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Declarative PTIME Queries to Relational Databases

Patrick Doherty� Witold �Lukaszewiczy Andrzej Sza�lasy

Abstract

In this paper� we consider the problem of expressing and computing PTIME queries to
relational deductive databases in a purely declarative query language� SHQL �Semi�Horn
Query Language�� Assuming the relational databases in question are ordered� we show that
all SHQL queries are computable in PTIME and the whole class of PTIME queries is express�
ible in SHQL� Although similar results have been proven for �xpoint languages and extensions
to datalog� the claim is that SHQL has the advantage of being purely declarative� where the
negation operator is interpreted as classical negation� mixed quanti�ers may be used and a
query is simply a restricted �rst�order theory not limited by the rule�based syntactic restric�
tions associated with logic programs in general� We describe the PTIME algorithm used to
compute queries in SHQL which is based in part on quanti�er elimination techniques and also
extend the method to incomplete relational databases using intuitions from Circumscription�

� Introduction

In this paper� we consider the problem of expressing and computing PTIME queries to relational
deductive databases in a purely declarative query language� SHQL �Semi�Horn Query Language��
Assuming the relational databases in question are ordered� we show that all SHQL queries are
computable in PTIME and the whole class of PTIME queries is expressible in SHQL� Similar
results have been proven for �xpoint languages and extensions to datalog� but the claim will be
that these languages are not purely declarative and are far from providing a natural means of
expressing queries�

Much recent activity in the area of deductive databases has focused on the toy language datalog
and its extensions which integrate recursion with negation� When adding negation to datalog� this
requires de�ning a semantics for negative facts� There are many choices as to such a semantics and
these choices in�uence not only the natural interpretation of the negation symbol in a query� but
the expressiveness of the language� For example� strati�ed semantics requires syntactic restrictions
on the use of negation in a datalog� program� while well�founded semantics� although not requiring
syntactic restrictions� does use a 	�valued semantics to interpret the meaning of a program� In
addition� while well�founded semantics is equivalent to the �xpoint queries� strati�ed semantics is
strictly weaker�

An important aspect of query language design is to achieve a good balance between the expres�
siveness of the language and the complexity of evaluating queries in the language� In addition to
expressiveness and e
ciency� the language should be natural to use� Although it can be argued
that extended datalog languages achieve the goals of expressiveness and e
ciency in theory� one
can debate the naturalness of using datalog as a query language� For instance� the variations in
interpretation already discussed can be quite confusing for a normal user of the query language�
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The procedural leakage into the language which is a result of alternative non�classical interpreta�
tions of the negation operator and the various syntactic restrictions placed on datalog programs�
is not only unnatural but tends to violate the basic tenets of a good declarative query language�

On the other hand� SHQL is a purely declarative query language� Use of negation in a query is
interpreted as classical negation� a class of mixed quanti�ers is allowed in queries� and intentional
and extensional predicates may occur anywhere in the query� SHQL is not rule�based and a query
is expressed as a theory consisting of semi�Horn formulas�

SHQL is used as follows� Given the task of computing a de�nition of an intensional predicate Q
�or asking whether a tuple is an instance of Q� relative to a relational database B consisting of
the relations R�� � � � � Rn� we �rst provide an implicit de�nition of Q in terms of a SHQL theory�
��Q�� which is essentially a conjunction of semi�Horn formulas using any of R�� � � � � Rn� and Q�
The theory ��Q� is only constrained by the fact that it must be semi�Horn� All quanti�ers and
logical connectives are interpreted classically� The goal is to compute an explicit de�nition of Q
in PTIME�

