
DyKnow: A Dynamically Reconfigurable Stream Reasoning Framework
as an Extension to the Robot Operating System

Daniel de Leng1 Fredrik Heintz1

Abstract— DyKnow is a framework for stream reasoning
aimed at robot applications that need to reason over a wide
and varying array of sensor data for e.g. situation awareness.
The framework extends the Robot Operating System (ROS).
This paper presents the architecture and services behind
DyKnow’s run-time reconfiguration capabilities and offers an
analysis of the quantitative and qualitative overhead. Run-
time reconfiguration offers interesting advantages, such as
fault recovery and the handling of changes to the set of
computational and information resources that are available
to a robot system. Reconfiguration capabilities are becoming
increasingly important with the advances in areas such as
the Internet of Things (IoT). We show the effectiveness of
the suggested reconfiguration support by considering practical
case studies alongside an empirical evaluation of the minimal
overhead introduced when compared to standard ROS.

I. INTRODUCTION

Traditional robot applications assume that their internal
processing configuration is fully known at compile-time;
both the sensors and the refinement of the sensor data
is assumed to be fixed. However, these assumptions are
becoming increasingly unreasonable. Autonomous systems
are getting access to computational resources (e.g. sensing
and processing capabilities) both from other autonomous
systems as well as other information services. The Internet of
Things (IoT) has the potential to greatly increase the number
of external resources available to autonomous systems, and
advancements in the area of the Semantic Web (SW) make
available knowledge bases that were previously unintelligible
to machines by providing semantic attachments. Clearly, we
can expect future scenarios to increasingly involve compu-
tational resources that are external to our robot applications,
and the availability and quality of which varies over time. For
the area of stream reasoning, that is incremental reasoning
over incrementally available information, this highlights the
need for the capability to reason about which streaming
resources to subscribe to.

This paper presents the architecture of the DyKnow re-
configurable stream reasoning framework. DyKnow is an
extension to the Robot Operating System (ROS) [1], which is
a popular robot middleware used frequently in both industry
and academia. DyKnow is capable of reasoning about which
streams to subscribe to and can reconfigure the system
during run-time. The motivation for enhancing this control is
grounded in the need to reconfigure a system based on the
computational resources available to it. Since the standard

1Department of Computer and Information Science, Linköping Univer-
sity, Sweden, email: {daniel.de.leng, fredrik.heintz}@liu.se

ROS services do not allow this degree of configuration con-
trol, DyKnow efficiently complements these services with its
own for a high degree of configuration control. We show that
this extension to ROS allows us to dynamically reconfigure
ROS applications with minimal overhead in terms of delays
and developer burden.

The remainder of this paper is organized as follows. In
section II, we cover previous and related work in the area
of stream reasoning and reconfiguration. We then present the
DyKnow architecture in section III. This is followed by an
overview in section IV of the relevant services ROS offers
and how DyKnow complements these services with its own.
To demonstrate the usability and ease of adoption of the ROS
extension, we describe two distinct case studies in section V.
This is followed by a quantitative evaluation in terms of
performance in section VI. Finally, we conclude the paper
in section VII.

II. RELATED WORK

A lot of progress has been made in the area of stream
reasoning, covering both Data Stream Management Systems
(DSMS) and Complex Event Processing (CEP) approaches.
A comprehensive survey on these approaches is presented
in [2]. The DyKnow stream reasoning framework has been
used for research into stream reasoning for several years. We
distinguish between three generations of DyKnow, where the
version presented in this paper is part of the third generation.
The first generation of DyKnow [3], [4] was implemented
using the Common Object Request Broker Architecture
(CORBA). It primarily focused on the manipulation and
abstraction of streaming data. The second generation marked
a change in research focus towards semantic information
integration [5] [6] which coincided with the switch from
CORBA to ROS. These efforts are closely related to the
OWL-S [7] service ontology which introduces semantic
descriptions for services, and work [8] on ontology-based
access to streaming data sources. The third generation of Dy-
Know seeks to expand upon the previous work on DyKnow
in part by considering automatic reconfiguration based on the
needs of a robot system. Work in the area of the Semantic
Sensor Web, such as the Semantic Sensor Network ontology
(SSN) [9], focused on well-structured semantic descriptions
of sensors and share commonalities with the problem of
automatic configuration. The SSN ontology was based on
the Sensor Web Enablement (SWE) initiative of the Open
Geospatial Consortium (OGC). At around the same time,
an approach to ‘semantically-enabled sensor plug and play’
was proposed [10], [11], using a sensor bus that allowed



