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Abstract

In this paper, we consider the problem of expressing and computing PTIME queries to
relational deductive databases in a purely declarative query language, SHQL (Semi-Horn
Query Language). Assuming the relational databases in question are ordered, we show that
all SHQL queries are computable in PTIME and the whole class of PTIME queries is express-
ible in SHQL. Although similar results have been proven for fixpoint languages and extensions
to datalog, the claim is that SHQL has the advantage of being purely declarative, where the
negation operator is interpreted as classical negation, mixed quantifiers may be used and a
query is simply a restricted first-order theory not limited by the rule-based syntactic restric-
tions associated with logic programs in general. We describe the PTIME algorithm used to
compute queries in SHQL which is based in part on quantifier elimination techniques and also
extend the method to incomplete relational databases using intuitions from Circumscription.

1 Introduction

In this paper, we consider the problem of expressing and computing PTIME queries to relational
deductive databases in a purely declarative query language, SHQL (Semi-Horn Query Language).
Assuming the relational databases in question are ordered, we show that all SHQL queries are
computable in PTIME and the whole class of PTIME queries is expressible in SHQL. Similar
results have been proven for fixpoint languages and extensions to datalog, but the claim will be
that these languages are not purely declarative and are far from providing a natural means of
expressing queries.

Much recent activity in the area of deductive databases has focused on the toy language datalog
and its extensions which integrate recursion with negation. When adding negation to datalog, this
requires defining a semantics for negative facts. There are many choices as to such a semantics and
these choices influence not only the natural interpretation of the negation symbol in a query, but
the expressiveness of the language. For example, stratified semantics requires syntactic restrictions
on the use of negation in a datalog™ program, while well-founded semantics, although not requiring
syntactic restrictions, does use a 3-valued semantics to interpret the meaning of a program. In
addition, while well-founded semantics is equivalent to the fixpoint queries, stratified semantics 1s
strictly weaker.

An important aspect of query language design is to achieve a good balance between the expres-
siveness of the language and the complexity of evaluating queries in the language. In addition to
expressiveness and efficiency, the language should be natural to use. Although it can be argued
that extended datalog languages achieve the goals of expressiveness and efficiency in theory, one
can debate the naturalness of using datalog as a query language. For instance, the variations in
interpretation already discussed can be quite confusing for a normal user of the query language.
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The procedural leakage into the language which is a result of alternative non-classical interpreta-
tions of the negation operator and the various syntactic restrictions placed on datalog programs,
is not only unnatural but tends to violate the basic tenets of a good declarative query language.

On the other hand, SHQL is a purely declarative query language. Use of negation in a query is
interpreted as classical negation, a class of mixed quantifiers i1s allowed in queries, and intentional
and extensional predicates may occur anywhere in the query. SHQL is not rule-based and a query
is expressed as a theory consisting of semi-Horn formulas.

SHQL is used as follows. Given the task of computing a definition of an intensional predicate @
(or asking whether a tuple is an instance of () relative to a relational database B consisting of
the relations Ry, ..., R,, we first provide an implicit definition of @ in terms of a SHQL theory,
O(Q), which is essentially a conjunction of semi-Horn formulas using any of Ry,..., Ry, and Q.
The theory ©(Q) is only constrained by the fact that it must be semi-Horn. All quantifiers and
logical connectives are interpreted classically. The goal is to compute an explicit definition of Q)
in PTIME.

The computation process can be described in two stages. In the first stage, we provide a PTIME
compilation process which uses a quantifier elimination algorithm called the DLS algorithm [3]. An
extension for fixpoint formulas is called the G-DLS algorithm [4, 5]. The DLS algorithm takes as
input a second-order formula and returns a logically equivalent first-order formula, or terminates
with failure, where failure does not mean there is not a reduction, but simply that the algorithm
can not find one. The G-DLS algorithm is a generalization of the DLS algorithm and returns
logically equivalent fixpoint formulas for a wider class of input. Both algorithms can be combined
into one algorithm which we denote by DLS™ (see [5]). Given the SHQL query, ©(Q), we prefix it
with an existential quantifier and input the formula 3Q.0(Q) to DLS*. If the query is first-order
definable than the output will be a logically equivalent first-order formula expressing an explicit
definition of ). The output is computed in PTIME and LOGSPACE (in the size of the database).
If the query is not first-order definable, than the output will be a logically equivalent fixpoint
formula expressing an explicit definition of (). In this case, output is computed in PTIME. Note
that this technique can be used for theories outside the semi-Horn class, but neither the complexity
results nor a successful reduction are guaranteed.

