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Abstract.

The problem of automatically selecting simulation modeds Autonomous
agents depending on their current intentions and beliefsrisidered in this paper.
The intended use of the models is for prediction, filteringnping and other types
of reasoning that can be performed with simulation modelle parameters and
model fragments of the resulting model are selected by ftatimg and solving a
hybrid constrained optimization problem that capturesrihétion of the preferred
model when relevance information about the elements of tir&ehvbeing modelled
is taken into consideration. A specialized version of thiginal optimization prob-
lem is developed that makes it possible to solve the contiswsubproblem ana-
lytically in linear time. A practical model selection prelh is discussed where the
aim is to select suitable parameters and models for traakymgmic objects. Ex-
periments with randomly generated problem instances aelithat a hillclimbing
search approach might be both efficient and provides rebsogaod solutions
compared to simulated annealing and hillclimbing with @md-estarts.
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1. Introduction

Simulation models are commonly used in many disciplinesdoious purposes. In Arti-
ficial Intelligence, such models can e.g. be used to suppedigtion and decision mak-
ing capabilities for autonomous agents. Agents that operatomplex environments
can typically not use highly detailed models of all partstait surroundings, especially
when such models are used for task planning where the efieotany possible alterna-
tive action choices have to be predicted. Lack of computaticesources often limit both
the model and the planning horizon when a timely responskimportance. Tradition-
ally, anytime algorithms [2] are often used to handle thalrfeea timely response where
a reasonably good solution can be found quickly and if péssthe solution quality
increases with time.

Another complementary approach to deal with the problernmaféd computational
resources and the need for a timely response is to try to Warynbdels and reason on
several abstraction levels. In this paper we will consideapproach where the models
are generated dynamically depending on the current beefsntentions at hand. This
is very much related to the call for dynamic abstraction téghes within hierarchical
reinforcement learning [1] and the automatic generaticsirafilation models to answer
queries about physical dynamic systems [9].



The focus of this approach is to find a good tradeoff betweendbulting model’'s
accuracy and feasibility for the current situation in ortteget as good expected perfor-
mance of the agent as possible given the computationahliimits. A part of that trade-
off is in this paper formulated as an optimization problemtttaptures the limitations
and how good the resulting model will be given the agent’slalvle model fragments
and relevance information. A motivating example is alsepréed where the problem is
to find the parameters of a set of model fragments that candzbtagepresent dynamic
objects (such as vehicles) for tracking applications. €hagects can be more or less
relevant for different reasons and the relevance can chaegending on the situation.
The agent must therefore adapt its models to be able to getdlseout of its computa-
tional resources. We are not aware of any previous work wiéseoarticular approach
is taken to generate models.

We believe that automatic model generation in general lepdksibility of making
autonomous agents more robust when faced with unexpettietishs because it can be
used to focus the agents’ attention by generating model#fefeht complexity when
e.g. their default assumptions turn out to be invalid [11].

2. Motivating Example

This section introduces a practical model generation¢tiele problem which motivates
the dynamic change of models and other parameters depeodisguation and rele-
vance information. The context will be simulation model gextion for particle filters
with the purpose of tracking dynamic objects in e.g. trafiicagions.

Particle filters [4] are often used in tracking applicatiavisere it is important to
model nonlinear or multimodal phenomenons. When consirgiet particle filter, it is
often not clear what type of information to use in each plrtéomd how many particles
to use in total. A good choice must be a reasonable tradeafftékes the available
computational resources and the accuracy of the resultiagifito account.

When several objects or relations between objecs are impofor the tracking
agent, another complication arises. The agent must thebleécadynamically prioritize
between the different parts of its environment and chargyemiidels accordingly. The
relevance of these parts may change rapidly depending asittition and this should
be reflected in the way the agent uses its resources.