for automated matching between sensors and SWE services
based on features of interest.

The SAMSON Wireless Sensor Networks (WSNs) middle-
ware [12] is similar to DyKnow in considering a dynamic
environment in which a network can be reconfigured to deal
with changes, albeit at a lower level. In the case of SAM-
SON, these changes include faults, but also disconnection
and power concerns. A survey of other recent work towards
WSN middlewares is presented in [13].

The work by Tang and Parker [14] on ASyMTRe is an
example of a system geared towards the automatic self-
configuration of robot resources in order to execute a certain
task. Similar work was performed by Lundh, Karlsson and
Saffiotti [15] related to the Ecology of Physically Embedded
Intelligent Systems [16], also called the PEIS-ecology.

The main differences between these approaches and Dy-
Know is that: 1) DyKnow focuses on system reconfiguration
towards information acquisition rather than actions in the
physical world; 2) DyKnow extends ROS which is the de
facto standard middleware for robot applications making it
easily accessible; and 3) DyKnow raises the abstraction level
to handle tagged streams of information and focuses on
applications that subscribe to information by its semantics
rather than its (fixed) resources.

III. ARCHITECTURE

DyKnow is tasked with the configuration and mainte-
nance of streaming resources in a robot system. In this
context, streaming resources can be sources of incrementally-
available information or transformations over such informa-
tion streams. Concretely, this means DyKnow will recon-
figure a system during run-time to generate and maintain
streams of interest to its clients. These clients can be hu-
man operators, other autonomous systems, or computational
resources that run within DyKnow’s own environment. Con-
sider for example a scenario in which a robot is tasked with
tracking a ball in a lab. It can initially do so using its own
camera and ball detection capabilities. However, once the
robot runs low on power it needs to leave the area to recharge.
In the meantime, it can instead request video footage of the
lab from a ceiling camera, while applying its own tracking
software. This means that the tracking task can be fulfilled
even if some of the original streaming resources are no longer
available, which is a powerful ability when operating in a
dynamic environment.

This DyKnow environment consists mainly of two kinds of
entities; the DyKnow manager and any number of available
computational resources that consume and produce streams
of information. Figure 1 shows a high-level overview of
these components. The DyKnow manager keeps track of the
state of the environment in terms of which computational
resources exist and how they are connected, and has the
ability to change these connections. Developers provide
specific instances of these computational resources, e.g. de-
tectors and trackers. Clients, be it human operators or other
devices, can communicate with the DyKnow manager to
request changes to the configuration, for example to acquire a

Fig. 1. Conceptual overview of computational resources (computation
units) and the DyKnow manager. The parallel thick arrows represent
information flows between computation units. The encircled arrows rep-
resent ports that connect the internal processing of computation units to
streams for receiving or publishing. The dashed lines represent service-
based interactions.

particular kind of information. By changing the connections
between resources and streams during run-time, DyKnow can
automatically adapt to changing circumstances.

A. DyKnow Requirements

Stream reasoning systems should be able to at least deal
with large volumes of high-velocity data. A number of
additional requirements were taken into consideration during
the development of DyKnow:

• Usability: In order to support more control over a
system’s configuration, some extra work is needed by
a developer. We want to try and minimize this extra
burden.

• Adoptability: Given an existing implementation in
ROS, it should be easy to convert it to work with
DyKnow. ‘Easy’ in this context means the changes a
developer would have to make to the existing software
before doing the extra work described above.