In the second stage, we use the explicit definition of ¢ output in the first stage to compute a
suitable relation in the relational database that satisfies (). Before computing the output relation,
we first check to see that such a relation exists relative to the database. Suppose ©(Q) is the
original query, B the relational database and ©'(Q) the output of DLS* given the input 3Q.0(Q).
We say that the query ©(Q) is a coherent query relative to B if B = ©'(Q). Assuming this is the
case, we know that the output relation exists and can now compute the answer. Both checking
that the query is coherent (B = ©'(Q)) and computing the output relation can be done efficiently
because calculating fixpoint queries and fixpoint satisfiability checking over finite domains are both
in PTIME (see Immerman [7], Sazonov [12], Vardi [14]).

Note that although the combined problem of finding out whether an implicit query 0(Q) to a
database exists, checking that the query is coherent, and explicitly computing the answer is in
general NP-complete (in the size of the database), as was shown by Fagin (see Immerman [8]), our
method which applies quantifier elimination techniques to semi-Horn theories makes the problem
solvable in polynomial time for this special case. Most importantly, SHQL is a highly expressive
language which covers all PTIME queries and is at the same time purely declarative. Querying
with SHQL is as natural as querying with classical logic and the compilation step is completely
transparent to the user.

The rest of the paper will be structured as follows. In Section 2, we provide preliminary definitions.
In Section 3, we describe Ackermann’s Lemma and the Fixpoint Theorem, which provide the formal
basis for the DLS* algorithm. In fact, using the full algorithm is not necessary in order to achieve
our goals. Some more direct syntactic manipulationstogether with these theorems provably achieve
the same reduction results and are discussed in Section 4.2. In Section 4, we provide a detailed



description of our two stage method and discuss a technique which permits queries with more
than one intensional predicate. In Section 5, we provide a number of examples which demonstrate
the naturalness of SHQL and the proposed querying method. Finally, in Section 6, we extend the
method to relational databases with incomplete information. We than conclude with a discussion.

2 Definitions

In what follows, by a theory we always mean a finite set of axioms. Thus theories can be trans-
formed into formulas (conjunctions of axioms).

Definition 2.1 A relational database B, is a first order structure
(U,ri*, ... r%, e, ..., cr), where

e U/ is a finite set,
o for 1 <i <k, ri is an a;-ary relation on U, i.e. rj* CU% and
® ci,...,¢; € U are constants.

By a signature of B we mean a signature containing relation symbols R{*, ..., R;* and constant
symbols C1, ..., C} together with equality =. B

According to accepted terminology in the literature (introduced in [11]), a deductive database
consists of two parts: an extensional and intensional database. The extensional database is usually
equivalent to a traditional relational database and the intensional database contains a set of
definitions of relations that are not explicitly stored in the database. Accordingly, we have the
following definition.

Definition 2.2 By a deductive database we understand a relational database augmented with
an additional set of formulas defining fresh relations in terms of a chosen logic. The relational
database is called eztensional and the set of formulasis called an intensional database. We say that
a relation (relation symbol) is intensional in a database if it appears in the intensional database
only, otherwise it is called extensional M

Definition 2.3 We say that a formula ® is positive w.r.t. a predicate P iff P appears under no
negation sign in ® (in negation normal form). Dually, we say that ® is negative w.r.t. P iff all
occurrences of P have the form =P and —P appears under no negation sign in ¢. l

Definition 2.4 Let L7 be the classical first-order logic and ¢ be a signature. By the fizpoint
calculus over o, denoted by L%, we understand this to be the logic obtained from £7 by extending
it with the least fixpoint operator uP.®(P), where & is positive w.r.t. P. We define v P.®(P) as
—pu—=P.—=®(P)'. m

Note that ;1 P(Z).®(P) is the least (w.r.t. implication) formula ¥(Z) such that

U(7) = (P — W(z)).

