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Abstract. This paper presents a language for defining four-valued rough sets and
to reason about them. Our framework brings together two major fields: rough sets
and paraconsistent logic programming. On the one hand it provides a paraconsis-
tent approach, based on four-valued rough sets, for integrating knowledge from
different sources and reasoning in the presence of inconsistencies. On the other
hand, it also caters for a specific type of uncertainty that originates from the fact
that an agent may perceive different objects of the universe as being indiscernible.
This paper extends the ideas presented in [9]. Our language allows the user to
define similarity relations and use the approximations induced by them in the de-
finition of other four-valued sets. A positive aspect is that it allows users to tune
the level of uncertainty or the source of uncertainty that best suits applications.

1 Introduction

We present a language for defining four-valued rough sets and to reason about them.
Our framework relates and brings together two major fields: rough sets [8] and para-
consistent logic programming [3]. On the one hand the work discussed here provides
a paraconsistent approach, based on four-valued rough sets, for integrating knowledge
from different sources and reasoning with possible inconsistent knowledge resulting
from this integration. On the other hand, it also caters for a specific type of uncertainty
that originates from the fact that an agent may perceive different objects of the universe
as being indiscernible. This type of uncertainty has been widely studied in the rough set
field. To this end, the proposed language allows the user to define similarity relations
modeling indiscernibility and use the similarity-based approximations in definitions of
new four-valued sets.

The language discussed in this paper is based on ideas of our previous work [9]
that presents a four-valued framework for rough sets. In this approach membership
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function, set containment and set operations are four-valued, where logical values are t
(true), f (false), i (inconsistent) and u (unknown). Moreover, the similarity relations used
to define approximations of a set are also four-valued. Consequently, we also define
four-value notions of upper and lower approximations that extend the usual notion of
approximations in rough set theory [8].

In contrast to the standard rough set framework, our framework allows different types
of boundary cases to be identified and, consequently, different degrees of uncertainty.

We now briefly compare our work with some of the work in the field of paraconsis-
tent logic programming1. From a syntactic perspective, the logic programs introduced
in Section 3.1 correspond to Fitting programs [5] which do not involve ⊗ and ∀ in
the right-hand side (body) of the rules. Although both frameworks are intended to deal
with inconsistencies and use a four-valued logic, there are some major differences at
the semantic level. First, the Belnap’s logic underlies the semantics of Fitting programs
(see [5], Def. 18). This contrasts with our approach since we use a different truth order-
ing. Second, the semantics of Fittings programs allows to derive conclusions from false
premises. For instance, rule danger :– hot. can be used to derive that there is no danger,
i.e. danger is f, if hot is f. In contrast to our framework, a rule of a Fitting program is
satisfied if and only if the truth values assigned to the head and to the body are equal.

Paper [1] describes a paraconsistent approach, called P-Datalog, for knowledge base
integration based on a four-valued logic and the total order of the four logical values
presented there coincides with our truth ordering. However, there are several important
differences. First, in contrast to [1], we do not follow the closed-world assumption, i.e.
a formula ¬p(d) is t only if some agent states it explicitly and no agent claims that
p(d) is t. Second, our language allows explicit negation in the head and bodies of the
rules while P-Datalog programs only allow negation by default ∼ in the rule’s bodies.
Consequently, knowledge ordering is used in our framework as a more natural way
to combine knowledge from different sources while P-Datalog uses the truth ordering
presented in Section 2.1. Third, the rules are interpreted differently. In our language a
rule is interpreted as the implication →k defined in Table 1, while the implication →
underlying the rules of P-Datalog is another. For example, in P-Datalog, the truth-value
of t → i is f while in our framework t →k i is t. Finally, the language we propose
allows disjunction ∨t (join under truth ordering) to be used in the body of a rule.

The paper is organized as follows. Section 2 summarizes the main results of [9].
Section 3 gives a formal definition of the language. Section 4 sketches an implementa-
tion proposal. Finally, Section 5 summarizes the paper.

