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Abstract—Simulation-based training has the potential to sig-
nificantly improve training value in the air combat domain. How-
ever, synthetic opponents must be controlled by high-quality be-
havior models, in order to exhibit human-like behavior. Building
such models by hand is recognized as a very challenging task. In
this work, we study how multi-agent deep reinforcement learning
can be used to construct behavior models for synthetic pilots
in air combat simulation. We empirically evaluate a number
of approaches in two air combat scenarios, and demonstrate
that curriculum learning is a promising approach for handling
the high-dimensional state space of the air combat domain,
and that multi-objective learning can produce synthetic agents
with diverse characteristics, which can stimulate human pilots in
training.

Index Terms—agent-based modeling, intelligent agents, ma-
chine learning, multi-agent systems

I. INTRODUCTION

Conducting air combat training using only real aircraft
is difficult, because of the high costs of flying, air space
regulations, and limited availability of platforms representative
of those used by opposing forces. Instead, simulations can be
used to replace some human players with synthetic, computer
controlled entities. This can lower the costs of training, reduce
the dependency on human training providers (see Fig. 1),
and improve training value [1]. Ideally, the opponents of
trainee pilots should all be synthetic entities, so that role-
players and real aircraft are not required to support training.
However, to achieve a high training value synthetic opponents
must be controlled by high-quality behavior models, and
exhibit human-like behavior. Building such models by hand
is recognized as a very challenging task [2], [3].

In recent years, the performance of reinforcement learning
algorithms has improved rapidly. By combining reinforcement
learning with deep learning it has become possible to achieve
impressive results in complicated control tasks [4]–[6], clas-
sic board games [7]–[9], and challenging real-time, multi-
player computer games [10], [11]. This leads us to believe
that reinforcement learning could also be a viable option
for constructing behavior models for synthetic agents in air

This work was partially supported by the Swedish Governmental Agency
for Innovation Systems (NFFP7/2017-04885), and the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation.

Training Audience Instructor Role-Players

Training Providers

Operator

Simulator Users

_ __ _ _ _ _ _

Fig. 1. Users of air combat training systems. By constructing smarter synthetic
agents, the need for human training providers can be reduced.

combat simulation. With such an approach, users of training
systems would not need to explicitly program the behavior of
agents, but could instead simply specify their required goals
and characteristics. However, not many studies have yet been
performed to evaluate the performance of the latest approaches
for multi-agent learning in the air combat domain.

In this work, we study how multi-agent deep reinforcement
learning can be used to learn coordination in air combat
simulation. Coordination of multiple agents is important in
the air combat domain, since pilots never fly alone. Our
contributions can be summarized as follows:

• Firstly, we discuss use cases, design principles, and
challenges for reinforcement learning algorithms in the
domain of air combat simulation intended for training of
pilots

• Secondly, we perform an extensive empirical evaluation
of approaches that could help realize the identified use
cases, using a high-fidelity simulation engine

Specifically, we study two challenges to learning algorithms
in air combat simulation scenarios: 1) Learning with sparse
rewards, and 2) Creating agents with adjustable behavior.
Our experiments demonstrate that curriculum learning can
facilitate learning with sparse rewards in the high-dimensional
state space of air combat, while multi-objective learning can
produce agents with diverse behavioral characteristics, which
can stimulate pilots in training.



II. RELATED WORK

Due to the challenges associated with building behavior
models for air combat simulation by hand, there has been
much interest in learning approaches. Since the availability
of data from real air combat, as well as data from simulated
air combat with manned aircraft and simulators, is limited,
approaches that can learn autonomously from interacting with
a simulator (without human supervision) are of particular
interest.

Bugajska et al. used an evolutionary machine learning
algorithm to model the reactive aspects of agents’ tasks,
allowing the system to learn from experience [12]. The ma-
chine learning algorithm was merged with a cognitive model,
which controlled higher level tasks like planning and strategy
assessment, and also constrained the action space of the
reactive part to improve the realism of the behavior.