To make this method work, a metamodel that predicts the pagoce and computa-
tional cost of the different generated models must be aviaild his requires that a large
empirical study must be performed where the performancheofiodels are measured
for the different filter parameter settings. For particle=fi in general, the performance
increases with the number of particles and update frequemdyve expect that this trend
can be modelled by suitable mathematical functions.

When such a metamodel is available, it is possible to usenigdtion methods
to maximize the performance of the filter sets given the ealee of the objects and
relations between them. The optimization problem must bis@onstrained with the
available computational resources.

This paper presents a method to select model types andgsdtrformulating such
an optimization problem that can take relevance infornmediand available computational
resources into consideration.



3. The Model Selection Problem

This section describes how to use optimization for modelcdigin where the input is the
possibly relevant elements (such as vehicles, other objects and features such as dis-
tances between objects), a set of possible representdtibids (model fragments such
as models of vehicles and pedestrians) for these elemeagdthr with representation
value. Intuitively, the representation value describew hgood” it is to represent the
elements” in the agent’s current context with the different repreatans which is sup-
posed to be extracted empirically as described in Sectiorh. information is only
considered in isolation in the metamodel and the task of tbéahselection is to find a
good tradeoff between the representations when all theseegits must be represented
in some waytogether in the same modeith limited computational resources. The out-
put from the model selection is the representation to usedoh element together with
the update frequencies for the different model fragments.

Model fragments that include derivatives of state varialglen be simulated with
different update frequencies and the accuracy of the reftglh increases with the fre-
quency. The quality of the result does not increase lineaitly the frequency though.
For example, if there is a large quality difference betwedfzland 10 Hz update fre-
quency for a particle filter, there is typically not the sameréase in quality for a dif-
ference between 1000 Hz and 1009 Hz (although there is samesise). It is important
that this model quality increase is captured in the optitmazgproblem formulation (see
the frequency value function- below).

The optimization problem, which attempts to formulate thef@rred simulation
model parameters in terms of update frequencies and chbivedel fragments, con-
tains the objective functiom: R” x REP™ — R which is assumed to have the following
format:

1) g(fvr) = ZUR(eaT)UF(Tevfe)

ecE

whereF is the set of elementgey, - - - e, }, r is the vectofr., ---r., ] of discrete
variables that determine the representatiofor each element € E andf is the vector
[fe, - -+ fe,] Of continuous variables that specifies the update freqesn€hdrequency
value functionvr : REP x R — R captures the non-linear increase in quality of the
resulting model with the frequency when a certain repregimtr. with frequencyf.
is used. The purpose of thepresentation value functiory : £ x REP™ — Risto
represent both the relevance of an element and the suiyatiilrepresenting it with a
representation, in the context of all other elements’ representations.

The resulting model takes a certain amount of time for eahd¢pending on the set
of model fragments used, and since the computational ressare limited, it is impor-
tant to choose the model fragments wisely depending on howpatationally intensive
they are to simulate. The functiog., : £ x REP™ — R specifies the amount of time it
takes to make one step with a model fragment representatien? £ P in the context of
the other elements’ representations. The condtant, specifies the maximum amount
of real world time that the simulation model can take per $atad time.

The update frequencies of the different representati@rsdietermine the following
constraint:



(2) C(Ta f) = Z tstep(e7 T)fe — Tz <0

ecE

If the frequency value functiong(r., f.) is strictly increasing for a fixed represen-
tationr, (which seems to be a safe assumption), then the inequaktyuation 2 can be
replaced by an equality because it will always be active in@timal solution.

The limit of the coarseness of the simulation updates candzetied as follows:

(3) Ve € E[fe 2 fmin(re)]

where the functiory,,;, : REP — R determines the minimum update frequency
for each representation to increase the possiblity of @bedsulting simulation model.

The continuous subproblens defined as the constrained optimization problem in
equations 1, 2 and 3 wheris fixed. Similarly, thediscrete subprobleris defined as the
optimization problem wher¢ is fixed. Note that both of these subproblems have to be
solved simultaneously, the only reason to divide them into subproblems is that the
continuous one can be solved separately by pure continuetisats.

