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Abstract 

Two types of automatic fitting procedures for EPR spectra of disordered systems have 

been developed, one based on matrix diagonalisation of a general spin Hamiltonian, the 

other on 2nd order perturbation theory.   The first program is based on a previous Fortran 

code complemented with a newly written interface in Java to provide user-friendly in- 

and output. The second is intended for the special case of free radicals with several 

relatively weakly interacting nuclei, in which case the general method becomes slow. A 

least squares’ fitting procedure utilizing analytical or numerical derivatives of the 

theoretically calculated spectrum with respect to the g-and hyperfine structure (hfs) 

tensors was used to refine those parameters in both cases. ‘Rigid limit’ ESR spectra from 

radicals in organic matrices and in polymers, previously studied experimentally at low 

temperature, were analysed by both methods. Fluoro-carbon anion radicals could be 

simulated, quite accurately with the exact method, whereas automatic fitting on e.g. the c-

C4F8
- anion radical is only feasible with the 2nd order approximative treatment. Initial 

values for the 19F hfs tensors estimated by DFT calculations were quite close to the final. 

For neutral radicals of the type XCF2CF2• the refinement of the hfs tensors by the exact 

method worked better than the approximate. The reasons are discussed. The ability of the 

fitting procedures to recover the correct magnetic parameters of disordered systems was 

investigated by fittings to synthetic spectra with known hfs tensors. The exact and the 

approximate methods are concluded to be complementary, one being  general, but limited 

to relatively small systems, the other being a special treatment, suited for S=½ systems 

with several moderately large hfs.  

Keywords: automatic fitting, EPR spectra, fluorocarbon radicals 
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1. Introduction 

 Single crystal measurements are among the most straightforward but not always 

applicable methods to determine the values of magnetic couplings in solids. It is for 

instance difficult to obtain single crystals of biochemical materials. In other cases the 

paramagnetic species are intentionally trapped in a disordered matrix or in a frozen 

solution. The ESR lines are then usually broadened by the anisotropy of the magnetic 

couplings. Some data, e.g. the position of the paramagnetic species in the lattice that a 

single crystal analysis can provide, are difficult to extract from a powder. However, a 

considerable amount of information can often be extracted from a spectral analysis even 

from disordered systems as shown in many preceding works e.g. concerned with: 

• Free radicals or other S=½ species with anisotropic g and hyperfine couplings 

• S>½ species with zero-field splittings  

In some cases a visual analysis is sufficient, in other refinement by computer simulation 

is required. A large number of simulation methods have been developed during the last 

40 years, the earlier ones, e.g. in [1-3] being based on perturbation theory. Methods based 

on exact diagonalization of the spin Hamiltonian have been described more recently, see 

for example [4-6]. The mathematical form (1) used in this work is also adopted in many 

of those programs for the calculated spectrum. 
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The summation is over the transitions between the magnetic states p and q. Ipq is the 

transition probability and Bpq is the resonance field. The microwave frequency ν is 

constant and the spectrum S(B,A) is calculated as a function of the applied magnetic field 

B. The shape of the spectrum is determined by a set of parameters A representing e.g. the 

components of g- and hyperfine coupling tensors, line width w, and total intensity C. The 

line shape f(x) is usually approximated by 1st derivatives of Gaussian, Lorentzian or Voigt 

functions.  
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Automatic fitting procedures to EPR spectra of disordered solids have only recently 

appeared following the initial work by Misra [7] using the non-linear least-squares 

method. In this method the function (2) is minimised [8]. 
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Si is the experimental ESR spectrum measured in M points. The Hellmann-Feynman theorem 

(3) was applied to obtain analytical expressions for the derivatives  entering the equations 

of the non-linear least squares method. The parameter Ak is a component of the coupling 

tensors in eq.(1). 
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This approach is applicable when the energies Ep and wavefunctons ψp are 

obtained by diagonalization of the spin_Hamiltonian matrix. It provides a possibility of 

obtaining analytical derivatives of the energy differences Ep - Eq used to calculate the 

resonance field, and consequently of the coupling tensors. An alternative method to 

obtain analytical derivatives when the resonance fields Bpq were obtained by perturbation 

theory was recently published [9].  