• Performance: There is an overhead associated with
augmenting the control services that exist in ROS. This
overhead should be relative to the degree of control a
developer wants to support. Further, effects to message
throughput should be kept low.

• Reconfigurability: This is the key feature that DyKnow
seeks to support and which is currently lacking for
ROS. We therefore focus on the reconfiguration of how
components are connected to each other, allowing us to
change the flow of information in the system.

B. ROS Preliminaries and Shortcomings

ROS is a popular middleware for robot applications that
allows developers to write implementations as ROS nodes,
which can communicate with each other by using services
and topics. These nodes are combined into packages, of
which many have been made publicly available. Topics can
be used to connect nodes to establish a flow of information,
which makes them the implementation counterpart to the
concept of information streams. Topics are advertised by
publishers and can be subscribed to by other nodes using sub-
scribers, such that a single topic can have multiple publishers



and subscribers. Services allow nodes to advertise function-
ality to other nodes, which can then be requested by these
nodes. Services (optionally) take a number of arguments and
can (optionally) return a result to the service caller. ROS uses
Node Handles to expose its API to developers of nodes,
which packages such as Image Transport augmentation to
support efficient image transportation.

Where standard nodes correspond to individual processes
when run, nodelets are run on threads within the process of a
Nodelet Manager node. Communication between nodelets is
generally more efficient than between nodes. Further, nodes
are instantiated either manually or through a launch file,
whereas nodelets can also be instantiated using the Nodelet
Manager’s services. This makes it possible for programs to
instantiate other programs at will. The disadvantage of using
a Nodelet Manager however is that the thread pool is shared
among all nodelets, and if a single nodelet crashes it takes
down the entire Nodelet Manager.

Nevertheless, the flexibility offered by the Nodelet Man-
ager makes it an excellent tool for dynamically reconfiguring
a ROS system, given that nodelets are used. Unfortunately
the services offered by a Nodelet Manager are limited to the
loading and unloading of nodelets. DyKnow therefore com-
plements these services with the help of persistent nodelet
proxies that augment the ROS Node Handle.

C. Nodelet Proxy

The persistent Nodelet Proxy is the key component
that allows DyKnow to exert a greater control over aug-
mented (DyKnow-enabled) nodelets. A developer establishes
a nodelet proxy by creating a DyKnow variant of the Nodelet
Handle. Recall that the ROS Nodelet Handle serves as
an API that can be used to call ROS functionality, such
as creating publishers and subscribers. The DyKnow Node
Handle instead delegates these calls to the Nodelet Proxy,
which either delegates to the ROS Node Handle or to custom
DyKnow variants. Specifically, DyKnow provides its own
publishers and subscribers that can be used as ordinary ROS
publishers and subscribers. The key difference lies in the
distinction between ports and topics.

ROS publishers and subscribers connect directly to topics;
a subscriber can name a topic and a callback method,
whereas a publisher can name a topic and a message to
be sent. The DyKnow variants replace topics with ports.
The Nodelet Proxy maintains a mapping between ports and
topics, and allows for this mapping to change as the result
of services that are offered by the proxy. This way, ports can
be associated with different topics over time, which allows
for run-time reconfiguration to occur.

A schematic of the Nodelet Proxy and its relation to a host
nodelet is shown in Figure 2. The nodelet implementation
by a developer is indicated by NodeletImpl, which extends
ros::Nodelet. For the DyKnow integration to work, the
developer needs to create a dyknow::NodeHandle, which
takes a ros::NodeHandle as an argument. From that point
on, any calls previously done to the ROS Node Handle
instead get sent to the DyKnow Node Handle. When a

Fig. 2. UML diagram showing the DyKnow nodelet implementation and
its relation to standard ROS components, where NodeletImpl indicates a
developer-provided stream reasoning implementation.

developer creates subscriptions or publishers, DyKnow pro-
vides dyknow::Subscriber and dyknow::Publisher han-
dles. These handles delegate calls to state objects that are
maintained by the proxy. Every state object corresponds to
a port, and can be assigned a topic by (re)assigning a ROS
subscriber or publisher.

