
Handling Uncertainty by Interleaving Cost-Aware Classical Planning
with Execution

Per Nyblom
Department of Computer and Information Science

Linköping university
perny@ida.liu.se

January 2, 2006

Abstract

This paper presents an algorithm for interleaved planning
and execution in uncertain environments by reusing a classi-
cal planner capable of plan cost optimization. Probabilistic
actions in the initial domain are split into deterministic ones
that are presented to the planner. The planner generates a
plan that is optimistic in the sense that it is assumed that
all possible effects of the original probabilistic action can
be achieved deterministically. The cost of the deterministic
actions are used to control the output plans from the planner
and are dynamically updated by generating and comparing
all possible optimistic plans after the first occurence of a
probabilistic action.

Appendix B3: Curriculum Vitae (Per
Nyblom)

• M.Sc. in Computer Science and Engineering (Civilin-
genjörsexamen), Linköping University, 2003.

• Current employment: PhD student (doktorand),
Linköping University, 2003 – present.

1 Introduction

To be able to handle a dynamic and uncertain universe
during planning is essential in many real-world planning
domains where some operators have non-deterministic or
probabilistic effects. Many attempts to handle these types of
domains have been directed towards the use of conditional
planners [1] [17] that can generate contingency plans which
anticipate all possible action outcomes. Other approaches
include decision theoretic planners which model the plan-
ning problem as a Markov Decision Process (MDP) [18] or
as a Partially Observable MDP (POMDP) [14] and gener-
ate a policy that maps all possible states to a suitable action.
Although there have been many attempts to limit the search
space or increase efficiency for these types of planners, they
are only applicable to small problems.

Another approach for dealing with a non-deterministic
world is to resolve the uncertainty by sensing and executing
actions. Hybrid planning and execution systems like [12]
[6] follow this approach where techniques similar to Hier-
archical Task Network (HTN) planning is combined with
execution. However, these systems are not capable of long-
term planning and are often only used as a smart execution
system in a larger context [20] [15].

There is a rich set of planning algorithms available that
are not capable of dealing with uncertainty and/or proba-
bilities. These algorithms are often well understood and
have been used to implement several successful planning
systems [4] [11]. Such planning systems can easily be used
as a module to provide planning capabilities to an already
existing system. It would be beneficial to be able to reuse
these planners as components to provide relaxed search ca-
pabilities when developing a planning and execution system
for domains that demand reasoning about uncertainty.

Since anticipating all possible (modeled) outcomes dur-
ing planning seems to be unpractical, we want to create a
system that is capable of limited probabilistic planning and
uses execution of actions to resolve the remaining uncer-
tainty. This paper presents an execution/replanning algo-
rithm that uses a classical planner, capable of optimizing
plan costs (which we call a cost-aware planner), for gener-
ating solutions to relaxed probabilistic planning problems.
Our approach is limited in the sense that we are only try-
ing to reach a set of goal states with as low expected cost
as possible instead of generating a policy that either maxi-
mizes a reward function or a probability of reaching a set of
goal states.

The paper is organised as follows. Section 2 contains
background information about the planning problem we are
trying to solve and introduces the notation used in this pa-
per. Section 3 explains how actions with probabilistic ef-
fects can be handled and modelled with cost-aware classical
planners by using probabilistic action decomposition, cost
estimation for actions, execution and replanning. In section
4, some limitations of this approach are presented.

1

2 Preliminaries

By a cost-aware planner we mean a classical planner that
can generate plans that are optimized in some way accord-
ing to a cost function. A special case of such a planner is
one that always generates optimal plans.

2.1 Classical Planning

We follow the definitions in [9] for the set-theoretic repre-
sentation of a classical planning domain and problem. Let
L = {p1, ..., pn} be a finite set of proposition symbols.
These propositions are the model of the world that the plan-
ner has to work with. A state s represents a possible world
configuration and will always be a subset of L. The set of
all possible world states S is defined as S ⊆ 2L (note that
S is not defined as S = 2L, since some of the states in 2L

might be impossible or unreachable).
A planning domain defines the possible transitions be-

tween the states in S. The set-theoretic planning domain
on L is defined as a restricted state-transition system Σ =
〈S, A, γ〉 where A is the set of actions and γ(s, a) defines
the transitions between a state s ∈ S when an action a is ap-
plied. Each action a ∈ A is defined as a triple of subsets of
L, a = 〈 precond(a), effects−(a), effects+(a)〉 with the ad-
ditional constraint that effects−(a) ∩ effects+(a) = ∅. An
action a is said to be applicable to a state s if precond(a)
⊆ s.