2 The Four-Valued Framework

2.1 Logics Reflecting Truth Ordering and Knowledge Ordering

To construct the language we use two orderings on truth vales, namely the truth or-
dering and knowledge ordering. Truth ordering is used for calculations within a single
information source while knowledge ordering is used for gathering knowledge from
different sources. This approach has been considered in [2] and in the framework of

1 A detailed comparison is outside of the scope of this paper.
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bilattices, in [4,6]. The truth ordering ≤t and the knowledge ordering ≤k are defined as
the smallest reflexive and transitive relations satisfying f ≤t u ≤t i ≤t t, u ≤k f ≤k i,
and u ≤k t ≤k i. The knowledge ordering above coincides with Belnap’s knowledge
ordering [2]. However, our truth ordering is different from the Belnap’s truth ordering.
This change is motivated by the fact that Belnap’s truth ordering can give counterintu-
itive results when used for reasoning, as shown in [7].

Having two orderings on truth values, we also have two logics: Lt based on truth
ordering and Lk based on knowledge ordering. We denote by ∧t, ∨t and →t the con-
nectives of Lt and by ∧k, ∨k and →k the corresponding connectives in Lk. Nega-
tion, denoted as ¬, in both logics has the same semantics. Let GLBt (GLBk) and LUBt

(LUBk) denote the greatest lower bound and the least upper bound of a set of logi-
cal values w.r.t truth (knowledge) ordering, respectively. Then, (a ∧t b) = GLBt{a, b}
((a ∧k b) = GLBk{a, b}) and (a ∨t b) = LUBt{a, b} ((a ∨k b) = LUBk{a, b}), where
a and b are two logical values. Table 1 provides the semantics for implication in both
logics, Lt and Lk. Observe that the implication →t, introduced in [9], is a four-valued
extension of the usual logical implication, suitable for determining set containment and
approximations in the case of four-valued sets.

Table 1. Truth tables for →t, →k, and ¬

→t f u i t →k f u i t ¬
f t t t t f t t t t t
u u u i t u t t t t u
i i i i t i f f t f i
t f u i t t f f t t f

The semantics of quantifier ∀ and ∃ is given below.

∀x[P (x)] def= GLB
x∈U

t{P (x)} and ∃x[P (x)] def= LUB
x∈U

t{P (x)} .

Intuitively, P (x) denotes whether an element x has a property P (i.e. membership of x
in a four-valued set P ) and it is evaluated to one of the four logical values.

We have the following important propositions.

Proposition 1. The disjunction ∨t is monotonic w.r.t. the knowledge ordering. �

Proposition 2. The conjunction ∧t is not monotonic w.r.t. the knowledge ordering. �

This is because (f ∧t u) = f but (i ∧t u) = u. This shows the lack of monotonicity, since
f <k i and f >k u. However, we have the following proposition.

Proposition 3. Let p and q be truth values such that (p ∧t q) ≥t i. If p′ ≥k p then
(p′ ∧t q) ≥k (p ∧t q). If q′ ≥k q then (p ∧t q′) ≥k (p ∧t q). �

Thus, the conjunction is monotonic w.r.t. knowledge ordering for arguments greater or
equal than i.
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2.2 Operations on Four-Valued Sets

Let us now formalize the notion of four-valued sets. Given a universe U , we introduce

a new set, disjoint with U , denoted by ¬U and defined by ¬U
def= {¬x | x ∈ U},

where ¬x denotes elements in ¬U . A four-valued set A on U is any subset of U ∪ ¬U .
Intuitively, x∈A represents the fact that there is an evidence that x is in A and (¬x)∈A
represents the fact that there is an evidence that x is not in A.

In our framework, set membership is four-valued and it extends the usual two-valued
membership. We assume that ¬(¬x) is equal to x.

Set membership, denoted as ε : U × 2U∪¬U → {f, u, i, t}, is defined by

x ε A =

⎧
⎪⎪⎨

⎪⎪⎩

t if x ∈ A and (¬x) ∈ A
i if x ∈ A and (¬x) ∈ A
u if x ∈ A and (¬x) ∈ A
f if x ∈ A and (¬x) ∈ A .

(1)

The complement ¬A of a four-valued set A, is defined by ¬A
def= {¬x | x ε A} and the

four-valued set inclusion is defined by X � Y
def= ∀x ∈ U [x ε X →t x ε Y ].

The four-valued operations of intersection and union, defined as

x ε (X � Y ) def= (x ε X) ∧t (x ε Y ) and x ε (X � Y ) def= (x ε X) ∨t (x ε Y ),
generalize the respective standard set operations.