Finally, the proxy augments the standard ROS API with
additional features that are made available through the Dy-
Know Node Handle. A DyKnow nodelet is able to set a
callback for whenever the nodelet is reconfigured. This can
be useful when a reconfiguration requires actions to be taken
by a nodelet, for example to notify some part of the system of
its new subscriptions and publishers. Further, statistics such
as the number of reconfigurations are maintained and made
available.

D. Transformation Specifications

Nodelets often require some form of configuration using
parameters. For example, a camera nodelet may require a
path to a lens model. Since nodelets in DyKnow relinquished
control over their publisher and subscribers, the initial config-
uration and subsequent reconfigurations require knowledge
about the ports used by the developer, as well as which topics
they should be (re)connected to. Nodelets of the same type
can thus differ by configuration.

To deal with these differences, DyKnow makes use of
transformation specifications to describe different usages of
nodelets based on different configurations. The DyKnow
manager keeps track of transformation specifications, in
addition to instantiated nodelets and their connections. A
transformation can be seen as a blueprint for a nodelet
instance. Its specification contains a reference to the nodelet’s
source, which is required to instantiate that nodelet. Addi-
tionally, a configuration and label are added.

An example of a transformation specification is shown
in listing 1. The label of a transformation is used by the
DyKnow manager to find a particular transformation speci-
fication. The source refers to the path used by the Nodelet
Manager to dynamically load a nodelet. The parameters are
passed to the nodelet during instantiation. A listing of ports
is provided so DyKnow can connect them to topics of its
choosing. Finally, a series of optional tags can be provided
to describe ports, which can be useful during configuration



Listing 1. Transformation specification example
<transformation type="nodelet">
<label>undistort(${Cam})</label>
<source>package/Undistort</source>
<args>
<arg label="Cam">{cam1; cam2; cam3}</arg>

</args>
<params>
<param name="config-path" type="string">
/path/to/configuration/${Cam}/

</param>
</params>
<ports>
<port type="out">undist</port>
<port type="in">rawcamera</port>

</ports>
<tags>
<tag port="undist">Undistorted(${Cam})</tag>
<tag port="raw-camera">RawRGB(${Cam})</tag>

</tags>
</transformation>

planning. These tags can for example make use of Semantic
Web concepts to provide a service description.

In some cases, closely-related transformations can be
simplified using transformation templates. Expanding on the
example from listing 1, we may have multiple cameras that
use the same software but require different lens models.
If we have many such cameras, it would be tedious to
write a separate specification for each of them. Instead, we
can determine what the set of cameras is, e.g. provided by
a developer or acquired from an ontology. The provided
argument Cam refers to a set of substitution terms. In the
example the set is made explicit, but a reference to an
ontological concept is also possible. In such a situation a
URI is provided, and a list of individuals is obtained for
which the label can be used to create a set of substitution
terms. The substitions are done in-place for occurrences
of ${Cam}, yielding transformations with labels undis-
tort(cam1), undistort(cam2), and undistort(cam3).

IV. SERVICE OVERVIEW

Nodes can make use of advertised services to interact
with each other. DyKnow expands upon the existing services
for nodelets in order to provide more control over system
configurations. In this section, we look at the pre-existing
services ROS provides, and the new services DyKnow adds.

A. Pre-Existing Services for Nodelets

The Nodelet Manager is the sole provider of nodelet
services in ROS and offers three services:

• NodeletLoad: Given a nodelet name and type, the
Nodelet Manager instantiates a nodelet of that type,
where the type is a reference to the nodelet’s source.

• NodeletUnload: Given a nodelet name, the Nodelet
Manager destroys that nodelet. A nodelet cannot unload
itself.

• NodeletList: Returns an array of nodelet names.

B. DyKnow Proxy

The proxy adds additional services to control the connec-
tions between topics and ports. It can also list for a given
nodelet what topics are connected to which ports at the time
of the service call.

