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General Domain Circumscription and its First�Order

Reduction

Patrick Doherty and Witold �Lukaszewicz and Andrzej Sza�las

Abstract

We �rst de�ne general domain circumscription �GDC� and provide it with a semantics�
GDC subsumes existing domain circumscription proposals in that it allows varying of arbitrary
predicates� functions� or constants� to maximize the minimization of the domain of a theory�
We then show that for the class of semi�universal theories without function symbols� that the
domain circumscription of such theories can be constructively reduced to logically equivalent
�rst�order theories by using an extension of the DLS algorithm� previously proposed by the
authors for reducing second�order formulas� We also show that for a certain class of domain
circumscribed theories� that any arbitrary second�order circumscription policy applied to these
theories is guaranteed to be reducible to a logically equivalent �rst�order theory� In the case
of semi�universal theories with functions and arbitrary theories which are not separated� we
provide additional results� which although not guaranteed to provide reductions in all cases�
do provide reductions in some cases� These results are based on the use of �xpoint reductions�

� Introduction

In many common�sense reasoning scenarios� we are given a theory T specifying general laws and
domain speci�c facts about the set of phenomena under investigation� In addition� one provides a
number of closure axioms circumscribing the domain of individuals and certain properties and rela�
tions among individuals� The closure machinery normally involves the use of non�monotonic rules
of inference� or in the case of circumscription� a second�order axiom� In order for a circumscribed
theory to be useful� it is necessary to �nd a means of computing inferences from the circumscribed
theory in an e�cient manner� Unfortunately� the second�order nature of circumscription axioms
creates an obstacle towards doing this�

In previous work �
�� we proposed the use of an algorithm �DLS� which when given a second�
order formula as input would terminate with failure� or output a logically equivalent �rst�order
formula� Since circumscription axioms are simply second�order formulas� we showed that the
DLS algorithm could be used as a basis for e�ciently computing inferences for a broad class of
circumscribed theories by �rst reducing the circumscription axiom to a logically equivalent �rst�
order formula and then using classical theorem proving techniques to compute inferences from
the original theory augmented with the output of the algorithm� In �	�� the DLS algorithm was
generalized using a reduction theorem from ����� It was shown that a broad subset of second�order
logic can be reduced into �xpoint logic� Moreover� a class of �xpoint formulas was characterized
which can be reduced into their �rst�order equivalents�

In this paper� we extend the previous work in three ways�

�� We de�ne a general form of domain circumscription which subsumes existing domain cir�
cumscription proposals in the literature ����� ���� �
�� ���� and ����� We call the generalization
general domain circumscription �GDC�� GDC distinguishes itself from other proposals in the
following manner� When circumscribing the domain of a theory T � it is permitted to vary

�



arbitrary predicates� functions� or constants� to maximize the minimization of the domain
of individuals�

�� We characterize a class of theories which when circumscribed using GDC are guaranteed to be
reducible to equivalent �rst�order theories which are constructively generated as output from
extended versions of the original DLS algorithm� Included in this class are theories for which
both McCarthy�s original domain circumscription ��� and Hintikka�s mini�consequence ��� are
always reducible to �rst�order logic�


� We characterize a class of theories which� when �rst circumscribed using GDC and then
circumscribed using an arbitrary circumscription policy� are guaranteed to be reducible to
equivalent �rst�order theories which are constructively generated as output from the extend�
ed versions of the original DLS algorithm mentioned in the previous item�

We approach the characterization and reduction problems in the following manner�

� Given a theory T � we show that if the domain closure axiom is entailed by the domain
circumscribed theory CircD�T �� then CircD�T � is always reducible to a logically equivalent
�rst�order theory�

� We then characterize a class of theories where the domain closure axiom is not only en�
tailed by the domain circumscribed theory� but can be automatically generated and used in
the extended algorithm to reduce theories from this class to their corresponding �rst�order
equivalents�

� Given a theory in the class characterized above and an arbitrary circumscription policy
applied to that theory� we show that the extended version of the DLS algorithm will always
generate a �rst�order theory logically equivalent to the second�order circumscribed theory�

The key to the approach is determining when a domain circumscribed theory CircD�T �� entails
it�s domain closure axiom� Semantically� a possible answer is when the cardinalities of all minimal
models of the domain circumscribed theory have the same �nite upper bound� Syntactically� we
can characterize two classes of theories that provide such constraints when minimized�

�� Universal theories without function symbols� where the general domain circumscription pol�
icy can include arbitrary constants and predicates that vary�

�� Semi�universal theories without function symbols� where the general domain circumscription
policy can include arbitrary constants and predicates that vary�

The class of semi�universal theories is a broad class of theories much more expressive than uni�
versal theories which have previously been studied in the context of restricted forms of domain
circumscription� In the case of universal and semi�universal theories with function symbols� where
the general domain circumscription policy can include arbitrary constants� predicates and func�
tions that vary� reducible classes of theories are di�cult to characterize� In this case� we provide
additional results which guarantee reduction non�constructively and additional methods which�
although not guaranteed to provide �rst�order reductions in all cases� do provide reductions in
some cases�

The paper is organized as follows� Section � consists of preliminary de�nitions and notation� In
Section 
� general domain circumscription is introduced together with it model�preferential seman�
tics� In Section 	� the original DLS algorithm is brie�y described together with two limitations
associated with the basic algorithm� In Section 
� two generalizations of the basic DLS algorithm
are described which deal with the limitations previously described� In Section �� reducibility re�
sults concerning di�erent specializations of general domain circumscription are presented together
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with a number of concrete examples� In Section �� we consider the potential for reducing a larg�
er class of arbitrarily circumscribed theories which are �rst circumscribed using general domain
circumscription�

� Preliminaries

In this paper� the term theory always refers to a �nite set of sentences of �rst�order logic� Since
each set is equivalent to the conjunction of its members� a theory may be always viewed as a
single �rst�order sentence� In the sequel� we shall never distinguish between a theory T and the
sentence being the conjunction of all members of T � Unless stated otherwise� the term function
symbol refers to a function symbol of arity n� where n � ��

��� Notation

An n�ary predicate expression is any expression of the form �x� A�x�� where x is a tuple of n
individual variables and A�x� is any formula of �rst�order classical logic� If U is an n�ary predicate
expression of the form �x� A�x� and � is a tuple of n terms� then U ��� stands for A���� As usual�
a predicate constant P is identi�ed with the predicate expression �x� P �x�� Similarly� a predicate
variable � is identi�ed with the predicate expression �x� ��x��

An n�ary function expression is any expression of the form �x� � �x�� where x is a tuple of n
individual variables and � �x� is any term of �rst�order classical logic� If u is an n�ary function
expression of the form �x� � �x� and t is a tuple of n terms� then u�t� stands for � �t�� An n�ary
�n � �� function constant f is identi�ed with the function expression �x� f�x�� An n�ary �n � ��
function variable � is identi�ed with the function expression �x� ��x�� Note that �� ary function
variables are simply individual variables�

Let U � �U�� � � � � Un� and V � �V�� � � � � Vn� �resp� u � �u�� � � � � un� and v � �v�� � � � � vn� � be
tuples of predicate �resp� function� expressions� U and V �resp� u and v� are said to be similar
i�� for each i �� � i � n�� Ui and Vi �resp� ui and vi� are predicate �resp� function� expressions
of the same arity�

Truth values true and false are denoted by � and �� respectively�

If U and V are predicate expressions of the same arity� then U � V stands for �x U �x� � V �x��
If U � �U�� � � � � Un� and V � �V�� � � � � Vn� are similar tuples of predicate expressions� i�e� Ui and
Vi are of the same arity� � � i � n� then U � V is an abbreviation for

Vn

i���Ui � Vi��

IfA is a formula� �	 � �	�� � � � � 	n� and �
 � �
�� � � � � 
n� are tuples of any expressions� then A��	 	 �
�
stands for the formula obtained from A by simultaneously replacing each occurrence of 	i by 
i
�� � i � n�� For any tuple �x � �x�� � � �xn� of individual variables and any tuple �t � �t�� � � � tn�
of terms� we write �x � �t to denote the formula x� � t� 
 � � � 
 xn � tn� We write �x �� �t as an
abbreviation for 
��x � �t��

��� De�nitions

De�nition ��� A theory T is said to be existential �universal� i� all of its axioms are of the form
�x T� �resp� �x T��� where T� is quanti�er free�

De�nition ��� A theory is called semi�universal if its axioms do not contain existential quanti�ers
in the scope of universal quanti�ers�






De�nition ��� Let T be a theory without function symbols of positive arity and suppose that�
for n � �� c�� � � � cn are all the individual constants occurring in T � The domain closure axiom for
T � written DCA�T �� is the sentence

�x� x � c� � � � � � x � cn�

Let c be a tuple of individual constants� By DCA�c�T � we shall denote the sentence �x x �
c� � � � �� x � cn� where c�� � � � � cn are all the individual constants of T excluding constants from
c� For k � �� by DCA�k�T � we shall denote the sentence

�z� � � ��zk�x x � z� � � � � � x � zk � x � c� � � � �� x � cn�

where c�� � � � � cn are all the individual constants of T � We also use notation DCA�c�k�T � as a
combination of the above�

De�nition ��� A predicate variable � occurs positively �resp� negatively� in a formula A if the
conjunctive normal form of A contains a subformula of the form ���t� �resp� 
���t��� A formula
A is said to be positive �resp� negative� w�r�t� � i� all occurrences of � in A are positive �resp�
negative��

De�nition ��� Let � be either a predicate constant or a predicate variable and � be a tuple of
predicate constants or a tuple of predicate variables� Then a formula T ��� is said to be separated
w�r�t� � i� it is of the form T���� 
 T���� where T���� is positive w�r�t� � and T� is negative
w�r�t� ��

� General Domain Circumscription

In this section� we provide a de�nition of general domain circumscription �GDC� and its model�
preferential semantics� GDC subsumes both McCarthy�s original domain circumscription� intro�
duced in ���� studied in ���� and substantially improved in �
�� and Hintikka�s mini�consequence�
formulated in ��� and studied in ����

De�nition ��� Let P � �P�� � � � � Pn� be a tuple of di�erent predicate constants� f � �f�� � � � � fk�
be a tuple of di�erent function constants �including� perhaps� individual constants�� T �P� f � be a
theory and let � be a one�place predicate variable� � be a tuple of predicate variables similar to
P � and � be a tuple of function variables similar to f � By Axiom��� P � f�� sometimes abbreviated
by Axiom���� we shall mean the conjunction of�

� ��a�� for each individual constant a in T not occurring in f �

� ���i�� for each individual constant a in T such that a is fi�

� �x� � � �xn���x�� 
 � � � 
 ��xn� � ��f�x�� � � �xn���� for each n�ary �n � �� function constant
f in T not occurring in f � and

� �x� � � �xn���x�� 
 � � � 
��xn� � ���i�x�� � � �xn���� for each n�ary �n � �� function constant
f in T such that f is fi�

T� stands for the result of rewriting T ��� ��� replacing each occurrence of �x and �x in T ��� ��
with ��x ��x� �� and ��x ��x�
�� respectively�

	



De�nition ��� Let P � �P�� � � � � Pn�� f � �f�� � � � � fk� and T �P � f� be as in De�nition 
��� The
general domain circumscription for T �P� f � with variable P and f � written CIRCD�T �P � f�� is
the following sentence of second�order logic�

T �P� f � 
 ���������x��x� 
Axiom��� P � f� 
 T�� � �x��x��� ���

A formula � is said to be a consequence of CIRCD�T �P � f� i� CIRCD�T �P � f� j� �� where �j��
denotes the entailment relation of classical second�order logic�

The second conjunct of the sentence ��� is called the domain circumscription axiom�

It is not di�cult to see that ��� asserts that the domain of discourse �represented by �� is minimal
with respect to T � where P and f are allowed to vary during the minimization�

We shall write CIRCD�T � as an abbreviation for CIRCD�T � ��� ���� i�e� if neither predicate nor
function constants are allowed to vary� This simplest form of domain minimization corresponds
closely to McCarthy�s original domain circumscription ��� with the augmentation described in �
���

We shall write CIRCD�T �P � as an abbreviation for CIRCD�T �P � ���� i�e� if some predicate
constants� but not function constants� are allowed to vary� If P includes all predicate constants
occurring in a theory T � then CIRCD�T �P � is exactly mini�consequence� introduced in ��� and
improved in ���� Following ���� this form of minimization will be referred to as variable domain
circumscription��

Example ��� Consider a theory T consisting of �x P �x�
Q�x�
P �a�
Q�b��We shall minimize
the domain of T without varying predicate or function constants� CIRCD�T � is given by

T 
 �����x��x� 
��a� 
��b� 
 �x���x� � �P �x� 
Q�x� 
 P �a� 
Q�b���� � �x��x��� ���

Substituting �x�x � a � x � b for �� we get

T 
 ��x�x � a � x � b� 
 �a � a � a � b� 
 �b � a � b � b�
 �
�

�x��x � a � x � b� � �P �x� 
Q�x� 
 P �a� 
Q�b��� �

�x�x � a � x � b���

Since �
� is equivalent to T 
 ��x x � a � x � b�� we conclude that the domain closure axiom for
T � i�e� the sentence �x x � a � x � b is a consequence of CIRCD�T ��

Example ��� Let T consist of P �a�
P �b�� We minimize the domain of T with a allowed to vary
during the minimization� CIRCD�T � ��� �a�� is given by�

T 
 ���xa��x��x�
��xa� 
��b� 
 P �xa� 
 P �b� � �x��x��� �	�

Substituting �x�x � b for � and b for xa� one easily calculates that �	� implies T 
 �x x � b�
Accordingly� we conclude that the domain of T consists of one object� referred to by both a and
b�

�In fact� CIRCD�T � is slightly stronger in that it is based on a second�order axiom rather than on a �rst�order
schema�

�Note that in variable domain circumscription all predicate constants� but no function constants� are allowed to
vary during the minimization process�

�Since a is an individual constant� the variable corresponding to a is� in fact� an individual variable� Accordingly�
we denote it by xa� rather than by ��






We now proceed to give a semantics for general domain circumscription� We start with some
notational conventions� Given a model M � we shall write j M j to denote the domain of M � By
VM
v �A� we denote the truth�value of formula A in M with respect to a valuation v� Note that if

A is a formula of second�order logic� then  v� provides an interpretation not only for individual
variables� but also for predicate �and possibly function� variables� If v is a valuation for a model
M � d is an element of jM j and x is an individual variable� then v�x	 d� denotes an assignment
that is identical to v except for the variable x which is assigned the value d�

De�nition ��� Let P � f and T �P � f� be as in De�nition 
��� Let M� and M� be models of T �

We say that M� is a �P � f��submodel of M�� written M� �
�U �u	 M�� i� jM� j�jM� j� and for each

predicate� function or individual constant C� occurring neither in P nor in f � the interpretation
of C in M� is the restriction of the corresponding interpretation in M� to jM� j� A model is said
to be �P � f��minimal i� it has no proper �P � f��submodels�

Theorem ��� Let P � f and T �P � f� be as in De�nition 
��� A formula A is a consequence of
CIRCD�T �P � f� i� A is true in all �P � f��minimal models of T �

Proof It su�ces to show the following� a model M of T is a model of CIRCD�T� P � f� i� M is
a �P � f��minimal model of T �
��� Assume to the contrary that M is a model of CIRCD�T� P � f� andM is not �P � f��minimal�
Thus� there is a model N of T which is a proper �P � f��submodel of M � Clearly� j N j�j M j�
Since M is a model of CIRCD�T� P � f��

VM
v ��x��x� 
Axiom��� 
 T� � �x��x�� � � �
�

for each assignment v� Suppose that v��� is j N j and v��i� �resp� v��i�� is the relation �resp�
function� corresponding to the interpretation of Pi �resp� fi� in N � Since N is a �P � f��submodel
of T � this assignment is well�de�ned� It is easily veri�ed that V M

v ��x��x� 
 Axiom��� 
 T�� �
�� Thus� in view of �
�� we infer that V M

v ��x��x�� � �� This means that j M j�j N j� A
contradiction�

��� Assume to the contrary that M is a �P � f��minimal model of T and M is not a model of
CIRCD�T� P� f �� Thus� there is an assignment v such that

VM
v ��x��x� 
Axiom��� 
 T�� � � ���

VM
v ��x��x�� � �� ���

Consider the set S given by� d � S i� VM
v�x�d	���x�� � �� In view of ���� S is a proper subset of

j M j� Moreover� in view of ���� S is non�empty� We de�ne a model N such that j N j is S and
the interpretation of each predicate and function constant� not in P� f in N is the restriction of
the corresponding interpretation in M to j N j� Using ���� one easily checks that N is a model of
T � Thus� since j N j�jM j� N is a proper �P � f ��submodel of M � A contradiction�

��� An Optimization Technique

In this section� we propose a technique that allows one to reduce the size of a domain circumscrip�
tion axiom� The technique allows one to sometimes remove counterparts of universal formulas from
the axiom� More precisely� let theory T consist of axioms� including universal axioms of the form
�x� � � � �xn A�x�� � � � � xn�� and suppose that all predicate and!or function constants occurring in
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A�x�� � � � � xn� are not allowed to vary during the minimization� Then each such axiom reappears
in ��� as a part of T�� equivalent to the formula

�x� � � ��xn 
��x�� � � � � � 
��xn� �A�x�� � � � � xn�� ���

Since ���� together with the corresponding axiom of T � reduces to �� it can be removed from T��
We thus have the following principle�

Remove a counterpart of every universal axiom A of T from T� in the domain cir�
cumscription axiom� provided that none of the predicate and!or function constants
occurring in A are allowed to vary� If B is the resulting formula� then T 
B is equiv�
alent to CIRCD�T �P � f��

Observe also that one can remove formula �x��x� from ��� whenever T contains a constant symbol�
This follows from the fact that for each constant symbol� say a� one has ��a� as a conjunct of
Axiom���� Thus �x��x� follows from Axiom��� and can be removed�

It should be emphasized that the DLS algorithm works successfully without the above mentioned
optimizations� However� as shall be seen in the examples in Section �� they usually considerably
decrease the complexity of the reduced formula�

� DLS Algorithm

��� The Basic DLS Algorithm

In this section� we brie�y describe the DLS algorithmmentioned in the introduction� Its complete
formulation can be found in �
�� The algorithm was originally formulated in a weaker form in �����
in the context of modal logics� It is based on Ackermann�s techniques developed in connection
with the elimination problem �see �����The DLS algorithm is based on the following lemma� proved
by Ackermann in ��
	 �see ����� The proof can also be found in �����

Lemma ��� 	Ackermann Lemma
 Let � be a predicate variable and A��x� �z�� B��� be for�
mulas without second�order quanti�cation� Let B��� be positive w�r�t� � and let A contain no
occurrences of � at all� Then the following equivalences hold�

����x����x� �A��x� �z�� 
B��	 
�� � B��	 A��x� �z�� ���

����x�
���x� �A��x� �z��
B��� � B��	 A��x� �z�� ����

where in the righthand formulas the arguments �x of A are each time substituted by the respective
actual arguments of � �renaming the bound variables whenever necessary��

The DLS algorithm is based on eliminating second�order quanti�ers of the input formula using a
combination of applications of Lemma 	�� together with various syntactic transformations which
preserve equivalence�

�



��� Problems with the Basic DLS Algorithm

There are two weaknesses associated with the basic DLS algorithm which cause it to terminate
with failure�

�� Non�separated input problem�

�� Unskolemization problem�

In order for the DLS algorithm to reduce an input formula� it must be possible for the formula to
be transformed into separated form� If the input formula consists of clauses which contain both
positive and negative occurrences of the predicate variable being eliminated� then the basic DLS
algorithm will return with failure�

Another limitation of the basic DLS algorithm involves unskolemization� Skolemization is some�
times required either due to the original form of the input formula� or to one of the phases in the
algorithm which may introduce new existential quanti�ers� When applying Ackermann�s Lemma�
all existentially quanti�ed individual variables have to be removed from the pre�x of the formula
being reduced� For this purpose� Skolemization is performed using the equivalence�

�x�y A�x� y� � �f�x A�x� y 	 f�x��� ����

where f is a new function variable� After application of Ackermann�s Lemma� one tries to remove
the newly introduced function variables using equivalence ���� in the other direction� Unfortu�
nately� unskolemization is not always successful�

� Extending the DLS Algorithm

There are two generalizations of the basic DLS algorithm that extend the class of input formulas
that can be successfully reduced to include non�separated input formulas and formulas which
would normally fail to be reduced due to unskolemization problems�

The �rst method appeals to the observation that for a particular class of theories whose domain
closure axiom is entailed by the corresponding general domain circumscribed theory� both the
non�separated input and unskolemization problems can be avoided by combining the basic DLS
algorithm with the additional constraints contributed by the domain closure axiom associated
with the input theory� Although this method can be used for a particular class of input formulas�
it can not be used for all non�separated input formulas�

The second method generalizes Ackermann�s Lemma �	��� by transforming an input formula into a
�possibly� non�separated form which can be shown to be logically equivalent to a �xpoint formula
in a �xpoint calculus� In the case where the �xpoint formula is bounded� the non�separated input
formula can be reduced to a logically equivalent �rst�order formula�

In Section�s 
�� and 
��� the formal justi�cation on which the two methods are based will be
described�

��� DLS Algorithm with the Domain Closure Axiom

As mentioned before� the DLS algorithm may fail due to non�separatedness and unskolemizaton
problems� On the other hand� whenever it is known that the domain closure axiom � DCA �
follows from the theory considered� separatedness and unskolemization are always possible� This
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is particularly important in cases when one combines domain circumscription with other second�
order formalisms� like e�g� second�order circumscription�

Assume that T is a theory� Then� for each formula A� DCA�T � implies�

�x A�x� � �A�c�� � � � � �A�cn�� ����

and

�x A�x� � �A�c�� 
 � � � 
A�cn��� ��
�

The following example illustrates the use of equivalences ���� and ��
��

Example ��� Assume that �x x � a�x � b holds� An application of equivalence ���� to formula
�y�z P �y� z� results in �y�P �y� a� � P �y� b��� An application of equivalence ��
� to this formula
results in �P �a� a� � P �a� b��
 �P �b� a�� P �b� b���

Using equivalence ���� one can remove existential quanti�ers that would require Skolemization�
This solves the unskolemization problem associated with the DLS algorithm� Observe that in
order to make the DLS algorithm work one could also use equivalence ��
� in order to remove
universal quanti�ers preceding the existential quanti�ers� whenever necessary�

The second reason the DLS algorithm fails is when formulas cannot be separated w�r�t� predicate
�� In the canonical case� this occurs when a universally quanti�ed clause contains both positive
and negative occurrences of �� Using equivalence ��
�� one can remove the universal quanti�ers
from the clause pre�x� This� together with certain distributions across subformulas� is guaranteed
to transform the initially non�separated formula into a separated formula�

Of course� the above technique can easily be modi�ed if it is known that DCA�c�T �� DCA�k�T �
or DCA�c�k�T � is entailed from T � Before we introduce this modi�cation� consider the following
simple example�

Example ��� Assume that �z�x x � z � x � a holds� An application of equivalence ��
� to
formula �y P �y� results in �z��x�x � z � x � a� 
 P �z� 
 P �a���

Observe that� unlike Example �
���� the DCA reappears in the result� This is due to the existential
quanti�er �z that has to bind both the DCA and the resulting formula�

The following theorem justi�es the technique�

Theorem ��� Assume that for a given second�order theory T �

T j� DCA�c�k�T ��

Then T is equivalent to a �rst�order formula�

Proof Let DCA�c�k�T � be the formula

�z� � � ��zk�x x � z� � � � � � x � zk � x � c� � � � �� x � cn� ��	�

where c�� � � � � cn are all the individual constants of T excluding those in c� In order to prove that
all second�order quanti�ers can be eliminated from T � we show that both the Skolemization and

�



non�separatedness problems associated with the DLS algorithm can be avoided� Since these are
the only reasons why the DLS algorithm may fail� this will prove the theorem�

Suppose a second�order quanti�er from a subformula of T is being eliminated� Since only existential
second�order quanti�ers are considered�
 a subformula of T of the form ���A����� where A is a
�rst�order formula is the only case requiring consideration�

In order to make things simple� A is �rst transformed into prenex conjunctive normal form�
Formula ��	� is then Skolemized and its equivalent�

�x x � b� � � � � � x � bk � x � c� � � � �� x � cn� ��
�

is obtained� where b�� � � � � bk are Skolem constants replacing z�� � � � � zk�

Now in order to prove our theorem� we run the DLS algorithm�

Each time the DLS algorithm would perform Skolemization� the respective existential quanti�er�
say �u��u�� is eliminated by using equivalence ����� In this case �u��u� is replaced by the
disjunction ��b�� � � � � � ��bk� � ��c�� � � � � � ��cn��

Observe that the only reason a formula can not be separated is when a universal quanti�er binds a
clause containing both positive and negative occurrences of the predicate variable being eliminated
� e�g� we have a clause in A of the form �x�y�P �x��P �y����x� y��� Each time DLS would fail due
to the non�separatedness problem� the problematic universal quanti�er� say �u��u�� is eliminated
by using equivalence ��
�� In this case� �u��u� is replaced by the conjunction ��b��
� � �
��bk�

��c�� 
 � � � 
 ��cn��

This solves the problems associated with the original DLS algorithm and ensures that it runs
successfully� eliminating all second�order quanti�ers of T �

Since CIRCD�T� P � f� is a second�order sentence� we have the following corollary�

Corollary ��� Assume that CIRCD�T� P � f� j� DCA�c�k�T �� Then CIRCD�T� P � f� is equiv�
alent to a �rst�order formula�

Theorem 
�� allows us to modify the DLS algorithm in such a way that whenever there is a
Skolemization or separatedness problem� one applies formulas ���� and ��
�� respectively� We will
denote this modi�cation of the DLS algorithm by DLS��

The following example illustrates the use of the DLS� algorithm�

Example ��� Assume that the DCA is of the form �z�x x � z � x � a� and let T be the
second�order formula