4. Problem Specialization

The optimization problem defined by the Equations 1, 2 ance3apposed to be used
in autonomous agents that may not have much computatics@lrees. This means that
the problem must be solved very quickly, which typically meshat a reasonably good
solution must be ready within few seconds or fractions of @sd depending on the
situation.

We have specialized the original optimization problem bleaing a particulary
suitable frequency value functiane(r., f.) that both approximately captures the con-
straints in equation 3 and makes the continuous subprobégneasy to solve. This
makes it possible to use a search strategy where the disergbles in- are first set to
a value and then the global optimum of the continuous subi@noks found.

Several options for choosing the frequency value functiptv., f.) are possible
but it is important thav’. (r., f.) is a strictly decreasing function for a fixed (due to
the decrease in quality increase with frequency. See tlraighifon in Section 3). Our
choice of the continuous functian: .( f.) (which denotesr(r., f.) whenr is fixed) is
a variant of the natural logarithmic function:

(4) UF,c(fe) = log(l + ,fe - fmin,e)

This choice of frequency value function has the followingsequences:

o If fo < fmine, the element provides a negative contribution to the objective
function which can either be seen as a penalty for the qudéitrease ot’s
simulation result or as a way to filter out elements that asddgvant



e f. can never be less thgfy,in.. — 1 (vp,c is NOt defined otherwise)

The derivative obr .(f.) wrt f. is a positive and strictly decreasing function which
means that it fits the description of a frequency value famctn Section 3. We are
not certain that this particular choice of frequency fuaictis suitable for selecting the
update frequency of particle filters without any empirieadastigation, but any concave,
increasing function will make the approach described ig plaiper feasible.

5. The Continuous Subproblem

One important key to solving the reformulated problem isaletadvantage of the fact
that for every choice of representationthe optimization problem transforms into a
continuous optimization subproblem that can be solvedradr time in terms of the
number of elementg|.

The continuous variant of the objective functigti /) and constraint.(f) becomes
the following:

(5) gc(,f) = Z UR,elog(l + fe - fe,min)
eckE
(6) Cc(f) - Z tefe - Tmar =0
ecE

wherevg . = vg(e, r) andt. = t.p(e, r) for afixed valuer.

The objective functiory.(f) is concave and the linear constraint is convex, which
means that an optimal solution exist. The KKT conditionsff8]the continuous sub-
problem then shows that there exists a scalarall local optimal solutions such that the
following condition holds:

() —AVyge(f) = Vee(f)

Vgc(f) andVe.(f) are the gradients af.(f) andc.(f) wrt f.
For our choice obr.(f.) (see Equation 5), this condition is equivalent to:

—VR,e
8 A—— 2 =+t
( ) 1+fe_fe,min

for all elements: € E, which defines a system ¢F| linear equations withZ| + 1
unknowns. The constraint in Equation 6 fills in the missinga@n which in total gives
the following system of equations:

1The negative sign on the left hand side in Equation 7 is dukeddrmulation of the KKT conditions for a
minimization problem which in our case means that.(f) is minimized.



te, UR,eq fer tey (fel.,min - 1)

ten UR,en fen ten (fen,min - 1)
tey o te, O A Tnaz

wheren = |E)|.
This system of equations can be solved in linear ti@éx)) by first solvingA:

Tmar - Ze te(fe,min - 1)

(20) A= S

and then finding the solution fqgf:

(11) Je= Feamin —1— 22EN
le

fe will become less thatfe i, — 1if A > 0 (vg, andt,. are always strictly positive
constants), which would makg(f) undefined for that solution. It is possible to avoid
this problem by noting that can only become positive.qz— ., te(fe,min — 1) <0,
which in practice means that the agent is unable to simutatetodel fragments even if
all frequencies are set to the lowest possible.