Every formula ®(P) which is positive w.r.t. P is monotone and therefore, by the Knaster & Tarski
fixpoint theorem, the fixpoints we consider are well defined.

Definition 2.5 Let B = (U,r{*,...,r*, c1,...,¢) be a relational database and let ¢ be a
signature of B.

e By a first-order query language for B, denoted by E? we mean the classical first-order logic
over signature o.

1Observe that a more readable form of this formula can be obtained by replacing P by =P and writing -uP.m®(P)



e By a fizpoint query language for B, denoted by EJBT we mean the fixpoint calculus over
signature ¢.

e By an implicit query to B we mean a classical first-order formula ©(Q) over signature o
augmented with an additional relation symbol @ (representing the relation to be calculated).
|

Observe that in the case of an implicit query, say ©(Q), it is natural to demand that @ represents
the minimal or maximal relation s satisfying ©, provided that such s exists?. Let us note that
maximizing a relation corresponds to minimizing its complement3. Accordingly, and without loss
of generality, we shall focus on minimizing relations.

Definition 2.6 Let B = (U,r{",...,r*, c1,...,¢;) be a relational data base.

e The semantics of the query language £ is defined as in the case of first-order logic, assuming
that for 1 < i < k, relation symbols R}* are interpreted as relations r7* and for 1 < j <,
constant symbols C; are interpreted as constants c;.

e The semantics of the query language £% is defined by extending the definition of the se-
mantics of £5 assuming that uQ.®(Q) represents the least (w.r.t. C) relation s such that
B = Q = ®(Q) with Q interpreted as s.

e The semantics of an implicit query O(Q) is defined as the least (w.r.t. C) relation s such
that B = ©(Q) with @ interpreted as s, provided that such s exists. A formula expressing
the existence of s is called the coherence condition for ©(Q). B

It is often convenient to reference some “columns” of a relation in a database. We often do this
by extending the signature with relation symbols corresponding to columns. For example, given a
relation person C String x Integer, we might want to refer to the first column using the predicate
symbol Name where Name(z, john) means that the name of z is john. If a column, being
represented by, say C', contains boolean values then we write C'(x) to mean C'(z, T) and =C'(z) to
mean C'(x, L). This notation for referencing columns will prove to be useful in Section 6, where
we consider incomplete databases.

3 Ackermann’s Lemma and a Fixpoint Theorem

In the introduction, we stated that the DLS* algorithm was a combination of two separate algo-
rithms, DLS and G-DLS. DLS* works as follows. The input to DLS* is first passed to the DLS
algorithm. If the input can be put into what we call a Ackermann reducible formula than DLS*
outputs a logically equivalent first-order formula. If the DLS algorithm terminates with failure,
then the input 1s passed to the G-DLS algorithm. If the input can be put into what we call a
semi-Horn formula then the DLS* algorithm outputs a fixpoint formula logically equivalent to the
input. Of course, certain optimizations can be made which combine the two algorithms in a more
efficient manner. The basis for both the DLS and G-DLS algorithms are two theorems which we
describe below. Both provide a means of eliminating quantifiers which bind predicate variables.
These two theorems provide the formal basis for the compilation step described previously and
called stage one, where an SHQL query is first prefixed with an existential quantifier which binds
the intensional predicate whose explicit definition we would like to generate and compute. The
second-order query is than passed to the DLS* algorithm.

The following lemma was proved by Ackermann in [1] (for an alternative proof see also [13]).