Yao et al. combined Grammatical Evolution (GE) and
modular Behavior Trees (BT) [13] to develop adaptive human
behavior models [14]. The BTs were initially encoded with
expert knowledge provided by subject matter experts (SMEs),
and then evolve through GE during simulation. The efficiency
of the method was studied through simulation of 1-vs-1
Beyond Visual Range (BVR) scenarios.

Teng et al. studied the use of self-organizing neural net-
works to provide adaptive agents that could learn air combat
maneuvering strategies for 1-vs-1 dogfight scenarios [15], [16].
The doctrine used to drive a non-adaptive agent was extracted,
and used to define the state and action space of the adaptive
agent. The studied techniques allowed the adaptive agent to
out-maneuver an agent controlled by hand crafted behaviors.

Toubman used Dynamic Scripting (DS), a reinforcement
learning technique originally developed for providing intel-
ligent computer controlled opponents in computer games, to
generate behavior for agents [17]. An advantage of DS over,
e.g., neural networks is that DS can produce behavior models
with greater transparency.

An important milestone in deep reinforcement learning in
general was the Deep Q Network (DQN) algorithm [18].
This algorithm uses Convolutional Neural Networks (CNN)
to approximate the Q function of a Markov Decision Pro-
cess (MDP), allowing an agent to play classic video games
from pixel input. Since then, deep reinforcement learning has
become the state-of-the-art approach for learning sequential
decision making in complex domains. Some of the developed
techniques have been studied in the context of air combat, but
still in quite simple scenarios, see e.g., [19]–[21].

In previous work related to learning in the air combat
domain, much attention has been given to 1-vs-1 scenarios,
and often with only one learning agent. This is highly limiting,
since pilots never fly alone, but instead act in groups of at
least two aircraft. Our work in this paper is intended as a step
towards shifting focus from single-agent to multi-agent learn-
ing. We address two open challenges identified in [21]: Multi-
agent learning with sparse rewards, which are common in air
combat scenarios, and combined multi-objective and multi-
agent learning to produce agents with diverse characteristics.

III. PRELIMINARIES

A. Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learn-
ing, which studies agents that learn by interacting with their
environment [22]. Reinforcement learning problems can be
modelled as Markov Decision Processes, which are defined as
tuples (S,A, T,R, γ), specifying:
• S: The set of states of the process
• A: The set of actions of the process
• T : The transition dynamics of the process
• R: The reward function of the process
• γ: The discount factor indicating the importance of im-

mediate and future rewards respectively
The agent interacts with its environment by selecting actions

according to its policy (at = π(st)), and observes the resulting
environment state (st+1) and the received reward (rt+1). The
objective of the agent is to maximize its future expected return:

Vπ(s) = E[Rt|s0 = s] = E[

∞∑
t=0

γtrt|s0 = s] (1)

Vπ(s) is the state value function, which specifies the value
of being in state s and then following the policy π. We can
also define a state-action value function Q, which specifies the
value of taking action a in state s and then following policy
π:

Qπ(s, a) = E[

∞∑
t=0

γtrt|s0 = s, a0 = a] (2)

Reinforcement learning algorithms can be divided into value
function learning, policy learning, and actor-critic learning.
Value function learning aims to find a value function, e.g., the
Q function, and then use it to guide action selection. Policy
learning aims to learn a policy directly, without first learning
a value function. Actor-critic learning learns a value function
(the critic), and then uses it to direct updates of a policy (the
actor).

In simple environments, the agent’s policy can be repre-
sented by a table. In more complex environments, e.g., envi-
ronments with continuous states and actions, an approximation
must be used, e.g., a neural network. One example of an actor-
critic algorithm for deep reinforcement learning is the Deep
Deterministic Policy Gradient (DDPG) algorithm [4], which
can learn policies for environments with continuous actions.

In complex environments it may be challenging to explore
and find a good policy. One technique for addressing this
challenge is curriculum learning [23]. In curriculum learning
the problem is broken down into a sequence of tasks of in-
creasing difficulty. Hopefully, the experience gained in simpler
tasks can help the agent learn more efficiently when faced
with more difficult tasks later in the learning process. One
example of curriculum learning in goal-oriented environments,
i.e., environments where it is desired to reach a certain goal
state, is to use start states increasingly far from the goal
state [24].