A four-valued extension of rough sets is then defined by four-valued set approxi-
mations as follows (cf. [9]). Note that (four-valued) relations are (four-valued) sets of
tuples.

Definition 1. A four-valued similarity relation σ is any four-valued binary relation on
a universe U , satisfying the reflexivity condition, i.e., for any element x of the universe
(x, x) ε σ = t. The neighborhood of element x ∈ U w.r.t. σ, is the four-valued set σ(x)
such that y ε σ(x) def= (x, y) ε σ. �

Definition 2. Let A be a four-valued set. Then, the lower and upper approximations of

A w.r.t. σ, denoted by A+
σ and A⊕

σ , respectively, are defined by (x ε A+
σ ) def= σ(x) � A

and (x ε A⊕
σ ) def= ∃y ∈ U [y ε (σ(x) � A)]. �

Note that approximations are also four-valued. For example, let U = {o1, o2}, the
set A = {o1, ¬o2}, and σ(o1, o2) = u. Then, we have that membership of o1 in A+

σ

is unknown (u). It might later appear that σ(o1, o2) is f and we then conclude that
(o1 ε A+

σ ) = t. Or, it might appear that σ(o1, o2) is t and we then get that (o1 ε A+
σ )= f.

3 A Rule Language for Defining Four-Valued Sets

Our aim is to present a rule language for defining four-valued sets. A rule consists of
an head and a body. The head and the body are formulae of the four-valued logic of
Section 2. Thus, each of them gets one of the four truth values, under a given interpre-
tation. A rule is satisfied in a given interpretation iff whenever the body is t or i then
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the truth value of the head is greater or equal than the truth value of the body, w.r.t.
≤k. Thus, rules reflect the semantics of implication →k as provided in Table 1. This
choice corresponds to the intuition that a rule is to be used for increasing knowledge
by drawing conclusions. No conclusions are drawn from false or unknown premises
(bodies).

3.1 The Syntax

The rules are constructed from:

– literals of the form P (d̄), ¬P (d̄), where P is a relation symbol and d̄ is a tuple of
terms (variables or constants denoting objects of the universe).

– truth symbols : false, unknown, incons, true.

Rules are of the form

head :– l11, . . . , l1k1 ; l21, . . . , l2k2 ; . . . ; lm1, . . . , lmkm . (2)

where m, ki ≥ 1, for 1 ≤ i ≤ m, head and each lij (1 ≤ j ≤ ki) are literals or truth
symbols.

A rule of the form head :– true. , called a fact, is abbreviated as head. . A program
is a finite set of rules. A ground instance of a rule is obtained by replacing each variable
of the rule by a selected constant occurring in the program.

Example 1. Consider two robots, r1 and r2, recognizing similarities between objects on
the basis of their shape. Assume that the only shapes are round, rectangular, square and
oval. Due to perceptual limitations r1 does not recognize the difference between round
and oval, and r2 does not recognize the difference between rectangular and square. The
following rules can be used to express (partially) the similarities between objects, as
perceived by the robot r1.

sim(x, y) :– shape(x, round), shape(y, oval) ;
shape(x, oval), shape(y, round).

¬sim(x, y) :– shape(x, square), shape(y, rectangular) ;
shape(x, square), shape(y, round).

For the robot r2 one can consider, e.g., the following rule.

sim(x, y) :– shape(x, square), shape(y, rectangular) ;
shape(x, rectangular), shape(y, square).

As a similarity relation is required to be reflexive (cf. Definition 2), the program also
includes the fact sim(x, x). �

3.2 The Declarative Semantics

Let P be a program and L be the set of all constant symbols occurring in P . Then,
the Herbrand base HP is the set of all literals whose relation symbols occur in P and
whose arguments belong to L.
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A four-valued interpretation I of a program P is any subset of HP . It associates

each ground literal l with a truth value such that I(l) def= (l ε I) (ε is defined in (1)).
An interpretation I1 is smaller or equal than an interpretation I2, denoted by I1 �

I2, iff I1 is a (classical) subset of I2. Observe that if I1 � I2 then, for every literal l of
the Herbrand base, I1(l) ≤k I2(l). The interpretation ∅, called the empty interpretation,
is the least interpretation in this ordering. It assigns u to every literal in HP .

