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Abstract.
The problem of automatically selecting simulation models for autonomous

agents depending on their current intentions and beliefs isconsidered in this paper.
The intended use of the models is for prediction, filtering, planning and other types
of reasoning that can be performed with simulation models. The parameters and
model fragments of the resulting model are selected by formulating and solving a
hybrid constrained optimization problem that captures theintuition of the preferred
model when relevance information about the elements of the world being modelled
is taken into consideration. A specialized version of the original optimization prob-
lem is developed that makes it possible to solve the continuous subproblem ana-
lytically in linear time. A practical model selection problem is discussed where the
aim is to select suitable parameters and models for trackingdynamic objects. Ex-
periments with randomly generated problem instances indicate that a hillclimbing
search approach might be both efficient and provides reasonably good solutions
compared to simulated annealing and hillclimbing with random restarts.
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1. Introduction

Simulation models are commonly used in many disciplines forvarious purposes. In Arti-
ficial Intelligence, such models can e.g. be used to support prediction and decision mak-
ing capabilities for autonomous agents. Agents that operate in complex environments
can typically not use highly detailed models of all parts of their surroundings, especially
when such models are used for task planning where the effectsof many possible alterna-
tive action choices have to be predicted. Lack of computational resources often limit both
the model and the planning horizon when a timely response is of importance. Tradition-
ally, anytime algorithms [2] are often used to handle the need for a timely response where
a reasonably good solution can be found quickly and if possible, the solution quality
increases with time.

Another complementary approach to deal with the problem of limited computational
resources and the need for a timely response is to try to vary the models and reason on
several abstraction levels. In this paper we will consider an approach where the models
are generated dynamically depending on the current beliefsand intentions at hand. This
is very much related to the call for dynamic abstraction techniques within hierarchical
reinforcement learning [1] and the automatic generation ofsimulation models to answer
queries about physical dynamic systems [9].



The focus of this approach is to find a good tradeoff between the resulting model’s
accuracy and feasibility for the current situation in orderto get as good expected perfor-
mance of the agent as possible given the computational limitations. A part of that trade-
off is in this paper formulated as an optimization problem that captures the limitations
and how good the resulting model will be given the agent’s available model fragments
and relevance information. A motivating example is also presented where the problem is
to find the parameters of a set of model fragments that can be used to represent dynamic
objects (such as vehicles) for tracking applications. These objects can be more or less
relevant for different reasons and the relevance can changedepending on the situation.
The agent must therefore adapt its models to be able to get themost out of its computa-
tional resources. We are not aware of any previous work wherethis particular approach
is taken to generate models.

We believe that automatic model generation in general has the possibility of making
autonomous agents more robust when faced with unexpected situations because it can be
used to focus the agents’ attention by generating models of different complexity when
e.g. their default assumptions turn out to be invalid [11].

2. Motivating Example

This section introduces a practical model generation/selection problem which motivates
the dynamic change of models and other parameters dependingon situation and rele-
vance information. The context will be simulation model generation for particle filters
with the purpose of tracking dynamic objects in e.g. traffic situations.

Particle filters [4] are often used in tracking applicationswhere it is important to
model nonlinear or multimodal phenomenons. When constructing a particle filter, it is
often not clear what type of information to use in each particle and how many particles
to use in total. A good choice must be a reasonable tradeoff that takes the available
computational resources and the accuracy of the resulting filter into account.

When several objects or relations between objecs are important for the tracking
agent, another complication arises. The agent must then be able to dynamically prioritize
between the different parts of its environment and change its models accordingly. The
relevance of these parts may change rapidly depending on thesituation and this should
be reflected in the way the agent uses its resources.

To make this method work, a metamodel that predicts the performance and computa-
tional cost of the different generated models must be available. This requires that a large
empirical study must be performed where the performance of the models are measured
for the different filter parameter settings. For particle filters in general, the performance
increases with the number of particles and update frequencyand we expect that this trend
can be modelled by suitable mathematical functions.

When such a metamodel is available, it is possible to use optimization methods
to maximize the performance of the filter sets given the relevance of the objects and
relations between them. The optimization problem must alsobe constrained with the
available computational resources.

This paper presents a method to select model types and settings by formulating such
an optimization problem that can take relevance information and available computational
resources into consideration.



3. The Model Selection Problem

This section describes how to use optimization for model selection where the input is the
possibly relevant elementsE (such as vehicles, other objects and features such as dis-
tances between objects), a set of possible representationsREP (model fragments such
as models of vehicles and pedestrians) for these elements together with representation
value. Intuitively, the representation value describes how “good” it is to represent the
elementsE in the agent’s current context with the different representations which is sup-
posed to be extracted empirically as described in Section 2.This information is only
considered in isolation in the metamodel and the task of the model selection is to find a
good tradeoff between the representations when all these elements must be represented
in some waytogether in the same modelwith limited computational resources. The out-
put from the model selection is the representation to use foreach element together with
the update frequencies for the different model fragments.