 

In this study we employ automatic fitting procedures for disordered systems using both 

matrix diagonalization and perturbation methods in two least-squares programmes. The 

first method is intended for general spin systems. A graphical interface for input 

generation and output display has been added after the programme was first described. 

[10].  The programme was slow when applied to the analysis of fluorocarbon radical ESR 

spectra  with anisotropic hyperfine couplings from several 19F nuclei in this work, 

however. A perturbation method was therefore developed to treat this special case. Fitting 

of fluoro-carbon anion radicals containing up to 8 F atoms was feasible with this 2nd 

order, approximate, treatment.   

The magnitudes and relative orientations of 19F hyperfine and g-tensors can in favorable 

cases be obtained entirely by an analysis of experimental data [11]. Several studies have 

shown, however, that the tensor axes from 19F in fluorocarbon radicals need not have any 
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relation to the geometric structure, contrary to the case of H in hydrocarbon radicals 

[12,13]. DFT calculations have recently proved useful to obtain the principal values and 

directions of  19F hyperfine coupling tensors of perfluorocarbon radicals [14]. The 

principal values and directions from theory were therefore employed as initial parameters 

for the analysis of the experimental spectra of this work. 

2. Theoretical methods 

Two methods were employed to calculate the intensities and positions (Ipq,Bpq) in eq. (1), 

one exact, based on diagonalization of the full spin Hamiltonian matrix, the other 

approximative using 2nd order perturbation theory. The refinement of  the parameters, i.e. 

the elements of e.g. the g- and hyperfine coupling tensors, by the non-linear least squares 

method proceeded by  similar methods in the two cases. The non-linear least squares fit 

procedures of the exact and approximate methods  followed those described by Press et 

al. [8]. In this method derivatives, 
kA

S
∂
∂ , of the spectrum (1) with respect to parameters Ak 

must be provided.  

 

2.1 Matrix diagonalization method 
 
The exact method based on matrix diagonalization of the full spin Hamiltonian has been 

described previously. In brief it includes terms of the type μBBgS, μNgNBI, SDS, SAI, 

IQI, and S1JS2 allowing fits of the g-, D-, A-, Q-, and J-tensors, the latter including both 

isotropic and anisotropic interactions between two electronic spins. The energies were 

calculated by diagonalization of the Hamiltonian matrix expressed in the basis 

L = m1m2 ...mN , where similar symbols are used for totally N electron and nuclear 

spins. The matrix was set up automatically by obtaining the quantum numbers m1 to mN 

needed to compute the elements ´LHL  by a division algorithm sweeping through the 

L and L´ indices. The  derivatives, 
kA

S
∂
∂ , of the spectrum (1) with respect to parameters 

Ak were calculated analytically with the help of the Hellmann/Feynman theorem (3) to 

reduce computation times as described in [10,16]. The Hamiltonian matrix elements are 

linear functions of the parameters A. The derivatives ∂H/∂Ak were therefore computed by 
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putting Ak=1, Aj=0, j≠k in the Hamiltonian matrix. The intensity of the transition Ipq  is a 

generalized expression of that by Kottis and Lefebvre [15] for a disordered system, 

taking into account all (N) magnetic particles, electrons as well as nuclei and with the 

microwave magnetic field perpendicular to the static field [16]. 

 

 2.2 2nd order perturbation method 

The approximate method is a development of a procedure described previously [17] to 

simulate EPR spectra of disordered anisotropic S=1/2 systems with hyperfine and nuclear   

interactions due to several (n) nuclei: 

∑
=

+++=
n

i
qiNiaie HHHHH

1

                               (4) 

In contrast to the classical treatment by Lefebvre and Maruani [2] a nuclear quadrupole 

term Hqi is taken into account for each nucleus with I>½ in addition to the hyperfine 

coupling,  Hai, and nuclear Zeeman, HNi, terms. The quadrupole term is unnecessary for 

this application, but was retained to avoid changing a functioning programme. The 

electron Zeeman energy SBe BgME μ=  dominates over the energies obtained from 

(Hai+HNi+Hqi), but no assumption is made about the relative magnitudes of the individual 

terms. These energies are calculated by diagonalizing a perturbation operator for each 

nucleus of the following form 

IIQIuAI liNiiiuiii gBSH μ−+=                                     (5) 

