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Abstract. Control software of autonomous mobile robots comprises a
number of software modules that typically interact in a very complex
way. Their proper interaction and the robustness of each single module
strongly influences the safety during navigation in the field. Particularly
in unstructured environments, unforeseen situations are likely to occur,
causing erroneous behaviors of the robot. The proper handling of such
situations requires an understanding of cause and effect within the com-
plex interactions of the system.
In this paper we present an approach which is able to automatically
derive a model of the communication behavior within a component-
orientated control software. The model can be used for online diagno-
sis in order to increase system robustness during runtime. We demon-
strate model learning and system diagnosis on three different robot sys-
tems which were controlled by software modules communicating based
on the widely used IPC (Inter Process Communication) standard. The
demonstrated learning and diagnosis was carried out without any a priori
knowledge about the systems.

1 Introduction

Control software of autonomous mobile robots comprises a number of software
modules which interact in a very complex manner. Because of this complexity
and other reasons like bad design and implementation there is always the pos-
sibility of failure during runtime. Such failures can have different characteristics
like crashes of modules, deadlocks or wrong data leading to a hazardous decisions
of the robot. In order to have truly autonomous robots operating for a long time
without or with limited possibility of human intervention, e.g., planetary rovers
exploring Mars, rescue robots searching for victims in unknown terrain, robots
have to detect, localize, and to recover from failures.

In [1, 2] the authors presented a MBR (model-based reasoning) framework for
the control software of autonomous robots using the consistency-based diagnosis
techniques of Reiter [3]. Models were created manually by analyzing the structure

⋆ The authors are listed in alphabetical order.



of the software and its communication behavior during runtime. However, for
large or partially unknown systems, manual modeling turns out to be suboptimal.
Therefore, it is desirable to automatically create system models, either from a
formal specification or from observations.

In this paper we present an extension of previous work that allows to au-
tomatically derive a model of the structure and the communication behavior
within a component-orientated control software. The idea is to use the different
communication behaviors between the modules of the control software in order
to monitor the status of the system and to detect and localize faults. The al-
gorithm generates a communication graph, showing all modules as vertices and
their interactions as edges. Each edge is defined by a particular type of message,
e.g., reading of a laser range finder, or a position computed by the localization
module, and the condition under which the message occurs, e.g, triggered by
inputs, sporadically, or periodically with a specific frequency. From this graph
structure, a set of logical clauses is extracted based a component-based mod-
eling schema [4]. Please refer to [1, 2] for more details. Furthermore, for each
edge an observer is generated that is parameterized according to the learned
communication behavior of the link. During runtime, observers are continuously
monitoring communication between the modules. If they observe abnormal com-
munication, the diagnosis engine is automatically triggered for determining the
reason of failure.

The model learning approach was tested with the control software of the
Lurker robots [5] used in the RoboCup Rescue league, a multi-robot team of
Zerg robots [6] used in the RoboCup Rescue simulation league, and the Tele-
max robot designed for the TechX challenge [7]. The control software of these
systems utilizes the IPC communication framework [8], which is a very popular
event-based communication library used by a number of robotic research labs
worldwide. However, the algorithm can simply be adapt to other event-based
communication frameworks, such as for instance Miro [9].

MBR has been actively studied in the past. The Livingstone architecture
by Williams and colleagues [10] was used on the space probe Deep Space One
to detect failures in the hardware and to recover from them. It has also been
successfully applied for fault detection and localization in digital circuits and car
electronics and for software debugging of VHDL [4]. In [11] the authors show
the application of MBR for the diagnosis of a group of robots in the health care
domain. The system model comprises interconnected finite state automata. In
[12] MBR was presented for monitoring component-based software. The behavior
of software components was modeled by Petri nets, where nodes represented the
state of components, and transitions the interactions. Verma and colleagues [13]
utilized particle filters to estimate the state of the robot and its environment.
These estimations together with a model of the robot were used to detect failure
situations.

