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Abstract

Guarding the perimeter of an area in order to detect potential intruders is an important task in a
variety of security-related applications. This task can in many circumstances be performed by a
set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require
refueling or recharging, in which case they must temporarily be replaced by other UAVs in
order to maintain complete surveillance of the perimeter. In this paper we consider the problem
of scheduling such replacements. We present optimal replacement strategies and justify their
optimality.

Keywords: scheduling problem; optimal replacement strategies; perimeter guarding; unmanned
aerial vehicles.

1 Introduction

To determine how a team of autonomous robots should guard the perimeter of a large area
against a potential intruder, we need to answer two questions: How do we place the robots, and
when do we replace them?

The question of placement has already been extensively covered in the literature, with solutions
that vary along many distinct dimensions. For example, some placement algorithms guarantee
full coverage of an area or its perimeter, while others provide a certain probability of detecting
all targets given specific assumptions about those targets and their properties. Along another di-
mension, static placement problems concern determining how to place sensors (not necessarily
associated with robots) in fixed locations . This includes the well-known art gallery problem [9]
as well as many coverage problems [2, 3]. In contrast, dynamic placement problems concern
determining suitable movement strategies for robots, which is particularly useful when the num-
ber of robots is insufficient for completely covering the desired area. When the target attempts
to avoid detection, this turns into a pursuit/evasion problem [10, 7, 4, 6, 1, 8]. In this case, the
algorithms may also cover the task of tracking an intruder once it has been detected.
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Figure 1: Perimeter guarding UAVs; an intrusion of the perimeter segment between UAVs i and
its adjacent UAV i+

In this paper we consider the second question, that of replacing UAVs. This is an essential issue
in surveillance applications, since the duration of such missions often exceeds the battery or
fuel capacity of the individual UAVs involved, and it is equally relevant regardless of whether
the placement of UAVs is nominally static or dynamic.

It should be noted that for the purpose of UAV replacement strategies, there is no significant
difference between charging batteries, automatically replacing batteries [11] or refueling with
liquid fuel. The main difference is the time required before the UAV can once again participate
in a mission. This also depends strongly on the distance to a recharging or refueling station and
is in all cases too long for a location to be left unguarded. For brevity, we will therefore limit
the discussion below to the use of batteries and battery charge, without loss of generality.

Given that no location can be left unguarded, each UAV that leaves the surveillance mission
must at least temporarily be substituted with another. How to schedule such replacements de-
pends strongly on the exact task at hand. For example, a solution adapted to missions where
UAVs must follow known trajectories through space [5] is not necessarily suitable or optimal
for a set of stationary UAVs guarding a perimeter.

We focus on a general case where n guarding UAVs are involved in a perimeter guarding mis-
sion. Thus, the guarding UAVs are assumed to be fully charged at the initial time, t = 0. Sim-
ilarly, each replacement UAV is assumed to be fully charged at the time it replaces a guarding
UAV. The replacements are assumed to be performed one by one every fixed time interval τ .

When a perimeter intrusion is identified in the area between a pair of adjacent UAVs, like in
Fig. 1, the one with the higher battery charge, say UAV i, will attempt to follow and track the
intruder. The number of guarding UAVs is assumed to be such that the remaining n−1 UAVs
are able to continue guarding the entire perimeter.

Any pair of adjacent UAVs is characterized by the higher battery charge of the two UAVs. It is
called the pair’s tracking charge. The lowest tracking charge over all adjacent pairs and all time
is called the critical tracking charge, and the corresponding pair of adjacent UAVs is called the
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weakest. Another important characteristic of the replacement strategy is the minimal charge
over all guarding UAVs, which is called the critical guarding charge. The replacement strategy
must be constructed so that this charge is always sufficient to allow the corresponding UAV to
come back to the base for recharging.

Since it is not a priori known which pair of UAVs may be affected by an intrusion, it is natural
to require from the replacement strategy that it maximizes the critical tracking charge and keeps
the critical guarding charge at the admissible level at all time. This is the main problem that we
address in this paper.

1.1 Organization

The paper is organized as follows. In Section 2, the scheduling problem is formulated. Periodic
strategies play an important role in our development of optimal strategies. Their useful prop-
erties are considered in Section 3. In Section 4, we present optimal replacement strategies and
justify their optimality. In Section 5, we draw conclusions and discuss future work.