The state-transition function is defined as γ(s, a) =
(s−effects−(a)) ∪ effects+(a) if a ∈ A is applicable to
s ∈ S. If a is not applicable to s, γ(s, a) is undefined.

In this paper it is also assumed that every action is associ-
ated with a cost, cost(a), which can be used by a cost-aware
planner.

A set-theoretic planning problem is a triple P =
(Σ, s0, g) where s0 ∈ S is the initial state and g ⊆ L is
the set of goal propositions. The set of goal states, Sg, is
defined as {s ∈ S | g ⊆ s}.

A plan, which is the output of the planner, is any se-
quence of actions π = 〈a1, ..., ak〉, where k ≥ 0 (when
the plan is empty, then k = 0). The state-transition function
γ is extended to plans as well:
(1)

γ(s, π) =

s if π is empty

γ(γ(s, a1), 〈a2, ..., ak〉) if k > 0 and a1

is applicable to s

undefined otherwise

A plan π is a solution to a classical planning problem if
g ⊆ γ(s0, π).

2.2 Probabilistic planning

In a probabilistic planning domain, the actions are no longer
assumed to be deterministic. An action has instead a set
of possible effects which have probabilities associated with
them.

The possible effects and the corresponding probabilities
can be represented by a probability distribution p(· | s, a),
which specifies the probabilities and the possible resulting
states when applying an action a in a state s. To keep the
representation as similar to classical planning as possible,
we define a probabilistic action as a tuple 〈 precond(a),
cost(a), PE(a) 〉 where PE(a) (Possible Effects) is a set
of tuples 〈 effects−i (a), effects+i (a), probi(a) 〉 which de-
fines the probability distribution p(· | s, a). The precond(a),
cost(a) and the different effects are used in a similar way to
generate new states as defined in section 2.1.

We will differentiate between the real cost and the ex-
pected additional cost of actions a with |PE(a)| > 1. The
expected additional cost (abbr. eaCost(a)) will be used as
an instrument to guide the cost-aware planner towards plans
with lower expected cost.

When actions can have several possible effects, a sequen-
tial plan is no longer a good solution to such a planning
problem. A better plan format is to use a conditional plan
which is tree-shaped in its simplest form but can also con-
tain loops. The branches in a conditional plan contain if-
then-else or while constructs which makes this plan format
much more expressive than sequential plans. Another pos-
sible plan format, used for decision-theoretic planners, is
a so called policy which is a mapping from every state s
(s ∈ S, S ⊆ 2L) to an action a ∈ A. With a policy it is
possible to represent an agent’s overall behavior instead of
just the preferred paths to reach a set of goal states Sg .

We will not generate an explicit policy in our plan-
ning/execution algorithm since we are reusing a classical
planner to generate plans for reaching goals. The overall
behavior of our agent can on the other hand be interpreted
as the execution of an implicit time-dependent policy that
has a special zero-cost no-op action which is always ap-
plied when the agent is in a goal state.

2.3 Optimistic relaxation

Since we want to use a classical planner to perform prob-
abilistic planning, the actions with many possible effects
must be translated to deterministic ones before they are pre-
sented to the classical planner. The translation creates a
new deterministic action for each possible effect, giving the
classical planner the illusion that it can decide exactly what
outcome a probabilistic action has. We will call the result
of this translation for the optimistic relaxation of the proba-
bilistic planning domain. A probabilistic action pa is called
the origin of a deterministic action a if it represents one of
pa’s possible effects.

All the optimistic relaxations of a probabilistic action
will have the same preconditions and costs as their origin.

The problem with the relaxation is that since the classical
planner believes that the world is deterministic, it will gen-
erate plans that are optimistic (also called weak). An op-
timistic plan can reach the goal if all probabilistic actions
have the expected effects, but it can also fail to reach it if
any or several unexpected effects occur.

2

3 Handling Probabilistic Effects

A naive approach to interleaved planning and execution is
to use a classical planner to solve the optimistic relaxation
of the problem and then execute the optimistic plan until a
probabilistic action (PA) does not give the expected effects.
If this happens, a new optimistic plan could be generated
from the current state.

