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Abstract

As the scope of logics of action and change continues to increase and
powerful research tools are developed, it becomes possible to model larger
and more complex scenarios. Unfortunately the scenarios become harder
to read and difficult to modify and debug with increasing size and com-
plexity. These problems have been overlooked in the action and change
community due to the fact that only smaller toy problems are consid-
ered. Sound modeling methodology is as essential as the primitives of
the modeling language. The object-oriented paradigm is one structur-
ing mechanism that alleviates these problems and provides a systematic
means of scenario construction.

The topic of this paper is to demonstrate how many ideas from the
object orientation paradigm can be used when reasoning about action and
change, we show this by integrating the technique directly in an existing
logic of action and change without any modification to the underlying
logical language or semantics.

1 Introduction

The action and change community has primarily used toy examples as bench-
marks for testing the semantic adequacy of formalisms. Most of the time, action
scenarios in the literature can be described in words using a couple of sentences
and the logic representation is seldom more than a page long, with the sen-
tences grouped together by type rather than structure. These toy examples are
used in order to highlight or explain some particular point the author wants to
make. However, with some of the classical problems totally or partially solved,
and with powerful tools available for reasoning about action scenarios, it is now
both possible and necessary to model larger, more complex domains.

When we cease modeling toy domains and begin working with more complex
examples, one thing becomes apparent: There is a lack of a methodology for



handling large scenarios. There are no principles of good form, like the “No
Structure in Function” principle from the qualitative reasoning community [7].

The following are some questions that have to be answered in order to de-
velop a systematic means of handling intricate domains:

e Design: How do we design large domain descriptions in a consistent way?

e Elaboration tolerance: How do we, in a convenient way, modify facts
in a domain description to take account of new phenomena or changed
circumstances?

e Modularity: How can we group facts together in such a way that it is
easy to locally change things without having to modify the entire domain
description?

e Incrementality: How do we extend an already existing domain description?

¢ Reusability: How do we reuse parts of old domain description? How do
we provide support for building libraries that provide a way of reusing
often occurring structures?

These questions make it evident that there is a need for a framework or a
methodology that provides the tools for modeling larger domains. The object-
oriented paradigm (for example [1, 4]) does this by providing a more direct
mapping to the way we think about reality in an intuitive manner.

An object is an encapsulated abstraction of some part of reality that offers
specific services to the surrounding world. These services are called methods and
are the only way to interact with objects. The methods are offered to prospective
users by means of an interface, the actual implementation being hidden from
the user. A method is invoked by sending a message to the respective object
telling it to execute the specific method.

There are certain powerful principles that make object-orientation suitable
for modeling larger domains.

e Modularity, that is, the decomposition of large and complex systems into
smaller modules or objects that interact with each other.

e (Classes of objects can be defined in advance and stored in a library. Each
object then is created as an instance of an already existing class and
contains the same features as its class. This facilitates reusing models.

e The concept of reusability becomes even more powerful in combination
with inheritance. A new class of objects can be easily created as special-
ization and/or extension of already existing classes. A subclass inherits
the properties of its parents, and usually also adds its own properties.

The topic of this paper is to show that most object-oriented ideas can be
directly modeled in our temporal action logic (TAL-C) and that they can be
used as a scenario structuring mechanism for supporting the construction of
larger scenarios.



In a classical object-oriented view, a method is a sequence of code that is
procedurally executed when the method is invoked. In our approach, however,
a method is a set of rules that have to be satisfied whenever the method is
invoked. This means that we can invoke methods over intervals of time and
that several methods might be invoked concurrently.

In addition to the above standard object-oriented features we add constraint
methods that contain rules that must always be fulfilled by all instances of a
class. They can be viewed as methods that are always invoked. This allows us
to express many common constructions, for example state constraints, but still
keep an object-oriented viewpoint. A constraint method can in some senses be
compared to an invariant.