2 Problem formulation

The guarding UAVs are assumed to be numbered as shown in Fig. 1 where the notation

i+ =

{
i+1, if i 6= n
1, if i = n

is used. Let N = {1,2, . . . ,n} stand for the set of all guarding UAVs. We refer to the pair of
adjacent UAVs (i, i+) as pair i. Let i− denode a number such that (i−)+ = i.

The battery charge li(t) of UAV i is assumed to decrease linearly with time as follows

li(t) = L− c(t− t ′),

where the positive scalars L and c denote the full battery charge and discharge rate, respectively,
and t ′ stands for the latest time, before t, when UAV i was replaced. An example of such a
function is presented by Fig. 2.

The tracking charge introduced in the previous section is computed for pair i by the formula

l̄i(t) = max{li(t), li+(t)}.

This function is determined by a chosen replacement strategy. It has a form similar to li(t):

l̄i(t) = L− c(t− t ′) (1)

with the difference that t ′ here stands for the latest time before t when any UAV in pair i was
replaced.
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Figure 2: Charge of UAV i vs. time

Any replacement strategy s can be presented as a sequence of integer numbers ν1,ν2,ν3, . . .
from the set N. Each number νk indicates that UAV νk should be replaced at time

tk = kτ, k = 1,2,3, . . . . (2)

The set of all replacement strategies is denoted by S. This is actually the set of all infinite
sequences of numbers from N.

The critical tracking charge introduced in the previous section is defined as

l̄(s) = inf
t≥0

min
i∈N

l̄i(t). (3)

The critical guarding charge is computed by the formula

l(s) = inf
t≥0

min
i∈N

li(t). (4)

We obviously have l(s)≤ l̄(s) because li(t)≤ l̄i(t) for all t ≥ 0 and i ∈ N.

As was mentioned in Section 1, the critical guarding charge should be above a given charge
level, denoted here by lmin, which is sufficient to allow any guarding UAV to come back to the
base for recharging. The replacement scheduling problem outlined in Section 1 can now be
formulated as follows:

max
s∈S
{l̄(s) : l(s)≥ lmin}. (5)

Since, at any interval [tk, tk+1), the function min{l̄i(t) : i∈N} decreases linearly with t, formula
(3) can be written as

l̄(s) = Λ(s)− cτ, (6)

where
Λ(s) = min

k≥1,i∈N
l̄i(tk).
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Similarly, we can rewrite formula (4) as

l(s) = λ (s)− cτ, (7)

where
λ (s) = min

k≥1,i∈N
li(tk).

Relations (6) and (7) allow us to present problem (5) in the following equivalent form:

max
s∈S
{Λ(s) : λ (s)≥ lmin + cτ}. (8)

Note that only the discrete time values li(tk) are involved in this problem formulation. We use
this property in the next two sections for developing replacement strategies and justifying their
optimality.

3 Periodic strategies

We call strategy s = {ν1,ν2,ν3, . . .} ∈ S periodic if the segment {ν1,ν2, . . . ,νn} of this sequence
is a permutation of the sequence {1,2, . . . ,n} and

νk+n = νk, ∀k ≥ 1.

Our analysis of such strategies will be based on the fact that li(t) and l̄i(t) are periodic functions
with the period T = nτ .

Periodic strategies play an important role in our development of optimal strategies. One of their
key properties is that l(s) attains its maximal value all over s ∈ S if and only if s is periodic. It
is an implication of the following result.

Lemma 1 If s ∈ S is a periodic strategy, then l(s) = L− cT . If s ∈ S is not periodic, then
l(s)< L− cT .

Proof. The equality l(s) = L− cT immediately follows from the fact that, for any periodic
strategy s, each guarding UAV is replaced once every fixed time interval T .

Consider any s ∈ S which is not periodic. This means that, for this strategy, there exists k ≥ 1
such that νk 6= νk+n. Suppose, on the contrary, that

l(s)≥ L− cT. (9)

To meet this requirement, every number i∈N should appear at least twice in the sequence of 2n
numbers νk,νk+1, . . . ,νk+2n−1. Moreover, it should appear exactly twice because N is composed
of n numbers. Inequality (9) implies that there should exist m ≤ n such that νk = νk+m. Since
νk 6= νk+n, we have m < n. Therefore, the number νk appears twice in the first half of the
mentioned sequence of 2n numbers. Then it does not appear in the second half of the sequence
and, for this reason,

l(s)≤ lνk((k+2n−1)τ)< L− cT.
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This contradicts assumption (9) and accomplishes the proof of lemma.