Lemma 3.1 Let P be a predicate variable and ®(z,z), ¥(P) be formulas without second-order
quantification. Let @ contain no occurrences of P at all. Then the following equivalences hold:

2The existence of s means that ©(Q) is consistent with the database.
3This does not have to hold when a database is allowed to contain incomplete information - see Section 6



Let ¥(—P) be negative w.r.t. P, then

IPYE[P(Z)VO(Z, 2)]AU(~P) = W(~P — &(%, 7)) (1)

Let ¥(P) be positive w.r.t. P, then
APVE[-P(2)VO(Z, 2)|N¥(P) = ¥(P — ¥(z, 7)), (2)

where in the right-hand formulae the arguments & of ® are to be substituted by the respective
actual arguments of P (renaming the bound variables whenever necessary). W

The following theorem, extending Lemma 3.1, is proved in [10].

Theorem 3.1 Assume that all occurrences of the predicate symbol P in the formula ¥ have only
variables as arguments. Then the following equivalences hold:

Let ®(—P) and ¥(—P) be negative w.r.t. P, then

APVY[P(y)VO(=P)NY(=P)] = VY[=P —v=P(y).2(=P)], (3)

Let ®(P) and ¥(P) be positive w.r.t. P, then
APVY[~P(y)VO(P)IA[¥(P)] = Y[P — vP(y).2(P)], (4)

where the above substitutions exchange the variables bound by fixpoint operators by the corre-
sponding actual variables of the substituted predicate. B

Formula (2) of Lemma 3.1 and formula (4) of Theorem 3.1 are applied in the case of minimizing
relations, while formulas (1) and (3) are applied when maximizing relations.

Lemma 3.1 is subsumed by Theorem 3.1. Moreover, any fixpoint formula of the form v P. W,
where ¥ does not contain P, i1s equivalent to W. Thus one can, in all cases, use Theorem 3.1
and simplify the resulting formulas by applying this equivalence. This optimization diverges from
the conceptual description we have been using when describing the DLS* algorithm, but it will
simplify the detailed description of the query method described in the next section.

4 The Method

We first observe that the problem whether a result of an implicit query ©(Q) to a database B exists
reduces to the question whether the second-order formula 3QO(Q) is satisfied in B. By Fagin’s
theorem the problem is N P-complete in the size of B (see [8]). In what follows we concentrate on
selecting a class of implicit queries for which the problem is in PTTME.

Conceptually, the SHQL query method consists of four steps:

1. State a query ©(Q) to a relational database B in SHQL, where ©(Q) is a semi-Horn formula
(for the definition of semi-Horn formulas see Section 4.1). Prefix the query with an existential
quantifier binding the intensional predicate whose explicit definition in terms of ©(Q) we
would like to make explicit. The input to the compilation stage is 3Q.0(Q).

2. Pass the input 3Q.0(Q) to the DLS* algorithm. Assuming the input is semi-Horn, the
algorithm will return either a logically equivalent first-order formula or a fixpoint formula.

Call the output ©'(Q).

3. Before explicitly computing the answer to the original query ©(Q), check to make sure the
query is coherent relative to B. We do this by essentially checking that ©'(@Q) is satisfied by
B.



4. Tf the query is coherent, than compute the definition of @ (or check whether a tuple belongs
to Q).

Provided the input is semi-Horn, all steps in the method can be computed in PTIME. In the
following subsections, we will formally define the query language, describe and justify each of
steps 2-4 with appropriate theorems, and conclude with a representation theorem characterizing
the expressiveness and descriptive complexity of the query language.

4.1 The Semi-Horn Query Language (SHQL)

In previous sections, we discussed SHQL informally stating that queries to the database had to
be in what we called semi-Horn form. In practice, we can do more. A query O(Q) can be any
formula in a classical first-order language. If it is, or can be transformed into semi-Horn form,
then the DLS* algorithm is guaranteed to generate an explicit definition of @ which is logically
equivalent to 3Q.0(Q). If it is not, the DLS* algorithm may still terminate successfully and steps
2-4 above would still apply. In this section, we will make these intuitions precise.

