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Abstract some action, or ask other agents questions by requesting
them to inform about some fact. They encoded simplified
Cooperation is a complex task that necessarily involvesrsions of these actions as STRIPS-like planning operator
communication and reasoning about others’ intentions aad used a backward-chaining algorithm to generate plans
beliefs. Multi-agent communication languages aid designvolving both regular actions and speech acts.
ers of cooperating robots through standardized speech actResearch on software agents [8] has also adopted speech
sometimes including a formal semantics. But a more diregits. This body of work depends fundamentally on agent
approach would be to have the robots plan both regular agginmunication languages, which are standardized sets of
communicative actions themselves. We show how two r§peech acts that ensure interoperability in agent to agent
bots with heterogeneous capabilities can autonomously §émmunication. The two most well known standards,
cide to cooperate when faced with a task that would oth&®ML [5] and FIPA/ACL [6], are both based on speech act
wise be impossible. Request and inform speech acts are fagory. FIPA/ACL also has a logical semantics defined us-
mulated in the same first-order logic of action and changeiag multi-modal BDI logic. But the semantics is meant only
is used for regular actions. This is made possible by trgatigs a prescriptive guide when implementing software agents.
the contents of communicative actions as quoted formukéme researchers try to obtain, and sometimes even prove,
of the same language. The robot agents then use a natggaformance between the implementation and the seman-
deduction theorem prover to generate cooperative planstfes, while most programmers are probably not overly con-
an example scenario by reasoning directly with the axioérned with such matters. Moreover, the communication
of the theory. language is only a wrapper for a content language, which
has to provide its own semantics. There is no integration
of speech acts within a more general framework of action
1 Introduction and change. Instead, these agent communication langauge
technologies remain agnostic as to how to plan speech acts
Autonomous agents reason about the world to form plaausd other actions to achieve goals.
and affect the world by executing those plans. Thus, agentsMorgenstern [16] offers an integrated theory of both
plans have an indirect effect on the world, and it becomg®es of actions using ayntacticfirst-order logic that in-
important for reasoning agents to take other agents’ plamsdes quotation. Davis and Morgenstern [2] provide an
into account. Furthermore, they would do well to plan aeiternative integration using regular first-order logicheT
tions that affect other agent’s plans and thereby (doubly two theories’ semantics cover both the speech acts and their
directly) affect the world. Philosophers of linguisticsvea content. However, while the theories were authored with
realized that we humans do this all the time through conive aim of applications in multi-agent planning, their use
munication. In particular, Searledpeech actf24] charac- has so far been mainly of a prescriptive nature, in the im-
terize natural language utterances as actions with conditiplementation of a STRIPS-like planner in the case of the
upon their execution and effects on the mental states of didvmer theory, and as a specification for future implementa-
ers. tions in the case of the latter theory.