���x�y����x� � 
��y�� 
 �z
��z� 
 �u��u��
 ��z�x x � z � x � a�� ����

We �rst Skolemize DCA and obtain �x�x � b�x � a�� We then try to eliminate the quanti�er ��
from formula ���� using the DLS algorithm� In this case� one �rst Skolemizes one of the �rst�order
existential quanti�ers� Whichever is chosen� we are then faced with a non�separated formula� Due

�Universal second�order quanti�ers are processed by �rst negating the formula� applying the DLS algorithm to
the negated formula stripped of its negation sign and then negating the output of the algorithm�

�We use second�orderSkolemizationgiven by formula ����� This means� that we always have a pre�x of existential
quanti�ers binding Skolem constants in front of the whole theory� In this case� unskolemization is always possible
	 see also Examples 
�� and 
��

��



to this� the DLS algorithm fails� If instead one uses the DLS� algorithm� we �rst eliminate one
of the existential quanti�ers� say �u� by applying equivalence ���� and obtain

�b�DCA
 ���x�y����x� � 
��y�� 
 �z
��z� 
 ���b� ���a����� ����

Formula ���� is not separated� We thus apply equivalence ��
� to quanti�er �y and obtain�

�b�DCA
 ���x����x� �
��b�� 
 ���x� � 
��a��� 
 �z
��z� 
 ���b� ���a����� ����

���� is equivalent to

�b�DCA
 �����z
��z� 
 �x��x� 
 ���b� ���a���� � ����

�����z
��z� 

��b� 
 
��a� 
 ���b� � ��a����

It is easily observed that each disjunct is in separated form� and no additional skolemization is
necessary� so application of the basic DLS algorithm results in a �rst�order formula equivalent to
�����

��� Fixpoint Calculus

Let LI be the classical �rst�order logic� In order to de�ne the �xpoint calculus LF � we extend
LI by allowing the least �xpoint operator 
��A���� where A is positive w�r�t� �� We abbreviate
a formula of the form 


��
A�
�� by ���A���� It is sometimes convenient to indicate the
individual variables that are bound by the �xpoint operators 
 and �� We write 
����x� and
�����x� to indicate that the tuple �x of variables is bound by a �xpoint operator�

Every formulaA��� which is positive w�r�t� � is monotone� Consequently� by the Knaster " Tarski
�xpoint theorem� we are assured that the �xpoints we consider are well de�ned� Moreover� the
�xpoints have the following nice characterization�


��A��� �
�

���

A���� ����

for an ordinal ��

De�nition ��� The least ordinal � for which equivalence ���� holds is called the closure ordinal
for A����

A �xpoint formula is called bounded i� it contains only �xpoint operators with �nite closure
ordinals�

Note that 
���x��A��� is the least �w�r�t� �� formula B��x� such that

B��x� � A��	 B��x���

Proposition ��� Let T be a �rst�order theory� If there is i � � such that T j� Ai��� � Ai�����
then T j� 
��A��� �

W
j�iA

j����

The following theorem is proved in �����

��



Theorem ��� Assume that all occurrences of the predicate variable � in the formulaB bind only
variables�

� if A and B are negative w�r�t� � then the closure ordinal for A�
�� is less than or equal to
�� and

����y ����y� �A�
��� 
 �B�
��� � B�
�	 �
���y��A�
��� ����

� if A and B are positive w�r�t� � then the closure ordinal for A��� is less than or equal to ��
and

����y�
���y� �A���� 
 �B���� � B��	 ����y��A���� ����

where the above substitutions exchange the variables bound by �xpoint operators by the corre�
sponding actual variables of the substituted predicate�

Note the similarity between Theorem 
�� and Ackermann�s Lemma 	��� In this case though� the
second�order formula on the lhs is not necessarily separated and the logically equivalent formula
on the rhs is not a �rst�order formula� but a �xpoint formula which is potentially reducible to a
�rst�order formula if it can be shown to be bounded �see �	���

� Reducing General Domain Circumscription

In this section we provide some reducibility results concerning various variants of general domain
circumscription� In what follows� we assume that theories under consideration contain at least
one individual constant symbol�

��� Fixed GDC

����� Universal Theories

In Example 
��� we saw that domain circumscription may allow the derivation of the domain
closure axiom� It turns out that for universal theories without function constants this is always
the case� Moreover� as the next theorem shows� if T is a theory of that type� then the domain
circumscription of T is equivalent to T 
DCA�T ��

Theorem ��� Let T be a universal theory without function symbols� Then CIRCD�T � is always
reducible into �rst�order logic using the DLS algorithm� Moreover� if A is the resulting formula�
then A is equivalent to T 
DCA�T ��

Proof Let� for some k � �� c�� � � � � ck be all the individual constants occurring in T � The
optimization technique from Section 
��� allows us to write CIRCD�T � in the form

T 
 ������c�� 
 � � � 
��ck�� � �z ��z��� ��
�

After negating the second�order conjunct of ��
�� we obtain

�����c�� 
 � � � 
��ck� 
 �z
��z��� ��	�

��



The DLS algorithm transforms ��	� into

�z�����c�� 
 � � � 
 ��ck� 
 �u�
��u� � z �� u��� ��
�

Applying Ackermann�s lemma to ��
�� results in

�z�z �� c� 
 � � � 
 z �� ck�� ����

Negating ����� we obtain

�z�z � c� � � � � � z � ck��

Thus

CIRCD�T � � T 
 �z�z � c� � � � � � z � ck��

Observe that according to our assumption� we consider only theories that contain at least one
individual constant� This is only a technical assumption� If T has no individual constant symbols
then

CIRCD�T � � T 
 ����x ��x� � �z ��z���

After negating the second conjunct of this formula we obtain

����x ��x� 
 �z
��z���

which� after applying the DLS algorithm� results in the equivalent �x�z�z �� x�� Thus CIRCD�T � �
T 
 �x�z�x � z��

����� Semi�Universal Theories

As regards semi�universal theories without function symbols we have the following theorem�

Theorem ��� Let T be a semi�universal theory without function symbols� Then CIRCD�T � is
always reducible into �rst�order logic using the DLS algorithm� Moreover� if A is the resulting
formula� then A implies DCA�k�T �� where k is the number of existential quanti�ers of T �

Proof Follows from Theorem ��� and the fact that the DCA axiom is unnecessary here� �See the
proof of Theorem ��� and note that the DCA axiom is only needed there to eliminate predicate
variables corresponding to varying predicates��

The following example illustrates a reduction of a semi�universal theory�

Example ��� Let T consist of

A�� �xF �x�
A�� B�Tweety�

�




where B and F stand for Bird and F lies� respectively� We shall reduce CIRCD�T �� i�e� no
predicate or individual constants are allowed to vary during the minimization� The corresponding
domain circumscription axiom is