Here and  are unit vectors along the applied and effective static field; 

the latter is the quantization axis for the electron spin with the component Su. The g-factor 

is obtained from . The tensors g, Ai and Qi need not have parallel axes. The 

procedure to obtain the transition fields Bpq and intensities Ipq   in eq.(1) due to all nuclei 

to 2nd order is described in [17c]; here p and q refer to the nuclear states within the MS = 

½ and -½ manifolds, respectively. The intensities were corrected by the factor |G|2/g in 

Appendix A taking g-anisotropy into account for possible future applications. An 

automatic procedure to treat equivalent nuclei (nuclei of the same kind and with equal 

principal values and axes of the A-tensors) has been implemented in the present work. 

B/B=l g/lgu =

22 )( lg=g
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The procedure when applied to an arbitrary number of equivalent I=½ results in a set of 

coupled spin angular moments with their multiplicities. The procedure was introduced to 

correctly calculate the 2nd order contributions to the energy and to reduce the computation 

times e.g. for the c-C4F8
- radical anion in this work. The procedure is applicable also for 

I>½ nuclei provided that the nuclear quadrupole interaction is neglected, but this feature 

has not been employed in the present work. 

Derivatives 
kA

S
∂
∂  of the spectrum (1) with respect to parameters Ak were calculated as 

follows. Equation (6) was used to obtain the derivatives with respect to the g-tensor 

components gij analytically. 

∑∫ ∫
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Here 
B

g g
hB
μ
ν

= , w is the line-width and 
x
f
∂
∂  the derivative of the line-shape function. The 

latter is obtained analytically for the Gauss and Lorentz functions, numerically for the 

additionally employed Voigt line-shape function.  

Analytic expressions for the derivatives with respect to the line-width have been given 

previously for a Gauss or Lorentz function [7]. The derivative with respect to the line-

width for a Voigt function was obtained with  the help of (7) . This enters as a factor in 

the expression for 
w
S
∂
∂  in the least-squares fit of the line-width w to experiment [10]. 

w
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 Derivatives 
kA

S
∂
∂  with respect to the components of the hyperfine coupling tensors were 

calculated numerically in the approximate theory because of difficulties to implement 

analytical formulae in the computer code.  The potential option of optimizing nuclear 

quadrupole couplings was not made use of because of lacking experimental data to test 

the theory. 

 8



2.3  Line shapes 

The line-shapes were approximated by first derivatives of Gaussian or Lorentzian 

functions, in the approximate theory also by the derivative of the Voigt profile. The last 

function was calculated as  a convolution of the two first. The shape is determined by the 

orentzian to Gaussian line-width ratio.  

arts of the programmes are in Fortran 77 with a few recent 

dditions in Fortran 90.     

L

 

 

4.   Programming 

Two separate programmes were prepared, one based on the matrix diagonalization 

method, the other on 2nd order perturbation theory. The code for the least- squares fit 

using the Levenberg-Marquardt method  was taken from the literature [8]. A free-ware 

code was employed to diagonalize the spin Hamiltonian matrix. Except for a graphical 

interface these and other p

a

 

4.1 The XFit programme 

. A graphical user interface has been implemented in the Xfit program described in 

previous reports [10,16]. The interface was written in Java using its graphic library. The 

input data, referred to below as the simulation file, are given in fields labelled to be 

understandable for users familiar with ESR terminology. The fields are contained in three 

main windows that are opened separately. The first window provides the number of 

orientations for the numeric integration of eq.(1), the microwave frequency and an initial 

estimate of the linewidth. Another window is used to give initial resonance parameters 

for the species under study. The g- tensor is specified with the principal values and 

direction cosines for the principal axes. The same format is employed for the A-, D- 

(S>½), and Q- (I>½) tensors. Nuclear spin values and gN factors are automatically 

inserted by opening an auxiliary window showing the periodic table and pressing the 

corresponding atom symbol. Different isotopes can be selected. More than one species 

can be specified, allowing coupled systems to be analyzed. . A coupled system is 

specified by introducing another set of g- A-,D and Q-tensors plus a J-tensor for the 
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interaction between the two species. The principal values of the A-,D and Q- and J-

tensors are in MHz units. By opening a summary window, the simulation file can be 

viewed in the style used in the previous version of Xfit [10,16]. Buttons for saving and 

reloading the file are available on the three main windows.  A simulation file can be 

edited after loading or by using a text editor on the saved file. A directory containing the 

spectrum to be fitted is opened by a button that can be activated from the main windows. 