Perrault, Allen, and Cohen [19] establish a useful con-In this paper we formalize inform and request speech acts
nection between speech acts and planning. They formaliz€irst-order logic with quotation. The representation is
speech acts as planning operators in a multi-modal logichzfsed on Temporal Action Logic (TAL), a first-order lan-
belief and intention. Using these an agent adorm other guage with a well developed methodology for representing
agents about some faagquestother agents to performtime, action, and change. TAL is complemented by syntac-
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can be used to represent and reason about both speech adtise origins of TAL are found in Sandewall's model-
and their message content, may it be facts, actions, or otfheroretic Features and Fluents framework [23]. Doherty
speech acts. We automate such reasoning through a j8jtselected important concepts, such as an explicit time
ural deduction theorem prover that incorporates a formlofe and the use of occlusion (discussed below), to form
abductive planning. The system is applied to a multi-agerAL and gave it a proof-theoretic first-order characteriza-
planning problem involving the cooperation between twamn. Many extensions since have turned TAL into a very
robots through planned goal delegation and knowledge agpressive language for commonsense reasoning. Doherty
quisition, which is introduced below. and Kvarnstdm [4] provide a detailed account of the logic,
but the version presented below includes further extession
] ) ) that make TAL suitable for applications in multi-agent plan
2 Cooperation and Communication ning and reasoning.
In TAL, properties and relations that may change over
Consider a motivating scenario involving an autonomotime are modeled bffuents A fluent f is a function of time,
unmanned aerial vehicle named uavl. The robot dad its value at a time pointis denoted (value f). When
equipped with a winch system capable of lifting and dropre talk about a time intervalbetween two time points,
ping supply crates. Suppose it is assigned the task of delimd¢, we mean the interval{,t>] that is open on the left
ering cratel5 to the storage building store23. It would laed closed on the right. The functions (starnd (finishz)
unwise (although perhaps spectacular) to have the ffgbobicks outt; andt, respectively. An agent carrying out an
into the building. Instead, UAVs are restricted to operate attiona during time interval is specified by the predicate
designated fly-zones, and storage buildings are not am@@gcursagenti ). But the most important feature of TAL is
them. probably itsocclusionconcept. A persistent fluent’s value is
A class of autonomous unmanned ground vehicles ppermitted to change when occluded, but must persist during
vide services complementary to flying robots. They too céime intervals when not occluded. The following formula
attach crates, using fork lifts, but stick to driving shot-d (with free variables implicitly universally quantified aid
tances in and between buildings designated as drive-zomesfix form to make the representation of quoted formulas
One of the UGVs, named ugv3, happens to sit idle in theore convenient) relates a fluefis value at the start and
building store14. end time points of a time interval
To succeed at its task the UAV will have to request help .
X . V(= (- (Occludei f))
from the ground robot to get cratel5 into the building, (= (value (stari) f) (value (finishi) f))) (1)
where it can not fly itself. It knows that ground robots
have the capability of delivering crates between locatioBy assuming that fluents are not occluded unless otherwise
in drive-zones, and it might consider delegating its task ¢pecified one is in effect making the frame assumption that
ugv3. But cratel5’s current location prevents simply delghings usually do not change. Exceptions are specified by
gating the goal since the crate is far outside any drive-zagiation specifications that explicitly occlude fluents thweg t
areas where a ground vehicle could fetch it. Instead, uaution affects. E.g., if uavl flies between two locatiorss, it
will have to deliver cratel5 to a rendezvous point, accdgeation fluent (location uavl) would be occluded during
sible to both UAVs and UGVs. Only then is it possible tany interval with a non-empty intersection with the move-
request ugv3 to see to it that the crate gets to its final destient interval. This prevents any use of Formula 1 for re-
nation. lying on the default persistence of the robot’s locatiort tha
Such a plan is only possible if the two robots manage ¢onflicts with the robot’s moving about. By exercising fine-
coordinate their actions through communication. We woulglained control over occlusion one gains a flexible tool for
like them to figure out the above plan, including both phydealing with important aspects and generalizations of the
ical actions and communicative speech acts, completely fame problem.
tonomously. This will require a sufficiently expressive+ep
resentation and reasoning formalism. We present our p?-l A Syntactic Belief Operator
posal next.
Previous accounts of TAL lack a representation of agents’
. . mental states and beliefs. Introducingyatacticbelief op-
3 Temporal Action Logic erator provides a simple and intuitive notion of beliefs. To
explain this let us first assume that uavl believes it is dt loc
First-order logic might serve as a solid foundation. Busit at noon. The following formufawould represent this belief
by itself too noncommittal regarding choices of how to refin its knowledge base:
resent actions and their effects on time-varying propedfe .
the world. Several alternative logics of action and changet (value 12:00 (location uav1)) locl) @
are available to aid a logicist researcher. We present WOrkiciock times such as 12:00 are not really part of the logic. Véeime
with one such logic, the Temporal Action Logic (TAL).  atranslation scheme between clock times and integers.




Similarly, if it was ugv3 that believed that uav1l is at locIphysical and knowledge preconditions for an agent carry-
Formula 2 would be ints knowledge base. Beliefs aboutng out an action during time interval while (Committed
others’ beliefs are then really beliefs about what formulagentt p) represents an agent’s commitment at time point
are present in others’ knowledge bases. If uavl believessatisfy the formula. Both predicates require a quoted
that ugv3 believes what Formula 2 expresses, then uavldgsression in their third argument position, which preefsid
lieves that ugv3 has Formula 2 in its knowledge base. Thie free use of substitution of equals without regards to the
would be represented in the knowledge base of uavl by #gent's knowledge. Using these predicates we can formal-

following formula: ize the above intuition about action occurrences:
(Believes ugv3 12:00 (— (» (Possibleagent; *, action)
(= (value 12:00 (location uav1)) loc1)) (Committedagent(starti)
The first argument of the Believes predicate is then the agent (Occurs ‘agent’ i ' action)))

holding the belief. The second argument is the time pointat ~ (Occursagenti action))

which the agent holds the belief. Finally, the third argutne, . . .
. . . .. Note the interaction between backquote and quote in
is a quoted version of the formula expressing the belief, in_ _. S
. . . .actionto make sure that the argument of Possible is the
this case Formula 2. This is what makes Believes a syntactic : N,
nameof the action. The initial backquote turns the follow-
operator. . . ., .ing quote into the name of a quote, leaving the variaole
We use the quotation notation from KIF [7], which is. - o .
ion free for binding. The resulting expression denotes the

a form_al variant Of.L'Sp s. An expression preceded byqahoted version of whatever the variable is bound to rather
guote is a regular first-order term that serves asaeof than a quoted variable that can not be bound at all
that expression. Alternatively one may use a backquote, in '

which case sub-expressions canumguotedby preceding

them with a comma. This facilitateguantifying-inby ex- 3.3  Action Specifications

posing chosen variables inside a backquoted expression for

binding by quantifiers. E.g., we use quantifying-in to repr&ach one of an agent’s available actions has an action spec-

sent uavl'’s belief that ugv3 knows its own location, withoification that consists of three parts. The first part deter-

uavl having to know the name for that location: mines under what conditions an action is possible. It may

(3  (Believes ugv3 12:00 includedphysical pgeﬁoz}di';iok?s, but also invo_lvesrl]mO\gk_ed
‘(= (value 12:00 (location ugv3))z))) precon .|t|ons on behalf of the agent executing the act|on..