This approach is however very risky for such domains
where certain actions may lead to a state from where the
goal can not be reached. A better approach is to use some
form of limited conditional planning by examining a few
of the possible failures of the optimistic plan. This can
be achieved by simulating the optimistic plan until an op-
timistic relaxation of a PA occurs in the plan. The different
outcomes of the PA can also be simulated, creating a set of
possible successor states. For all these possible states, new
optimistic plans could be generated. In some of the states it
might not even be possible to reach the goal, or it might be
very expensive.

With this limitied conditional planning approach, we
have a method to detect possibly dangerous plans gener-
ated by a classical planner, but how do we make the planner
differentiate between them?

One possible way is to remove the more risky actions
from the optimistic relaxation, but this may be a very bad
thing to do since the effect of an action with respect to the
possibility of reaching the goal, depends on the state that
the action is applied to, which means that we might filter
out all solution plans by doing so.

We will instead use a cost-aware planner that can be ma-
nipulated by modifying action costs. Probabilistic action
costs are divided into two parts: a real cost (the original cost
of the PA) and an expected additional cost (eaCost). The
eaCost(pa) for a probabilistic action pa is the cost that will
be used to modify the behavior of the cost-aware planner.
Actions that might lead to dead ends or expensive recovery
plans should obviously have a higher expected additional
cost to make the cost-aware planner compare it with other
actions or plans for reaching the goal. We use the relative
cost of the possible resulting optimistic plans to calculate
the value the eaCost should have.

For example, consider a probabilistic action pa in a plan
that can result in three possible optimistic plans 〈π1, π2, π3〉
with probabilities 〈p1, p2, p3〉where π1 is the plan with low-
est cost. The eaCost(pa) is calculated as p2 · (cost(π2) −
cost(π1)) + p3 · (cost(π3)− cost(π1)) which seems to be a
reasonable value for the expected additional cost for the pa
action. The cost of the optimistic relaxations of PAs are in-
herited and calculated by summing the real and the expected
additional costs for their origin PAs.

The eaCost for a PA is initially set to zero, which means
that when we detect an optimistic relaxation a of a proba-
bilistic action pa in a plan with a non-zero eaCost(pa), we
assume that the alternative outcomes of this action have al-
ready been considered. We can then proceed to execute the
optimistic plan up to a.

A problem with this approach is that an action in classi-
cal planning represents a set of transitions in the underlying
state transition system and this additional expected cost rep-
resents all of these state transitions, even if some of these
transitions may have more or less impact on the total cost
of the plan. This problem will be discussed in section 4.

3.1 Algorithm

The algorithm that performs the planning and execution
procedure that was briefly described above, is given in pro-
cedure 1. The main procedure optipep (Optimistic Plan-
ning/Execution Procedure) is invoked by an agent in its es-
timated initial state s0 given the probabilistic actions Aprob

and the goal propositions g. It returns either Done (the goal
is reached) or Failure.

It starts by generating the optimistic relaxation to the
original probabilistic planning domain with the genOptRe-
lax procedure. Next, it enters a loop where first an opti-
mistic plan is generated by the cost-aware planner by ap-
plying the solve procedure. This plan is then simulated with
the simulateToPAction procedure to the first optimistic ver-
sion of a PA. If the expected additional cost for that action
is zero, the optimistic plans are generated from all possible
states that can be the result of applying the PA. The costs of
all these plans are compared to the cheapest one and the ex-
pected additional cost for the PA is updated. If the first PA
found has a non-zero eaCost, parts of the plan are executed
with the executeToPAction procedure which stops after the
first PA has been executed.

This process of generating an optimistic plan, calculate
expected additional costs and executing plan fragments con-
tinues until a goal state is reached (Done) or no optimistic
plan can be found (Failure).

The genOptRelax procedure takes every possible effect
of each PA and creates a deterministic counterpart that is
stored in the Aopt set, using the method presented in section
2.3. This procedure also sets up a map (ActionMap) from
these deterministic actions to their probabilistic origin. The
set Adet contains the deterministic actions in Aprop.

The simulateToPAction procedure (procedure 2) simu-
lates the prefix of the plan generated by the planner until
an action that has been created by the genOptRelax proce-
dure is encountered. The result is a tuple containing the
first PA (pa) found together with a set of 〈 action, result
state, probability 〉 tuples (ASPposs). The result can also
be simulationDone, which means that no PAs at all was en-
countered in the plan.

optipep keeps two different costs for each action. The
first cost, rCost (the real cost), is the original cost in the
probabilistic planning domain. The second cost, eaCost,
is the expected additional cost. The cost for an optimistic
classical action a is the sum of rCost(pa) and eaCost(pa)
for its probabilistic action pa = ActionMap(a).