• GetConfig: Returns a list of ports and associated topics
for the nodelet the proxy is associated with.

• SetConfig: Takes a list of ports and topics to be
connected for the nodelet the proxy is associated with.

• GetStatistics: Returns nodelet statistics in terms of
uptime, the number of reconfigurations performed, and
the number of messages sent or received for each port.

C. DyKnow Manager

The DyKnow manager provides services for the manage-
ment of transformation specifications and nodelets. Addition-
ally, it keeps a model of the computation graph.

• AddTransformation: Given a transformation specifica-
tion, store the specification under the associated label.
If a template is sent, the manager adds a transformation
specification for every substitution. Specifications can
be overridden.

• RemoveTransformation: Given a label, remove the
transformation specification with that label, if any.

• Spawn: Given a transformation label and name, in-
stantiate a nodelet of that transformation type with
the supplied name. Nodelets can be protected from
unloading. Uses NodeletLoad.

• Destroy: Given a name, destroy the nodelet with that
name if it exists and if it is not protected. An un-
protected nodelet can destroy itself this way. Uses
NodeletUnload.

• GetModel: Returns a listing of all running DyKnow
nodelets and their port-topic connections. Also returns
all stored transformation specifications.

V. CASE STUDIES

We focus on two case studies in which DyKnow’s dynamic
reconfiguration support has proven to be useful. The first
case study deals with the creation of interactive visualization
tools, which facilitate human interaction. The second case
study is focused on autonomous systems, and deals with a
configuration planner for semantic reconfiguration.

A. Interactive Visualization Tools

ROS provides a wide array of visualization tools using
a Qt-based framework. For the visualization of nodes and
topics, rqt graph provides a graphical user interface that
communicates with the ROS master and produces a DOT
graph. While this approach works great for nodes, it fails
to detect nodelets as they are threads within the Nodelet
Manager node. We therefore forked rqt graph and replaced
the communication with the ROS master to instead query
the DyKnow manager for its computation graph. Since ROS
does not allow for dynamic reconfiguration, we also had to



Fig. 3. Screenshot of the interactive visualization tool.

switch from the manual refresh in rqt graph to a frequency-
based refresh. This was combined with a control widget to
allow a user to interact with the DyKnow manager.

A screenshot of the tool at work is shown in Figure 3,
where the bottom left camera view was produced by the
rqt image view widget. The graph shown in the center
panel was created using the control panel on the left. Ovals
in the center graph correspond to nodelets, and rectangles
correspond to topics. The bottom-right image view shows
the color video stream from a NAO camera after having been
processed by a the subsampler. Since no changes were made
to the rqt graph interface itself, this representation is natural
to ROS developers.

The control panel on the left supports a number of features
based on the services provided by DyKnow. The active
tab lists the currently active nodelets together with their
associated transformations, the number of input ports, and
the number of output ports. A library tab offers a listing of
transformation specifications by label, and allows a user to
import or delete transformations. Nodelets can be instantiated
through the create panel; the user provides a name for the
nodelet to be created and a type in terms of transformation
specifications. The panel shown is the connect panel, where
either a combination of two nodelets and ports are selected to
be connected with a topic decided by the tool, or a single port
and topic can be connected where the user gets to specify
the topic name manually.

The visualization tool makes use of all of the DyKnow
Manager services, offering an interface that can be managed
by human operators: The tool acquires the known compu-
tation graph from the DyKnow manager to draw the cur-
rent configuration, and exposes the services for adding and
removing nodelets and transformations through the control
panel. It serves as a proof of concept for reconfigurability
while providing a useful visualization tool for developer
introspection.