Consider e.g. a stock market agent that plans to get rich

Note that whilez ranges over locatioRsit is thenameof by buying “the stock that will increase in value”. While

a location that should occur as part of the third argumehtoretically correct, the plan is of no practical valueass!

of Believes. The quote preceding the comma ensures it agent knows a name that identifies some particular stock

whatever value is bound to is quoted to produce the namat it reasonably expects will increase in value. To make

of that value. this intuition formal, Moore [14] suggests that an action is

While a quoted formula still looks like a formula, it is inonly executable if the agent knowigjid designatorsor all

fact a term. This means that standard inference rules sa€hhe action’s arguments. Morgenstern [15] modifies this

as modus ponens are not applicable to the quoted formwaggestion slightly in her requirement tist@ndard identi-

that appear as arguments in the Believes operator. Therefigig are known for the action arguments.

two possible solutions to this limitation. Either we could Qur action specifications follow Morgenstern and use the

add axioms that express inference rules for beliefs, or wgntactic predicate (Identifier) to single out a name as a

could employ a theorem prover with special purpose infeftandard identifier. In the stock market example, the action

ence rules for beliefs. We pursue the latter alternativeén tof buying stock would not be executable unless the agent in

theorem prover described in Section 5, for efficiency regct knew the name under which the stock was listed.

sons. While it should still be possible to characterize theserhe second part of an action specification lists additional

inference rules in terms of aXiomS, this is SubjeCt to futufequirements for any agent that decides to execute the ac-

work. tion itself. To execute an action the agent must invoke some
piece of computer code implementing it. Since our actions
3.2 Action Occurrences have an explicit time argument we think of the agent as hav-

) o ) ing an execution schedule to which procedure calls can be

An action occurs when it ipossiblefor an agent to exe- 4qqded at specific time points. Executing an action then in-
cute the action, during some time intervaknd the agent g|ves looking up standard identifiers for its arguments and
is committedo the action occurring, at the start of the timgcheduling the procedure call associated with the action.
interval. The predicate (Possidgent: action) represents Te effect of deciding to execute an action is that the agent
2TAL is an order sorted logic. In our implementation we indicze- becomes committed to the action occurrence. An alterna-
able sorts by prefixes, but ignore these here for readability tive way of ensuring commitment to an action is to delegate




its execution to someone else through the use of the requ#dV’s location fluent in any interval that intersects the fly-
speech act, as we will see later. ing action since (Occludé f) means thatf is occluded
Finally, the third part of an action specification details ttsomewherén intervali. This could be expressed as an im-
effects of the action on the world and on the mental stagggation (~ (Intersecti, i) (Occludeis (location uav))).
of agents. This allows agents to reason about actions &fwvever, the action specification below uses the contrapos-
form plans to achieve goals. itive form of this formula. The reason for this is discussed
further in Section 5.

4 Formalization & (A (Believesuav (starti) ‘(= ’to ,z))

(Identifierx)
We are now able to formalize the agent cooperation scenario (FlyZoneto))

presented in Section 2 using TAL. The following unique (Possibleuavi ‘(fly * to)))

names assumptions are needed: & (A & to z) (Identifier  z)
G 1 1o) l1,15 € {base, helipad2, store14, storg23 (Sch(_adule self (fly z))) .
G c1 ¢2) c1,¢2 € {nil, crate1§ (Committed self (start) ‘(Occurs self % (fly ' to))))

. i . ( (Occursuavi (fly to))
The terms in the first set are locations and the second are (A & (value (finishi) (locationuay)) to)

crates, where nil denotes a null element of the crate sort. ( ( (Occludei, (locationuav)) (Disjoint s 7))))
In addition, quoted expressions are considered equal only
when they are syntactically identical. Note that the above might sometimes require the agent to

The term names in the following set are standard idenigason about its own beliefs. Suppose, for example, that
fiers that can be used as arguments to procedure calls inihe1 is considering the possibility of flyiritself to ugv3’s
robot’s internal action execution mechanism. We might ejgcation. Its knowledge base might contain the formela (
imagine that the procedure for flying to one of the namedalue t; (location ugv3)) helipad2), expressing the belief
locations involves a simple lookup of a GPS coordinate iRat ugv3 is at helipad2. Then uavl would make the belief
an internal map data structure. explicit by asserting (Believes uavl '(= (valuet, (loca-

(Identifier z) z € {'uavl, 'ugv3, ‘crate1s, ‘base, fion ugv3)) helipad2)), whereg; is the current time.