This result allows us to draw a practical conclusion about the admissible time interval between
two sequential UAV replacements. From now on, we assume that

τ ≥ L− lmin

cn
, (10)

because otherwise problem (5) would not have any feasible solution.

Let a periodic sequence s = {ν1,ν2,ν3, . . .} ∈ S be given. Then, for any i ∈ N, there exists a
unique integer k such that 1 ≤ k ≤ n and νk = i. We denote this dependence of k on i by κs(i).
We shall also use the notations

κ
min
s (i) = min

j∈{i,i+}
κs( j), κ

max
s (i) = max

j∈{i,i+}
κs( j),

imin
s = arg min

j∈{i,i+}
κs( j), imax

s = arg max
j∈{i,i+}

κs( j).

For the problem in focus, all these notations refer to the initial period of time [0,T ]. In particular,
UAV i is replaced for the first time at time tκs(i). The UAVs imin

s and imax
s of pair i are replaced

for the first time at times tκmin
s (i) < tκmax

s (i).

To justify the optimality of our periodic strategies proposed in the next section, we shall use the
following result.

Lemma 2 Suppose s ∈ S is a periodic strategy. Then

Λ(s) = L− cτ max
i∈N

Ki(s), (11)

where
Ki(s) = max{n+κ

min
s (i)−1−κ

max
s (i), κ

max
s (i)−1−κ

min
s (i)}.

Proof. Observe that
Λ(s) = min

i∈N
fi(s),

where the objective function
fi(s) = min

k≥1
l̄i(tk). (12)

Since l̄i(tk +T ) = l̄i(tk) for all tk ≥ κmin
s (i)τ , we can reduce minimization in (12) over k ≥ 1 to

minimization over two discrete intervals, namely,

[1, κ
min
s (i)−1] and [κmin

s (i), n+κ
min
s (i)−1].

It can be easily verified that the relations

min
1≤k≤κmin

s (i)−1
l̄i(tk)≥ L− cτKi(s)
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and
min

κmin
s (i)≤k≤n+κmin

s (i)−1
l̄i(tk) = L− cτKi(s)

hold for any periodic strategy s ∈ S. Hence, fi(s) = L− cτKi(s). This implies (11).

Note that our periodic strategies introduced in the next section admit an easy derivation of Ki(s)
and then straightforward calculation of Λ(s) by formula (11).

4 Optimal replacement schedule

Before introducing our optimal strategies, we will find an upper bound for the optimal solution
l̄∗ to problem (5). This result is formulated as follows.

Lemma 3 Let τ satisfy inequality (10). If n is odd then

l̄∗ ≤ L− c(n+1)τ
2

, (13)

else

l̄∗ ≤ L− c(n+2)τ
2

. (14)

Proof. Recall that at any moment tk, the value of li(tk) becomes equal to L for only one i ∈ N,
and the battery charge is decreased by cτ for all other elements of N. This justifies the following
property that will be exploited in the proof.

Consider any strategy s ∈ S. Given an integer m ∈ [0,n− 1] and a moment tk ≥ (m+ 1)τ , the
maximal number of elements i in N, for which the inequality

li(tk)≥ L− cmτ (15)

holds, is equal to m+1. For the rest of elements in N, this inequality is violated. The mentioned
maximal number is attained only when there is no repetition in the segment {νk−m+1, . . . ,νk−1,νk}
of the sequence s.

Consider, first, the case when n is odd. We shall show that

Λ(s)≤ Λ
∗
odd, ∀s ∈ S, (16)

where

Λ
∗
odd = L− c(n−1)τ

2
.