Model fragments that include derivatives of state variables can be simulated with
different update frequencies and the accuracy of the resultoften increases with the fre-
quency. The quality of the result does not increase linearlywith the frequency though.
For example, if there is a large quality difference between 1Hz and 10 Hz update fre-
quency for a particle filter, there is typically not the same increase in quality for a dif-
ference between 1000 Hz and 1009 Hz (although there is some increase). It is important
that this model quality increase is captured in the optimization problem formulation (see
the frequency value functionvF below).

The optimization problem, which attempts to formulate the preferred simulation
model parameters in terms of update frequencies and choice of model fragments, con-
tains the objective functiong : R

n×REPn → R which is assumed to have the following
format:

(1) g(f, r) =
∑

e∈E

vR(e, r)vF (re, fe)

whereE is the set of elements{e1, · · · en}, r is the vector[re1
· · · ren

] of discrete
variables that determine the representationre for each elemente ∈ E andf is the vector
[fe1
· · · fen

] of continuous variables that specifies the update frequencies. Thefrequency
value functionvF : REP × R → R captures the non-linear increase in quality of the
resulting model with the frequency when a certain representationre with frequencyfe

is used. The purpose of therepresentation value functionvR : E × REPn → R is to
represent both the relevance of an element and the suitability of representing it with a
representationre in the context of all other elements’ representations.

The resulting model takes a certain amount of time for each step depending on the set
of model fragments used, and since the computational resources are limited, it is impor-
tant to choose the model fragments wisely depending on how computationally intensive
they are to simulate. The functiontstep : E×REPn → R specifies the amount of time it
takes to make one step with a model fragment representationre ∈ REP in the context of
the other elements’ representations. The constantTmax specifies the maximum amount
of real world time that the simulation model can take per simulated time.

The update frequencies of the different representations then determine the following
constraint:



(2) c(r, f) =
∑

e∈E

tstep(e, r)fe − Tmax ≤ 0

If the frequency value functionvF (re, fe) is strictly increasing for a fixed represen-
tationre (which seems to be a safe assumption), then the inequality inequation 2 can be
replaced by an equality because it will always be active in anoptimal solution.

The limit of the coarseness of the simulation updates can be modelled as follows:

(3) ∀e ∈ E[fe ≥ fmin(re)]

where the functionfmin : REP → R determines the minimum update frequency
for each representation to increase the possiblity of a better resulting simulation model.

The continuous subproblemis defined as the constrained optimization problem in
equations 1, 2 and 3 whenr is fixed. Similarly, thediscrete subproblemis defined as the
optimization problem wheref is fixed. Note that both of these subproblems have to be
solved simultaneously, the only reason to divide them into two subproblems is that the
continuous one can be solved separately by pure continuous methods.

4. Problem Specialization

The optimization problem defined by the Equations 1, 2 and 3 are supposed to be used
in autonomous agents that may not have much computational resources. This means that
the problem must be solved very quickly, which typically means that a reasonably good
solution must be ready within few seconds or fractions of a second depending on the
situation.

We have specialized the original optimization problem by selecting a particulary
suitable frequency value functionvF (re, fe) that both approximately captures the con-
straints in equation 3 and makes the continuous subproblem very easy to solve. This
makes it possible to use a search strategy where the discretevariables inr are first set to
a value and then the global optimum of the continuous subproblem is found.

Several options for choosing the frequency value functionvF (re, fe) are possible
but it is important thatv′F (re, fe) is a strictly decreasing function for a fixedre (due to
the decrease in quality increase with frequency. See the discussion in Section 3). Our
choice of the continuous functionvF,c(fe) (which denotesvF (re, fe) whenr is fixed) is
a variant of the natural logarithmic function:

(4) vF,c(fe) = log(1 + fe − fmin,e)

This choice of frequency value function has the following consequences:

• If fe < fmin,e, the elemente provides a negative contribution to the objective
function which can either be seen as a penalty for the qualitydecrease ofe’s
simulation result or as a way to filter out elements that are irrelevant



• fe can never be less thanfmin,e − 1 (vF,c is not defined otherwise)

The derivative ofvF,c(fe) wrt fe is a positive and strictly decreasing function which
means that it fits the description of a frequency value function in Section 3. We are
not certain that this particular choice of frequency function is suitable for selecting the
update frequency of particle filters without any empirical investigation, but any concave,
increasing function will make the approach described in this paper feasible.

5. The Continuous Subproblem

One important key to solving the reformulated problem is to take advantage of the fact
that for every choice of representationr, the optimization problem transforms into a
continuous optimization subproblem that can be solved in linear time in terms of the
number of elements|E|.