The notion of interpretation is extended to rules of the form (2) by interpreting ‘,’ as
conjunction ∧t, ‘;’ is interpreted as the disjunction ∨t, and a rule H :– B. is interpreted
as B →k H , with the semantics provided in Table 1. The truth symbols are interpreted
as f, u, i and t. Thus, a given four-valued interpretation determines the truth values of
the head and of the body of each rule. If several rules have the same literal H in their
head, then H takes the truth value being the disjunction ∨k of the values assigned to
each body’s rule. More precisely, if H :– B1. , . . ., H :– Bm. are all rules with the
head H then the value of H is obtained from (B1 ∨k . . . ∨k Bm). Note that different
rules with the same literal H in their head gather knowledge about H according to
knowledge ordering, using ∨k . On the other hand, one often needs to define cases using
truth ordering and this motivates the need of ; in the bodies of the rules.

Definition 3. An interpretation I satisfies a rule H :– B. if the implication
(B →k H) is t in I. An interpretation is said to be a four-valued Herbrand model
of a program P iff it satisfies each rule of P . �

Theorem 1. The (classical) intersection of four-valued Herbrand models of a program
P is a four-valued Herbrand model.

Proof. Assume the theorem does not hold and let M be the intersection of the Herbrand
models M1 and M2 of P . Then, there is a rule H :– B.∈P such that M(H)<k M(B)
and M(B) ∈ {i, t}. If M(B) = i then the truth value of B must have been i both in
M1 and in M2. Hence, the truth values of the head must also have been i in both
M1 and in M2, and consequently, in M. If M(B) = t then the body is t in one of the
models, assume M1, and t or i in the other, M2. Thus, M1(H) ≥k t and M2(H) ≥k t.
Consequently, H must be t or i in M. We can then conclude that there is no case under
which M(H) <k M(B). This implies that M must be a model of P . �

Corollary 1. For every program P there exists the least (w.r.t. �) four-valued model. �

We denote this model by MP and consider it the declarative semantics of the program.

3.3 The Fixpoint Semantics

We now define the semantics of a program P as a fixpoint of an operator on interpreta-
tions. We consider here variable-free programs P . If the program has variables then we
consider instead all ground instances of its rules. The operator will be denoted TP and
it is a four-valued extension of the classical TP operator used in logic programming.
The operator formalizes the intuition of drawing conclusions with rules.

TP(I) = {l | l :– B. ∈ P and I(B) = t} ∪ {l, ¬l | l :– B. ∈ P and I(B) = i} .
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Thus, the operator collects all the heads of the ground rules whose bodies are t in a given
interpretation I. In addition, it takes the heads and the negations of the heads of the rules
whose bodies are inconsistent in I.

The following theorem shows that the operator TP is monotonic w.r.t. ≤k. It follows
from Propositions 1 and 3, as TP uses only the rules for which the body is t or i.

Theorem 2. Given a program P and two four-valued interpretations I1 and I2,
if I1 � I2 then TP(I1) � TP(I2). �

Corollary 2. TP has the least fixpoint, denoted LFP(TP), which can be computed by
iterating TP starting from the empty interpretation. �

It can be shown that the least fixpoint of TP is the least model of the program, wr.t. ≤k.

Example 2. Consider the rules of Example 1 and a database with five objects: o1 and
o2 are oval, o2 is also considered to be round, o3 is square, o4 is rectangular, and o5
has unknown shape. Note that object o2 is associated with different shapes, perhaps,
because different robots perceive it differently. The successive iterations of TP are given
below. Note that I2 = TP(I2).

I1 = ∅
I2 = TP(I1) = {sim(o1, o1), sim(o2, o2), sim(o3, o3), sim(o4, o4), sim(o5, o5),

sim(o1, o2), sim(o2, o1), ¬sim(o3, o2),
¬sim(o3, o4), sim(o3, o4), sim(o4, o3)}.