B. Multi-Agent Reinforcement Learning

Reinforcement learning can be extended to environments
with multiple learning agents. Such environments can be fully
cooperative, when agents are trying to optimize a shared
reward, or fully competitive when agents have opposite goals.
Mixed cooperative and competitive settings are also possi-
ble [25]. When several agents learn concurrently, the environ-
ment may become non-stationary from a single agent’s point of
view, i.e., the environment dynamics change over time. Parts
of the environment state may also not be observable, e.g.,
internal states of other agents. This makes it challenging to
learn multi-agent coordination in complex environments.

In recent years, there has been an increasing interest in
multi-agent deep reinforcement learning, and development
of efficient algorithms for learning in multi-agent environ-
ments [26]. One proposed approach is actor-critic learning
with centralized learning and decentralized execution. One
such algorithm is the Multi-Agent Deep Deterministic Policy
Gradient algorithm (MADDPG) [27], in which each agent is
assigned a centralized critic to guide updates of the agent’s
policy. During training, the critic has access to the observations
and actions of all agents in the system, while at test time each
agent selects actions based on its local observations alone.

C. Multi-Objective Reinforcement Learning

Most reinforcement learning algorithms try to maximize the
return for a scalar reward signal. However, many real-world
problems deal with multiple, possibly conflicting objectives,
which may not be easily expressed as a scalar reward. In multi-
objective reinforcement learning (MORL) [28], the Markov
Decision Process is extended to a Multi-Objective Markov
Decision Process (MOMDP), which has a vector-valued re-
ward signal, resulting in vector-valued value functions. Each
element in the reward vector represents the reward received for
one of the objectives. To compare the performance of policies,
a scalarization function is used to convert the vector value
function (Vπ(s)) to a scalar, e.g., by calculating the weighted
sum of the objective values:

V w
π (s) = f(Vπ(s),w) =

n∑
i=1

vi(s)wi (3)

In [28], three use cases for multi-objective reinforcement
learning are presented:
• The unknown priorities scenario: The priorities among

objectives are not known at training time, so the scalari-
sation of rewards must be delayed to test time

• The decision support scenario: The priorities among
objectives are known at training time, but it is difficult to
express them in the form of a reward function, so instead
we want to train a set of policies and study their behavior
before deciding which one to use

• The known priorities scenario: The priorities among
objectives are known at training time, but it is difficult
or infeasible to solve the problem without using explicit
multi-objective methods

D. Reinforcement Learning in Air Combat Simulation

Based on interviews with experienced pilots, we have iden-
tified three major use cases for reinforcement learning in the
domain of air combat training.

• UC1 - Simplified content production: By using rein-
forcement learning, it could become easier to produce
simulation contents. Instead of explicitly programming
synthetic entities, instructors could use a high-level lan-
guage to define the behavior or goals of agents. By
providing a detailed specification, agents can be made
to act according to a specific doctrine. One way of
providing such a specification is by expert demonstration,
i.e., having an expert human pilot perform a task, and then
using the recorded data for training of synthetic agents.

• UC2 - More advanced synthetic entities: By using
reinforcement learning, it could become possible to create
more advanced synthetic entities. These entities could
challenge experienced pilots, help them improve their
skills, and possibly discover flaws in human developed
tactics. Thus, they could reduce the need for human role-
players to participate in training sessions.

• UC3 - More diverse and adaptive synthetic entities: By
using reinforcement learning, it could become possible
to create synthetic entities with diverse behavior, adapted
to current training needs, e.g., the proficiency level of
trainees. The behavior of such entities could be selected
by an instructor, or (preferably) the entities themselves
could adjust their behavior based on observations and
inferred training needs.

The characteristics of each use case will affect the design
of the reward system and the training process. For use case
1, we want to design reward systems that incorporate domain
knowledge about opponents’ behavior, which will typically
lead to dense reward systems, giving frequent feedback to the
agent. For use case 2, we want to use highly abstract and
sparse reward systems, as to not introduce a bias in the agent’s
behavior, which may prevent the agent from finding an optimal
policy. For use case 3, we want algorithms that produce agents
that can pursue multiple different objectives after training, e.g.,
by using parameterized policies and exposing the agent to
diverse environments during the learning process.