The reminder of this paper is structured as follows. In Section 2 the model
learning from observed communication and in Section 3 the model-based diag-
nosis are discussed. In Section 4 we present experimental results and conclude
in Section 5.
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2 Model Learning

Control systems based on IPC use an event-based communication paradigm, i.e.
software modules provide data by publishing events, and other modules subscribe
for this events in order to receive the data shortly after submission. Typically
a central module is in charge of handling all communication, which can also be
utilized for recording and monitoring all events. For example, the central server
of IPC is able to record the type of the event, the time the event was published
or consumed, the content of the event, and the names of the publishing and the
receiving modules. In our implementation we use this data for creating a model
of the system. Formally, an event is defined as follows.

Definition 1 (Event) An event e is a tuple (l,tP ,tC ,d,P,C) where:

– l is the label or name of the event e
– tP is the time the event was published
– tC is the time the event was consumed
– d is the data or payload of the event
– P is the publisher of the event
– C is the consumer of the event

Please note that if an event is consumed by multiply, each consumption is sep-
arately recorded.

Figure 1 depicts the recorded events while running a simple control software
example that comprises only five modules with a simple communication struc-
ture. In the example there are two data paths, one for processing self-localization,
and another one for tracking objects. Whereas the software modules Odometry,
Vision, and SelfLoc provide data on a regular basis, the Tracker module provides
data only if objects have been detected in the data published by the Vision mod-
ule. Figure 1 shows the timing of event publishing, and Figure 2 the extracted



communication graph. Communication graphs are not only useful for diagnosis,
they also expressively visualize the relation of modules from a larger or par-
tially unknown control software. In the following model learning algorithm will
be described based on this example.

2.1 The communication graph

At a first step the algorithm extracts a communication graph from the data,
where nodes represent different software modules, and edges different events that
are exchanged between the modules. Each event is represented by at least one
edge, whereas edges can also connect to multiple receiving modules originating
from a single publishing module. Formally, the communication graph can be
defined as following:

Definition 2 (CG) A communication graph (CG) is a directed graph with the
set of nodes M and the set of labeled edges C, where:

– M is a set of software modules sending or receiving at least one event.

– C is a set of connections between modules, the direction of the edge points
from the sending to the receiving module, the edge is labeled with the name
of the related event.

Please note that the communication graph may contain cycles. Usually such cy-
cles emerge from hand shaking mechanisms between two modules. The algorithm
for the creation of the communication graph can be formalized as following:

computeGraph
Input: a set of recorded events E
Output: a set of nodes M and edges C

1. Let M be the empty set.

2. Let C be the empty set.

3. For all e ∈ E:

(a) If p(e) /∈ M add p(e) to M .

(b) If c(e) /∈ M add c(e) to M .

(c) If (p(e), c(e), l(e)) /∈ C add (p(e), c(e), l(e)) to C

4. Return M and C.

The algorithm starts with an empty set of nodes M and edges C and then
iterates trough the set E of all recorded communication events. If either the
sender or the receiver are not in the set of the nodes the sender or the receiver is
added. If there is no edge pointing from the sending to the receiving node with
the proper label, a new edge with the appropriate label is added between the two
modules. The functions p(e), c(e), l(e) return the publisher, the consumer and
the label of an event c. Moreover, we define the two functions in : CO 7→ 2C

and out : CO 7→ 2C which return the edges pointing to and from a node.



2.2 The communication behavior

In a next step the behavior or type of each event connection is determined. For
this purpose we consider the output and input edges of the publishing node, and
the recorded timing of each communication via these edges. We distinguish the
following event types: triggered event connection (1), periodic event connection
(2), bursted event connection (3) and random event connection (4). In order
to describe the behavior of a connection formally we define a set of connection
types CT = {periodic, triggered, bursted, random} and a function ctype : C 7→
CT which returns the type of a particular connection c ∈ C. The type of an
event connection is determined by tests like measurements of the mean and
the standard deviation of the time between the occurrence of the events on the
connection, and comparison or correlation of the occurrence of two events. The
criteria used to assign an event connection to one of the four categories are
summarized below:

triggered In oder to determine if an event connection is a triggered event
connection, the events on connection c ∈ out(m) are correlated to the events on
the set of input connection to the software module I = in(m). If the number
of events on connection c, which are correlated with an event on a particular
connection t ∈ in(m), exceed a certain threshold, connection t is named as
trigger of connection c. The correlation test looks for the occurrence of the
trigger event prior the observed event. Note each trigger event can only trigger
one event. If connection c is correlated with at least one connection t ∈ in(m)
connection c is categorized as a triggered connection. Usually, such connections
are found in modules performing calculations only if new data is available.