Recalling relation (6), one can see that (16) is a stronger result than (13) because no feasibility
of s is required here. Suppose, on the contrary to (16), that there exists s′ ∈ S such that

Λ(s′) = L− cmτ (17)
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for some integer m < (n− 1)/2, i.e. Λ(s′) > Λ∗odd . As was shown above, at any moment
tk ≥ (n−1)τ/2, there exist at most (n−1)/2 elements i of the set N for which the inequality

li(tk)> Λ
∗
odd (18)

holds. For the rest of the elements in N, i.e. for at least (n+1)/2 of those in N, inequality (18)
does not hold. Each i satisfying (18) ensures for exactly two pairs, namely (i, i+) and (i−, i),
that their tracking charges l̄i(tk) and l̄i−(tk) are strictly above Λ∗odd . Then the same holds for at
most n− 1 pairs in total. Since the total number of all pairs is n, there exists at least one pair,
say i′, such that l̄i′(tk) ≤ Λ∗odd . This contradicts the assumption that Λ∗odd < Λ(s′) and proves
that (16) holds which, in turn, implies the validity of the upper bound in (13).

Consider now the case of even values of n. Let

S f = {s ∈ S : λ (s)≥ lmin + cτ}

denote the feasible set in (8). Inequality (10) implies that S f is not empty. Note that (14) is
equivalent to the relation

Λ(s)≤ Λ
∗
even, ∀s ∈ S f , (19)

where
Λ
∗
even = L− cnτ

2
.

Suppose, on the contrary to (19), that there exists a feasible strategy s′ ∈ S f such that (17) holds
for some integer m < n/2. This would mean that Λ(s′)>Λ∗even. Then, at any moment tk ≥ nτ/2,
there must exist at most n/2 elements i of the set N for which the inequality

li(tk)> Λ
∗
even (20)

holds. On the other hand, this amount of elements can not be less than n/2, because otherwise
there would exist at least one pair, say, i′ such that l̄i′(tk) ≤ Λ∗even. Thus, (20) must hold for
exactly n/2 elements, which means that only m = (n− 2)/2 is to be considered. To avoid the
existence of the mentioned pair i′, these n/2 elements must all be either odd, or even. Without
loss of generality, we assume that it is the subset of all odd numbers in N for which (20) is
satisfied. Then it is the subset of all even numbers in N for which (20) is violated. Let i be odd
for which (15) holds as equality. Then li(tk+1) must become equal to L, because otherwise at
least one of the pairs (i−, i) and (i, i+) would break the assumption (17). This means that the
strategy s′ is such that only odd UAVs are replaced. Consequently, at a certain moment after
tk, one of the even vehicles should violate the constraint in problem (8). This contradicts the
assumption that s′ is feasible and proves that (19) holds, which implies the validity of the upper
bound in (14).

It will later be shown that bounds (13) and (14) are tight.

For the odd values of n, we suggest a strategy denoted by sodd and defined by the recursive
formula:

ν1 = 1,

νk =


νk−1 +2, if νk−1 ≤ n−2,
1, if νk−1 = n−1,
2, if νk−1 = n,

k = 2,3,4, . . . .
(21)
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Figure 3: Optimal replacement sequence for 7 UAVs

If, for example, n = 7 it produces the UAV replacement sequence

{1,3,5,7,2,4,6,1,3,5,7,2,4, . . .}

(see Fig. 3). The following result summarizes the main properties of strategy (21).

Theorem 4 Let n be an odd number. Suppose that τ satisfies inequality (10). Then strategy
(21) is periodic. Moreover, it is an optimal solution of problem (5), and the optimal value of the
objective function in this problem is

l̄∗odd = L− c(n+1)τ
2

. (22)

Proof. It can be easily verified that strategy (21) is periodic. Then due to assumption (10) and
by Lemma 1, this strategy is feasible in problem (5).

We will prove now that the objective function value l̄(sodd) is the same as l̄∗odd in (22). In view
of (6), it is sufficient to show that

Λ(sodd) = L− c(n−1)τ
2

. (23)

Our proof of this relation is based on the observation that

κsodd(i) =
{

(i+1)/2, if i is odd,
(i+n+1)/2, if i is even,

imin
sodd

=


i, if i 6= n is odd,
1, if i = n,
i+1, if i is even,

imax
sodd

=


i+1, if i 6= n is odd,
n, if i = n,
i, if i is even.

This gives

κ
min
sodd

(i) =


(i+1)/2, if i 6= n is odd,
1, if i = n,
(i+2)/2, if i is even,

κ
max
sodd

(i) =


(i+n+2)/2, if i 6= n is odd,
(n+1)/2, if i = n,
(i+n+1)/2, if i is even.
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Figure 4: Optimal replacement sequence for 8 UAVs

Consequently,

Ki(sodd) =
n−1

2
, ∀i ∈ N.