3

Procedure 1 optipep(Aprop, s0, g)

〈Aopt, Adet, ActionMap 〉 ← genOptRelax(Aprop)
s← s0

loop
π ← solve(Aopt ∪ Adet, s, g)
if π = NoPlan then

return Failure
end if
result←simulateToPAction(s, π)
if result = simulationDone then

executePlan(π)
return Done

else
〈pa, ASPposs〉 ← result
if eaCost(pa) = 0 then

minCost←∞
for all 〈a, t, p〉 ∈ ASPposs do

πposs ← solve(Aopt ∪ Adet, t, g)
if minCost > Cost(πposs) then

minCost← Cost(πposs)
end if
PP← PP ∪〈πposs, p〉

end for
{PP contains all possible plans and their proba-
bilities}
for all 〈π, p〉 ∈ PP do

diffCost← cost(π) − minCost
eaCost(pa)← eaCost(pa) +p· diffCost

end for
for all {a | ActionMap(a) = pa} do

cost(a)← rCost(pa) + eaCost(pa)
end for

else
s← executeToPAction(π)
for all pa ∈ Aprop do

eaCost(pa)← 0
end for

end if
end if

end loop

Procedure 2 simulateToPAction(s, π)
πcurrent ← π
a← first(πcurrent)
while a /∈ Aopt do

πcurrent ← rest(πcurrent)
if πcurrent = 〈〉 then

return simulationDone
end if
s← γ(s, a)
a← first(πcurrent)

end while{a is now a member of Aopt}
ASPposs ← ∅
pa← ActionMap(a)
for all {a | ActionMap(a) = pa} do

ASPposs ← ASPposs ∪ 〈a, γ(s, a), prob(a)〉
end for
return 〈pa, ASPposs〉

3.2 Example

The replanning/execution algorithm presented in section
3.1 is probably best understood by an example. Suppose
that a mobile robot can move between two locations loc1
and loc2 by executing the PA move(robot, loc1, loc2). The
possible outcomes for this action are the following. Either
the robot reaches the location loc2, is stuck at loc1 or breaks
down (and needs to be repaired).

The robot has also some deterministic actions, get-
unstuck and call-repair-service, which can be applied
when it is stuck or broken respectively. These actions can
be represented in Probabilistic PDDL (PPDDL) [16] (see
figure 1).

The initial value (5) for the cost represents the estimated
time it takes to execute the action when it is successful.

After applying the genOptRelax procedure to the move
action, three new deterministic actions are created (see fig-
ure 2).

The cost-aware planner is then applied through the solve
procedure. The result is an optimistic plan which contains
a possible prefix of deterministic actions and a first relaxed
probabilistic action (see figure 3). In this particular example
we assume that the first such action is move-1.

The optimistic plan is then simulated with the simulate-
ToPAction procedure which returns the first PA and a set
of possible states that can be the result when this action is
executed. In the example the outcomes are that the robot
reaches the target, gets stuck or breaks down. For all these
possible states a new optimistic plan is generated by the
solve procedure. The planning and execution system now
has access to a limited conditional plan (see figure 4) which
anticipates just the possible outcomes of one PA. The ques-
tion that needs to be answered now is if it is a good idea to
apply the move operator at all? The algorithm tackles this
problem by comparing the costs of all the possible plans to
the cheapest one (the left branch in figure 4). These relative
costs (diffCost in the algorithm) are then used to calculate

4

(:action move
:precondition
(and (not (broken rob1)) (not (stuck rob1))

(at rob1 loc1) (path loc1 loc2))
:effect

(probabilistic
0.80 (and (at rob1 loc2) (not (at rob1 loc1)))
0.19 (stuck rob1)
0.01 (broken rob1))

:cost 5)

(:action get-unstuck
:effect
(not (stuck rob1))

:cost 10)

(:action call-repair-service
:effect
(not (broken rob1))

:cost 200)

Figure 1: Some actions specified in PPDDL

(:action move-1
:precondition ;; Same as for move
:effect (at rob1 loc2)
:cost 5)

(:action move-2
:precondition ;; Same as for move
:effect (stuck rob1)
:cost 5)

(:action move-3
:precondition ;; Same as for move
:effect (broken rob1)
:cost 5)

Figure 2: The actions created by the genOptRelax proce-
dure

S0

SG

Deterministic actions

cost = 5

Rest of plan

Goal state

Sy

Sx

move-1

Figure 3: Optimistic plan generated by the planner

the eaCost for the move PA. In this example the expected
additional cost becomes 15·0.19+205·0.01 = 4.9 which is
then added to the real cost for the move action which gives
a total cost of 9.9.