2 TAL-C: Temporal Action Logic

In this section, we briefly introduce TAL-C [8, 9], which will be used as a basis
for a proposal for modeling some aspects of object-orientation. The basic ap-
proach we use for reasoning about action and change (RAC) is as follows. First,
represent a narrative in the surface language £(ND) which is a high-level lan-
guage for representing observations, action descriptions and action occurrences,
dependency constraints, domain constraints, and timing constraints about ac-
tions and their duration. Second, translate L(ND) into the base language £(FL)
which is an order-sorted first-order language with four predicates Occlude(t, f),
Holds(t, f,v), Per(f), and Dur(f,v), where t, f, and v are variables for time-
point, fluent, and value expressions, respectively. Holds expresses what value a
fluent has at each time-point. Occlude expresses that a fluent is exempt from
the default assumption at a time-point. Each fluent has to be characterized as
either a durational fluent, Dur(f,v), with default value v, or a persistent fluent
Per(f), but not both. The idea is that unless a durational fluent is occluded at
a time-point, it will retain its default value, while a persistent fluent at ¢ + 1
retains whatever value it has at ¢ unless it is occluded.

A linear discrete time structure is used in TAL-C. The minimization policy
is based on the use of filtered preferential entailment [15] where action descrip-
tions (acs-) and dependency constraints (dep-) are circumscribed with Occlude
minimized and Holds fixed. The result is then filtered with two nochange ax-
ioms, the observations, and some foundational axioms such as unique names
and temporal structure axioms.

The translation from £(ND) to £(FL) is straightforward and the reader is
referred to [8, 9] for details concerning translation and the logic used.

Before we describe the operators of L(ND), we consider how to define fluent
value domains.

e The simplest way of defining a domain is by directly listing its elements.
A simple example of this is dom boolean = {T, L}

e A more dynamical way of defining domains is by first describing the rela-
tion between the domains and then adding the elements. An example of



this way of defining fluent value domains would look like the following:

dom THING
dom VEHICLE isa THING
obj agentl instanceof THING
obj helicopterl instanceof VEHICLE

From this it is possible to create the closure of the domains. The THING
domain becomes {agentl, helicopterl} and the VEHICLE domain con-
tains only agentl.

The £(ND) language contains several operators for expressing different types
of change. This paper, however, only describes fixed fluent formulas, occlusion
assignment and exceptional assignment. The other operators are not needed in
the examples discussed here and are therefore omitted.

A fized fluent formula has the form [t]f = v and is true if and only if the
fluent f has the value v at time-point . For boolean fluents we can use the
shorthand notation [t]f or [t]-f. Fixed fluent formulas do not cause change,
they are used to check the value of a fluent at a given time-point.

The Release operator stands for occlusion assignment and has the form
Release([t]f)!. The intended meaning of this statement is that the default
behavior of f need not hold at time-point ¢. Technically this is done simply
by occluding f at time-point ¢ which means that the value of f varies freely.
Occlusion assignment can be used to model non-determinism. An example of
occlusion assignment is [t|shake — Release([t]break) where shake and break
are persistent boolean fluents. If shake is true at time-point ¢, then break is
released from its persistence assumption at ¢ and might become either true or
false.

The last operator, Set, stands for ezceptional assignment ? and has the
form Set([t]f = v). Like the occlusion assignment, f is released from the
default behavior but in addition we require f to take value v. For exam-
ple, assume that flow is a durational fluent with default value 0.0. The ex-
ceptional assignment Set([t]flow(tankl,pipe2) = 2.0) states that the fluent
flow(tank1, pipe2) takes the value 2.0 at time-point ¢. Unless something else
influences flow(tankl, pipe2), it will revert its default value 0.0 at time-point
t+ 1. If instead flow had been a persistent fluent, it would have kept the value
2.0 at time-point £ 4 1.

The description of TAL-C is very brief, since the purpose of this paper is
not to extend or modify the logic but to show how the object-oriented paradigm
can be used to succinctly structure large axiomatic theories in TAL-C.

1 Release was denoted by X in previous work.
2Set was denoted by I in previous work.



3 Modeling Object-orientation in TAL-C

As has been shown elsewhere [9, 10, 11], TAL-C is a flexible and fine-grained
language suitable for handling a wide class of domains. The intention of this
paper is to show how many aspects of object-orientation can be used in the
TAL-C language as a structuring mechanism for domain descriptions, thereby
supporting the modeling of more complex domains and the reuse of parts of old
domain descriptions when modeling related domains.

The object-orientation can be represented directly in the TAL-C surface
language L(ND). The versatility of durational fluents makes it straightforward
to model many of the non-monotonic aspects of the object-oriented paradigm.
Although some of the constructions may seem cumbersome, it is possible to
introduce a new set of macros in £L(ND) to hide them.