periodic On a periodic event connection the same event regularly occurs with a
fixed frequency. We calculate from the time stamps of the occurrence of all events
a discrete distribution of the time difference between two successive events. If
there is a high evidence in the distribution for one particular time difference,
the connection is periodic with a periodic time of the estimated time difference.
For a pure periodic event connection one gets a distribution close to a Dirac
impulse. Usually, such connections are found with modules providing data at a
fixed frame rate, such as a module sending data from a video camera.

bursted A bursted event is similar to the periodic event but its regular occur-
rence can be switched on and off for a period of time. A event connection is
classified as bursted if there exist time periods where the criteria of the periodic
event connection hold. Usually, such connections are found with modules which
do specific measurements only if the central controller explicitly enable them,
e.g., a complete 3d laser scan.

random For random event connections none of the above categories match
and therefore no useful information about the behavior of that connection can
be derived. Usually, such connections are found in modules which provide data
only if some specific circumstance occur in the system or its environment.



In the case of the above example, the algorithm correctly classified the event
connections odometry, objects and pose as periodic and the connection velocity
as triggered with the trigger objects.

2.3 The observers

In order to be able to monitor the actual behavior of the control software, the
algorithm instantiates an observer for each event connection. The type of the
observer is determined by the type of the connection and its parameters, esti-
mated by the methods described before. An observer raises an alarm if there is
a significant discrepancy between the currently observed behavior of an event
connection and the behavior learned beforehand during normal operation. The
observer provides as an observation O the atom ok(l) if the behavior is within
the tolerance and the atom ¬ok(l) otherwise. Where l is the label of the corre-
sponding edge in the communication graph. The observations of the complete
control software OBS are the union of all individual observations

OBS =

n⋃

i=1

Oi

where n is the number of observers.
Observers can be instantiated for either triggered, periodic, bursted, or ran-

dom connections. The trigger observer raises an alarm if within a certain timeout
after the occurrence of a trigger event no corresponding event occurs or if the
trigger event is missing prior the occurrence of the corresponding event. In or-
der to be robust against noise, the observer uses a majority vote for a number
of succeeding events. The periodic observer raises an alarm if there is a signif-
icant change in the frequency of the events on the observed connection. The
observer checks if the frequency of successive events does vary significantly from
the specified frequency. For this purpose, the observer estimates the frequency of
the events within a sliding time window. The bursted observer is similar to the
periodic observer. It differs in the fact that it starts the frequency check only if
events occur and does not raise an alarm if no events occur. Finally, the random
is a dummy observer which alway provides the observation ok(l). This observer
is implemented for completeness.

2.4 The system description

The communication graph together with the type of the connections is a sufficient
specification of the communication behavior of the robot control software. This
specification can be used in order to derive a system description for the diagnosis
process. It is a description of the desired or nominal behavior of the system. In
order to be able to be used in the diagnosis process, the system description
is automatically written down as a set of logical clauses. This set can easily be
derived from the communication graph and the behavior of the connections. The
algorithm to derive the system description can be formalized as following:



computeSD
Input: the communication graph with nodes M and connections C
Output: a set of clauses

1. Let SD be the empty set.
2. For all c ∈ C:

If host(p(c)) 6= host(c(c))
(a) If ctype(c) = triggered add

¬AB(p(c))
^

t∈trigger(c)∧t∈in(p(c))

ok(t)∧

∧¬AB(host(p(c))) ∧ ¬AB(host(c(c))) → ok(c)

to SD
Else add

¬AB(p(c)) ∧ ¬AB(host(p(c))) ∧ ¬AB(host(c(c))) → ok(c)

to SD
Else
(b) If ctype(c) = triggered add

¬AB(p(c))
^

t∈trigger(c)∧t∈in(p(c))

ok(t) → ok(c)

to SD
Else add

¬AB(p(c)) → ok(c)

to SD
3. For all m ∈ M :

Add
^

c′∈out(m)

ok(c′) → ¬AB(m)

to SD
4. Return SD.