B. Semantic Reconfiguration

One of DyKnow’s key features pertains to automated
reconfiguration based on semantic descriptions. Transfor-
mation specifications have room for tags (or metadata)
for ports associated with that transformation. We can use

these tags to semantically describe transformations by the
types of information they require and produce. Using this
information, DyKnow can appropriately connect outputs to
inputs. Given a tag or semantic description, it is then possible
to automatically generate and maintain a computation graph
that produces this information. This provides DyKnow with
the capability to reason about which streams to subscribe to.
The architecture and services presented in this paper make
it possible for DyKnow to also perform reconfigurations
necessary to maintain a desired stream.

As an example, consider the scenario of a DyKnow-
supported NAO robot on a soccer field. We are interested in
the position of the ball on the field, which the NAO robot is
able to obtain. The DyKnow Manager knows of the following
transformations:

• A bottom camera, which produces a YUV video stream;
• An image subsampler, which takes a YUV video stream

and can produce BGR and HSV image streams, as well
as downsampled YUV channels;

• A ball detector, which takes different resolutions of
YUV channels and the NAO’s joint states to detect ball
objects in its relative frame of reference;

• A localization node that estimates the NAO’s position
in the field’s coordinate system, and transforms ball
detections to that coordinate system.

The localization node can be described in terms of taking
world objects in the relative coordinate system of a NAO
and converting these to the field coordinate system. The ball
detector produces relative ball objects, which are a kind of
world objects. It takes a subsampled video streams from
the NAO’s own cameras. The image subsampler produces
those streams from the raw YUV streams from the NAO’s
cameras, one of which is provided by the bottom camera.
The DyKnow configuration planner can then determine that
it needs to produce a computation graph in the above order.
If the bottom camera already has a running nodelet, the
DyKnow configuration planner will know this from the
DyKnow manager and simply note the relevant outgoing
topics. It can then set up the remaining nodes and connect
them, before returning the name of the resulting topic coming
from the localization node. When a battery recharge is
needed, the NAO can find the ceiling camera as a suitable
alternative to its own camera based on the tags.

VI. PERFORMANCE EVALUATION

The proxy introduced by DyKnow potentially introduces
an overhead in throughput. Measuring the overhead gives
insights into the cost of adopting DyKnow.

A. Experiment Setup

Topic-based communication between nodelets is assumed
to be faster than between nodes because nodelets are part of
the same process and nodes are not. In this experiment, we
use both as benchmarks for comparison. The computation
graph is a linear sequence of connected node(let)s such
that each intermediate node(let) receives from a prede-
cessor node(let) and immediately publishes to a successor



Fig. 4. Performance graph showing the different time-to-arrivals for
messages relative to the number of hops for a linear chain.

node(let). The source produces messages containing current
time-stamps at a fixed frequency f . Every (intermediate)
receiver checks that time-stamp against the arrival time and
reports the time difference. The number of node(let)s n then
corresponds to the number of message hops.

B. Results

The performance results are shown in Figure 4, where
the performance graph contrasts the number of hops to the
average time-to-arrival for messages sent along the node(let)
chain. The source produced 1,000 time-stamped messages at
a frequency of f = 5Hz, which every receiver compared to
the local time upon arrival prior to forwarding the message.
The graph illustrates the time results for DyKnow nodelets
and ROS nodelets, as well as ROS nodes. As expected,
nodes are much slower than nodelets because they have
to communicate between processes. The results for nodes
put into perspective the overhead we can see for DyKnow
nodelets when compared against ROS nodelets, which grows
slowly to about 0.2ms after n = 50 hops. We therefore
conclude that the overhead induced by DyKnow is negligible.

VII. CONCLUSIONS

The ability for an autonomous system to reconfigure itself
during run-time is becoming increasingly important as the
variety and availability of computational resources increases.
This paper focuses on the popular ROS middleware, which
is often used for such systems. Unfortunately, ROS does not
support the kind of reconfiguration needed by these appli-
cation. We presented DyKnow, a dynamically reconfigurable
stream reasoning framework that augments the ROS services
to support run-time reconfiguration of nodelets. To support
reconfiguration, DyKnow needs to get more information
about nodelets. Compact transformation specifications were
introduced to provide this information. DyKnow also follows
the ROS API, which makes converting nodelets to work
with DyKnow an easier task. The usefulness of the extended
configuration control was shown in the two presented case
studies. Finally, a performance overview measuring the over-
head cost of using DyKnow was provided. The case studies
highlight the usability and ease of adoption of DyKnow,

and the performance results show a minimal overhead when
comparing DyKnow nodelets to standard ROS nodelets; the
stated DyKnow requirements have thus been met.