Due to page limitations, we demonstrate the technique using a small appli-
cation to watertanks; but we emphasize that the approach targets larger, more
complex application domains, some of which have been successfully formalized
using these techniques. We begin with two classes called TANK and FLOWTANK.
The only interaction possible with the TANK class is to set the volume in the
tank to a specified number. The FLOWTANK class has the same behavior as the
TANK class but in addition it is possible to say that there is a flow into or out
of the tank.

3.1 Classes

The basic idea behind our approach is to model classes as sets, and instantiated
objects as elements of these sets. Since TAL-C is an order-sorted logic, the
mechanisms for handling the fluent value domains can be directly used for our
purpose.

In our watertank example, the tank class with the instantiated object tank1
would be represented as a domain called TANK containing the element tankl.
The domain definition in £(ND) looks like this:

dom TANK isa OBJECT
obj tankl instanceof TANK,

An object is a member of a class if and only if it is defined as an instance of the
class itself or any of the class’s subclasses.

This technique ensures that inheritance can be handled in a straightforward
manner. If class B extends class A then B is a subset of A. This means that it
is possible to quantify over all objects of a given class, which will be necessary
when defining methods. For our watertanks example we would add the following
domain definitions:

dom FLOWTANK isa TANK
obj tank2 instanceof FLOWTANK



The result, after closure takes place at translation time, is that FLOWTANK =
{tank2} and TANK = OBJECT = {tankl,tank2}. At translation time we also
mechanically construct a domain called classnames that contains the names
of the classes and a subclass fluent representing the class structure. The fluent
subclass(cy, ¢2) is true if ¢; is a subclass of cs.

3.1.1 Fields in an object

The fields in a class are modeled as standard TAL-C fluents. Since each object
of a class should have its own copy of each field, all field fluents take a single
argument of the same type as the class where it was defined.

For example, our TANK class needs a volume field. Assuming we have a
floating point value domain float, the volume field can be modeled as a fluent
volume(TANK) : float taking a water tank as an argument. Clearly, since
FLOWTANK is a subsort of TANK, any FLOWTANK will also have a volume. In
other words, the field is automatically inherited by subclasses of TANK.

The FLOWTANK class also needs a flow field, which can be modeled as a
fluent flow(FLOWTANK) : float taking a flow tank as an argument. Tanks that
are not flowtanks will not be valid arguments to this new fluent, but any object
of a subclass of FLOWTANK will have a flow field.

3.1.2 Methods

We define three types of methods: procedures, functions and constraint meth-
ods. Procedures are used to change the internal state of an object and have
no return values, functions do not cause any change but have a return value,
and constraint methods represent rules or constraints that must hold at all
time-points.

Procedures. The only legal interaction between objects is by method invoca-
tions. In our approach, method invocations are modeled using fluents. For each
class ¢ with the corresponding fluent value domain DOMAIN, and for each pro-
cedure m we wish to define in that class with arguments of sorts {s1,...,ss),
we define a durational fluent m(OBJECT, DOMAIN, s1,...,5,) : boolean with
default value false. At any time-point where an object o wants to invoke this
procedure in another object o', with the actual arguments z1,... ,z,, it should
make m(o,0',z;,... ,T,) true.

Suppose, for example, that the TANK class should have a procedure method
set-volume(f : float). We add a durational fluent set-volume(OBJECT, TANK,
float) : boolean with default value false. Then, the object userl can call
tank1.SET-VOLUME(2.0) at some time-point ¢ by making the durational fluent
set-volume(user1, tank1i, 2.0) true at ¢ using an interval formula.

What remains is to define the set-volume procedure. This is done using
a dependency constraint that is triggered whenever the durational fluent is



true for some combination of arguments. The basic structure of the defini-
tion looks like this:

dep Vi, caller € OBIECT, self € TANK, f € float
[t]set-volume(caller, self, f) — Set([tjvolume(self) = f)

This dependency constraint states that if any object caller calls the set-volume
procedure in the tank self with argument f, then the volume in self becomes f.

Since all objects created from subclasses of TANK by necessity are members
of the TANK domain, this method can be invoked on all of them. The above
example models a public procedure, which means that any other object can
invoke it. If we want to make the method protected, which means that it is only
invokable by subclasses, the domain of caller can simply be set to TANK instead
of OBJECT.