Learning sequential decision making in the air combat
training domain is challenging. In typical scenarios there are
many interacting agents, which are competing in teams, using
complex systems. There is only partial observability, because
of performance limitations of sensors and data links, and
possibly effects of electronic warfare. The policies learned
by agents while interacting with other agents must be robust,
so that they can interact effectively with humans in training
sessions. Finally, to appear realistic and to be suitable for
multiple simulation scenarios, synthetic agents must have
diverse behavior, and be able to prioritize among multiple
conflicting objectives, e.g., tactical mission goals, resource
consumption and safety, with priorities possibly varying over
time.



IV. METHOD

A. Evaluation Scenarios

To study the performance of multi-agent deep reinforcement
learning in air combat simulation we define two simulation
scenarios: Aerial Reconnaissance with Sparse Rewards and
Airstrike with Adjustable Risk Taking. These scenarios address
the challenges of learning with infrequent feedback in complex
environments (related to UC2), and designing dense reward
systems for learning agents, whose behavior can then be af-
fected after training time to improve diversity in the simulation
(related to UC1 and UC3).

In the aerial reconnaissance scenario, two agents should
visit three Points of Interest (POI) as quickly as possible.
The search area has radius 20 km, and the agents spawn
in random positions on its perimeter, while POIs spawn in
random positions within the perimeter. To solve the problem
efficiently, the agents must coordinate their actions. The agents
are only rewarded for visiting the points of interest, which in
combination with the size of the search area makes learning
challenging. Initial positions of aircraft (black stars) and POIs
(green circles) in an episode are shown in Fig. 3a.

In the airstrike scenario, a strike aircraft should navigate
to a target location protected by an air defense system. A
second, escort aircraft, is equipped with a jamming pod. This
aircraft can align with the first aircraft and use its jammer
to reduce the ability of the air defense’s radar to position
the two approaching aircraft (see Fig. 2). In this work, we
limit ourselves to studying movement and geometry in the
horizontal plane, but for maximum efficiency the target and
the strike aircraft should be aligned on the jammer Line-of-
Sight (LOS) in 3D space. In each episode, the target location
is initialized in a random position, while the two aircraft
are initialized in random positions with random heading,
within two rectangular areas. To produce agents with diverse
characteristics, we would like to be able to adjust the level
of risk taking of the agents after training. Rectangular spawn
areas of target in blue and aircraft in green, as well as initial
positions of aircraft (black stars) and target (black circle) in
one episode are shown in Fig. 3b. The range of the air defense
system co-located with the target is shown by the red circle.

B. Common Experiment Design

The simulation engine used is a high-fidelity simulator,
which is part of an operational air combat training system.
We use the MADDPG algorithm to train the agents in both
scenarios. We use a learning rate of α = 10−2, and train for
50000 episodes using the Adam optimizer [29]. Episodes are
limited to a maximum of 300 time steps, and each time step
is 1 second long. All simulation results are averaged over five
runs with different random seeds. The policy is represented
by a multilayer perceptron (MLP), with 2 hidden layers, each
with 64 neurons and the ReLU activation function. In the
observation space of the agents, positions are given in a body-
fixed coordinate system, while headings are given relative true
north, as illustrated in Fig. 3c.

Formation Distance

Fig. 2. Alignment of strike and escort aircraft towards target.

All elements of the observation vector ot are normalized
by their expected maximum value. The complete observation
space of each agent, which is the input to the neural network
representing the agent’s policy, is the set of observations from
the last four time steps:

Ot =


ot
ot−1
ot−2
ot−3

 (4)

C. Scenario Specific Experiment Design

1) Aerial Reconnaissance with Sparse Rewards: In this
scenario, we want the two agents to visit the three POIs as
quickly as possible. It is not obvious how to construct a dense
reward system that effectively represents this goal. Instead, we
use a sparse reward signal for each agent defined as:

rt = 50.0 · nPOI(t)− 1.0 (5)

Here nPOI(t) is the number of POIs visited (within 1 km)
by the agent in the time step. The shared negative reward of
−1.0 in each time step is intended to motivate the agents to
cooperate, and complete the episode as quickly as possible.