'helipad2, 'store14, 'store23  Ground vehicles have a very similar action that allows

. . ) them to drive to locations in drive-zones:
Operating restrictions on UAVs and UGVs are given by fly-

and drive-zones: (— (\ (Believesugy (starti) (= o ,z))
(FlyZone base) (Idgntifier:r,)
(FlyZone helipad2) (Dn_veZoneto)) .
(DriveZone store14) (Possibleugvi ‘(drive ' t0)))
(DriveZone store23) ( (\ & tox) (dentifier *, )
(DriveZone helipad?2) (Schedule self (drive z)))

] ] (Committed self (stard) ‘(Occurs self j (drive ’to))))
The above knowledge is common to all agents in our sce-

nario. (— (Occursugvi (drive to))
(\ & (value (finishi) (locationugy)) to)
4.1 Physical Actions (— & (Occludei, (locationugy))) (Disjoint i 7))))

The bulk of the robots’ knowledge base is made up of tBth types of agents can carry one crate at a time, and the
action specifications. Each of the three specification pafitfent (carryingagen) indicates which one it is at the mo-
are given by an implication. Starting with the fly action Wehent. To attach a crate the agent must not already be carry-
note that itis pOSSible for a UAV to ﬂy to alocationina ﬂy1ng anything, indicated by the value ni|, and the agent and
zone if the UAV knows a standard identifier for the |0cati0ra:.rate must be at the same p|ace_ The action effects occlude
Secondly, an agent may commit to flying by schedulingtge crate’s location (as well as the carrying fluent) since we

fly procedure call. The constaself is a placeholder for the can no longer depend on the frame assumption that it will
identifier of the agent in whose KB the formula appears, e@main in the same place.

uavl or ugv3 in our case. This means that, while an agent
can reason about whether it is possible for another agent t¢— (A (Believesagent(starti) ‘(= ’ crate,z))

fly, it can not schedule a call to the fly procedure in another (Identifierx)
agent’'s execution mechanism. Thirdly, at the end of the fly (= (value (start) (carryingageny) nil)
interval the UAV ends up at its destination. (= (value (start) (locationagen))

In addition, modified fluents need to be occluded to over- (value (start) (locationcrate))))

rule their default persistence. Flying should occlude the (Possibleagent: ‘(attach 'crate)))



(— (\ & cratex) (Identifier “,x) Again we follow Allen’s directions and introduce an in-

(Schedule self (attachz))) formRef action designed to facilitate questions of thistyp
(Committed self (stari) The informRef action does not mention the value that is un-
‘(Occurs self ’j (attach ‘crate)))) known to the UAV agent, which instead performs the fol-
(— (Occursagent: (attachcrate)) lowing request:

(\ & (value (finishi) (carryingageny) crate)
& E_‘DI(S?C():I(r;l:JdeZ)Q) (locationcrate)) "(Occurs ugv3 i2 (informRef uavl
tat lue 12:00 (locati 3
( ( (Occludeis (carryingagen))) (value (location ugv3)))))
(Disjoint i3 7)))) The above request still contains the unknown time interval
which ugv3 may instantiate in any way it chooses. The
icit time representation used by TAL opens up the pos-
sibility of a general account of the knowledge precondgion

(request ugv3

. i
Detaching a crate has the effect that the crate ends up ateg(
same location that the agent is currently at:

( (\ (Believesagent(starti) ‘(= ' crate,x)) and knowledge effects of action’s start and end time points,
(Identifierx) but formulating it is part of future work.

(= (value (start) (carryingagen)) crate)) The informRef preconditions require that the informing
(Possibleagent; ‘(detach ‘crate))) agentknows whatthe value is, which is being informed
 (\ & cratez) (Identifier ,z) about. The effects assert the existence of a value for which

(Schedule self (detachz))) the speaker knows a standard name.
(Committed self (stari) Note that an agent that commits égecutingthe action
‘(Occurs self % (detach crate)))) schedules amform procedure call, plugging in the sought
( (Occursagent; (detachcrate)) value. In contrast, an agent that omgasonsabout the ef-
(\ & (value (finishi) (carryingagen)) nil) fects of the informRef action, as in the question example
(& (value (finishi) (locationcrate)) above, knows that the value will become known, but need
(value (finishi) (locationageny)) not yet know its name.
(= € (Occludei; (locationcrate))) & (\ (Believesspeakel(starti) ‘(= ’ value,z))
(Disjoint i5 7)) ' (Identifierx)
( € (Occludeis (carryingageny)) (Believesspeaker(starti) ‘(= ’ hearer,y))
(Disjoint i3 7)))) (Identifiery))
(Possiblespeaker ‘(informRef | hearer ', valug))
4.2 Speech Acts (= (\ & valuex) (Identifier ', x)

& hearery) (Identifier )
Speech acts can be used to communicate knowledge to, (Schedule self (inform y ‘(= ’ value , x))))
and to incur commitment in, other agents. We reformulate  (Committed self (star)

Allen’s speech acts [1] in TAL using the syntactic belief and ‘(Occurs self 4 (informRef ’hearer’, valug)))
commitment predicates. More complex formulations have(— (Occursspeaker: (informRefhearer valug)
been suggested in the literature, e.g. to allow indireatspe (3 z (\ (Believeshearer(finish i) ‘(= ' value,x))
acts [18]. But our robots will stick to straight answers and (Identifierx))))

dlregt reql;ests,d\./vnhou't reg?rﬁ.for politeness (although Many other formalizations of speech acts restrict requests
Se_lt_:tglon ! orfa_ flscuss_lon oft I'TI)B . dink to action occurrences. Our formulation of requests sup-
e type of information we will be interested inkaow- ports any well formed formulas, whether they are declara-

ing whata particular value is. This is straight forwardly; e oais or action occurrences. The effect is that thetagen

communicated by standard identifiers. E.g., if ugv3 WIShgs, ¢ yhe target of the request is committed to satisfying
to inform uavl that its location is storel4 at noon, it MaY¥e formula

schedule an action of the following form:
- ( (Wff formula)