The system now has a more realistic value for the cost of
the move action and given this new information, a different
plan might be generated by the planner. Therefore, a new
optimistic plan is generated by the solve procedure which
is again simulated by the simulateToPAction procedure. If
the first PA (possibly move again) has a value for eaCost
that is greater than zero, it is assumed that this action has a
reasonable cost estimate and the optimistic result plan can
be executed up to the move action. However, if the first PA
has a zero eaCost, this cost has to be determined before any
action can be executed (because the plan might look totally
different before and after a cost update of an action).

4 Limitations

Since an action in classical planning represents a set of state
transitions, there can be cases where applying the optipep
procedure results in a bad execution behavior. Actions may
for example have different effects on the resulting plan cost
depending on the state they are invoked in. An example
where this problem arises is in the tire-world domain (see
figure 5) used in the probabilistic part of the International
Planning Competition (IPC) in 2004 [5].

The actions in the planning domain consists of moving
cars between different locations, loading tires on cars and
changing tires. The only probabilistic actions are the instan-
tiations of the move-car operator which can have possible
effect with probability 0.15 of giving the car a flat tire. A
flat tire can be changed with the change-tire action but only
if the car has a spare tire loaded. Spare tires can be loaded

5

Sx

Sy

move-2

move-1

move-1

move-1

cost = 5
cost = 5

cost = 5
cost = 10

move-3

cost = 5

cost = 5

Rest of plan

Goal stateSG

call-repair-service

cost = 200
get-unstuck

Figure 4: Optimistic plans for all possible outcomes from
state Sx

on cars with load-tire actions but only at locations where
such tires exists. The domain is interesting because even
an optimal policy for a specific tire-world problem may fail
because of bad luck while moving cars.

When optipep is applied to this domain, the action cost
estimations for every move-car action instance might be
very high except for those instances where the car ends up
in a location where it can apply a change-tire action. The
reason for this is that the different plans resulting after a
move-car action depends heavily on the has-spare-vehicle
and has-spare-location instantiated atoms.

These types of problems can be solved by preprocessing
the domain and splitting the move-car actions into move-
car-with-tire and move-car-without-tire but it is not a sat-
isfactory solution in the general case.

A more general solution might be to automatically try
to find the dependencies between parts of a state (propo-
sitions) and the resulting plan cost and create new actions
when there is a difference above some pre-specified thresh-
old.

5 Related Work

Interleaved planning and execution has sometimes been
considered a necessary solution when dealing with the real
world where execution not only resolves modelled uncer-

(:action move-car
:parameters

(?from - location ?to - location)
:precondition

(and (vehicle-at ?from) (road ?from ?to)
(not (flat-tire)))

:effect
(and (vehicle-at ?to) (not (vehicle-at ?from))

(probabilistic 0.15 (flat-tire))))

(:action load-tire
:parameters (?loc - location)
:precondition

(and (vehicle-at ?loc) (has-spare-location ?loc)
(not (has-spare-vehicle)))
:effect

(and (has-spare-vehicle)
(not (has-spare-location ?loc))))

(:action change-tire
:precondition (and (has-spare-vehicle) (flat-tire))
:effect (and (not (has-spare-vehicle))

(not (flat-tire))))

Figure 5: The operators in the tire-world domain

tainty but also deals with a limited model of the world.
In [7], planning and execution is interleaved to reduce the
search space for a conditional planner. A similar approach
is taken in [2] where a conditional planner, MBP [1], is
modified and reused in a planning/execution algorithm. The
main differences between our approach and [2] are that we
use optimistic plans to guide the search instead of infor-
mation gain and we reuse a cost-aware planner instead of
a conditional planner. Another difference is that we take
probabilities and action costs into account.

Our approach to limited conditional planning is some-
what similar to N-fault tolerant planning [13] where condi-
tional plans are generated that can handle at most N faults,
making it a flexible method to control the search space/plan
quality ratio. Instead of generating the conditional plan ex-
plicitly, we investigate the outcomes of probabilistic actions
and modify the expected additional costs. N-fault tolerant
planning does not consider the probabilities of the different
action failures at all.