The continuous variant of the objective functiongc(f) and constraintcc(f) becomes
the following:

(5) gc(f) =
∑

e∈E

vR,elog(1 + fe − fe,min)

(6) cc(f) =
∑

e∈E

tefe − Tmax = 0

wherevR,e = vR(e, r) andte = tstep(e, r) for a fixed valuer.
The objective functiongc(f) is concave and the linear constraint is convex, which

means that an optimal solution exist. The KKT conditions [8]for the continuous sub-
problem then shows that there exists a scalarλ in all local optimal solutions such that the
following condition holds1:

(7) −λ∇gc(f) = ∇cc(f)

∇gc(f) and∇cc(f) are the gradients ofgc(f) andcc(f) wrt f .
For our choice ofvF,c(fe) (see Equation 5), this condition is equivalent to:

(8) λ
−vR,e

1 + fe − fe,min

= te

for all elementse ∈ E, which defines a system of|E| linear equations with|E|+ 1
unknowns. The constraint in Equation 6 fills in the missing equation which in total gives
the following system of equations:

1The negative sign on the left hand side in Equation 7 is due to the formulation of the KKT conditions for a
minimization problem which in our case means that−gc(f) is minimized.
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This system of equations can be solved in linear time (Θ(n)) by first solvingλ:

(10) λ =
Tmax −

∑

e te(fe,min − 1)

−
∑

e vR,e

and then finding the solution forf :

(11) fe = fe,min − 1−
vR,e

te
λ

fe will become less thanfe,min−1 if λ ≥ 0 (vR,e andte are always strictly positive
constants), which would makegc(f) undefined for that solution. It is possible to avoid
this problem by noting thatλ can only become positive ifTmax−

∑

e te(fe,min − 1) ≤ 0,
which in practice means that the agent is unable to simulate the model fragments even if
all frequencies are set to the lowest possible.

Since there is a unique solution by directly applying the KKTconditions and at
least one optimal solution exists, the solution found by solving Equation 9 is the global
optimizer ifTmax−

∑

e te(fe,min − 1) > 0. If Tmax−
∑

e te(fe,min − 1) ≤ 0, there is
no solution.

If the choice of frequency value function turns out to be a badone, it is still possible
to solve the continuous subproblem by convex optimization methods due to the nature of
frequency value function.

6. The Discrete Subproblem

We have shown that the optimal solution to the continuous subproblem can be calculated
in linear time. In this section we show that the0-1-knapsack optimization problemcan
be transformed into the discrete subproblem in polynomial time, which means that the
discrete subproblem is NP-hard [5].

The 0-1-knapsack optimization problem is defined as follows:

maximize
n

∑

i=1

pixi(12)

subject to
n

∑

i=1

wixi ≤ c(13)

wherexi = 0 or 1.
If REP = {0, 1}, vF (re, fe) = 1 for all re ∈ r whenfe = 1, vR(ei, r) = piri and

tstep(ei, r) = wi, then any 0-1-knapsack optimization problem can be transformed into



a discrete subproblem in polynomial time. Due to the NP-hardness of the 0-1-knapsack
optimization problem, the discrete subproblem is NP-hard as well.

7. Experiments

We have performed a set of experiments where the focus was to find an efficient method
that delivers reasonably good solutions quickly, which is useful when a timely response
is of importance. The strategy for solving the complete specialized hybrid optimization
problem is to use a separate search for the discrete variables which are then evaluated by
solving the continuous subproblem quickly. Our method of choice for the search in the
discrete variables was hillclimbing (HC) local search which was compared to simulated
annealing [6] and random restart hillclimbing (RRHC).

HC and RRHC used a neighbourhood function that returns|E|(|REP | − 1) neigh-
bour states in which every single elemente ∈ E was set to all its possible representations
REP . All states in the neighbourhood are valued by solving the continuous subproblem.
The simulated annealing implementation used a random neighbourhood functionNsa

where two elements’ representations were changed randomlyand the temperature was
decreased ast ← 0.98t wheret is the current temperature. The temperature level was
changed when 50 state changes had been performed or when the maximum number of
steps (1000) had been taken. SA terminated when 5 temperature levels had passed in a
row without any state change and then HC was performed on the best solution found so
far (in order to at least get a local optimal solution).

Each test used randomly generated problem instances where the representation value
function vR(e, r) = vR(e, re) and tstep(e, r) = tstep(e, re) which made it feasible
to representvR and tstep with matrices. This simplification does not change the NP-
hardness of the discrete subproblem. There were two possible starting states available:
One was called thegreedy start staterg and it maximizedvR(e,re)

tstep(re) (most value per sim-
ulation step time). The other one was called thecheap start staterc which minimized
tstep(re)(fmin(re)− 1) (cheapest representation for all elements). The cheap start state
is always a valid state if any solution exists.