(inform uavl (Believesspeakef(starti) ‘(= '’ hearer,z))

'(= (value 12:00 (location ugv3)) storel4)) 3) (Identifier z))
However, this is complicated when uavl wisheaskiugv3 (Possiblespeaker ‘(request ‘hearer ’, formula)))
what its location is. In accordance with much research in(— (A (Wff formula)
speech acts, we view questions as requests for information. & hearerx) (Identifier “,x)
The UAV should thus request that the UGV perform the (Schedule self (request: formula))
inform action in Formula 3. Though since uavl does not (Committed self (stari)
know where ugv3 is, which is presumably the reason why ‘(Occurs self ’j (request hearer’, formula))))

it is asking about it in the first place, it can not know what (— (Occursspeaker: (requeshearer formuld)
action to request. (Committedhearer(finish ) formula))



The Wif predicate determines whether the quoted expresclusion, action occurrences, temporal constraints, and
sion is a well formed formula. While we could write axpositive or negative holds formulas, depending on the cur-
ioms defining it, since quoted expressions are terms in eant reasoning task [13]. These are allowed to be as-
language, we find it convenient to view it as defined by seumed rather than proven, as long as they are not counter-
mantic attachment. explained or inconsistent. As an example, consider the
Finally, to delegate declarative goals an agent must knéllowing natural deduction proof fragment, explained be-
something about the capabilities of other agents. In our st (where the justifications in the right margin denote row
nario, UAVs know that ground robots are able to transpartimbers, (P)remises, (H)ypotheses, and additional back-
crates between locations in drive-zones. This allows uagbund (K)nowledge).
to delegate its goal task and trust that it will indeed be S?Lt—

isfied & (value 12:00 (location uavl)) base) P
' 2 (A = (starti37) 12:00)= (finish i37) 13:00)) P
& (\ (DriveZone (value (star) (locationcrate))) 3 (& (Occlude i37 (location uavl))) H
(DriveZoneto) 4 (= (value 13:00 (location uavl)) base) 1-3,K
(Committedugv (start:) 5 | (=helipad2 helipad2) K
‘(= (value (finish %) (location 'crate)) ’ to))) 6 (Believes uavl (start i38)= helipad2 helipad2)) 5
& (value (finishi) (locationcrate)) to)) 7 | (Possible uavli38 '(fly helipad2)) 6.K
8 — (Schedule uav1 i38 (fly helipad2)) H
This concludes our formalization of the robot cooperatian (Committed uav1 (start i38)
scenario. We turn our attention next towards the question of '(Occurs uavl i38 (fly helipad2))) 8,K
how to perform automated reasoning with it. 10 (Occurs uavl i38 (fly helipad2)) 7,9,K
11 (= (value (finish i38) (location uavl))
. helipad2) 10,K
5 Automated Natural Deduction 12 | | (=  (Occludei (location uavl)))
(Disjoint 7 i38)) 10,K
Earlier work with TAL has made use of a model-theoretit3 (Disjoint i37 i38) 3,12

tool for automated reasoning called VITAL [9]. But this
tool relies upon the set of actions being pre-specified afide UAV is located at base at noon, as in Row 1. Suppose
consequently does not support planning. Later work méad@aeeds to remain at the same location at 1 p.m. One way
deductive planning possible through a compilation of TAbf proving this would be by using the persistence formula
formulas into Prolog programs [10]. But Prolog’s limitedh Section 3. The location fluent is only persistent if it is
expressivity makes it inapplicable to interesting plagnimot occluded. While uavl has no knowledge about whether
problems involving incomplete information and knowledgi¢ is occluded or not,H Occlude) is abducible and may be
producing actions, such as speech acts. Instead, our ¢amtatively)assumedThe effect of making non-occlusion
rent work concentrates on an implementation of a theoraducible is to implement a default persistence assumption
prover based onatural deductioninspired by similar sys- Row 2 introduces a fresh interval constant and Row 3 indi-
tems by Rips [22] and Pollock [20]. cates the assumption using a Copi style (described e.g. by
Natural deduction is an interesting alternative to tiieelletier [17]) vertical line in the margin.
widely used resolution theorem proving technique. A nat-Suppose further that uavl also needs to visit helipad?2.
ural deduction prover works with the formulas of an agentihe only way of proving this would be to use the fly action
knowledge base in their “natural form” directly, ratherthadefined in Section 4. A backward modus ponens rule adopts
compiling them into clause form. The set of proof rules {®©ccurs uavl i38 (fly helipad2)) as a sub goal. Backward
extensible and easily accommodates special purpose rglesining again, on the action occurrence axiom in Section 3,
that can make reasoning in specific domains or using a sp&uses (Possible uavl i38 '(fly helipad2)) and (Committed
cific formalism like TAL more efficient. We are activelyuavl (start i38) '(Occurs uavl i38 (fly helipad2))) to be-
experimenting with different rule sets so the descriptien bcome new sub goals. These are again specified by the fly
low is of a preliminary nature. action specification. The first of these sub goals is satisfied
Rules are divided intéorward andbackwardrules. For- by Row 6 and the fact that helipad2 is both an identifier and
ward rules are applied whenever possible and are desigadty-zone. The commitment goal in Row 9 is satisfied by
to converge on a stable set of conclusions so as not to cBow 5, the fact that helipad2 is a viable argument to the fly
tinue generating new inferences forever. Backward rulgspcedure, and Row 8, which assumes that uavl schedules
in contrast, are used to search backwards from the currért procedure call. The implementation of the proof rule
proof goal and thus exhibits goal direction. Combined, tiieat adds Row 8 performs the actual scheduling by updating
result is a bi-directional search for proofs. an internal data structure. Itis still possible to backtrae-
Nonmonotonic reasoning and planning is made possibhving the assumption in Row 8, as long as the procedure
in our theorem prover through an assumption-based argaH has not yet been executed, i.e. if itis scheduled tooccu
mentation system. The setatbducibleconsists of negatedat some future time or if execution has not yet reached this