We shall consider two types of formulas of the form

1 (Q)IND2(Q), (5)

where ®2(Q) is any first-order formula negative w.r.t. Q. We call these two types Ackermann-
reducible formulas and semi-Horn formulas. They are defined as follows:

o Ackermann-reducible formulas (w.r.t. Q) are of the form (5) for which ®, (@) is a conjunction
of formulas of the form YZ(Q({)VW¥), where ¥ is an arbitrary @-free first-order formula

o semi-Horn formulas (w.r.t. 7Q) are of the form (5) for which ®,(@) is a conjunction of

formulas of the form YzZ(Q()V¥(—Q)), and ¥ is an arbitrary first-order formula negative
w.r.t. ).

The negative dual forms are obtained by substituting ¢ by =@ in the definitions, making ¥ an
arbitrary first-order formula positive w.r.t. @, and making ®2(Q) negative w.r.t. @. In this case
we are able to find the greatest solution for =), that is, a minimal solution for @.

Ackermann-reducible formulas are also semi-Horn formulas. However, it is important to isolate
this class of formulas because these define first-order expressible queries. If the initial query ©(Q)
can be transformed into this form, then in the compilation step where 3Q.©(Q) is given as input
to the DLS* algorithm, the call to DLS will return a logically equivalent first-order formula. In
fact, the DLS™ algorithm, when successful, basically transforms @(Q) into one of the above forms
(or their negative duals). Consequently, it is important to note that the method can be made
more general by generating solutions for arbitrary formulas I'(Q) which although not semi-Horn,
are reducible by the DLS* algorithm.

Note that any conjunction of semi-Horn formulas w.r.t. @ can be transformed into the following
form:
VE[®(z, 7, Q) D Q(2)|A¥(-Q), (6)
where ¥(—Q)) is an arbitrary first-order formula negative w.r.t. @ and ®(z,z;, Q) is positive w.r.t.
Q, or its dual,
Ve[®(z,7, Q) D ~Q(2)IN¥(Q), (7)
where ¥(Q) is an arbitrary first-order formula positive w.r.t. @ and ®(z,z;, —Q) is negative w.r.t.

. To see this it suffices to use the following equivalence that allows us to combine two semi-Horn
formulas into a single semi-Horn formula:

[Va(®(2, 7, @) O QAT (=Q)AVE(R' (2, 2, Q) D Q(2)AT'(=Q)] (8)
)



A similar equivalence applies for the dual forms. Moreover, if we have many intensional predicates,
we can easily encode these by a single predicate which has a vector of additional boolean variables
distinguishing between various relations. For instance, if we have two predicates, say P(Z) and
Q(y), then we can use a single predicate R(z,Z,y) such that R(T,z, y) means P(#) and R(L, z,y)
means ((y). The resulting formulas are still semi-Horn formulas. Thus, we can safely assume
that we always deal with a single intensional predicate in our queries.

It is worth emphasizing here that semi-Horn formulas are strictly more expressive than Horn
clauses. For instance, semi-Horn formulas express the complement of a relation which is not
expressible by Horn clauses (see e.g. [2]). Also existential quantifiers in the scope of universal
quantifiers are not, in general, reducible to Horn clauses, but are allowed in semi-Horn formulas.

Let us now introduce the definition of declarative queries and declarative query language. As
we shall see in Theorem 4.3 all the queries of the language are computable in polynomial time.
Moreover, the whole class of PTIME queries is covered by the language.

Definition 4.1 By a declarative query we mean any implicit query expressed as a semi-Horn
formula. By a declarative query language we mean a first-order query language augmented with
declarative queries, assuming that the underlying signature contains a relation that, on the se-
mantic side, linearly orders domains of databases. B

4.2 The Compilation, Coherence, and Computing Steps

It 1s easily observed that Ackermann-reducible formulas are reducible to classical first-order for-
mulas by applying the DLS algorithm which is based on Lemma 3.1 and that semi-Horn formulas
are reducible to fixpoint formulas by applying the G-DLS algorithm which is based on Theorem
3.1 (see e.g. [3, 4]).