A button to start the Xfit program becomes active after the simulation file has been 

completed and the experimental file has been loaded. It is also possible to start the 

process by loading ready-made simulation files from a directory.  Output and diagram 

files can be viewed after Xfit stops. An output file contains the initial and final 

parameters. The experimental and and computed spectra are displayed in the same 

le 

, 

n 

 version 

ber of equivalent nuclei with nuclear spin ≥ ½ was 

implement analytical formulae 

diagram. 

4.2  The 2ndorderFit programme  

The programme is a development of a simulation program for free radicals described 

previously [17 a-c]. That program was written with the purpose of analyzing esr spectra 

for the case when the quadrupole and hyperfine couplings of a nucleus are of comparab

magnitude but much smaller than  the electronic Zeeman term of an unpaired electron 

with S=1/2. The matrix of the perturbation spin Hamiltonian (5) containing the hyperfine

nuclear quadrupole and Zeeman terms is diagonalized for each nucleus separately, thus 

the matrices to be diagonalized will be small. To give accurate results, the perturbatio

due to (5) has to be small compared with the electronic Zeeman term. Second order 

corrections, taking into account equivalent nuclei, were therefore included in the

employed in this work [17c]. A routine that computes effective spin values and 

multiplicities for an arbitrary num

implemented for the purpose.     

The line positions and intensities due to all nuclei were computed in a loop with only 

temporary storage of the contributions from each nucleus.  This made it difficult to 

kA∂
S∂  with respect to the components of the hyperfine 

coupling tensors in the computer code. Derivatives were therefore calculated numerically. 

The Voigt line-shape function, employed in addition to the Gauss and Lorentz functions 
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was calculated by the Gautschi algorithm, using a Fortran translation of a published code. 

[18]. Numerical differentiation was employed in this case to give the quantity 
x∂

(6)  and to compute 

f∂  used in 

w∂
 according to eq (7). The experimental spectrum file to which the 

fit is made consists of two columns giving the field and the intensity. A third column 

giving the uncertainty σi at each point in eq.(2) can be added. Spectrum parts arising from 

overlapping species are eliminated from the fit by assigning artificially large σi values to 

those regions. This method was app

f∂

lied to the centre of the spectrum in figure 4 for 

xample. The field is in Gauss units. 

.  Fitting of ESR Spectra  

uch more studied, in part by our own work 

[17c] and is therefore not considered here.  

orinated polymer, Nafion, has been assigned to a chain end radical,  XCF2CF2• 

9]. 

 

e

 

5

 
Fittings of ESR spectra by the method employed in Xfit, is limited to systems with 

relatively small dimensions of the spin Hamiltonian matrix. The chain-end radical 

fluorocarbon radical,  XCF2CF2• detected in the Nafion polymer, with hfs due to two Fα 

and two Fβ 19F nuclei with matrix size of 32x32 is the most complex system that so far 

could be examined with this method. It is therefore of interest to compare this method 

with approximative ones based on perturbutation theory for the analysis of free radical 

spectra  that often contain hfs from several nuclei. The fittings of fluorocarbon radical 

ESR spectra reported here are based on recent experimental and theoretical studies of 

chain-end [19,20] and cyclic fluorocarbon radicals [14]. The analysis of hydrocarbon 

radical spectra in disordered systems is m

 

 5.1   XCF2CF2• 

The full line spectrum in Fig. 1, obtained after chemical/UV-light treatment of a  

perflu

[1
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Figure 1. Experimental (line) and fitted(dot)  X-band spectra  of  XCF2CF2•  detected 

in the Nafion polymer with parameters Aα1 = Aα2 = (622, 50, 50) MHz,  Aβ1= (95.9, 71.5, 

42.0) MHz, Aβ2= (82.1, 65.6, 83.6) MHz, line-width = (34.5, 26.8, 23.9) MHz (Lorentz). 