point. This could happen if something causes the theorptans for the robot cooperation scenario. We present the

prover to reconsider flying to helipad2, or if scheduling th&roof goals and the resulting plans below.

flight causes a conflict with some other assumption that wad et us initially place the crate and the UAV (carrying

made previously. In such cases the procedure call wouldrimthing) at base at 12:00:

rem_oved from the intern,al dz_ita structure as \ﬁeminally,_ ( (value 12:00 (location crate15)) base)

havmg proved the robot’s ability and commltment to flymg ( (value 12:00 (location uav1)) base)

to helipad2 Row 10 concludes that the flight will occur, with

the effect that uavl ends up at helipad2 in Row 11. _ .
Flying should occlude the location fluent in any intersecthe goal is to have cratel5 delivered to the storage named

ing interval. This would most naturally be expressed [§jore23 at some future time point:

(— (Intersecti i38) (Occludei (location uavl))). But, as Show @ ¢ (= (valuet (location crate15)) store23))

noted in Section 4, we use the contrapositive form insteq.(i!ie UAV uses theorem oroving to reason backwards from
The reason is the need for consistency checking when %s— P Y

sumptions have been made. It is well known that the pr Is goal approximately like what follows. “For the crate to

lem of determining consistency of a first-order theory is n £ at store23 someone must have put it there. | could put it

even semi-decidable. Our theorem prover uses its forw%rgre myself if | was located at store23 carrying cratel15.

rules to implement aincompleteconsistency check (more ut | can't think of any way to satisfy the fly-zone pre-

on this below), and the contrapositive form makes these fSP-nd't('jon Ef fllylng to st?re23. Th|01th|h g?f/ kno:/vledg%.?f
ward rules applicable. Row 12, which is an effect of the f round venhicles suggests a completely different posgibill

action, together with the assumption in Row 3 trigger tr%\%ydgsiilre\;\guxea:les ci)nbo?ri\slzt-lzscf;ﬁgslf gﬁ:ﬂhstgrigra:gjr:gcvagﬁgle
forward modus ponens rule, adding the disjointness c% - ! ! X - grour

o . . . ad committed to the goal. In fact, helipad? is a drive-zone,
straint in Row 13. This enforces a partial ordering of the

. . . . and it is also a fly-zone, so | can go there and drop the crate
two intervals to avoid any conflict between the persmtengﬁ Before qoing there | should attach crate15. which is
of the UAV’s location, and its moving about. Another for—ri .ht here negxtltogme Then I’ILdeecided LDON sor’n\(lev Iartilc-
ward inference rule consists of a constraint solvertha:trdetulgr round robot sa- ugv3. and re ues'?that i ad(f s the
mines whether the set of temporal constraints is consistent 9 » Say, ugve, » q P

o . : ! .rgoal that cratel5 is at store23.
Ifitis impossible to order i37 and i38 so that they do not ir® . .

: : : hile the robots are not nearly as self aware as this

tersect in any way, then an inconsistency has been detecteonoIO Ue suagests. it corresponds rouahly to the search
and the prover needs to backtrack, perhaps cancelling %ece fgr the fc?l?owin' lan: P gnly
most recent assumption or removing the action that was By g pian.
added to the schedule. (Schedule uav1l il (attach cratel5))

For some restrictions on the input theory we are able(Schedule uavl i2 (fly helipad2))
to guarantee completeness of the nonmonotonic reasoningschedule uavl i3 (detach crate15))
[13]. But in the general case, when one cannot guarante¢Schedule uavl i4
completeness of the consistency checking, we might con- (request ugv3
ceivably fail to discover that one of the assumptions is un- (= (value (finish i5) (location crate15)) store23)))
reasonable. This would not be a cause of unsoundnes§Before il i2)
since we are still within the sound system of natural deduc-(Before i2 i3)
tion, but it might result in plans and conclusions that rest(Before i3 i4)

on impossible assumptions. A conclusidrdepending on  (Before i4 i5)

an inconsistent assumption Would_in effect he_lve thr—_.\ I(_)giqar{e UAV executes its plan, including sending the goal re-
form L— &, and thus bg tautolog|.cal and.v0|d. This is tQuest to ugv3. We switch to look inside the mind of the
be expected though. Since consistency is not even sefitzy as it tries to prove that the requested formula is sat-
decidable, the most one can hope for is for the agentidfeq. Suppose that half an hour has passed and that the

continually evaluate the consistency of its assumptians, iygy happens to be at some other storage building, carry-
proving the chances of them being correct over time, Wh"f‘g nothing:

regarding conclusions as tentative. [21].