Functions. The second type of method is functions. Functions are used to
get values from objects. Instead of representing the invocation with a boolean
durational fluent, as the procedures, we let the invocation fluent be a dynamic
fluent that has the same domain as the return value. The value of the fluent is
bound by the body of the function, as in:

dep Vi, caller € OBJECT, self € TANK
[t]query-volume(caller, self) = [t]volume(self))

Note that functions are not allowed to contain any Set or Release macros.

Constraint methods. In contrast to normal object-oriented programming,
some types of behavior have to be active at all time-points. For this we introduce
a special type of method that we call constraint methods. A constraint method
looks just like a method, but we do not require any invocation fluent to be true in
order for the method to be active. An example of this is the flow in a flowtank.
The changing of the volume does not depend on any method invocation; it
should automatically be done at every time-point. The constraint method for
this would look like the following:

dep Vi, self € FLOWTANK, f, f2 € float

([t] flow(self) = f1 A [tjvolume(self) = fa) —
Set([t + 1]set-volume(self, self, f1 + f2)),

where flow is the inflow of the tank minus the outflow of the tank. This con-
straint means that if at time-point ¢ we have flow f; and volume f2 then we
invoke the set-volume method with argument f; + f2 at time-point ¢ + 1.

3.2 Overriding

Another useful feature of object-orientation is the ability to override methods.
A method defined in a superclass may be defined again in a subclass, and this



new definition takes precedence over the old definition. Say, for example that
we later want to use the FLOWTANK class but we want to have an upper limit
(10 units of water) to the amount that we can put into the tank. In this case
we construct a new class called OFTANK (OverFlow TANK) to represent such
tanks. This class extends the FLOWTANK class with a new method description
for the set-volume method that overrides the old behavior. For this to work in
our approach, two things have to be done when a method is defined. First, we
have to ensure that all methods with the same name higher in the class-tree
are not invokable. Secondly, we have to make sure that for each object, the
method is invokable only if no subclass overrides it. To do these things we
introduce a new durational fluent called override (object ,method, classname)
which normally is false, to represent that for a given object object, the method
method defined in class classname is overridden.

The first step is done by adding a statement of the following form each time
a method is defined:

dep Vi, c € classnames,i € CURRENTCLASS (1)
[t]subclass(CURRENTCLASS, ¢) — Set([t]override(i, methodname, c)),

where CURRENTCLASS is the class in which the method is being defined, and
methodname is the name of the method being defined, and ¢ ranges over all
instances of class CURRENTCLASS. The intended meaning of the above state-
ment is that override should be true for all methods with the same name,
defined in superclasses. For notational convenience we will use the macro
ClassMethod(CURRENTCLASS, methodname) as a shorthand for statements of
type (1).

The second step consists of adding, in our method definitions, the require-
ment that the method is not overridden for the given object in the current
class. We will use the macro Invoked (CURRENTCLASS, methodname, f) as a
shorthand? for

[tjmethodname(caller, self, ) A
[t]-override(self, methodname, CURRENTCLASS).

The set-volume method we defined earlier should instead be written in the
following way, to accommodate the possibility of overriding;:

dep;, ClassMethod(TANK, set-volume)
depyp Vi, caller € OBJECT, self € TANK, f € float
Invoked(TANK, set-volume, f) — Set([tjvolume(i) = f)]

If a method is defined as above, it overrides all methods with the same name
higher in the hierarchy. It also makes it possible to override this method if some
subclass redefines the method.

3The Invoked macro is context dependent on self and caller. They could have been added
as arguments but that clutters the presentation so we leave them as they are.



4 Elaboration tolerance

According to McCarthy [12], elaboration tolerance is the ability to accept changes
to a person’s or a computer program’s representation of facts about a subject
without having to start all over. Several of the ideas used in the object-oriented
paradigm make it easy to build elaboration tolerant scenarios. This is not
surprising since the reasons behind the object-oriented paradigm include mod-
ularization and the possibility to reuse code.

With inheritance it is possible to specialize a class, adding more methods
and constraints.

Overriding is another powerful tool useful for increasing elaboration toler-
ance. It allows us to change some behaviors of a class without having to know
all the details of that class. This way we do not have to do any “surgery”* if
we want to change the behavior of a subclass. We only have to override the
methods that we want to change, leaving the entire original scenario description
unchanged.