To help the agents learn in spite of the sparse rewards
and large search area, we use curriculum learning. Inspired
by [24], we construct learning curricula where the agents
are exposed to search areas with increasingly large radius.
Before each episode of training, the radius of the search
area is sampled from a uniform distribution over the interval
ri = [rmin, rmax]. We study three different learning curricula,
each of which updates ri three times during training, according
to the number of completed episodes specified in curswitch =
[nep1 , nep2 , nep3 ], with values according to Tab.I. With these
learning curricula we intend to investigate how the fraction of
small and large search areas used during training affects the
final performance of the agents. Compared to Curriculum 1,
Curriculum 2 trains for a longer time on medium sized search
areas. In contrast to the other two curricula, Curriculum 3
keeps the minimum radius of the search are at 5 km throughout
training.

In each time step an agent observes the observation vector
ot, which contains the agent’s own heading, the other agent’s
position and heading, the positions of the POIs, and infor-
mation about which POIs have been visited by either of the
agents (indicated by 0 for visited, and 1 for not visited).



(a) Evaluation Scenario 1. (b) Evaluation Scenario 2.
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Fig. 3. Evaluation scenarios and coordinate system of observations.

TABLE I
CURRICULA USED IN EVALUATION SCENARIO 1.

Curriculum Curriculum Switch Schedule and Search Area Radius Intervals
Type Switches r0 r1 r2 r3
Cur. 1 [0, 10k, 20k, 30k] [5 km, 5 km] [5 km, 10 km] [10 km, 15 km] [10 km, 20 km]
Cur. 2 [0, 10k, 30k, 45k] [5 km, 5 km] [5 km, 10 km] [10 km, 15 km] [10 km, 20 km]
Cur. 3 [0, 10k, 25k, 40k] [5 km, 5 km] [5 km, 10 km] [5 km, 15 km] [5 km, 20 km]

Each agent has a continuous action space, which allows it
to turn left or right with a load factor in the interval [2, 4] g.

We train the agents using a discount factor of γ = 0.95.
Episodes end if all POIs have been visited within a range
of 1 km. We evaluate the approach by studying the trained
agents’ performance for the three different learning curricula
in 1000 simulations. For comparison, we also train agents
without learning curricula, on environments with radii of 5
km, 10 km, and 20 km. After training, we evaluate these
agents’ performance on the training task as well as the original
goal task, i.e., the search area with radius 20 km. We also
evaluate the performance of the curriculum learning agents on
the search area with radius 5 km.

2) Airstrike with Adjustable Risk Taking: In this scenario,
we want the agents to learn how to prioritize between two
conflicting objectives: Time and Safety. We implement the
environment as an MOMDP, with a vector reward signal for
each agent defined as:

rt = [rsafe(t), rtime(t), rtgt(t)] (6)

Here rsafe and rtime are the rewards given for the Safety
and Time objectives respectively. The Safety objective is
achieved by flying in close formation and aligning towards
the target, to enable the escort aircraft to use its jammer to
reduce the air defense’s ability to position the approaching
aircraft. The Time objective is achieved by reaching the target
as quickly as possible. The two objectives are captured by the
following reward design:

rsafe(t) = rform(t) + ralign(t) (7)

rtime(t) = −1.0 (8)

In addition to the two major objectives, we also use a
potential-based reward shaping [30] element in the reward
vector (rtgt), to make learning more efficient. This element
rewards the agents for reducing the distance to the target (dtgt),
and thus guides the exploration of the agents:

rtgt(t) = dtgt(t− 1)− dtgt(t) (9)

To encourage the agents to fly in close formation, they are
given a penalty proportional to the distance between the escort
aircraft and a formation reference point relative the strike
aircraft:

dform(t) = ‖pescort(t)− pref (t)‖ (10)

rform(t) = −0.2 · dform(t) (11)

Here pescort and pref are the positions of the escort aircraft
and the formation reference point respectively, dform is the
distance between the escort and its reference point, and rform
is the reward component given for flying in close formation.

