 5) ... building 3
• A6 = (20, (16, 4), 100, 20) ... building 4

The distances between tasks are represented by their Eu-
clidean distance, e.g. d3,5 = 4. Using the CSP-based formula-
tion of Section V, the MiniZinc modeling language [15] and
the open-source constraint satisfaction solver Gecode [20] we
were able to obtain the following optimal assignment:
• A1 assigned to R1 with A1 s = 0 and A1 d = 0
• A2 assigned to R2 with A2 s = 0 and A2 d = 0
• A3 assigned to R2 with A3 s = 6 and A3 d = 100
• A4 assigned to R1 with A4 s = 50 and A4 d = 10
• A5 assigned to R2 with A5 s = 110 and A5 d = 5
• A6 assigned to R1 with A6 s = 14 and A6 d = 20

Please note that the start times respect also the travel time
between the activities. For instance, the start time of activity
A3 T3 s is 6 since agent R2 needs 6 time units to reach its
first activity. Notice that the deadline for T5 is violated as
the deadlines are only modeled as soft-constraint within the
objective function. Because of the low individual utility of
U5 = 1 a higher overall utility is achieved even if T5 misses
the deadline. Apparently, if this solution is undesirable for

some kind of domain, one can also model deadlines as hard-
constraints.

VII. PRELIMINARY RESULTS

In order to systematically evaluate the performance of the
proposed CSP-based problem formulation we generated artifi-
cial problem instances with varying parameters. We generated
three problem instances for each combination of the number of
agents (1..7) and fires (1..10). Within the individual problem
instances we set the remaining parameter randomly from a
uniform distribution:
• initial location of agents: randomly on a 100 × 100 grid
• location of fires: randomly on a 100 × 100 grid
• time for extinguishing a building: randomly from the

interval [0,10]
• deadline for a burning building: randomly from the inter-

val [0,200]
• agent resources: randomly from the interval [10,20]
We set the minimum amount of resources to 10 in order

to avoid useless agents with zero resources. Moreover, we
assigned an uniform utility of 1 to all activities. Figure 4 shows
the average computation time for the CSP-based assignment
problem. Please note that the results for 1 and 2 agents are
omitted. There is no feasible solution for the problem in most
cases because of the limited number of agents and resources.
For the other problem cases the CSP-solver is able to find an
optimal solution with respect to the given objective function
and constraints. The experiments were conducted using the
Gecode CSP-solver [20] on a computer equipped with a quad-
core Intel Xenon CPU running at 3.2 GHz and 6 GB memory.
The used solver is single-threaded and therefore not able to
benefit from multiple cores.

These preliminary results show that for a small number
of agents (up to 5) and fires (up to 7) the computation of
an optimal assignment can be calculated in a few seconds.
This is already a promising result because considering travel
distances between fires as well as resource constraints it is
already impossible for a human operator to find the optimal
assignment. For larger assignment problems the computation
time is currently infeasible (several hours) using the first
simple CSP-based problem formulation.

VIII. CONCLUSION AND FUTURE WORK

The success of disaster mitigation depends on the respon-
der’s capability to allocate resources to activities efficiently.
Modern C2/C4I system support responder in the resource
allocation task. Usually, this task follows predefined operation
rules that do not take into account task-related information
such as travel efforts and synergetic effects. In this paper we
gave a general formulation of this problem and show a first
solution based on CSP-techniques.

Our preliminary results show that automated task allocation
is feasible for smaller problem instances in the order of ten
targets to be handled at the same time. This work can be
considered as a starting point for the development of more
efficient solvers that then can be integrated into real existing
C2/C4I systems.

In future work we will aim at a decentralized version
of the assignment formalization in order to allow to solve
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Figure 5 shows the average computation time and its standard
deviation for a fixed number of 5 agents. It clearly shows
the exponential grow of time to find the optimal solution.
Moreover, it shows a large variance for the computation times.
For different problem instances with 5 agents and 10 fires
the computation time varies between 7 and 464 seconds. This
indicates that even if the number of agents and fires are fixed
there is wide variety in the difficulty to find an optimal solution
for the different problem instances.
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assignments with a minimum communication overhead as it is
typically required for operational task assignment in the field.
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