The axes of the 622 MHz  components of the Fα1 and  Fα2 are inclined 12.60 according to 

the fit, in agreement with DFT calculations. The axes of the Aα- and  Aβ- tensors were 

taken from DFT results.  

 

The dotted line is a fit to the experimental using Xfit.  The central features could be 

explained only by assuming non-parallel axes for the two αF indicating a non-planar 

geometry about ―CF2
•. The hyperfine coupling tensors were obtained by combining the 

predictions of DFT calculations with the ESR results [20]. The principal values of the 19F 

hyperfine coupling tensors were adjusted, while the principal axes obtained from DFT 

were used as initial parameters to start the fitting procedure. 
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Fittings with the Xfit program for this system were computationally demanding; each 

spectrum required several hours of computation time. It was therefore difficult to test if 

the final parameters were unique or depended e.g. on the guessed initial values used to 

start the automatic fitting procedure. Automatic fitting procedures based on perturbation 

theory [9] are better suited for such tests, particularly in free radical systems with several 

interacting nuclei. In the present work ESR spectra of  the ―CF2
•  radical fragment were 

synthesized by  using matrix diagonalization and 2nd order perturbation methods. An 

attempted least squares analysis of the synthesized spectra with the 2ndorderFit program 

shown in Figure 2 succeeded relatively well with collinear hyperfine coupling tensor axes 

of the two F atoms. 

 

3100 3200 3300 3400 3500 3600 3700
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Figure 2. synthetic (black line) and fitted (dot)  X-band spectra  of ―CF2

•  radical 

fragment with parameters Aα1= Aα2 (18, 18, 222) G.  The axes of the 222 G  components 

of the Fα1 and  Fα2 hyperfine coupling tensors are parallel.  
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This case occurs for the four pairs of F atoms in the ESR spectrum of c-C4F8
- discussed 

below. The axes of the Az = 222 G tensor components of the Fα1 and Fα2 atoms in  

XCF2CF2•   were, however, estimated to be inclined 12.60 [19]. The assumed axial 

symmetry with Ax=Ay =18 G was not recovered in the fit to the ―CF2
•  model spectrum 

but the values deviated by ca ±10 G.  The failure to give right values can in part be 

attributed to a smearing of the central portion of the spectrum when the tensor axes are 

not parallel so that features characteristic of the 18 G coupling becomes unresolved. 

Another, more fundamental reason is that a coupling term involving the hyperfine 

couplings occurs between the two Fα nuclei in 2nd order perturbation theory [21]. This is 

not taken into account in the simulation code employed here, except for completely 

equivalent nuclei occurring for example in the case considered in Figure 2. The 

perturbation method as applied here is therefore not suited to analyze the X-band spectra 

with anisotropic hyperfine couplings of inequivalent nuclei of the relatively large size 

found for the   XCF2CF2•  radical. This is in agreement with the finding that the ESR 

spectrum of •CF3 radicals  in a disordered solid matrix cannot be completely accounted 

for by the classical simulation technique developed by Maruani [2,11]. Simulation or 

fitting using matrix diagonalization are the most straightforward although computer 

demanding methods to handle such systems, characterized by sizeable anisotropic 

hyperfine couplings due to two or more inequivalent nuclei.  . For the C4F8
- anion radical 

showing hfs from 8 19F nuclei in the next section the perturbation method is the only 

alternative, however, although the hfs is of the same size as for the XCF2CF2• radical. 

5.2  c-C4F8
- 

The experimental ESR spectrum in Figure 3, obtained after γ-irradiation of  1 mol % 

c-C4F8 in a matrix of 2-methyltetrahydrofuran (MTHF) at 77 K contains several 

components. The features present in both wings have been attributed to the rigid-state 

spectrum of c-C4F8
- [14(b)]. The central part of the c-C4F8

- spectrum is obscured by a 

strong quintet pattern from the matrix radical. The two sharp lines, on each side of the 

centre are due to hydrogen atoms. The simulated spectrum was obtained by the matrix 

diagonalization method using hyperfine coupling tensors from DFT theory [14(b)].  The 

simulation was time consuming, ca 60 hours, making parameter fitting impractical with 

this method.  
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 Figure 3. Experimental (below) and simulated (above) X-band ESR spectra of  c-C4F8
-. 