The functions p(c) and c(c) returns the publishing and receiving module of an
event connection c. The function host(m) returns the host a particular module
m is running on. The algorithm starts with an empty set SD. For every event
connection in two steps, clauses are added to the system description. In the first
step, a clause for forward reasoning is added. The clause specifies if a module
works correct and all related inputs and outputs behave as expected. Depending
on the type of the connection, we add the following clause to SD. If connection c

is triggered, we add a clause that states that if the module and all related inputs
work as expected, also the output has to work as expected. Otherwise a clause is
added that states if the module works as expected also the output has to work as
expected (see Line 2). ¬AB(m) means that the module m is not abnormal and
the module works as expected. The atom ok(c) specifies that the connection c

behaves as expected. Moreover, if the hosts of the sending and receiving module
of a connection c are different a fact that the network interfaces of these modules
have to work correct is added, e.g., ¬AB(host(p(c)).



In a second step, a clause for backward reasoning is added. The clause speci-
fies if all output connections c′ of module m behave as expected, the module itself
has to behave as expected (see Line 3). Figure 4 depicts the system description
obtained for the above example control software.

3 Model-based diagnosis

For the detection and localization of faults we use the consistency-based diagnosis
technique of [3]. A fault detectable by the derived model causes a change in
the behavior of the system. If such an inconsistency between the modeled and
observed behavior emerges, a failure has been detected. Formally, we define this
by:

SD ∪ OBS ∪ {¬AB(m)|m ∈ M} |=⊥

where the latter set says that we assume that all modules work as expected.
In order to localize the module responsible for the detected fault, we have to

calculate a diagnosis ∆. Where ∆ is a set of modules m ∈ M we have to declare
as faulty (change ¬AB(m) to AB(m)) in order to resolve the above contradic-
tion. We use our implementation3 of this diagnosis process for the experimental
evaluation of the models. Please refer to [1, 2] for the detail of the diagnosis
process.

4 Experimental Results

In order to show the potential of our model learning approach, the approach
has been tested on three different types of robot control software. We evaluated
whether the approach is able to derive an appropriate model reflecting all aspects
of the behavior of the system. The derived model was evaluated by the system
engineer who has developed the system. Moreover, we injected artificial faults
like module crashes in the system, and evaluated if the fault can be detected and
localized by the derived model.

A small example control software The example software from the intro-
duction comprises five modules. The module Odometry provides odometry data
at a regular basis. This data is consumed by the module SelfLoc, which does
pose tracking by integrating odometry data, and providing continuously a pose
estimate to a visualization module User. The module Vision provides position
measurements of objects. The module Tracker uses this measurements to esti-
mate the velocity of the objects. New velocity estimations are only generated
if new data is available. The velocity estimates are also visualized by the GUI.
Figure 1 shows the recorded communication of this example. Figure 2 depicts
the communication graph extracted from the recorded data. It correctly repre-
sents the actual communication structure of the example, and shows the correct
relation of event producers and event consumers.

3 The implementation can freely be downloaded at
http://www.ist.tugraz.at/mordams/.



(a) (b) (c)

Fig. 3. Three autonomous navigation systems that have been evaluated. (a) The res-
cue robot Lurker, (b) the Telemax robot, and (c) a team of four Zerg robots during
exploration in the USARSim environment.

Moreover, the algorithm correctly identified the type of the event connections.
This can be seen by the system description the algorithm has derived which is
depicted in Figure 4. It also instantiated the correct observer for the four event
connections. A periodic event observer was instantiated for odometry, objects
and pose, and a triggered event observer was instantiated for velocities. Figure 4

1. ¬AB(Vision) → ok(objects)
2. ¬AB(Odometry) → ok(odometry)
3. ¬AB(Tracker) ∧ ok(objects) → ok(velocities)
4. ¬AB(Selfloc) → ok(pose)
5. ok(objects) → ¬AB(Vision)
6. ok(odometry) → ¬AB(Odometry)
7. ok(velocities) → ¬AB(Tracker)
8. ok(pose) → ¬AB(Selfloc)

Fig. 4. The system description automatically derived for the example control software.

depicts the extracted system description. Clauses 1 to 4 describe the forward
reasoning. Clauses 5 to 6 describe the backward reasoning. Clause 3 states that
the module Tracker works correctly only if a velocity event occur only after a
trigger event. For instance, Clause 6 states that if all output connections of mod-
ule Odometry work as expected, consequently the module itself works correct.
This automatically generated system description was used for diagnosis tests,
where we randomly shutdown modules and evaluated the fault concluded by the
system. During all tests the faults were identified properly.