According to the definition of four-valued interpretation, we have that both sim(o1, o2)
and sim(o2, o1), as well as for any sim(x, x), receive the value t; sim(o3, o2) receives
the value f but sim(o2, o3) is u; sim(o3, o4) receives the value i but sim(o4, o3) is t;
for all the remaining pairs (x, y), the value of sim(x, y) is u. �

3.4 Using Approximations

A Hierarchy of Uncertainty. In our framework, lower and upper approximations are
also four-valued sets. Figure 1 shows the truth ordering of pairs (o ε A+

σ , o ε A⊕
σ ). Note

that (t1, t2) ≤t (t3, t4) iff (t1 ≤t t3) and (t2 ≤t t4). In the figure this is indicated by an
edge from pair (t1, t2) to (t3, t4). Moreover, not all pairs of logical values are allowed
because (o ε A+

σ ) ≤t (o ε A⊕
σ ) [9], for any object o ∈ U .

The pair (t, t) corresponds to the case where an object o certainly belongs to a given
set A, while (f, f) indicates that o certainly does not belong to A. The remaining pairs
of logical values in Figure 1 correspond to boundary cases where the object may belong
to A. In the standard rough set framework [8], boundary cases correspond to the pair
(f, t) since approximations are two-valued sets. In contrast to the standard rough set
framework, our framework allows different types of boundary cases to be identified
and different degrees of uncertainty. For instance, the pair (i, t) indicates that we can
be more certain that object o has a property A than the pair (f, i), although both pairs
indicate that there is a possibility of object o having property A. Note that (f, i) <t (i, t).
However, as Figure 1 shows, not all pairs are comparable, e.g., pairs (f, t) and (i, i). But,
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(f,f)

(f,u)

(f,i) (u,u)

(f,t) (u,i)

(u,t) (i,i)

(i,t)

(t,t)

�

��� ���
��� ��� ���

��� ��� ���

��� ���

�

Fig. 1. Truth ordering for (o ε A+
σ , o ε A⊕

σ )

these pairs point then to different sources (types) of uncertainty. For example, the pair
(f, t) indicates that there is at least one object similar to o that does not have property
A, i.e. (o ε A+

σ ) = f (see the case (1) of Lemma 1 in Section 4), but there is another
object similar to o that has property A, i.e. (o ε A⊕

σ ) = t (see the case (5) of Lemma 1
in Section 4). Therefore, in the neighborhood of o there are objects that have property
A and others that do not have property A. The pair (i, i) points to a different source of
uncertainty, e.g., for all objects in the neighborhood of o there is contradictory evidence
about their membership in A (see cases (3) and (6) of Lemma 1 in Section 4).

The informal ideas presented above are reflected in our rule language. Thus, the
language allows the user to choose the level of uncertainty or the type of uncertainty
that best suits his application.

Extending the Language with Approximations. The rule language makes it possible
to define four-valued relations. A defined relation can then be used to specify approx-
imations of another four-valued relation, as discussed in [9] and in Section 2. Such an
approximation is itself a four-valued relation. The rule language can thus be extended
by allowing approximations of a rough relation (set) to appear in rule bodies. To this
end, we need to extend the language with a notation for such symbols. In this paper, the
lower approximation (upper approximation) of a relation A w.r.t. a similarity relation
σ is denoted A+

σ (A⊕
σ ). Such approximation symbols can only be used in a program

including rules defining A and σ. Programs must also not use recursion through ap-
proximations. Intuitively, the relations are not to be defined by referring to their own
approximations. Such programs are considered well-formed.

Example 3. Consider the rules of Example 1 and the database of objects in Example 2.
Based on the accessible knowledge, the robots may be given the task to remove from
a given place all round and square objects. Let us introduce an additional unary relation
rsq (standing for “round or square”) defined as follows.

¬shape(x, y) :– shape(x, z), y = z.
rsq(x) :– shape(x, round) ; shape(x, square).
¬rsq(x) :– ¬shape(x, round), ¬shape(x, square).
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Observe that rsq(o2) is i, in the declarative semantics of the program, because o2 is
associated with both shapes round and oval.

The required rule expressing the task to be done may be expressed in various non-
equivalent ways, according to the intended meaning.

1. remove(x) :– rsq(x). – a traditional formulation where neighborhoods are not
taken into account.

2. remove(x) :– (rsq(x)+sim = true). – x is to be removed only when it surely is
round or square.