The results are however not perfect; ROS was not designed
to support this kind of reconfigurability. Despite this, a pure
extension was sufficient to integrate these capabilities. ROS
integration opens up these capabilities to a large audience
and potential number of robot platforms.

The reconfiguration support in DyKnow is a critical tool to
tackle the bigger problem of reasoning about the availability
and relevance of computational resources in order to fulfil a
particular information acquisition task. Future work focuses
on using the reconfiguration capabilities to this end.

ACKNOWLEDGMENT

This work is partially supported by grants from the
National Graduate School in Computer Science, Swe-
den (CUGS), the Swedish Aeronautics Research Council
(NFFP6), the Swedish Foundation for Strategic Research
(SSF) project CUAS, the Swedish Research Council (VR)
Linnaeus Center CADICS, and the ELLIIT Excellence Cen-
ter at Linköping-Lund for Information Technology.

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in Proc. ICRA, 2009.

[2] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Computing Surveys
(CSUR), vol. 44, no. 3, p. 15, 2012.

[3] F. Heintz and P. Doherty, “DyKnow: An approach to middleware
for knowledge processing,” Journal of Intelligent and Fuzzy Systems,
vol. 15, no. 1, 2004.

[4] F. Heintz, “DyKnow : A stream-based knowledge processing middle-
ware framework,” Ph.D. dissertation, Linköping University, 2009.

[5] F. Heintz and Z. Dragisic, “Semantic information integration for
stream reasoning,” in Proc. FUSION, 2012.

[6] D. de Leng and F. Heintz, “Ontology-based introspection in support
of stream reasoning,” in Proc. SCAI, 2015, pp. 78–87.

[7] D. Martin et al., “OWL-S: Semantic markup for web services,” W3C
member submission, 2004.

[8] J.-P. Calbimonte, O. Corcho, and A. J. Gray, “Enabling ontology-based
access to streaming data sources,” in Proc. ISWC. Springer, 2010,
pp. 96–111.

[9] M. Compton et al., “The SSN ontology of the W3C semantic sensor
network incubator group,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 17, pp. 25–32, 2012.

[10] A. Bröring, K. Janowicz, C. Stasch, and W. Kuhn, Semantic Chal-
lenges for Sensor Plug and Play, 2009, pp. 72–86.

[11] A. Bröring, P. Maué, K. Janowicz, D. Nüst, and C. Malewski,
“Semantically-enabled sensor plug & play for the sensor web,” Sen-
sors, vol. 11, no. 8, pp. 7568–7605, 2011.

[12] J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, T. C. Rodrigues,
and T. V. Batista, “SAMSON: Self-adaptive middleware for wireless
sensor networks,” in Proc. SAC, 2016, pp. 1315–1322.

[13] F. Kerasiotis, C. Koulamas, C. Antonopoulos, and G. Papadopoulos,
“Middleware approaches for wireless sensor networks based on current
trends,” in Proc. MECO, 2015, pp. 244–249.

[14] F. Tang and L. Parker, “Asymtre: Automated synthesis of multi-
robot task solutions through software reconfiguration,” in Robotics and
Automation. IEEE, 2005, pp. 1501–1508.

[15] R. Lundh, L. Karlsson, and A. Saffiotti, “Autonomous functional
configuration of a network robot system,” Robotics and Autonomous
Systems, vol. 56, no. 10, pp. 819–830, 2008.

[16] A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh, J. Rashid,
B. Seo, and Y.-J. Cho, “The PEIS-ecology project: vision and results,”
in Proc. IROS. IEEE, 2008.