We also observe two additional facts concerning Lemma 3.1 and Theorem 3.1. Namely, assume
we are given a formula 3Q®(Q). By the proofs of Lemma 3.1 and Theorem 3.1, where reduction
is successful (which is always the case for semi-Horn queries) one gets:

e a first-order (or fixpoint) definition of @ (this definition is used in suitable substitutions in
the resulting formulas), and

e a first-order (or fixpoint) formula equivalent to the input formula.

The first observation justifies the generation of a fixpoint or first-order formula that explicitly
defines the query. The second observation justifies the generation of the coherence condition for a
query expressed as a fixpoint or first-order formula. Note that the explicit definition and coherence
condition are either both first-order or both fixpoint formulas. The coherence condition allows
us to check whether the output relation exists. If we know that the output relation exists, we
can calculate the answer using the formula obtained via the first observation. Both the coherence
check and calculation of the output relation can be done in polynomial-time by using an algorithm
for calculating fixpoint queries and for checking fixpoint satisfiability over finite domains which
is described in [7]. The process of calculating the output relation and checking coherence can be
optimized by noting that more or less the same fixpoint formula appears in the explicit definition
and the coherence condition.

The following theorem easily follows from a result in [4].

Theorem 4.1
For any formula ©(Q) of the form (6):

o the explicit definition of @ is given by Q(%) = pQ(7).®(#,7;, @), and
e the coherence condition for @(Q) is ¥(Q — pQ(2).®(7,7;,Q)).



For any formula ©(Q) of the form (7):
o the explicit definition of @ is given by Q%) = vQ(2).—®(2, 7z, ~Q), and
e the coherence condition for @(Q) is ¥(Q — vQ(z).~¥(z,7;, ~Q)). W
As a consequence we have the following theorem.

Theorem 4.2
For any formula ©(Q) of the form (6), where ® does not contain Q:

o the explicit definition of @ is given by Q(z) = ®(z,7;), and
e the coherence condition for @(Q) is ¥(Q — ®(7,7)).

For any formula ©(Q) of the form (7), where ® does not contain Q:
o the explicit definition of @ is given by Q(z) = —®(z, %), and
e the coherence condition for O(Q) is ¥(Q — —P(z,7;)). A

4.3 A Representation Theorem

For the declarative query language defined in Definition 4.1 we have the following theorem.

Theorem 4.3 Let B be a relational database.

e Any implicit query ©(Q) to B, where ©(Q) is a semi Horn formula, is computable in polyno-
mial time in the size of the database. Consequently, any query expressed in the declarative
query language defined in Definition 4.1 is in PTIME. If ©(Q) is an Ackermann reducible
formula, then @ is computable in logarithmic space.

e Any PTIME query can be expressed in the declarative query language defined in Definition
4.1 provided that the domain of B is linearly ordered.

Proof The first part of the theorem can be proved by noticing that semi-Horn formulas reduce to
fixpoint formulas and using the well-known fact that fixpoint queries are computable in polynomial
time (see e.g. [2, 7]). If O(Q) is an Ackermann reducible formula, then both @ and the coherence
condition are expressed in classical first-order logic and therefore are computable in logarithmic
space.

To prove the second part of the theorem we use the following known facts:

e if the domain of the database is linearly ordered then fixpoint queries express all PTIME
queries (see [2, 7, 12, 14])

e under the above assumption all fixpoint queries can be expressed by taking a single fixpoint
of a first-order formula with positive occurrences of the calculated predicate (followed by
classical first-order operations) (see [2, 6, 7]).

According to the above, it is sufficient to prove that a single fixpoint can be defined by an implicit
query. Assume that the fixpoint to be defined is pP(Z).¥(P), where ¥ is positive w.r.t. P. By
theorem 4.1, the implicit query that defines this fixpoint is then simply the formula Yz(¥(P) D
P(z)). m

5 Examples

In this section, we provide a number of examples which demonstrate both the expressiveness of
semi-Horn queries and how the formal results may be applied practically.