�����x��x�
��Tweety� 
 �x���x� 
 F �x��� � �x��x��� ����

After removing �x��x� from ���� and negating the result� we obtain

�����Tweety� 
 �x���x� 
 F �x�� 
 �x
��x��� ����

To eliminate quanti�cation over �� we transform ���� into the form

�x������Tweety� 
 �x���x� 
 F �x��
 �z�
��z� � z �� x���� ����

Applying Ackermann�s Lemma� we obtain

�x��x� �� Tweety 
 �x�x� �� x 
F �x���� �
��

After negating �
��� we obtain

�x��x� � Tweety � �x�x� � x �
F �x��� �
��

which is equivalent to

�x�x��x� � Tweety � x� � x � 
F �x��� �
��

Thus

CIRCD�T � � �xF �x� 
B�Tweety� 
 �x�x��x� � Tweety � x� � x �
F �x��� �

�

It is easily seen that �

� implies �z�x��x� � Tweety � x� � z�� i�e� DCA���T ��

��� Variable GDC

For universal and semi�universal theories� we have the following counterparts of Theorems ��� and
����

����� Universal Theories

Theorem ��� Let T be a universal theory without function symbols and suppose that P is a
tuple of predicate symbols occurring in T � Then CIRCD�T � �P �� is always reducible into �rst�
order logic using the DLS� algorithm� Moreover� if A is the resulting formula� then A implies
DCA�T ��

Proof Observe that CIRCD�T �P � impliesCIRCD�T � thus �by Theorem ���� it impliesDCA�T ��
The reduction of CIRCD�T �P � now easily follows from the discussion in Section 
���

�	



Example ��� Let theory T consist of �x R�x� a� � R�a� x� and consider CIRCD�T �R�� In this
case we cannot apply the optimization technique in Section 
�� concerning universal axioms since
R is varied� Thus the second�order part of CIRCD�T �R� is equivalent to

�������a� 
 �x�
��x� � ���x� a� � ��a� x���� � �z��z�� �
	�

In order to eliminate the quanti�er �� the DLS algorithm negates this formula and transforms it
into a form required for application of Ackermann�s Lemma�

������x���x� � x �� a� 
 �x�
��x� � 
��x� a����a� x�� 
 �z
��z��� �

�

The output of the DLS algorithm after the elimination of � results in

����x�x �� a � 
��x� a����a� x�� 
 �z�z �� a��� �
��

The elimination of � is now straightforward� The DLS algorithm determines that the clause
�x�x �� a � 
��x� a� � ��a� x�� can be removed� resulting in �z�z �� a�� Negating the formula
results in �z�z � a� which is a �rst�order equivalent of formula �
	��

For theories with varied individual constants the following theorem holds�

Theorem ��� Let T be a universal theory without function symbols� Let P be a tuple of predicate
symbols and c be a tuple of individual constants occurring in T � Then CIRCD�T �P � c� is always
reducible into �rst�order logic using the DLS� algorithm� Moreover� if A is the resulting formula�
then A implies DCA�c�T ��

Proof Follows from Theorem ��� �with k � ���

The following example varies an individual constant�

Example ��� Consider the theory T given by

A�� S�c� 
 S�d�
A�� �x R�x� c� � R�x� d�
A
� �x
R�x� c�
 �y
R�y� d� 
 �z
R�z� z��

This example is taken from ����� Here S�x�� R�x� y�� c and d are to be read  the evidence says that
x saw the victim alive��  the evidence says that x saw the victim alive after y saw her alive for the
last time��  murderer� and  suspect�� respectively� Suppose further that the police tries to �nd all
individuals who satisfy exactly those formulas that the �unknown� murderer c does� by comparing
what is provable about the murderer with what is provable about a particular individual� To
formalize this type of procedure� we should minimize the domain under consideration with all
constant symbols� except that referring to the murderer which is allowed to vary� In our case� we
minimize the domain of T with variable c� The intended conclusion is d � c�

The second�order part of CircD�T� ��� �c��� after simpli�cations� is equivalent to

�xc�����xc� 
��d� 
 S�xc�
 �
��

�x���x� � ��
R�x� xc� �R�x� d��
 �R�x� xc� �
R�x� d���


�x���x� � 
R�x� xc�� � �s��s���

�




Negating �
��� we obtain

�xc�����xc� 
��d� 
 S�xc�
 �
��

�x�
��x� �
R�x� xc� �R�x� d�� 
 �
��x� �R�x� xc� � 
R�x� d���


�x�
��x�� 
R�x� xc�� 
 �s
��s��

which is transformed by the DLS algorithm to

�s�xc���x����x� � �x �� xc 
 x �� d�� 
 S�xc�
 �
��

�x�
��x�� 
R�x� xc�� 
 
��s��

and then� after the application of Ackermann�s Lemma� to

�s�xc�S�xc� 
 �x��x �� xc 
 x �� d� � 
R�x� xc�
 �	��

�s �� xc 
 s �� d���

Negating �	��� we obtain

�s�xc�S�xc� 
 �x��x �� xc 
 x �� d� � 
R�x� xc� � �	��

�s �� xc 
 s �� d��

and so�

CircD�T� ��� �c�� � T 
 �s�xc�S�xc� 
 �x��x �� xc 
 x �� d� � 
R�x� xc� � �	��

�s �� xc 
 s �� d��

It is easily seen� substituting d for xc� that CircD�T� ��� �c�� j� d � c�

����� Semi�Universal Theories

Theorem ��� Let T be a semi�universal theory without function symbols and suppose that P is a
tuple of predicate symbols occurring in T � Then CIRCD�T �P � is always reducible into �rst�order
logic using the DLS� algorithm� Moreover� if A is the resulting formula� then A impliesDCAk�T ��
where k is the number of existential quanti�ers of T �

Proof Follows from Theorem ��� and Section 
���

The following theorem generalizes Theorem ��	 to semi�universal theories�

Theorem ��� Let T be a semi�universal theory without function symbols� Let P be a tuple of
predicate symbols and c be a tuple of individual constants occurring in T � Then CIRCD�T �P � c�
is always reducible into �rst�order logic using the DLS� algorithm� Moreover� if A is the resulting
formula� then A implies DCA�c�k�T �� where k is the number of existential quanti�ers of T �

Proof Since T is semi�universal� it can be be written in the form

�

i

�xi� � � ��xisi�yi� � � � �yitiTi��� �� �	
�

��



where each T is an open formula� Let c��� � � � � c
�
r be all individual constants occurring in T excluding

those in c� The second�order part of CIRCD�T �P � c� is then equivalent to

����������c��� 
 � � � 
��c�r�
 �		�
V
i � xi� � � � �xisi�yi� � � ��yiti���xi�� 
 � � � 
��xisi� 
 �
��yi�� � � � � � 
��yiti� � Ti��� ����

� �z ��z���

To show the reduction� we �rst negate �		�� obtaining

����������c��� 
 � � � 
��c�r�
 �	
�
V
i � xi� � � � �xisi�yi� � � ��yiti���xi�� 
 � � � 
��xisi� 
 �
��yi�� � � � � � 
��yiti� � Ti��� ����


�z
��z���

Formula �	
� is transformed by the DLS algorithm into

� x�� � � ��x�s� � � � ������� �	��

�u���u� � �u �� c�� 
 � � � 
 u �� c�r 

V
i�u �� xi� 
 � � � 
 u �� xisi���
V

i �yi� � � ��yiti�
��yi�� � � � � � 
��yiti� � Ti��� ����


�z
��z���

Let B�u� denote formula u �� c�� 
 � � �
u �� c�r 

V
i�u �� xi�
 � � �
u �� xisi�� Then the application

of Ackermann�s Lemma to formula �	�� results in

� x�� � � � �x�s� � � ������
�

i

�yi� � � � �yiti�B�yi�� � � � � �B�yiti � � Ti��� ���� 
 �z B�z��� �	��

Negating �	��� we obtain

� x�� � � � �x�s� � � ������
�

i

�yi� � � � �yiti�B�yi�� � � � � �B�yiti � � Ti��� ���� � �z
B�z��� �	��

By �	
�� T
 �	�� implies

�x�� � � ��x�s� � � � �z
B�z�� �	��

where �x�� � � � �x�s� � � � are all existential quanti�ers of T � Substituting B�z� in �	�� by its de�ni�
tion� we obtain

�x�� � � ��x�s� � � � �z�z � c�� � � � � � z � c�r �
�

i

�z � xi� � � � � � z � xisi��� �
��

It can now easily be observed that �
�� is equivalent to DCA�c�k�T �� where k is the number of
existential quanti�ers of T � Given this� the elimination of predicate variables corresponding to
varying predicate and individual constants follows from our discussion in Section 
���

A reduction of variable domain circumscription for a semi�universal theory is illustrated below�

Example ��� Let T consist of �x Q�x� 
 �Q�a� � �y y �� a��This example is taken from ���� The
intended conclusion of domain circumscription with Q allowed to vary is �y�x x � y � x � a�

��



We reduce CIRCD�T � �Q�� ���� The second�order part of CIRCD�T � �Q�� ��� �after removing
���x�� is

��������a� 
 �x���x� 
��x�� 
 ���a� � �y���y� 
 y �� a��� � �z��z��� �
��

Negating �
��� we obtain

�������a� 
 �x���x� 
��x�� 
 ���a� � �y���y� 
 y �� a��� 
 �z
��z��

which is equivalent to

�x�y�z�������a� 
��x� 
��x� 
 �
��a� � ���y� 
 y �� a�� 
 
��z���

which is equivalent to

�x�y�z�������a� 
��x� 
��x� 
 �
��a� � ���y� 
 y �� a�� 
 �t�
��t� � t �� z��� �
��

Applying Ackermann�s Lemma to �
��� we eliminate � and obtain

�x�y�z���a �� z 
 x �� z 
��x� 
 �
��a� � �y �� z 
 y �� a����

which is equivalent to

�x�y�z���a �� z 
 x �� z 
 �t���t� � t �� x� 
 �
��a� � �y �� z 
 y �� a���� �

�

Applying Ackermann�s Lemma to �

�� we eliminate � and obtain

�x�y�z�a �� z 
 �a �� x � �y �� z 
 y �� a���� �
	�

The negation of �
	� is

�x�y�z�a � z � �a � x 
 �y � z � y � a����

Thus�

CIRCD�T � �Q�� ��� � T 
 �x�y�z�a � z � �a � x 
 �y � z � y � a����

It is easily veri�ed that CIRCD�T � �Q�� ��� implies �y�x x � y � x � a�

����� Arbitrary Theories

For non�semi�universal theories without functions� neither the DLS algorithm nor its �xpoint
generalization �G�DLS� for short� guarantee a reduction to classical �rst�order logic� However� the
reduction can sometimes be obtained as observed in the following example�

Example ��� Let theory T consist of

A�� �x�y S�x� y��
A�� �x�y S�x� y� � x � y�

��



Thus the second�order part of CIRCD�T � is equivalent to

�����x��x�
 �x���x� � �y���y� 
 S�x� y���� � �z ��z��� �

�

In order to reduce �

� we �rst negate it�

�����x��x�
 �x���x� � �y���y� 
 S�x� y���� 
 �z
��z���

This formula is transformed to

�z�x�����x� 
 �x�
��x� � �z �� x 
 �y���y� 
 S�x� y������

Now we apply Theorem 
���

�z�x����x��z �� x 
 �y���y� 
 S�x� y������

After negating this formula and making minor transformations� we get

�z�x�
��x��z � x � �y�S�x� y� � ��y������

As usual� we unfold the �xpoint formula�


��x��z � x � �y�S�x� y� � ��y���� �
��

Let #���x�� � �z � x � �y�S�x� y� � ��y����� Now�

#���� � �
#���� � z � x � �y�S�x� y� � �� � �by A�� z � x

#���� � z � x � �y�S�x� y� � z � y��

We show that #���� � #����� It is easily observed that #���� � #����� We thus have to show
that #���� � #����� i�e�

�z � x � �y�S�x� y� � z � y�� � z � x�

Suppose that z �� x and �y�S�x� y� � z � y�� Thus� substituting y by x we obtain that this formula
implies 
S�x� x�� which �using A� and A�� implies �� Thus formula �
�� reduces to z � x�

Formula �

� reduces now to �z�x z � x�

��� Variable GDC with Functions

For theories containing function symbols� the DLS algorithm always fails� However� it is sometimes
possible to reduce domain circumscription for such theories using G�DLS �see Examples ��� and
����� We also have the following theorems�

Theorem ��
 Let T be a semi�universal theory� Then CIRCD�T � is always reducible into �xpoint
logic using the G�DLS algorithm�

��



Proof It can easily be observed that negation of the second�order part of CIRCD�T � consists of
clauses containing at most one positive occurrence of �� Thus it can be transformed into the form
required in Theorem 
��� i�e� CIRCD�T � can be reduced to a �xpoint formula�

Theorem ��� Let T be a theory and let P be the tuple of all predicate symbols occurring in
T � Suppose further that T has a �P� f ��minimal model and cardinalities of all such models have
the same �nite common upper bound� Then CIRCD�T �P � f� can be reduced into an equivalent
�rst�order sentence�

Proof According to Theorem 
��� a formulaA is a consequence of CIRCD�T �P � f � i� A is true in
all �P � f��minimalmodels of T � Since cardinalities of all such models have the same �nite common
upper bound� say n� we conclude that there is a sentence S � �x� � � ��xn�y�y � x��� � ��y � xn�
which is a consequence of CIRCD�T �P � f �� Since S is a formula of the form discussed in the end
of Section 
��� the domain circumscription axiom can be reduced by applying the DLS� algorithm
to T � fSg�

Example ��� Let T consist of �xf�x� � a�f�x� � b� We reduce CIRCD�T �� The corresponding
domain circumscription axiom �after simpli�cations described in section 
��� is

�����a� 
��b� 
 �x���x� � ��f�x���� � �x��x�� �
��

After negating formula �
��� we obtain

�����a� 
��b� 
 �x���x� � ��f�x���� 
 �x�
��x��� �
��

which can be further transformed to

�x������a� 
��b� 
 �x�
��x� � �x �� x� 
��f�x������ �
��

Now one can apply Theorem 
��� Observe that in this case the �xpoint operator takes the form

���x��x �� x� 
��f�x���

After negating� the form


��x��x � x� ���f�x��

is equivalent to

x � x� � �x� � x � x� � f�x�� � �x� � x � x� � f�x� � x� � f�f�x����

�x� � x � x� � f�x� � x� � f�f�x�� � x� � f�f�f�x��� � � � � ����

Observe that T implies that f�f�f�x��� does not introduce new values �since for any x� f�x� �
a � f�x� � b�� Thus the third disjunct of ���� is equivalent to the second one� given T � Now by
applying Proposition 
�� we have

T j� 
��x��x � x� ���f�x�� � �x� � x � x� � f�x� � x� � f�f�x����

Thus� after performing routine calculations� we conclude that CIRCD�T � reduces to

T 
 �x��x� � a � x� � f�a� � x� � f�f�a�� � x� � b � x� � f�b� � x� � f�f�b���� ����

��



Example ��
 Let T consist of �x x � f�f�x�� 
 c �� d� Here f�x� can be read  a spouse of x��
This example is from ����� We show a reduction of CIRCD�T �� The corresponding circumscription
axiom �after simpli�cations� is

�����c� 
��d� 
 �x���x� � ��f�x��� � �x ��x��� ����

After negating� we get

�����c� 
��d� 
 �x���x� � ��f�x��� 
 �s 
��s�� � ��
�

which is equivalent to

�����c� 
��d� 
 �x�
��x� � ���f�x�� 
 x �� s����� ��	�

Now� we apply Theorem 
��� Note that in this case the �xpoint operator takes the form

���x���x �� s 
 ��f�x����

After negating this� the form


��x���x � s ���f�x���

is equivalent to

x � s � �x � s � f�x� � s� � �x � s � �f�x� � s � f�f�x�� � s�� � ���� ��
�

Observe that given T � the third disjunct of ��
� is equivalent to the second one� Now� applying
Proposition 
�� and performing straightforward calculations� we obtain

CIRCD�T � � T 
 �s�c � s � f�c� � s � d � s � f�d� � s��

The above result is rather intuitive� The domain has to contain c and d� and all the results of
applications of f � Since f�f�x�� � x� the second application of f does not give anything new� The
minimal domain is then described by the resulting formula�

� Combining Domain Circumscription with Arbitrary Cir�

cumscriptions

Theorem 
�� states that given a second�order theory T � if one can show that the domain closure
axiom is entailed by T � then T is reducible to a �rst�order formula using DLS�� There is a direct
connection between this result and the reduction of arbitrary circumscriptive policies applied to
a certain class of domain circumscribed theories� The connection works as follows�

�� We know that given a semi�universal theory T � the domain circumscription of T � CircDC�T � �P � �f�
�
can be reduced to its �rst�order equivalent using DLS� � In addition� the DCA used in the
DLS� algorithm can be constructively generated�

� 
f is restricted to individual constants�

��



�� Suppose the result of CircDC�T � �P� �f� is T
�� Observe that for any arbitrary circumscription

CircSO�T �� �P � �f �� applied to T � that

CircSO�T
�� �P � �f� � CircSO�T

� 
DCA� �P � �Q��


� Since the DLS algorithm can only fail when unskolemization or non�separatedness occur� and
we have shown how to avoid these problems for theories which entail the DCA� it follows
that CircSO�T �� �P � �f� is always reducible to a �rst�order formula using DLS� with the DCA�

In summary� we have the following result�

For any semi�universal �rst�order theory without functions and any arbitrary cir�
cumscription policy applied to the theory� the DLS� algorithm will always reduce the
circumscribed theory to a logically equivalent �rst�order formula� provided that the
theory is �rst circumscribed using domain circumscription�

The reduction process is achieved as follows�

�� Given a semi�universal theory T � constructively generate the DCA for T using the procedure
described in the proof of Theorem ����

�� Apply DLS� to T resulting with the output T ��


� Apply DLS� to the arbitrary circumscriptive policy applied to T � using the previously
generated DCA� This results in T ��� a �rst�order formula logically equivalent to the latter
arbitrary circumscription�

The following example illustrates the technique� To save space� we will �rst domain circumscribe
the following theory and then apply an arbitrary circumscription to the original theory in con�
junction with the generated DCA�

Example 
�� Let T consist of

A
� Ab�a�
A�� �x�yAb�x� 
 S�y� x� � Ab�y�
A	� �x�yS�y� x�

where Ab and S stand for Abnormal and Son�of� respectively�

The DCA entailed by the domain circumscription CIRCD�T � is�

�z�x�x � z � x � a�� ����

���� can be constructively generated using the procedure described in the proof of Theorem ����

In the next phase� we would like to minimize the predicate Ab relative to T 
 DCA� Let T �

denote the �rst�order formula output by application of the DLS� algorithm to CIRCD�T �� Since
T � j� DCA and CIRCSO�T �Ab� � CIRCSO�T 
DCA�Ab�� the DLS� algorithm can be applied
to CIRCSO�T �Ab� using the DCA with a guarantee that the output of DLS� will be a formula
in classical �rst�order logic� logically equivalent to CIRCSO�T �Ab�
DCA� In fact� the output of
DLS� is

�z� �x�x � z � x � a�


�x�
Ab�x�� �S�z� x� �Ab�z�� 
 �x�yS�y� x� 
Ab�a�


�S�z� a� � S�a� a� � �d�c
S�c� d�� �e�a � e � 
Ab�e�����

�In this example� by DCA� we mean DCA���

��
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