Autonomous exploration robot Lurker In a second experiment we recored
the communication of the control software of the rescue robot Lurker [5] while
the robot was autonomously exploring an unknown area. The robot is shown in
Figure 3 (a).

The control software of this robot is far more complex as in the simple ex-
ample since it comprises software modules enabling autonomous exploration of



rough terrain. Figure 5 (a) shows the communication graph derived from the
recorded data. The numbers in the labels of the edges denote the average fre-
quency of events on the connections. Please note that a frequency of 0 Hz means
the actual frequency is below 1 Hz. From the communication graph and the cat-
egorized event connections a system description with 70 clauses with 51 atoms
and 35 observers was derived. After a double check with the system engineer
of the control software it was confirmed that the automatically derived model
maps the behavior of the system.

Autonomous exploration robot Telemax. In this experiment we record
data from the software system of the autonomous Telemax robot, shown in Fig-
urer 3 (b), which has been designed for the TechX Challenge. The communication
was recorded from active software modules for controlling the robot to detect,
enter, and operate an elevator.

The communication graph and the system description were derived from the
recorded data. The communication graph comprises 18 nodes (software modules)
and 51 edges (connections). From the communication graph and the categorized
event connections a system description with 63 clauses with 63 atoms and 51
observer was derived. Due to space limitation we omit the picture of the graph
in this paper. A review of the system engineer confirms that the generated graph
and system description reflect the desired structure and behavior of the system.

Autonomous exploration with a group of Zerg robots. In this experiment
we record data during an autonomous exploration run of a group of four Zerg
robots within the USARSim environment used in the RoboCup Rescue Virtual
Robot League [14]. The robots are shown in Figure 3 (c).

A central control station coordinates the exploration of the individual robots.
The central station module and the control software of the robots run on differ-
ent hosts. From the recorded communication of the central software we extract
the communication graph, the categorized event connections and a system de-
scription with 48 clauses with 44 atoms and 36 observer was derived. Figure 5
(b) shows the communication graph derived from the recorded data

This system description was used in a diagnosis experiment. During an au-
tonomous exploration run we switched-off the network interface of robot 3 and
4. This failure situation was immediately recognized by 3 observers which raised
an alarm. The output of all observers (36 literals) together with the above ob-
tained system description were insert into the diagnosis engine. Based on the
system description and the observations, the engine concluded the correct root
cause of the problem, i.e., the network interface of robot 3 and 4: AB(zerg3)
and AB(zerg4). It has to be noted that these root causes could not be directly
observed. This result clearly shows the benefit of model-based diagnosis for the
robustness of robot navigation software.

5 Conclusion and Future Work

In this paper we presented an approach which allows the automated learning of
communication models for robot navigation software. The approach is able to



automatically extract a model of the behavior of the communication within a
component-orientated control software. Moreover, the approach is able to derive
a system description which can be used for model-based diagnosis. The approach
was successfully tested on IPC-based navigation software like the one used by
the rescue robot Lurker. Since IPC is widely used, our approach is instantly
usable on many different robot systems.

The presented implementation can be extended for model learning on any
component-based system using an event-based publisher-subscriber mechanism
for communication. Currently, we are working on a port for Miro-based sys-
tems. In future work, we will work on methods that also analyze the content of
messages, e.g., methods that are able to distinguish between data under normal
and abnormal conditions. We believe that more context knowledge will further
increase the robustness of model-based reasoning.
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Fig. 5. Two learned communication graphs. (a) Communication graph of the Lurker
robot. (b) Communication graph of the central module for the multi robot scenario
with the Zerg robots. The name of the host a module is running on is depicts in the
label of the node.


	Towards Automated Online Diagnosis of Robot Navigation Software-TitlePage.pdf
	kleiner_et_al_simpar08