Example 5.1 This example demonstrates how the intensional predicate ) and the extensional
predicates R, S, and F may be used anywhere in the query. In particular, in comparison with rule-
based queries such as logic programming or datalog, both intensional and extensional predicates
may occur in both the head and body of any implication.

Assume we have a database B, containing information about whether persons are rich, smart, or
experienced, denoted by the unary extensional predicates, R, S, and E| respectively. Suppose we
are interested in selecting all rich persons and perhaps some others and we only want to consider
those who are smart and experienced. Let () denote the unary extensional predicate that describes
the required relation. The first condition i1s then expressed by the formula

Va(R(z) D Q(x)),
while the second condition is expressed by the formula

Va(Q(z) D (S(x)AE(x)).

The implicit query ©(Q) is then defined as the conjunction of the above formulas, where we are
interested in obtaining the greatest relation @ satisfying

Va(Q(x) D (S(2)AE(2)))AVe(R(z) D Q(x)).
After removing the implication sign, we have the equivalent,

Ve(=Q(2)V(S(2)AE(x))AVe(—R(z)vQ(x)).
In order to maximize @@ we will minimize its negation by using the dual form (7). ©(Q) can be
rewritten as ©(—Q),

Va(=(S(2)AE(x)) D ~Q(2))AVz(~R(z)VQ(x))
which is easily observed to be of the form (7), where ®(z) is =(S(2)AE(z)) and ¥(Q) is Vo (= R(z)VQ(x)).
According to Theorem 4.2 the following formula of the form ¥(Q — —®(z)) is the suitable
coherence condition:
V(= R(x)V(S(x)AE(x))).

Observe that our query forces this condition (by transitivity of implication), Thus, for instance, if

a database contains an element e such that R(e) and =S(e), then the query is inconsistent with
the database.

Now from Theorem 4.2 we obtain the explicit definition of =@, which is =Q(z) = =(S(x)AE(x)).
Consequently, the explicit definition for @ is:

Q(z) = S(x)AE(x).
|

Example 5.2 Consider the database containing a binary relation r. The following implicit query
O(S) defines S as the transitive closure of r:

VaVy(R(x,y) D S(x, y))AVaVYyVz((S(z, y)AS(y, 2)) D S(x, 2)).
The above formula is equivalent (and turned by the G-DLS algorithm during execution) into:
ASVaVz(S(x, 2)V(-R(x, 2)AVy(=S(z, y)V-S(y, 2)))].

It is easily observed that this formula has the form (6), where ®(z, z, S) is

(= R(x, 2)AVy(=S(x, y)V-S(y, z)), and ¥(=S) is T. Thus, according to Theorem 4.1, the coher-
ence condition for @(S) is (=S — pS(x, 2).®(x, z)). Since ¥is T and has no negative occurrences
of S, its coherence condition is T, which means that the required relation always exists. Moreover,
we have the following explicit definition for S(z, z):

Sz, z) = pS(x, 2).[R(x, 2)VIy(S(z, y)AS(y, 2)].



6 Databases with Incomplete Information

So far, we have assumed that databases only contain complete information. In many Al applica-
tions, one is often confronted with the problem of using incomplete information. This could be do
to the fact that we simply lack information about the properties and relations of certain objects,
or that we purposely represent information incompletely for efficiency reasons. In this section,
we show how one can extend the current querying method when applied to incomplete relational
databases. We will only provide a proof of concept and deal with a particular class of queries
leaving precise characterizations and variations of the approach for future research.

In order to simplify matters, we will assume that there 1s a special domain value %, denoting the
undefined value. For example, if the database contains two pairs {(mary, smith), (john,*)} then
the first pair represents mary smith and the second pair represents a john whose family name
i1s unknown. We will also assume that if a relation contains undefined values then it cannot be
directly represented in a query. Instead, we introduce new relation symbols corresponding to its
“columns”. We also assume that if a “column” can contain undefined fields, then queries are either
positive or negative w.r.t. the relation symbol corresponding to the column. This is a technical
assumption that allows us to proceed without any further complications, but in certain cases can
be relaxed.