The computation process can be described in two stages� In the �rst stage� we provide a PTIME
compilation process which uses a quanti�er elimination algorithm called the DLS algorithm 
	�� An
extension for �xpoint formulas is called the G�DLS algorithm 
�� ��� The DLS algorithm takes as
input a second�order formula and returns a logically equivalent �rst�order formula� or terminates
with failure� where failure does not mean there is not a reduction� but simply that the algorithm
can not �nd one� The G�DLS algorithm is a generalization of the DLS algorithm and returns
logically equivalent �xpoint formulas for a wider class of input� Both algorithms can be combined
into one algorithm which we denote by DLS� �see 
���� Given the SHQL query� ��Q�� we pre�x it
with an existential quanti�er and input the formula �Q���Q� to DLS�� If the query is �rst�order
de�nable than the output will be a logically equivalent �rst�order formula expressing an explicit
de�nition of Q� The output is computed in PTIME and LOGSPACE �in the size of the database��
If the query is not �rst�order de�nable� than the output will be a logically equivalent �xpoint
formula expressing an explicit de�nition of Q� In this case� output is computed in PTIME� Note
that this technique can be used for theories outside the semi�Horn class� but neither the complexity
results nor a successful reduction are guaranteed�

In the second stage� we use the explicit de�nition of Q output in the �rst stage to compute a
suitable relation in the relational database that satis�es Q� Before computing the output relation�
we �rst check to see that such a relation exists relative to the database� Suppose ��Q� is the
original query� B the relational database and ���Q� the output of DLS� given the input �Q���Q��
We say that the query ��Q� is a coherent query relative to B if B j� ���Q�� Assuming this is the
case� we know that the output relation exists and can now compute the answer� Both checking
that the query is coherent �B j� ���Q�� and computing the output relation can be done e
ciently
because calculating �xpoint queries and �xpoint satis�ability checking over �nite domains are both
in PTIME �see Immerman 
��� Sazonov 
���� Vardi 
�����

Note that although the combined problem of �nding out whether an implicit query ��Q� to a
database exists� checking that the query is coherent� and explicitly computing the answer is in
general NP�complete �in the size of the database�� as was shown by Fagin �see Immerman 
���� our
method which applies quanti�er elimination techniques to semi�Horn theories makes the problem
solvable in polynomial time for this special case� Most importantly� SHQL is a highly expressive
language which covers all PTIME queries and is at the same time purely declarative� Querying
with SHQL is as natural as querying with classical logic and the compilation step is completely
transparent to the user�

The rest of the paper will be structured as follows� In Section �� we provide preliminary de�nitions�
In Section 	� we describe Ackermann�s Lemmaand the Fixpoint Theorem� which provide the formal
basis for the DLS� algorithm� In fact� using the full algorithm is not necessary in order to achieve
our goals� Somemore direct syntactic manipulations together with these theorems provably achieve
the same reduction results and are discussed in Section ���� In Section �� we provide a detailed
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description of our two stage method and discuss a technique which permits queries with more
than one intensional predicate� In Section �� we provide a number of examples which demonstrate
the naturalness of SHQL and the proposed querying method� Finally� in Section �� we extend the
method to relational databases with incomplete information� We than conclude with a discussion�

� De�nitions

In what follows� by a theory we always mean a �nite set of axioms� Thus theories can be trans�
formed into formulas �conjunctions of axioms��

De�nition ��� A relational database B� is a �rst order structure
hU� ra�

�
� � � � � rakk � c�� � � � � cli� where

� U is a �nite set�

� for � � i � k� raii is an ai�ary relation on U � i�e� raii � Uai � and

� c�� � � � � cl � U are constants�

By a signature of B we mean a signature containing relation symbols Ra�
�
� � � � � Rak

k and constant
symbols C�� � � � � Cl together with equality ��

According to accepted terminology in the literature �introduced in 
����� a deductive database
consists of two parts� an extensional and intensional database� The extensional database is usually
equivalent to a traditional relational database and the intensional database contains a set of
de�nitions of relations that are not explicitly stored in the database� Accordingly� we have the
following de�nition�

De�nition ��� By a deductive database we understand a relational database augmented with
an additional set of formulas de�ning fresh relations in terms of a chosen logic� The relational
database is called extensional and the set of formulas is called an intensional database� We say that
a relation �relation symbol� is intensional in a database if it appears in the intensional database
only� otherwise it is called extensional�

De�nition ��� We say that a formula � is positive w�r�t� a predicate P i� P appears under no
negation sign in � �in negation normal form�� Dually� we say that � is negative w�r�t� P i� all
occurrences of P have the form �P and �P appears under no negation sign in ��

De�nition ��� Let LI be the classical �rst�order logic and � be a signature� By the �xpoint
calculus over �� denoted by L�

F
� we understand this to be the logic obtained from LI by extending

it with the least �xpoint operator �P���P �� where � is positive w�r�t� P � We de�ne �P���P � as
���P����P ���

Note that �P ��x����P � is the least �w�r�t� implication� formula ���x� such that

���x� � ��P � ���x���

Every formula ��P � which is positive w�r�t� P is monotone and therefore� by the Knaster � Tarski
�xpoint theorem� the �xpoints we consider are well de�ned�

De�nition ��� Let B � hU� ra�
�
� � � � � rakk � c�� � � � � cli be a relational database and let � be a

signature of B�

� By a �rst�order query language for B� denoted by LB
I
we mean the classical �rst�order logic

over signature ��

�Observe that amore readable formof this formula can be obtainedby replacingP by�P and writing��P���
P �

	



� By a �xpoint query language for B� denoted by LB
F
we mean the �xpoint calculus over

signature ��

� By an implicit query to B we mean a classical �rst�order formula ��Q� over signature �

augmented with an additional relation symbolQ �representing the relation to be calculated��

Observe that in the case of an implicit query� say ��Q�� it is natural to demand that Q represents
the minimal or maximal relation s satisfying �� provided that such s exists�� Let us note that
maximizing a relation corresponds to minimizing its complement�� Accordingly� and without loss
of generality� we shall focus on minimizing relations�

De�nition ��	 Let B � hU� ra�
�
� � � � � rakk � c�� � � � � cli be a relational data base�

� The semantics of the query language LB
I
is de�ned as in the case of �rst�order logic� assuming

that for � � i � k� relation symbols Rai
i are interpreted as relations raii and for � � j � l�

constant symbols Cj are interpreted as constants cj �

� The semantics of the query language LB
F
is de�ned by extending the de�nition of the se�

mantics of LB
I
� assuming that �Q���Q� represents the least �w�r�t� �� relation s such that

B j� Q � ��Q� with Q interpreted as s�

� The semantics of an implicit query ��Q� is de�ned as the least �w�r�t� �� relation s such
that B j� ��Q� with Q interpreted as s� provided that such s exists� A formula expressing
the existence of s is called the coherence condition for ��Q��

It is often convenient to reference some �columns� of a relation in a database� We often do this
by extending the signature with relation symbols corresponding to columns� For example� given a
relation person � String	Integer� we might want to refer to the �rst column using the predicate
symbol Name where Name�x� john� means that the name of x is john� If a column� being
represented by� say C� contains boolean values then we write C�x� to mean C�x�
� and �C�x� to
mean C�x���� This notation for referencing columns will prove to be useful in Section �� where
we consider incomplete databases�

� Ackermann�s Lemma and a Fixpoint Theorem

In the introduction� we stated that the DLS� algorithm was a combination of two separate algo�
rithms� DLS and G�DLS� DLS� works as follows� The input to DLS� is �rst passed to the DLS
algorithm� If the input can be put into what we call a Ackermann reducible formula than DLS�

outputs a logically equivalent �rst�order formula� If the DLS algorithm terminates with failure�
then the input is passed to the G�DLS algorithm� If the input can be put into what we call a
semi�Horn formula then the DLS� algorithm outputs a �xpoint formula logically equivalent to the
input� Of course� certain optimizations can be made which combine the two algorithms in a more
e
cient manner� The basis for both the DLS and G�DLS algorithms are two theorems which we
describe below� Both provide a means of eliminating quanti�ers which bind predicate variables�
These two theorems provide the formal basis for the compilation step described previously and
called stage one� where an SHQL query is �rst pre�xed with an existential quanti�er which binds
the intensional predicate whose explicit de�nition we would like to generate and compute� The
second�order query is than passed to the DLS� algorithm�

The following lemma was proved by Ackermann in 
�� �for an alternative proof see also 
�	���

Lemma ��� Let P be a predicate variable and ���x� �z�� ��P � be formulas without second�order
quanti�cation� Let � contain no occurrences of P at all� Then the following equivalences hold�

�The existence of s means that �
Q� is consistent with the database	
�This does not have to hold when a database is allowed to contain incomplete information � see Section �
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Let ���P � be negative w�r�t� P � then

�P��x
P ��x�
���x� �z������P � � ���P � ���x� �z�� ���

Let ��P � be positive w�r�t� P � then

�P��x
�P ��x�
���x� �z�����P � � ��P � ���x� �z��� ���

where in the right�hand formulae the arguments �x of � are to be substituted by the respective
actual arguments of P �renaming the bound variables whenever necessary��

The following theorem� extending Lemma 	��� is proved in 
����

Theorem ��� Assume that all occurrences of the predicate symbol P in the formula � have only
variables as arguments� Then the following equivalences hold�

Let ���P � and ���P � be negative w�r�t� P � then

�P��y
P ��y�
���P ���
���P �� � �
�P � ��P ��y�����P ��� �	�

Let ��P � and ��P � be positive w�r�t� P � then

�P��y
�P ��y�
��P ���
��P �� � �
P � �P ��y����P ��� ���

where the above substitutions exchange the variables bound by �xpoint operators by the corre�
sponding actual variables of the substituted predicate�

Formula ��� of Lemma 	�� and formula ��� of Theorem 	�� are applied in the case of minimizing
relations� while formulas ��� and �	� are applied when maximizing relations�

Lemma 	�� is subsumed by Theorem 	��� Moreover� any �xpoint formula of the form �P���
where � does not contain P � is equivalent to �� Thus one can� in all cases� use Theorem 	��
and simplify the resulting formulas by applying this equivalence� This optimization diverges from
the conceptual description we have been using when describing the DLS� algorithm� but it will
simplify the detailed description of the query method described in the next section�

� The Method

We �rst observe that the problem whether a result of an implicit query ��Q� to a database B exists
reduces to the question whether the second�order formula �Q��Q� is satis�ed in B� By Fagin�s
theorem the problem is NP �complete in the size of B �see 
���� In what follows we concentrate on
selecting a class of implicit queries for which the problem is in PTIME�

Conceptually� the SHQL query method consists of four steps�

�� State a query ��Q� to a relational database B in SHQL� where ��Q� is a semi�Horn formula
�for the de�nition of semi�Horn formulas see Section ����� Pre�x the query with an existential
quanti�er binding the intensional predicate whose explicit de�nition in terms of ��Q� we
would like to make explicit� The input to the compilation stage is �Q���Q��

�� Pass the input �Q���Q� to the DLS� algorithm� Assuming the input is semi�Horn� the
algorithm will return either a logically equivalent �rst�order formula or a �xpoint formula�
Call the output ���Q��

	� Before explicitly computing the answer to the original query ��Q�� check to make sure the
query is coherent relative to B� We do this by essentially checking that ���Q� is satis�ed by
B�
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�� If the query is coherent� than compute the de�nition of Q �or check whether a tuple belongs
to Q��

Provided the input is semi�Horn� all steps in the method can be computed in PTIME� In the
following subsections� we will formally de�ne the query language� describe and justify each of
steps ��� with appropriate theorems� and conclude with a representation theorem characterizing
the expressiveness and descriptive complexity of the query language�

��� The Semi�Horn Query Language �SHQL�

In previous sections� we discussed SHQL informally stating that queries to the database had to
be in what we called semi�Horn form� In practice� we can do more� A query ��Q� can be any
formula in a classical �rst�order language� If it is� or can be transformed into semi�Horn form�
then the DLS� algorithm is guaranteed to generate an explicit de�nition of Q which is logically
equivalent to �Q���Q�� If it is not� the DLS� algorithm may still terminate successfully and steps
��� above would still apply� In this section� we will make these intuitions precise�

We shall consider two types of formulas of the form

���Q�����Q�� ���

where ���Q� is any �rst�order formula negative w�r�t� Q� We call these two types Ackermann�
reducible formulas and semi�Horn formulas� They are de�ned as follows�

� Ackermann�reducible formulas �w�r�t� Q� are of the form ��� for which ���Q� is a conjunction
of formulas of the form ��x�Q��t�
��� where � is an arbitrary Q�free �rst�order formula

� semi�Horn formulas �w�r�t� Q� are of the form ��� for which ���Q� is a conjunction of
formulas of the form ��x�Q��t�
���Q��� and � is an arbitrary �rst�order formula negative
w�r�t� Q�

The negative dual forms are obtained by substituting Q by �Q in the de�nitions� making � an
arbitrary �rst�order formula positive w�r�t� Q� and making ���Q� negative w�r�t� Q� In this case
we are able to �nd the greatest solution for �Q� that is� a minimal solution for Q�

Ackermann�reducible formulas are also semi�Horn formulas� However� it is important to isolate
this class of formulas because these de�ne �rst�order expressible queries� If the initial query ��Q�
can be transformed into this form� then in the compilation step where �Q���Q� is given as input
to the DLS� algorithm� the call to DLS will return a logically equivalent �rst�order formula� In
fact� the DLS� algorithm� when successful� basically transforms ��Q� into one of the above forms
�or their negative duals�� Consequently� it is important to note that the method can be made
more general by generating solutions for arbitrary formulas  �Q� which although not semi�Horn�
are reducible by the DLS� algorithm�

Note that any conjunction of semi�Horn formulas w�r�t� Q can be transformed into the following
form�

��x
���x� zi� Q� � Q��x������Q�� ���

where ���Q� is an arbitrary �rst�order formula negative w�r�t� Q and ���x� zi� Q� is positive w�r�t�
Q� or its dual�

��x
���x� zi��Q�� � �Q��x�����Q�� ���

where ��Q� is an arbitrary �rst�order formula positive w�r�t� Q and ���x� zi��Q� is negative w�r�t�
Q� To see this it su
ces to use the following equivalence that allows us to combine two semi�Horn
formulas into a single semi�Horn formula�


��x����x� zi� Q� � Q��x������Q���
��x�����x� z�i� Q� � Q��x�������Q�� ���

� 
��x�����x� zi� Q�
�
���x� z�i� Q�� � Q��x�������Q������Q���
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A similar equivalence applies for the dual forms� Moreover� if we have many intensional predicates�
we can easily encode these by a single predicate which has a vector of additional boolean variables
distinguishing between various relations� For instance� if we have two predicates� say P ��x� and
Q��y�� then we can use a single predicate R�z� �x� �y� such that R�
� �x� �y� means P ��x� and R��� �x� �y�
means Q��y�� The resulting formulas are still semi�Horn formulas� Thus� we can safely assume
that we always deal with a single intensional predicate in our queries�

It is worth emphasizing here that semi�Horn formulas are strictly more expressive than Horn
clauses� For instance� semi�Horn formulas express the complement of a relation which is not
expressible by Horn clauses �see e�g� 
���� Also existential quanti�ers in the scope of universal
quanti�ers are not� in general� reducible to Horn clauses� but are allowed in semi�Horn formulas�

Let us now introduce the de�nition of declarative queries and declarative query language� As
we shall see in Theorem ��	 all the queries of the language are computable in polynomial time�
Moreover� the whole class of PTIME queries is covered by the language�

De�nition ��� By a declarative query we mean any implicit query expressed as a semi�Horn
formula� By a declarative query language we mean a �rst�order query language augmented with
declarative queries� assuming that the underlying signature contains a relation that� on the se�
mantic side� linearly orders domains of databases�

��� The Compilation� Coherence� and Computing Steps

It is easily observed that Ackermann�reducible formulas are reducible to classical �rst�order for�
mulas by applying the DLS algorithm which is based on Lemma 	�� and that semi�Horn formulas
are reducible to �xpoint formulas by applying the G�DLS algorithm which is based on Theorem
	�� �see e�g� 
	� ����

We also observe two additional facts concerning Lemma 	�� and Theorem 	��� Namely� assume
we are given a formula �Q��Q�� By the proofs of Lemma 	�� and Theorem 	��� where reduction
is successful �which is always the case for semi�Horn queries� one gets�

� a �rst�order �or �xpoint� de�nition of Q �this de�nition is used in suitable substitutions in
the resulting formulas�� and

� a �rst�order �or �xpoint� formula equivalent to the input formula�

The �rst observation justi�es the generation of a �xpoint or �rst�order formula that explicitly
de�nes the query� The second observation justi�es the generation of the coherence condition for a
query expressed as a �xpoint or �rst�order formula� Note that the explicit de�nition and coherence
condition are either both �rst�order or both �xpoint formulas� The coherence condition allows
us to check whether the output relation exists� If we know that the output relation exists� we
can calculate the answer using the formula obtained via the �rst observation� Both the coherence
check and calculation of the output relation can be done in polynomial�time by using an algorithm
for calculating �xpoint queries and for checking �xpoint satis�ability over �nite domains which
is described in 
��� The process of calculating the output relation and checking coherence can be
optimized by noting that more or less the same �xpoint formula appears in the explicit de�nition
and the coherence condition�

The following theorem easily follows from a result in 
���

Theorem ���

For any formula ��Q� of the form ����

� the explicit de�nition of Q is given by Q��x� � �Q��x�����x� zi� Q�� and

� the coherence condition for ��Q� is ��Q� �Q��x�����x� zi� Q���
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For any formula ��Q� of the form ����

� the explicit de�nition of Q is given by Q��x� � �Q��x������x� zi��Q�� and

� the coherence condition for ��Q� is ��Q� �Q��x������x� zi��Q���

As a consequence we have the following theorem�

Theorem ���

For any formula ��Q� of the form ���� where � does not contain Q�

� the explicit de�nition of Q is given by Q��x� � ���x� zi�� and

� the coherence condition for ��Q� is ��Q� ���x� zi���

For any formula ��Q� of the form ���� where � does not contain Q�

� the explicit de�nition of Q is given by Q��x� � ����x� zi�� and

� the coherence condition for ��Q� is ��Q� ����x� zi���

��	 A Representation Theorem

For the declarative query language de�ned in De�nition ��� we have the following theorem�

Theorem ��� Let B be a relational database�

� Any implicit query ��Q� to B� where ��Q� is a semi Horn formula� is computable in polyno�
mial time in the size of the database� Consequently� any query expressed in the declarative
query language de�ned in De�nition ��� is in PTIME� If ��Q� is an Ackermann reducible
formula� then Q is computable in logarithmic space�

� Any PTIME query can be expressed in the declarative query language de�ned in De�nition
��� provided that the domain of B is linearly ordered�

Proof The �rst part of the theorem can be proved by noticing that semi�Horn formulas reduce to
�xpoint formulas and using the well�known fact that �xpoint queries are computable in polynomial
time �see e�g� 
�� ���� If ��Q� is an Ackermann reducible formula� then both Q and the coherence
condition are expressed in classical �rst�order logic and therefore are computable in logarithmic
space�

To prove the second part of the theorem we use the following known facts�

� if the domain of the database is linearly ordered then �xpoint queries express all PTIME
queries �see 
�� �� ��� ����

� under the above assumption all �xpoint queries can be expressed by taking a single �xpoint
of a �rst�order formula with positive occurrences of the calculated predicate �followed by
classical �rst�order operations� �see 
�� �� ����

According to the above� it is su
cient to prove that a single �xpoint can be de�ned by an implicit
query� Assume that the �xpoint to be de�ned is �P ��x����P �� where � is positive w�r�t� P � By
theorem ���� the implicit query that de�nes this �xpoint is then simply the formula ��x���P � �
P ��x���

� Examples

In this section� we provide a number of examples which demonstrate both the expressiveness of
semi�Horn queries and how the formal results may be applied practically�

�



Example ��� This example demonstrates how the intensional predicate Q and the extensional
predicates R� S� and E may be used anywhere in the query� In particular� in comparison with rule�
based queries such as logic programming or datalog� both intensional and extensional predicates
may occur in both the head and body of any implication�

Assume we have a database B� containing information about whether persons are rich� smart� or
experienced� denoted by the unary extensional predicates� R� S� and E� respectively� Suppose we
are interested in selecting all rich persons and perhaps some others and we only want to consider
those who are smart and experienced� Let Q denote the unary extensional predicate that describes
the required relation� The �rst condition is then expressed by the formula

�x�R�x� � Q�x���

while the second condition is expressed by the formula

�x�Q�x� � �S�x��E�x���

The implicit query ��Q� is then de�ned as the conjunction of the above formulas� where we are
interested in obtaining the greatest relation Q satisfying

�x�Q�x� � �S�x��E�x�����x�R�x� � Q�x���

After removing the implication sign� we have the equivalent�

�x��Q�x�
�S�x��E�x�����x��R�x�
Q�x���

In order to maximize Q we will minimize its negation by using the dual form ���� ��Q� can be
rewritten as ���Q��

�x���S�x��E�x�� � �Q�x����x��R�x�
Q�x��

which is easily observed to be of the form ���� where ���x� is ��S�x��E�x�� and ��Q� is �x��R�x�
Q�x���

According to Theorem ��� the following formula of the form ��Q � ����x�� is the suitable
coherence condition�

�x��R�x�
�S�x��E�x����

Observe that our query forces this condition �by transitivity of implication�� Thus� for instance� if
a database contains an element e such that R�e� and �S�e�� then the query is inconsistent with
the database�

Now from Theorem ��� we obtain the explicit de�nition of �Q� which is �Q�x� � ��S�x��E�x���
Consequently� the explicit de�nition for Q is�

Q�x� � S�x��E�x��

Example ��� Consider the database containing a binary relation r� The following implicit query
��S� de�nes S as the transitive closure of r�

�x�y�R�x� y� � S�x� y����x�y�z��S�x� y��S�y� z�� � S�x� z���

The above formula is equivalent �and turned by the G�DLS algorithm during execution� into�

�S
�x�z�S�x� z�
��R�x� z���y��S�x� y�
�S�y� z�����

It is easily observed that this formula has the form ���� where ��x� z� S� is
���R�x� z���y��S�x� y�
�S�y� z��� and ���S� is 
� Thus� according to Theorem ���� the coher�
ence condition for ��S� is ���S � �S�x� z����x� z��� Since � is 
 and has no negative occurrences
of S� its coherence condition is 
� which means that the required relation always exists� Moreover�
we have the following explicit de�nition for S�x� z��

S�x� z� � �S�x� z��
R�x� z�
�y�S�x� y��S�y� z���
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� Databases with Incomplete Information

So far� we have assumed that databases only contain complete information� In many AI applica�
tions� one is often confronted with the problem of using incomplete information� This could be do
to the fact that we simply lack information about the properties and relations of certain objects�
or that we purposely represent information incompletely for e
ciency reasons� In this section�
we show how one can extend the current querying method when applied to incomplete relational
databases� We will only provide a proof of concept and deal with a particular class of queries
leaving precise characterizations and variations of the approach for future research�

In order to simplify matters� we will assume that there is a special domain value �� denoting the
unde�ned value� For example� if the database contains two pairs f�mary� smith�� �john� ��g then
the �rst pair represents mary smith and the second pair represents a john whose family name
is unknown� We will also assume that if a relation contains unde�ned values then it cannot be
directly represented in a query� Instead� we introduce new relation symbols corresponding to its
�columns�� We also assume that if a �column� can contain unde�ned �elds� then queries are either
positive or negative w�r�t� the relation symbol corresponding to the column� This is a technical
assumption that allows us to proceed without any further complications� but in certain cases can
be relaxed�

Of course� since we are now dealing with incomplete information� we have to make a choice
regarding the semantics of partially de�ned predicates� We will base this choice on intuitions from
AI� where second�order circumscription is used to reason about incomplete information� More
precisely� we will capitalize on the partitioning of predicates in a circumscription policy into those
that are minimized� �xed� or varied� When minimizing an answer �or maximizing its negation� we
will allow some partially de�ned predicates to vary and leave some others �xed�

Let us assume that we are given an implicit query ��Q�� In order to calculate a coherence condition
and an explicit de�nition of Q we proceed as before� What will di�er is the algorithm used for
calculating the value of the coherence condition and of the relation in question� The di
culties
occur when we have to calculate a value of a relation that is unde�ned� In such a case� we will use
the following policy�

� If a relation symbol occurs positively in the query and the relation is allowed to vary then
we assume 
 as its value�

� If a relation symbol occurs negatively in the query and the relation is allowed to vary then
we assume � as its value�

� if a relation is unde�ned for some object and the relation is �xed then we assume that the
whole query is unde�ned for the object�

This solution precisely re�ects the circumscription principle� where the possibly unde�ned predi�
cates are allowed to vary in order to maximize the minimization of a predicate� The justi�cation
and correctness of this policy easily follows from the fact that both the explicit de�nition and the
coherence condition are monotone w�r�t� predicates occurring only positively and anti�monotone
w�r�t� predicates occurring only negatively�

Example 	�� Assume we have a database with one binary relation r � Name 	 f
��g 	
f
��� �g� where Name is a set of names of some objects� The second column indicates whether
an object is a bird and the third column indicates whether it �ies� For example� the contents of
the database might be the following�
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Name Bird Flies

swallow 
 

Tweety 
 �
Clyde � �
Leo � �

We now assume that predicate symbolsB and F correspond to the last two columns of the relation�
Consider the following query ��Ab��

�x��B�x���Ab�x�� � F �x���

where Ab which stands for abnormal is the intensional predicate whose minimal de�nition we
would like to compute� According to Theorem ���� the coherence condition for this query would
be 
 and the explicit de�nition for Ab would be Ab�x� � �B�x���F �x��� using the same method
as we used for complete databases� Note that the relation F occurs positively in the query ��Ab��
The calculated value of Ab would be � independently of the choice of predicates we choose to vary�

Now consider the query ���N ��

�x��B�x��N �x�� � F �x���

where N which stands for normal is the intensional predicate whose maximal de�nition we would
like to compute� The coherence condition for this query would again be 
 and the explicit de�nition
for N would be N �x� � ��B�x�
F �x��� The following table then summarizes the possible results
of calculating N �

B F Calculated value of N

varied varied f�swallow�
�
�� �Tweety�
� ��� �Clyde� �� ��� �Leo� ����g
varied �xed f�swallow�
�
�� �Leo� ����g
�xed varied f�swallow�
�
�� �Tweety�
� ��g
�xed �xed f�swallow�
�
�g

It is important to note that since only the fourth step of the method for querying databases
with complete information described in Section � di�ers from the querying method for querying
databases with incomplete information described here� that the complexity results for steps one
to three still hold� In addition� it is easily observed that step four for the new method does not
add any new complexity to the querying method� so the complexity results apply to both querying
databases with complete and incomplete information�

	 Conclusions

We have introduced a new query language SHQL and query method which we claim to be highly
expressive� e
cient� and natural to use� A PTIME querying method has been provided which
is based on the use of quanti�er elimination techniques� In addition� we have shown that the
querying method may be used for databases with both complete and incomplete information� We
believe the declarative character of the query language has much to o�er in comparison to logic
programming approaches� but at the same time is limited to only the class of PTIME queries�
We are currently investigating extensions to the language and their characterization� As stated
previously� because the approach is based on an existing algorithm �DLS��� there are already cases
where queries outside the class we have investigated can be compiled and computed� We would
also like to apply these techniques to commercial relational databases and are currently working
on compilation methods from SHQL into standard SQL and extended SQL�
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