(= (value 12:00 (carrying uavl)) nil)

(= (value 12:30 (location ugv3)) storel4)
(= (value 12:30 (carrying ugv3)) nil)

6 Generated Plans The UGV will have to drive to the crate in order to pick
_ _ it up and deliver it to store23. But ugv3 does not know
By applying the natural deduction theorem prover to thgate15's location, and scheduling a drive to (value 12:30
TAL formalization we are able to automatically generaigocation crate15)) is prevented by the Identifier require-
3The link between theorem proving and action execution isireést- ment on the drive action argument. The restriction is neces-

ing topic. The mechanism described above is one approachweare Sary since trying to find the coordinate of (value 12:30 _(|0'
currently investigating alternatives. cation crate15)) will certainly not generate any resultegi




the robot’s area map. The plan should instead involve firBince uavl has first hand knowledge about cratel5’s loca-
ing a standard identifier for cratel5’s current location ation it schedules an inform procedure call according to the

looking that up in the map.

We assume that ugv3 believes that uavl knows wher
cratel5 is, and that whatever location that is, it is a drive-
zone (although see Section 7 for a discussion of this):

(3 = (\ (Believes uavl 12:30
‘(= (value 12:30 (location crate15)))
(Identifierx)))
(DriveZone (value 12:30 (location cratel5)))

definition of the informRef speech act:

Schedule uvavl i7
(inform ugv3
‘(= (value (start i5) (location cratel5)) helipad?2)))

Switching our focus back to ugv3 we find that it has re-
ceived the formula that uavl informed it about:

(= (value (start i5) (location cratel5)) helipad2)

The task is then to prove the content of uavl’s request: Thjs puts ugv3 in a position where it can prove the content
Show & (value (finish i5) (location crate15)) store23) Of its request to itself:

The resulting plan makes use of the request and informReBhow (Occurs ugv3 i9

speech act combination to formulate a question correspond-
ing to “what is cratel5’s location”. Furthermore, whilesthiT
guestion will equip the robot with a standard identifiersth
identifier is not yet known at the time the plan is being co

(drive (value (start i5) (location cratel5))))

The resultis that the missing drive procedure call is ireskrt
htthe right place in the execution schedule with the stahdar
EFntifier plugged in as its argument:

structed. Rather than scheduling the drive procedure call,

ugv3 instead plans tequest itselfto carry out the driving
after having asked uavl about cratel5’s location. At t
time at which this request is managed, the required inf
mation will be available for scheduling the actual drive—pr?
cedure call. The rest should be a simple matter of going

store23 to drop cratel5 off at its goal:

(Schedule ugv3 i6
(request uavl
'(Occurs uavli7
(informRef ugv3
(value (start i5) (location cratel5))))))
(Schedule ugv3 i8
(request ugv3
'(Occurs ugv3i9

(drive (value (start i5) (location cratel5))))))

(Schedule ugv3i10 (attach cratel5))
(Schedule ugv3 i1l (drive store23))
(Schedule ugv3i12 (detach cratel5))
(Before i6i7)

(Before i7 i8)

(Before i8 i9)

(Before i9110)

(Before i10 i11)

(Before il1i12)

Let us switch our attention back to uavl and see w|

(Schedule ugv3 i9 (drive helipad?2))

l(lfnce at helipad2, the rest of the scheduled actions will have
e robot attaching crate15, driving to store23, and diogpi

poe crate off to satisfy the goal and complete the scenario.

7 Limitations and Future Work

The work presented in this paper is far from a complete
solution to the robot cooperation scenario. One unsolved
guestion regards our assumption that ugv3 believes that
uavl knows where cratel5 is. Maybe there ought to be
some commonsense knowledge that would allow it to defea-
sibly infer uavl1’s knowledge from the fact that it delegated
goal that directly involved that knowledge. One might sus-
pect that this is but one instance of a more general problem
of reasoning about who is likely to know what in which sit-
uations. An alternative solution would be to have the UAV
reason about the fact that ugv3 needs to know where the
crate is to be able to move it to its destination. The UAV
could then pro-actively inform the UGV about the crate’s
location before requesting the UGV to move it.