When an invalid states was encountered (happens whenλ ≥ 0), the value fors
was set to−γ(λ + 1) whereγ is set to a large constant (109 in our implementation) to
penalize invalid solutions hard. This solution seemed to work very well for this problem
type and is related to the use of penalty functions in constrained optimization problems
[10].

7.1. Problem Difficulty

We are not able to predict at this stage what characteristicsthe problem instances will
have that will occur in practical situations when models areto be generated. We do
believe that for the environment described in Section 2, therelevance function will take
many possible values depending on the situation and that no particular pattern will exist
that persist over all problem instances that we will consider. We initially performed an
experiment with completely random problem instances and the result indicated that the
simple hillclimbing approach were able to seriously compete with RRHC and SA. This
result might be a good sign for practical applications due tothe low cost of HC but we



wanted to perform tests with more difficult problem instances. One possible measure of
the difficulty of problems can be identified by varyingTmax. A low Tmax makes a fewer
set of representations possible to use, which leads to a smaller set of valid solutions.
WhenTmax increases, the set of solutions increase until all representations are possible
for all elements. Somewhere between the smallest and very largeTmax, we expect to find
the most problem instances that have non-trivial solutions, which could possibly indicate
a phase transition.

In the randomly generated problem instances, a constantα > 1 is used to ap-
proximately vary the number of valid states and problem difficulty. Tmax is set to
α

∑

e∈E tstep(rc)(fmin(rc)− 1) whererc is the cheap start state.

7.2. Cheap VS Greedy

Whenα is rather low, the set of possible states is reduced and it might seem natural to
start the search in the cheap start state. Ifα is high, it might be better to start in the greedy
start state instead. In one experiment, we compared the solution found by HC to SA
and RRHC when HC started in the greedy, cheap and a random start state.α was varied
between 1.1 and 10000 and 2000 randomly problems were generated for each setting
with 30 elements and 20 representations. The result of this experiment is shown in Figure
1 where the upper subplot shows the fraction of the states when RRHC or SA finds a
better solution than HC and the middle subplot shows the relative difference|Vbest−Vhc|

|Vbest|

between the best value foundVbest and the result after HCVhc. The lower plot shows the
number of states visited by the hillclimbing search for the different start state types.

From the results it seems like the cheap state is the best singleton start state for this
class of problem instances if one only considers the qualityof the result. If, on the other
hand, the time it takes to find a local optimum is more important than the solution quality,
the greedy start state performs better than the cheap one forα & 5. The best result is
received when both the greedy and the cheap start state are used. It is also interresting to
note that the random start state provides as good solution quality as the greedy start state
but it takes much longer time to find a local optimum.

For a much largerα, we expected that the greedy start state would outperform the
cheap one due to the advantage of starting closer to a local optimum. The results in
Figure 1 indicate on the other hand that the cheap start stateis better to use even for a
largeα if the solution quality is very important. However, when HC starts at the greedy
start state the time until a local optimum is found is much less than for the cheap and
random states.

8. Conclusion and Future Work

The paper investigated a particular type of optimization problem that aims to capture the
intuition of how the relavance of elements in an environmentshould be reflected in an
automatically generated model that can be used for reasoning by autonomous agents. It
was argued that a particular specialized version of the original optimization problem was
suitable for the task due to the possibility of solving the continuous subproblem exactly
in linear time. It remains to show that the logarithmic function used in the specialized
version can model the performance increase wrt update frequency, but if this is not possi-
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Figure 1. The experimental results whenα was varied between 1.1 and 10000.

ble we might have to use convex optimization methods instead. The discrete subproblem
was shown to be NP-hard.

The complete hybrid reformulated problem was solved with hillclimbing (HC)
search with a simple neighbourhood function and compared tosimulated annealing and
random restart hillclimbing. Within the limitations of theexperiment, the results indi-
cated that informed starting states were better than randomly generated ones if the time
to find a local optimum is of importance. The solution qualitywas best when HC was
started in a so called “cheap” state which is always a valid state if a solution exists at all.

As future work, we will work towards actually using the modelgeneration in a con-
text where settings for particle filters are selected duringvehicle tracking missions with
our real autonomous helicopter system [3]. We also plan to use the method to select mod-
els for other tasks such as planning and extraction of the most likely sequence. Methods
for such tasks that are more suitable for use with simulationmodels will be prioritized
such as forward search, sequence estimation with particle filters [7] and reinforcement
learning [13]. Some of these methods have already been used in context of task planning
where simulation models are used to generated tractable discrete planning models [12]
[11].



A future issue is also the representation of the functionvR(e, r) which can be used to
express the suitability of element representation combinations. We expect that constraints
such asrei

= a⇒ rek
= b1∨· · ·∨rek

= bm will be common in problem domains where
a choice of representation for an element constrain other elements’ representations. The
main problem with these “extra constraints” is that we then have to deal with satisfiability
of these constraints as well.
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