The central part of the c-C4F8
- spectrum is obscured by a strong quintet pattern from the 

matrix radical. The two sharp lines, on each side of the center are due to hydrogen 

atoms. The simulated spectrum was obtained by the matrix diagonalization method using 

the hyperfine coupling  tensors from DFT theory [14(b)]. Only the line-width and the 

amplitude were adjusted to the experimental spectrum. 

 
 

The method based on 2nd order perturbation theory was therefore applied, in least-squares  

fittings to the experimental spectrum of C4F8
- , with one example shown in Figure 4.  

 

The theoretically predicted D4h symmetry leads to complete equivalence of the (F1,F6), 

(F2,F5), (F3,F8), and (F4,F7) pairs of 19F nuclei. The 2nd order corrections to the 

hyperfine couplings could therefore be correctly calculated for each pair as described 

earlier. The different pairs have different principal axes, but the principal values of the 
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hyperfine couplings should be the same. This was not achieved in the fittings, since point 

group symmetry was not taken into account in the computer code. When only the 

principal values of the  (F1,F6) pair were fitted as in Figure 4, A1=A6 =(107.0, 135.8, 

208.9) G was obtained  to be compared with the values (113.1 113.7 218.8) G of the pairs 

that were not fitted.  The symmetry was broken to approximately the same extent when 

the principal values of two or all four pairs were varied. The quality of the fit did not 

improve, compared to that in Figure 4, however.  
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 Figure 4. Experimental (below) and simulated (above) X-band ESR spectra of  c-C4F8
-. 

The central part of the c-C4F8
- spectrum is obscured by a strong quintet pattern from the 

matrix radical. The two sharp lines, on each side of the center are due to hydrogen 

atoms. The simulated spectrum was obtained by the 2nd order perturbation method. The 

principal values of the  (F1,F6) pair were fitted to give  A1=A6 =(107.0, 135.8, 208.9) G 

while the values (113.1, 113.7, 218.8) G of the pairs that were not fitted were  from DFT 

theory [14b]. 
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6. Discussion 

The methods of matrix diagonalization of a general spin Hamiltonian matrix and 2nd 

order perturbation theory are complementary techniques in the least-squares procedures 

used here and by other authors. The first method, first developed by Misra [7] in seminal 

work is general but limited to relatively small systems; it was used e.g to analyse the 

zero-field splitting of a Mn2+ complex from its 249 GHz powder spectrum by the least 

squares method. A recently published treatment  [9] employing perturbation theory, is 

better suited for systems with hyperfine couplings due to several nuclei or with a 

moderately large zero-field splitting in case S>½. In both methods analytical expressions 

for the derivatives of the fitted spectrum with respect to the spin Hamiltonian parameters 

were employed. Misra [7] may have been the first to employ analytical derivatives using 

the Hellmann-Feynman theorem (3) to obtain these derivatives in the context of ESR 

spectral analysis of disordered systems. This method is employed also here in the Xfit 

programme. Analytic derivatives were generated automatically in the programme by 

Soulié and Berclaz [9] based on perturbation theory. In both cases the extra 

computational load to obtain the derivatives together with the spectrum (1) appears to the 

relatively low, compared to that for numeric differentiation.  It seems reasonable that the 

speed of analysis could be shortened considerably by employing these analytic 

procedures in place of the numeric treatment that until recently have been the only 

option. Surprisingly, in this work the implementation of analytical procedures was easier 

with the matrix diagonalization method, than with the perturbation method. Accordingly, 

the fitting of hyperfine coupling tensors had to be done using numerical derivatives in the 

latter case; the fitting of the g-tensor and the line-width using analytical formulae (6) and 

(7) proceeded significantly faster.  