5 Related work

Much work has been done in combining object-oriented ideas with the area of
knowledge representation. One such area is description logics (see for exam-
ple [6, 5]). Description logics are languages tailored for expressing knowledge
about concepts (similar to classes) and concept hierarchies. They are usually
given a Tarski style declarative semantics, which allows them to be seen as sub-
languages of predicate logic. One starts with primitive concepts and roles, and
can use the language constructs (such as intersection, union, role quantification,
etc.) to define new concepts and roles. The main reasoning tasks are classifica-
tion and subsumption checking. This means that description logic hierarchies
are very dynamic and that it is possible to add new concepts or objects at
runtime that are automatically sorted into the correct place in the concept hier-
archy. Some work has been done in combining description logics and reasoning
about action and change (see for example [3]).

The modeling methodology presented in this chapter has a very simple class
hierarchy that is constructed at translation time and is thereafter static. Classes
have to be explicitly positioned in the hierarchy and classes and objects cannot
be constructed once the narrative has been translated. Description logics do
not have class methods or explicit time, both of which are essential in the work
presented here.

The approach presented in this chapter bears more resemblance to object-
oriented programming languages such as Prolog++ [14], C++ or Java. In these
languages, a method is a sequence of code that is procedurally executed when
the method is invoked. In our approach, however, a method is a set of rules
that have to be satisfied whenever the method is invoked. The fact that delays

4McCarthy uses the term surgery for describing the act of going through the scenario
description and changing specific values by hand.



can be modeled in TAL-C means that methods can be invoked over intervals
of time and that complex processes can be modeled using methods. It is also
possible to invoke multiple methods concurrently.

An interesting approach to combining logic and object-orientation is Amir’s
object-oriented first-order logic [2], which allows a theory to be constructed as
a graph of smaller theories. Each subtheory communicates with the other via
interface vocabularies. The algorithms for the object-oriented first-order logic
suggest that the added structure of object-orientation can be used to signifi-
cantly increase the speed of theorem proving.

The work by Morgenstern [13] illustrates how inheritance hierarchies can
be used to work with industrial sized applications. Well-formed formulas are
attached to nodes in an inheritance hierarchy and the system is applied to
business rules in the medical insurance domain.

6 Discussion

The need for a methodology of scenario description construction becomes evi-
dent as soon as we leave toy examples behind and try to model realistic dynamic
domains. As the size and complexity of domains increase, it becomes more and
more difficult to read, modify and debug them.

This paper has presented a way to do object-oriented modeling in an already
existing logic of action and change.

The advantage of the work presented here is that larger domains can be
modeled in a more systematic way and that we can group rules together in such
a way that it is possible to locally change the representation. This leads to
increased reusability and elaboration tolerance.

The main difference between our work and other approaches to combining
knowledge representation and object-orientation is due to the explicit time-
line in TAL-C. Methods can be called over time periods or instantaneously,
concurrently or with overlapping time intervals. Methods can relate to one
state only or describe processes that take many time-points to complete.

Our approach also allows us to use our language for phenomena not usually
modeled in sequential object-oriented languages. It is for example straightfor-
ward to sum the arguments of multiple method invocations taking place con-
currently. An example of this would be to say that we allow any number of
objects to set their individual flow into a tank at the same time, then compute
the resulting net flow by adding together the arguments of all the invocations
of the set-flow method.

The ideas presented in this paper do not require any modification of the
TAL-C language or semantics, only a restriction on the surface language used to
represent scenarios. In this manner, we enforce more structure on our narratives
in order to get modularity and reusability. It is reasonable to believe that this
can be used to make theorem proving in £(FL) more efficient. The work by Amir
on an object-oriented first-order logic and its inference algorithms [2] supports
the claim that object-oriented structure can be used to gain significant increases



in the speed of theorem proving.

Finally the modularization also provides a nice interface for hybrid narratives

in the sense that some of our objects might not be encoded in our logic. We can
for example have a class for doing complex mathematics as an outside source,
implemented procedurally in another object-oriented programming language.
The interaction between the standard classes and the outside classes are sim-

ply handled just as method invocations, much like remote method invocations
(RMI) in JAVA.
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