To encourage the agents to align towards the target, they
are given a reward dependent on the alignment error, when
the positions of the strike aircraft and the target (pstrike and
ptarget) are both within the Field-of-View (FOV) of the escort
aircraft’s jammer:

jamδ(t) = jamδs(t) + jamδtgt(t) (12)



rjam(t) = 0.5 · (jamfov(t)− jamδ(t))/jamfov(t) (13)

ralign(t) =

{
rjam(t) if pstrike and ptgt in jamfov

0 ELSE
(14)

Here jamfov is the FOV of the escort aircraft’s jammer,
jamδs and jamδtgt are the absolute angular alignment errors
between the jammer center line and the positions of the
strike aircraft and target respectively, and rjam(t) is a reward
component given for using the jammer effectively. ralign(t) is
the reward component given for aligning towards the target.

In these experiments, the formation reference point for the
escort aircraft was placed 5 km behind the strike aircraft, on a
line passing through the position of the strike aircraft and the
position of the target. The jammer FOV was set to 60 degrees.
The scale factors in the reward components were selected to
give the components comparable magnitude for this scenario,
i.e., no component should completely dominate the others.

To specify the priorities of the Time and Safety objectives,
we use the weight θ. We then use the following scalarization
function to convert the vector reward to a scalar (with θ ∈
[0, 1]):

rt = θ · rtime + (1− θ) · rsafe + rtgt (15)

The resulting scalar reward rt is then used as input to
MADDPG for training of the agent’s policy. θ is included in
the input to the agent’s policy, so that it can be used to adjust
the agent’s behavior after training, i.e., we want the agent to
learn how the value of θ affects its reward. To allow the agents
to learn how to prioritize between Time and Safety, we sample
θ from a uniform distribution over the interval [0.2, 0.8] before
each episode of training.

In each time step an agent observes the observation vector
ot, which contains its own heading and speed, the position,
heading and speed of the other agent, the position of the
formation reference point, the position of the target, and the
preference between Time and Safety objectives (θ).

We use a tuple action space:

A = Agoal ×Athrust (16)

Agoal is a discrete, two element action space, which allows
the agents to move towards each other (the strike aircraft
moving towards its escort, the escort moving towards its
reference point), or to move towards the target. Athrust is
a continuous action space, which allows the agents to set the
commanded speed in the interval [0.4, 1.2] Mach.

We train the agents using a discount factor of γ = 1.00.
Episodes end if the strike aircraft comes within 10 km of
the target. We evaluate the approach by studying the trained
agents’ behavior for three different values of θ: {0.2, 0.5, 0.8},
in 1000 simulations. For comparison, we train and evaluate
the same type of agents using the single-agent reinforcement
learning algorithm DDPG.

TABLE II
PERFORMANCE IN EVALUATION SCENARIO 1.

Curriculum Radius of Search Area
Type r = 5 km r = 10 km r = 20 km

Fix. 5 km 58.3± 15.7 − −454.1± 165.4
Fix. 10 km − −252.1± 141.2 −403.7± 167.6
Fix. 20 km − − −587.0± 26.4

Cur. 1 80.8± 56.7 − -146.1 ± 136.1
Cur. 2 60.8± 105.0 − −184.5± 156.1
Cur. 3 81.4 ± 51.0 − −177.0± 156.2

V. RESULTS

A. Aerial Reconnaissance with Sparse Rewards

The training progress of agents with and without curriculum
learning is shown in Fig. 4, as mean and standard deviation
of the collected reward of both agents.

We can see that agents learning without curriculum in the
small search area with radius 5 km improve quickly, and then
stabilize after about 30000 episodes. Agents learning without
curriculum in the medium sized search area with radius 10 km
also improve their performance, but display very high variance.
This is likely due to the randomness of the exploration process.
Finally, the agents learning without curriculum on the goal
task (a search area with radius 20 km) do not display any
improvement in performance during training.

All the curriculum learning agents improve their perfor-
mance quickly. They also keep learning after the curriculum
switches, but start to plateau towards the end of training. The
agents learning with Curriculum 1 seem to make the fastest
improvements towards the end of training, after a period of
high variance after about 40000 episodes.