Since there is a unique solution by directly applying the K&dnditions and at
least one optimal solution exists, the solution found byisgl Equation 9 is the global
optimizer it oz — >, te(fe,min — 1) > 0. 1f Thpae — >, te(fe,min — 1) < 0, thereiis
no solution.

If the choice of frequency value function turns out to be a bae, it is still possible
to solve the continuous subproblem by convex optimizatiethmds due to the nature of
frequency value function.

6. The Discrete Subproblem

We have shown that the optimal solution to the continuoupmatilem can be calculated
in linear time. In this section we show that thel-knapsack optimization problecan
be transformed into the discrete subproblem in polynonmagt which means that the
discrete subproblem is NP-hard [5].

The 0-1-knapsack optimization problem is defined as follows

n

(12) maximize Y _ p;x;
=1

(13) subjectto " wz; < c
=1

wherez; = 0 or 1.
If REP ={0,1}, vp(re, fe) = 1forall r. € r whenf, = 1, vg(e;,r) = p;r; and
tstep(€i, ) = w;, then any 0-1-knapsack optimization problem can be tramsfd into



a discrete subproblem in polynomial time. Due to the NP-hasg of the 0-1-knapsack
optimization problem, the discrete subproblem is NP-hardell.

7. Experiments

We have performed a set of experiments where the focus wazdtari efficient method
that delivers reasonably good solutions quickly, whichdeful when a timely response
is of importance. The strategy for solving the complete ipeed hybrid optimization
problem is to use a separate search for the discrete vesiableh are then evaluated by
solving the continuous subproblem quickly. Our method aficé for the search in the
discrete variables was hillclimbing (HC) local search vihigcas compared to simulated
annealing [6] and random restart hillclimbing (RRHC).

HC and RRHC used a neighbourhood function that retifh§ R E P| — 1) neigh-
bour states in which every single elemer#t E was set to all its possible representations
REP. All states in the neighbourhood are valued by solving thgioaous subproblem.
The simulated annealing implementation used a random beighood functionV,,
where two elements’ representations were changed randamalyhe temperature was
decreased as «— 0.98¢ wheret is the current temperature. The temperature level was
changed when 50 state changes had been performed or wheraxiraum number of
steps (1000) had been taken. SA terminated when 5 tempetatils had passed in a
row without any state change and then HC was performed ondsiesblution found so
far (in order to at least get a local optimal solution).

Each test used randomly generated problem instances wWisatreptresentation value
function vr(e,r) = vr(e,re) aNditsep(e,7) = tstep(e, me) Which made it feasible
to represenvr andtg., with matrices. This simplification does not change the NP-
hardness of the discrete subproblem. There were two pesstifiting states available:
One was called thgreedy start state, and it maximizedt% (most value per sim-
ulation step time). The other one was called theap start state. which minimized
tstep(Te)(fmin(Te) — 1) (Cheapest representation for all elements). The cheapstite
is always a valid state if any solution exists.

When an invalid state was encountered (happens wher> 0), the value fors
was set to—y(\ + 1) wherev is set to a large constant(® in our implementation) to
penalize invalid solutions hard. This solution seemed tdwery well for this problem
type and is related to the use of penalty functions in coimstthoptimization problems
[10].

7.1. Problem Difficulty

We are not able to predict at this stage what characterigteroblem instances will
have that will occur in practical situations when models @rde generated. We do
believe that for the environment described in Section 2réfevance function will take
many possible values depending on the situation and thaariwplar pattern will exist
that persist over all problem instances that we will considé initially performed an
experiment with completely random problem instances aadékult indicated that the
simple hillclimbing approach were able to seriously corepeith RRHC and SA. This
result might be a good sign for practical applications duth&low cost of HC but we



wanted to perform tests with more difficult problem instand@ne possible measure of
the difficulty of problems can be identified by varyifig,,... A low T,,,, makes a fewer
set of representations possible to use, which leads to desnset of valid solutions.
WhenT,,.. increases, the set of solutions increase until all reptatiens are possible
for all elements. Somewhere between the smallest and wg/13, ..., we expect to find
the most problem instances that have non-trivial solutiaméch could possibly indicate
a phase transition.