Fittings to synthesized spectra initiated with parameter values far from the true ones 

might produce wrong solutions for these values.  With the accurate method for computing 

the spectrum and its derivatives with respect to the parameters used in the matrix 

diagonalization method, the wrong values probably reflect the presence of several or 

imprecisely determined minima of the function (2). Thus, the lack of clear features for the 
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50 MHz (18 G) principal component in the RCF2C.F2• radical [20] makes it difficult to 

obtain precise coupling values when the line-width is of comparable magnitude. A rather 

trivial condition to obtain accurate parameters by fitting is therefore that a change of the 

parameters should affect the shape of the spectrum. Another, more fundamental problem 

became obvious in this work during the analysis of the ―CF2
•  model compound  using  

perturbation theory. The neglect of a 2nd order cross term involving products of the 

anisotropic couplings of the two F atoms [21] in the applied method is considered to be 

an additional reason for  not regaining the 18 G coupling used for the model 

‘experimental’ spectrum. An experimental remedy by measurements at higher fields, 

where 2nd order terms are suppressed may not always be available.  In the present 

implementation 2nd order shifts of the line positions due to the anisotropic hyperfine 

couplings of equivalent nuclei were taken into account in fittings to the model spectrum 

in  figure 2, and the experimental spectrum in Figure 4 due to the  c-C4F8
- anion radical. 

An analysis with the same approximate method of the RCF2C.F2• radical with non-

parallel axes does not seem recommendable.  

7.  Conclusions 

    Two types of automatic fitting procedures have been applied  to extract anisotropic 19F 

hyperfine coupling data from fluorocarbon radical X-band EPR spectra in disordered 

matrices. One is based on matrix diagonalization of a general spin Hamiltonian, the other 

on 2nd order perturbation theory. The exact and the approximate methods are 

complementary, the first being  general, but limited to relatively small systems, the 

second a special treatment, suited for S=½ systems with several moderately large hfs. The 

hyperfine couplings due to 19F in this work were quite large, resulting in poor fits with 

the approximate method that became pronounced when the principal axes did not 

coincide. The approximate method might, however be well suited to analyze  X-band 

ESR spectra of hydrocarbon radicals with their usually small proton hyperfine couplings. 

A set of simulation programs that rely on the second order treatment of the spin 

Hamiltonian written in APL language [24] provides an alternative in this case.  

 

      Although initial values of the principal values of e.g. the hyperfine coupling tensors can 

be deduced reasonably from the powder spectra, the corresponding directions of axes can 
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hardly be obtained experimentally. In this case molecular orbital calculations are helpful, 

as these directions can often be predicted quite well, and were used for the analysis of the 

c-C4F8
-   radical anion studied here and also the XCF2C.F2• radical.  
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Appendix A: EPR intensity for S=½ species due to g-anisotropy in disordered 

systems 

The intensity of an ESR transition in a single crystal has been given as [22] 

( )( )222
1

22 25.0 gBG B rgrrg 22 l−= μ                                                       (A1)  

The factor takes into account the anisotropy of the g-tensor on the intensity for a single 

crystal with the static and microwave magnetic fields along the unit vectors  and  

, respectively.  For a polycrystalline sample the intensity is obtained by 

performing the averages in equations (A2) and (A3).  

B/B=l

11 / BBr =

( 22
3

1

3

1,
)(

2
1 gTrrrgg

i kj
kjikij −== ∑ ∑

= =

grrg2 )                                                                 (A2) 

( ) ( 2
3

1,

3

1,

222

2
1 grrgguug kjnk

kj
mj

nm
nm −== ∑∑

==

uugrg 2l )                                                   (A3) 

Here glgu =  has been introduced.    

 (A2) and (A3) follow from the expression (A4), obtained from equations given in [15] 

under the normal experimental condition with B perpendicular to B1.  

)½( kjkjkj llrr −= δ                                                                                (A4) 

According to this treatment the |G|2 factor of a disordered solid is given by equation (A5) 
 

( uugg 22 −= )(125.0 2
1

22 TrBG Bμ )                                                                   (A5) 

This does not take into account the 1/g factor suggested by Aasa and Vänngård [23]. 

Thus, the intensities Ipq in equation (1) should be multiplied by the factor |G|2/g. The 

factor is nearly constant in the applications considered in the present work, but has been 

implemented in the 2ndorderfit code for possible future applications.   
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