The results of the benchmark simulations for 1000 time
steps are shown in Tab. II. We can see that the agents using
Curriculum 1 have the best performance on the goal task.
This is the curriculum that progresses the quickest to more
complicated tasks, and also quickly stops training on the
easiest task. Agents learning without a curriculum perform
very poorly on the goal task, including the agents that showed
strong progress when trained on the simplest task, with a
search area with radius of 5 km, who are in fact beaten by
the agents that were trained on a search area with radius 10
km. This demonstrates that transfer of learning from simple
to complex tasks should not be assumed. It is likely that
the agents trained on the smallest search area failed to learn
efficient coordination, since it is less important in simple
domains. It is also interesting to note that all curriculum
learning agents receive higher mean reward than the fixed
environment agents on the simplest task. That is, training on
harder tasks seems to improve performance on simpler tasks
as well.

B. Airstrike with Adjustable Risk Taking

The training progress of agents trained with MADDPG and
DDPG is shown in Fig. 5a, as mean and standard deviation of
the collected reward of both agents.
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Fig. 4. Training progress for Evaluation Scenario 1.
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(a) Training progress for MADDPG and DDPG. (b) Trajectories for safe and fast agents.

Fig. 5. Training progress and emergent behavior for Evaluation Scenario 2.

We can see that the agents trained with MADDPG improve
quickly and start to plateau already after 10000 episodes, while
the agents trained with DDPG need more than 40000 episodes
to reach similar performance, i.e., using a dedicated multi-
agent learning algorithm in addition to the shared reward of the
agents significantly improves performance. The results of the
DDPG agents also have higher variance, and the mean rewards
dip towards the end of training, which may be explained by the
non-stationarity resulting from multiple agents learning and
updating their policies within the same system.

The results of simulations with three different values of θ
for 1000 time steps are shown in Tab. III. We can see that
the qualitative results are as desired for the MADDPG agents:
When θ is small, priority is given to the Safety objective, when
θ increases, more priority is given to the Time objective. This
effect is present for the DDPG agents as well, but it is not as
prominent.

Fig. 5b shows the emergent behavior of agents after training
in an example episode. Trajectories for safe agents (θ = 0.2)
are shown in green and trajectories for fast agents (θ = 0.8) are
shown in red. The escort aircraft starts in the bottom left corner
for this episode. Safe agents align before entering the range
of the air defense system (taking 179 seconds to finish the
episode), while fast agents enter the risk area before aligning
properly (taking 141 seconds to finish the episode).

VI. CONCLUSION

In this paper, we studied applications of multi-agent deep
reinforcement learning in the context of air combat simulation
intended for pilot training. We demonstrated that curriculum
learning is a promising approach for handling the complexity
of the air combat domain. With suitably designed learning
curricula, challenging tasks can be solved efficiently. We also
demonstrated that multi-objective learning is a promising ap-
proach for creating agents with diverse characteristics, whose
behavior can also be adjusted after learning has completed.

The studied methods can help construct smarter synthetic
pilots, adapted to current training needs, and thus reduce the
need for human role-players to participate in training sessions.
This would improve training value and availability of training.

For complex scenarios, constructing and tuning reward
systems and learning curricula by hand can be challenging and
time-consuming. In future work, we would like to investigate
efficient methods for defining dense reward systems, e.g.,
learning from demonstration, to simplify this process for
non-expert users. We would also like to investigate methods
for automated curriculum generation, e.g., by monitoring the
performance of learning agents and adapting the simulation
environment accordingly. Finally, we would like to proceed
to study more complex scenarios, and evaluate human-agent
interaction in experiments with manned simulators.



TABLE III
PERFORMANCE IN EVALUATION SCENARIO 2.

Algorithm Safety Time
Type θ = 0.2 θ = 0.5 θ = 0.8 θ = 0.2 θ = 0.5 θ = 0.8

DDPG −507.2± 348.6 −525.1± 342.3 −561.6± 372.3 −346.6± 68.5 −338.0± 62.8 −337.7± 64.7
MADDPG −358.1± 271.3 −399.5± 272.5 −485.1± 311.6 −396.4± 76.8 −349.6± 57.4 −339.0± 55.9
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