An ad hoc move that we were forced to make was to re-
move the informRef speech act from the UAVs knowledge
base while generating the first plan. While this particular

ion is not needed for that particular plan, the UAV clgarl

it plans to do about ugv3's request for information. Th&  nt 1 have access to all its actions at all times. The rea-

UAV’s current state is described by:

(= (value 12:30 (location cratel5)) helipad?2)
(= (value 12:30 (location uavl)) helipad?2)
(= (value 12:30 (carrying uavl)) nil)

The proof goal is defined by the incoming request:

Show (Occurs uavl i7
(informRef ugv3
(value (start i5) (location cratel5))))

son for our move has to do with the fact that uavl must
attempt to solve the goal itself before considering delegat
ing it. What makes our scenario interesting is that it is not
possible to solve without cooperation. But uavl can not
know that trying to deliver cratel5 by itself is futile until

it has explored all alternative ways of doing so. Unfortu-
nately, the informRef speech act made for a rather unwieldy
search space, which was more than our theorem prover had
time to explore while we cared to wait. This prevented



uavl from giving up on the prospect of managing the dexance in certain domains is already possible. E.g., our the-

livery by itself within a reasonable amount of time. We susrem prover was applied to UAV surveillance and quickly

pect that as the agents are equipped with more knowledgmerated plans for realistic size problems [11]. Further-

and actions, more possibilities will open up in the theoremore, the agent architecture was used to the control the

prover’s search space, and the need for some kind of heutlsaracters in a computer game that requires real-time in-

tic to help guide search will increase. teraction [12]. We believe computer games to be a particu-
The speech acts themselves are subject to some limiigaly suitable domain for empirical studies of logical aten

tions. One is our disregard of any physical preconditionsaa the road from tiny benchmark problems towards larger

communication such as geographical closeness constrairal-world applications.

Our robots are assumed to have a radio link at all times. An-

other limitation is that we do not consider indirect speech

acts. This seems reasonable as long as we are thinking of

communication between our robots. But there is no denyi%g .

that many of the speech acts utterechioynansare indirect. Conclusions

A human UAV operator uttering “Could you make sure that

cratel5 is in store23?" is presumably requesting the URN haye described a scenario involving communication and
to make sure the goal is satisfied rather than querying abgiff e ration between two robots. The solution required one
its ab|!|ty to do so. Another serious limitation is our as,pat to plan to delegate a goal through communication us-
sumption that other agents always accept requests. S a request speech act. The other robot had to plan to
rejected requests could reasonably be handled during Rlafjieve knowledge preconditions, again through commu-
execution through re-planning or plan repair. But othefg.ation using a nested request and informRef speech act.
should be considered already during planning and woyleqe speech acts were formalized in an extension of Tem-
result in conditionally br_anchmg plans or plans with IOOp[§0ral Action Logic that includes syntactic belief and com-

that repeat requests until accepted. ) ) mitment operators, which were made possible through the
_ Afuture development could be the inclusion of cOmpOge of 5 quotation mechanism. The formalization made it
ite actions, which would make it possible to explicitly repsqssipje to generate a plan involving both cooperation and
resent informRef as a macro action that includes an infopgy, munication using automated theorem proving. Finally,

speech act. This is in contrast to our current formalizatign,, ;e scheduling mechanism provided a tightly coupled

where inform is only a procedure call and not a stand alopgagration between planning and the execution of gener-
action. Another possibility for development exists with re;;oq plans.

gards to the execution schedule mechanism. While we think o ) )
that it is a promising method for integrating planning and The formalization used quotation, which seems most be-

execution, the description of its workings that we have prdfing of a logicist framework. The robots’ explicit repre-
vided here is rather sketchy and needs further elaboratigfitation of beliefs as formulas in a knowledge base moti-
In particular we would like to take advantage of our int/ates their representation of others’ beliefs as quoted for
grated temporal constraint solver to calculate action -dufgulas. Further benefits may be gained by using quotation
tions and schedule actions at explicit clock times. in the context of speech acts. A fuller theory of commu-

Finally, an agent architecture based exclusively on lo ication will presumably also include locutionary acts, i.
cal reasoning raises efficiency concerns. Both plans in jf actual utterances that encode messages between agents.
running example were automatically generated by the thddrese are most naturally thought of as strings consisting of
rem prover in 2 minutes and 35 seconds on a Pentium M #4Pted formulas from the agents’ knowledge bases.

GHz laptop with 512 MB of RAM. That might or might not  Our philosophy is based on the principle that logic is an
be reasonable, depending on the application. But, in eitheelligent agent’s “language of thought”. The formaliza-
case, it was admittedly a small problem, which begs ttien of the speech acts are similar to their corresponding
question of whether the architecture will scale up to realemantics proposed in the literature. But unlike many other
world problems. Alas, we do not yet know. But there are approaches that view the semantics as normative, such as
least some reasons to be optimistic. agent communication languages, we put the formulas in our
One reason is, as already mentioned, the use of a temggents’ heads where the agents can reason with them using
ral constraint solver for reasoning with time. More genetheorem proving. In fact, our use of a prefix notation for for-
ally, one can view special purpose algorithms as additiomalilas makes the correspondence between the theory in this
natural deduction rules that make certain types of inferenpaper and its Lisp implementati@xact save for some log-
efficient. Another reason is the choice of an interruptilble acal symbols that are not available for use as Lisp idensifier
gorithm for nonmonotonic reasoning. In a real-time settifthrough this approach we hope to construct an agent archi-
the agent can act, at any time, to the best of its knowledgeture based on logical planning with a level of flexibility
given the reasoning it has performed up to that point.  that would be difficult to match using agent programming
But most encouragingly, achieving satisfactory perfolanguages.
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