In the randomly generated problem instances, a constant 1 is used to ap-
proximately vary the number of valid states and problem aliffy. T, is set to
a) cptstep(Te)(fmin(re) — 1) Wherer. is the cheap start state.

7.2. Cheap VS Greedy

Whena is rather low, the set of possible states is reduced and iinsigem natural to
start the search in the cheap start state.i#f high, it might be better to start in the greedy
start state instead. In one experiment, we compared théi@oliound by HC to SA
and RRHC when HC started in the greedy, cheap and a randanstsi#.« was varied
between 1.1 and 10000 and 2000 randomly problems were deddoa each setting
with 30 elements and 20 representations. The result of tpisrament is shown in Figure
1 where the upper subplot shows the fraction of the statesW®RHC or SA finds a

better solution than HC and the middle subplot shows thei\veldifferencem’f‘;j—_:/’”'

between the best value foumls; and the result after H®},.. The lower plot shows the
number of states visited by the hillclimbing search for tifeedent start state types.

From the results it seems like the cheap state is the bedé®ingtart state for this
class of problem instances if one only considers the quafitiie result. If, on the other
hand, the time it takes to find a local optimum is more impdrtaan the solution quality,
the greedy start state performs better than the cheap one fors. The best result is
received when both the greedy and the cheap start stateeateluis also interresting to
note that the random start state provides as good solutiglityjas the greedy start state
but it takes much longer time to find a local optimum.

For a much largety, we expected that the greedy start state would outperfoem th
cheap one due to the advantage of starting closer to a lo¢mhwp. The results in
Figure 1 indicate on the other hand that the cheap startistatetter to use even for a
largec if the solution quality is very important. However, when He@rss at the greedy
start state the time until a local optimum is found is mucls léen for the cheap and
random states.

8. Conclusion and Future Work

The paper investigated a particular type of optimizatiaybpem that aims to capture the
intuition of how the relavance of elements in an environngatuld be reflected in an
automatically generated model that can be used for reagdyimutonomous agents. It
was argued that a particular specialized version of ther@igptimization problem was

suitable for the task due to the possibility of solving thatimuous subproblem exactly
in linear time. It remains to show that the logarithmic fuontused in the specialized
version can model the performance increase wrt updatedrexyibut if this is not possi-
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Figure 1. The experimental results whenwas varied between 1.1 and 10000.

ble we might have to use convex optimization methods instEla€ discrete subproblem
was shown to be NP-hard.

The complete hybrid reformulated problem was solved witltclimbing (HC)
search with a simple neighbourhood function and comparsihtalated annealing and
random restart hillclimbing. Within the limitations of tlexperiment, the results indi-
cated that informed starting states were better than ratydgemerated ones if the time
to find a local optimum is of importance. The solution qualitgs best when HC was
started in a so called “cheap” state which is always a vatitest a solution exists at all.

As future work, we will work towards actually using the modeheration in a con-
text where settings for particle filters are selected duvielgicle tracking missions with
our real autonomous helicopter system [3]. We also planeédhesmethod to select mod-
els for other tasks such as planning and extraction of thé likety sequence. Methods
for such tasks that are more suitable for use with simulatiodels will be prioritized
such as forward search, sequence estimation with partitdesfi7] and reinforcement
learning [13]. Some of these methods have already been nsediext of task planning
where simulation models are used to generated tractaldeetbsplanning models [12]
[11].



Afuture issue is also the representation of the functigte, ) which can be used to

express the suitability of element representation contiaing. We expect that constraints
suchas., =a = r., =b1V---Vre, = by, willbe common in problem domains where
a choice of representation for an element constrain otleenehts’ representations. The
main problem with these “extra constraints” is that we thaveto deal with satisfiability
of these constraints as well.
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