6 Summary and Future Work

We have presented an interleaved planning and execution
procedure (optipep) that performs probabilistic planning by
reusing a classical cost-aware planner. The probabilistic ac-
tions’ costs are updated by comparing the possible cost of
the plans for all outcomes of the first occurrence of a prob-
abilistic action. The method has a limitation when the rela-
tive costs of the possible plans after applying a probabilistic

6

action are very different depending on the state the action
was applied in.

We have not performed any experiments with optipep,
but we will test it on the Power Supply Restoration domain
[19] and on several planning problems involving uncertain
reasoning for our multi UAV system [3]. We also want to
test our system for the domains and problems that were used
in the probabilistic planning competition [5] and compare
the result with the planners that participated.

Since there are several cost-aware planner implementa-
tions freely available [8] [10] [11], we will try to use them
to implement the solve procedure in optipep.

7 Acknowledgement

This paper is partially funded by the Wallenberg Founda-
tion under the WITAS UAV Project and the NFFP03-539
COMPAS Project.

References

[1] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. MBP: a model based planner. In IJCAI’01
Workshop on Planning under Uncertainty and Incom-
plete Information, 2001.

[2] P. Bertoli, A. Cimatti, and P. Traverso. Interleav-
ing execution and planning for nondeterministic par-
tially observable domains. In Proceedings of ECAI-
04, 2004.

[3] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom,
T. Persson, and B. Wingman. A distributed archi-
tecture for autonomous unmanned aerial vehicle ex-
perimentation. 7th International Symposium on Dis-
tributed Autonomous Robotic Systems (DARS), 2004.

[4] P. Doherty and J. Kvarnström. TALplanner: A tempo-
ral logic-based planner. The AI Magazine, 22(1):95–
102, 2001.

[5] S. Edelkamp, J. Hoffmann, M. Littman, H. Younes,
F. Bacchus, D. McDermott, M. Fox, D. Long, J. Rin-
tanen, D. Smith, S. Thiebaux, and D. Weld. The in-
ternational planning competition, 2004. See http://ls5-
www.cs.uni-dortmund.de/∼edelkamp/ipc-4/.

[6] R. Firby. Adaptive Execution in Complex Dynamic
Worlds. PhD thesis, Yale University, 1989.

[7] M. Genereseth and I. Nourbakhsh. Time-saving tips
for problem solving with incomplete information. In
Proceedings of AAAI-93, 1993.

[8] A. Gerevini and I. Serina. LPG: a planner based on
local search for planning graphs. In Proceedings of
AIPS-02, 2002.

[9] M. Ghallab, D. Nau, and P. Traverso. Automated Plan-
ning, theory and practice. Morgan Kaufmann Publish-
ers, 2004.

[10] P. Haslum and H. Geffner. Heuristic planning with
time and resources. In IJCAI-01 Workshop on Plan-
ning with Resources, 2001.

[11] J. Hoffmann. Extending FF to numerical state vari-
ables. In Proceedings of ECAI-02, 2002.

[12] F. Ingrand, M. Georgeff, and A. Rao. An architecture
for real-time reasoning and system control. IEEE Ex-
pert, 7:34–44, 1992.

[13] R. Jensen, M. Veloso, and R. Bryant. Fault tolerant
planning: Toward probabilistic uncertainty models in
symbolic non-deterministic planning. In Procedings
of ICAPS-04, 2004.

[14] L. Kaelbling, M. Littman, and A. Cassandra. Planning
and acting in partially observable stochastic domains.
Artificial Intelligence, 101, 1998.

[15] S. Lemai and F. Ingrand. Interleaving temporal plan-
ning and execution in robotics domains. In Proceed-
ings of AAAI-04, 2004.

[16] M. Littman and H. Younes. PPDDL1.0 -
an extension to PDDL for expressing plan-
ning domains with probabilistic effects. See
http://www.cs.rutgers.edu/∼mlittman/topics/ipc04-
pt/.

[17] R. Petrick and F. Bacchus. A knowledge-based ap-
proach to planning with incomplete information and
sensing. In Proceedings of AIPS-02, 2002.

[18] M. Puterman. Markov Decision Processes, Dis-
crete Stochastic Dynamic Programming. Wiley Inter-
science, 1994.

[19] S. Thiebaux and M. Cordie. Supply restoration in
power distribution systems – a benchmark for plan-
ning under uncertainty. In Proceedings of ECP-01,
2001.

[20] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and dy-
namic environments. Journal of Experimental and
Theoretical AI, 7(1):197–227, 1995.

7