3. remove(x) :– (rsq(x)⊕sim = true), rsq(x)+sim . – x is to be removed if
(x ε rsq(x)+sim, x ε rsq(x)⊕sim) ≥t (i, t).

4. remove(x) :– rsq(x)⊕sim. – x is to be removed if there is a possibility that it might
be round or square.

From the first rule above, we conclude that the truth value of remove(o2) is i, remove
(o3) is t, and u for all other objects.

The reader can verify2 that the membership in rsq(x)+sim is f for o1, o2 and o4 and it
is u for o3 and o5. The membership in rsq(x)⊕sim is i for o1 and o2, t for o3 and o4, but
u for o5. Note that (o2 ε rsq(x)+sim) = f because (o1 ε sim(o2)) = t but rsq(o1) = f,
i.e. there is an object similar to o2 that is neither round nor square, although there is also
information indicating that o2 is round. Consequently, it is not possible to conclude with
certainty that o2 is round (or square).

Using the second rule instead, the truth value of remove(x), is u for all objects since
for no object in the database it can be proved that it is surely round or square. Note that
there is no object o in the database such that (o ε rsq+

sim) = t.
The third rule imposes that there must be a quite high believe that an object is round

or square in order to remove it, although some uncertainty is acceptable. The rule forces
that (x ε rsq⊕sim) = t. Thus, there must be an object similar to x that is round or square
and (x ε rsq+

sim) ≥t i. Remember that no conclusions are drawn from rules with bodies
evaluated to false or unknown. If (x ε rsq+

sim) <t i then the rule does not fire, since the
whole body becomes evaluated to f or u. Consequently with this rule, the truth value of
remove(x) is u, for all objects x in the database.

With the fourth rule, remove(o1) and remove(o2) are i, remove(o5) is u, and t for
all remaining objects. In particular, remove(o1) is i because (o1 ε rsq(x)⊕sim) = i. In
contrast with the first rule, if this rule is used then o4 is removed. �

4 Implementation

For a program not using approximations the least model can be computed by iterating
the TP operator, as illustrated in Example 2.

The following lemma, which follows from the definition of approximations, shows
how to compute the truth value of an approximation literal under a given interpretation,
by consecutive check of simple conditions.

Lemma 1. Let A be a four-valued set on a universe U , σ be a four-valued similarity
relation, and x ∈ U .

2 Detailed calculation for the lower and upper approximations are not shown for space reasons.
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1. x ε A+
σ = f iff (y ε σ(x) = t and y ε A = f), for some y ∈ U .

2. x ε A+
σ = u iff (1) does not hold and

(a) (y ε σ(x) = u and y ε A ≤t u), for some y ∈ U , or
(b) (y ε σ(x) = t and y ε A = u), for some y ∈ U .

3. x ε A+
σ = i iff 1. and 2. does not hold and

(a) (y ε σ(x) = i and y ε A ≤t i), for some y ∈ U , or
(b) (y ε σ(x) = t and y ε A = i), for some y ∈ U .

4. x ε A+
σ = t iff y ε A = t, for all y ∈ U such that σ(x, y) ≥t u.

Moreover,

5. x ε A⊕
σ = t iff (y ε σ(x) = t and y ε A = t), for some y ∈ U .

6. x ε A⊕
σ = i iff (1) does not hold and

(a) (y ε σ(x) = i and y ε A ≥t i), for some y ∈ U , or
(b) (y ε σ(x) = t and y ε A = i), for some y ∈ U .

7. x ε A⊕
σ = u iff 1. and 2. does not hold and

(a) (y ε σ(x) = u and y ε A ≥t u), for some y ∈ U , or
(b) (y ε σ(x) ≥t i and y ε A = u), for some y ∈ U .

8. x ε A⊕
σ = f iff y ε A = f or y ε σ(x) = f, for all y ∈ U . �

Observe that any well-formed program has a least model which can be computed by
a combined use of the TP operator and Lemma 1.

5 Conclusions

In the current paper, we proposed a rule language for defining four-valued rough sets.
The language allows us to work with four-valued approximations which appear fre-
quently in practice. The techniques discussed in the paper open the space for imple-
mentation as well as for a pragmatic use of the language. The language is suitable for
applications where some information might be unknown or inconsistent, in particular
for databases or expert systems.
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