Then using Lemma 2, we obtain (23) which implies that l̄(sodd) = l̄∗odd .

Observe that l̄(sodd) equals the upper bound in (13). Then, by Lemma 3, the strategy sodd solves
problem (5).

It should be mentioned that, by Theorem 4, the proved relation (16) implies that there is no
strategy s, even among those infeasible in (8), whose objective function value Λ(s) would be
better than the one produced by our optimal strategy sodd .

For the even values of n, we suggest a strategy denoted by seven and defined recursively for
k = 1,2, . . . ,n as follows:

ν1 = 1, ν2 = n−1, νn/2+1 = n, νn/2+2 = 2,

νk =

{
νk−2− (−1)k2, k = 3,4, . . . ,n/2,
νk−2 +(−1)k−n/22, k = n/2+2,n/2+3, . . . ,n.

(24)

This sequence is obviously a permutation of {1,2, . . . ,n}. The whole sequence νk is obtained
by periodically extending sequence (24). If, for example, n = 8 it produces the replacement
sequence

{1,7,3,5,8,2,6,4,1,7,3,5,8,2,6,4, . . .}

(see Fig. 4). The following result summarizes the main properties of the presented strategy.

Theorem 5 Let n be an odd number. Suppose that τ satisfies inequality (10). Then strategy
seven is an optimal solution of problem (5), and the optimal value of the objective function in
this problem is

l̄∗even = L− c(n+2)τ
2

. (25)
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Proof. By reasoning similar to that in the proof of Theorem 4, we shall first show that

Λ(sodd) = L− cnτ

2
. (26)

Based on (24), one can easily derive the relations

κseven(i) =


i, if i is odd and 1≤ i≤ n/2,
n− i+1, if i is odd and n/2 < i < n,
n/2+ i, if i is even and 2≤ i≤ n/2,
3n/2− i+1, if i is even and n/2 < i≤ n,

imin
seven

=

{
i, if i is odd,
i−, if i is even, imax

seven
=

{
i+, if i 6= n is odd,
i, if i is even.

They imply

κ
min
seven

(i) =


i, if i is odd and 1≤ i≤ n/2,
n− i+1, if i is odd and n/2 < i < n,
i−1, if i is even and 2≤ i < n/2,
n− i, if i is even and n/2≤ i≤ n,
1, if i = n,

κ
max
seven

(i) =


n/2+ i+1, if i is odd and 1≤ i < n/2,
3n/2− i, if i is odd and n/2≤ i < n,
n/2+ i, if i is even and 2≤ i≤ n/2,
3n/2− i+1, if i is even and n/2 < i < n
n/2+1, if i = n.

Therefore,

Ki(seven) =

{
n/2−1, if i = n/2 or i = n,
n/2, otherwise.

Then using Lemma 2, we obtain (26) which yields l̄(seven) = l̄∗even.

Observe that l̄(seven) equals the upper bound in (14). Then, by Lemma 3, the strategy seven
solves problem (5).

Note that the presented optimal strategies are not unique. Indeed, if the guarding UAVs are
counted counterclockwise, the strategies formally defined by (21) and (24) are, obviously, also
optimal. Furthermore, it can be easily verified that, if {νk,νk+1, . . .} is a subsequence of either
sodd or seven, this subsequence is also an optimal strategy. This means that any optimal periodic
strategy remains optimal under some invariant changes in circular numbering of UAVs, namely,
when the circular direction changes between clockwise and counter-clockwise, and when the
numbering is shifted clockwise or counter-clockwise.
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5 Conclusions and future work

In this paper we considered the problem of scheduling replacements of UAVs in a perimeter
guarding task. The main results are the following. A practical importance of periodic re-
placement strategies was justified. Based on this result, a minimal time interval between two
sequential UAV replacements was derived. Replacement strategies were introduced separately
for odd and even number of UAVs, and their optimality was proved.

We plan to study the uniqueness of the introduced replacement strategies, or to be precise, the
uniqueness of the corresponding classes of strategies generated by the invariant transformations
discussed at the end of the previous section.

Our intention is also to consider the more difficult case of optimally replacing UAVs with indi-
vidual full battery charge Li and discharge rate ci.
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