Of course, since we are now dealing with incomplete information, we have to make a choice
regarding the semantics of partially defined predicates. We will base this choice on intuitions from
Al, where second-order circumscription is used to reason about incomplete information. More
precisely, we will capitalize on the partitioning of predicates in a circumscription policy into those
that are minimized, fixed, or varied. When minimizing an answer (or maximizing its negation) we
will allow some partially defined predicates to vary and leave some others fixed.

Let us assume that we are given an implicit query ©(Q). In order to calculate a coherence condition
and an explicit definition of @@ we proceed as before. What will differ is the algorithm used for
calculating the value of the coherence condition and of the relation in question. The difficulties
occur when we have to calculate a value of a relation that is undefined. In such a case, we will use
the following policy:

e If a relation symbol occurs positively in the query and the relation i1s allowed to vary then
we assume | as its value.

e If a relation symbol occurs negatively in the query and the relation is allowed to vary then
we assume L as its value.

e if a relation is undefined for some object and the relation is fixed then we assume that the
whole query is undefined for the object.

This solution precisely reflects the circumscription principle, where the possibly undefined predi-
cates are allowed to vary in order to maximize the minimization of a predicate. The justification
and correctness of this policy easily follows from the fact that both the explicit definition and the
coherence condition are monotone w.r.t. predicates occurring only positively and anti-monotone
w.r.t. predicates occurring only negatively.

Example 6.1 Assume we have a database with one binary relation r C Name x {T,L} x
{T, L, «}, where Name is a set of names of some objects. The second column indicates whether
an object is a bird and the third column indicates whether it flies. For example, the contents of
the database might be the following:

10



| Name | Bird | Flies |

swallow | T T
Tweety | T *
Clyde * *
Leo * 1

We now assume that predicate symbols B and F' correspond to the last two columns of the relation.
Consider the following query ©(Ab):

Va((B(x)A=Ab(x)) O F(x)),

where Ab which stands for abnormal is the intensional predicate whose minimal definition we
would like to compute. According to Theorem 4.2, the coherence condition for this query would
be T and the explicit definition for Ab would be Ab(x) = (B(x)A—F(z)), using the same method
as we used for complete databases. Note that the relation F' occurs positively in the query ©(Ab).
The calculated value of Ab would be ) independently of the choice of predicates we choose to vary.

Now consider the query ©'(N):
Va((B(x)AN(z)) D F(x)),

where N which stands for normal is the intensional predicate whose mazimal definition we would
like to compute. The coherence condition for this query would again be T and the explicit definition
for N would be N(z) = (=B(z)VF(z)). The following table then summarizes the possible results
of calculating N.

| B | r | Calculated value of N |
varied | varied | {(swallow, T, T), (Tweety, T,*),(Clyde, *, *),(Leo,*, L)}
varied | fixed {(swallow, T, T), (Leo, *, L)}
fixed | varied {(swallow, T, T), (Tweety, T,*)}
fixed | fixed {(swallow, T, T)}

It is important to note that since only the fourth step of the method for querying databases
with complete information described in Section 4 differs from the querying method for querying
databases with incomplete information described here, that the complexity results for steps one
to three still hold. In addition, it is easily observed that step four for the new method does not
add any new complexity to the querying method, so the complexity results apply to both querying
databases with complete and incomplete information.

7 Conclusions

We have introduced a new query language SHQL and query method which we claim to be highly
expressive, efficient, and natural to use. A PTIME querying method has been provided which
is based on the use of quantifier elimination techniques. In addition, we have shown that the
querying method may be used for databases with both complete and incomplete information. We
believe the declarative character of the query language has much to offer in comparison to logic
programming approaches, but at the same time is limited to only the class of PTIME queries.
We are currently investigating extensions to the language and their characterization. As stated
previously, because the approach is based on an existing algorithm (DLS*), there are already cases
where queries outside the class we have investigated can be compiled and computed. We would
also like to apply these techniques to commercial relational databases and are currently working
on compilation methods from SHQL into standard SQL and extended SQL.
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